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Abstract—This paper addresses the problem of multitemporal
analysis of an available TerraSAR-X data time series covering the
Sendai region in order to assess flood extent and damages caused
by Tohuku-oki tsunami. Over the last decade the use of Earth
Observation satellites to support disaster and emergency relief
has considerably grown. In order to fully exploit highresolution
satellite images, a method based on patches (each image is
divided into non-overlapping tiles) is proposed to extract relevant
contextual information. The local features of each patch act as a
compact content descriptor. Further on, considering the available
descriptors, the next step is to cluster the data in order to
find similar semantic classes. The SVM classifier implements
the concept of query by example using image content. The
results include well-defined semantic classes, derived through
semiautomatic methods thus developing an effective approach
to the multitemporal analysis.

I. INTRODUCTION

The purpose of this paper it to present a new approach that
completes the classic Rapid Mapping products used to evaluate
the impact of a disaster on a region, considering multitemporal
high resolution satellite images. Rapid Mapping services pro-
vide information support during response and immediate post-
response by delivering products emphasizing the extent and
impact of the event, by event understanding any type of natural
or man made disaster. Rapid Mapping products are ready to
use maps of the event revealing the disaster extent, scale and
possible impact with overlaid cartographic information. The
analysis of remotely sensed imagery proposed in the following
is based on TerraSAR-X (TSX) post seismic satellite time
series of 3-month duration covering the area around Sendai
in ascending and descending orbits in stripmap mode and on a
few TSX scenes acquired before the earthquake, between 2008
and 2011.

II. EARTHQUAKE AND TSUNAMI INFORMATION

The 11 March 2011 earthquake in northern Japan and the
tsunami that followed left thousands of persons dead or miss-
ing. The epicenter was at 129 km away from Sendai, the largest
city in the Northeast area of Japan, at 38.297N, 142.372S.
The destructive tsunami, produced by the earthquake hit the
coastline several minutes after the earthquake causing huge
casualties, damages and the crisis at the Fukushima Daiichi
nuclear plant. On March 12 the Sendai region was partially
clouded so that only the use of microwave data SAR data,

capable to penetrate clouds, allows a detailed and complete
evaluation of the region. SAR systems have the capability to
work in cloudy conditions, no matter if it is day or night,
thus becoming a powerful tool to monitor and assess disasters.
Multiple space agencies openly provided data for scientific
use. The imagery was provided via ESAs Virtual Archive,
a cloud-based cyberinfrastructure that ensures rapid online
access anywhere in the world.

From the available time series two radiometrically en-
hanced TSX images acquired before (20.10.2010) and after
(12.03.2011) the tsunami were used (Fig.1). Each TXS image
is accompanied by a TSX XML file which describes in
detail the product type and properties relative to acquisition,
from which we summarize: horizontal polarization, descending
orbit, right looking, 5.77 ground range resolution, 5.75 azimuth
resolution, incidence angle 36.

III. MULTITEMPORAL ANALYSIS SCENARIO

Knowledge discovery from Earth Observation (EO) images
implies mapping low level descriptors extracted from the
image into semantic classes in order to provide an interactive
method for effective image information mining. In the frame of
information theory one can consider a communication channel
between remote sensing imagery and the user who receives the
existing information in the data sources, coded. This channel

Fig. 1. Overlay on Google Earth of the two TSX images.
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Fig. 2. Knowledge discovery components for EO images.

may involve three components - Data Source Model, Query
and Data Mining, as depicted in Fig.2

Data sources are EO images, in this case TerraSAR-X
basic products, to be described in what follows. The Data
Source Model component regards image content analysis con-
sidering as input TSX images to generate the output as a
vector of image content descriptors. These descriptors are
actually texture features obtained through a feature extraction
process, the images spectral properties, dictionary elements
as a result of compression techniques and metadata [1]. The
Query componenet involve the user and takes into account
a query based example, an operation integrated in the last
component, in fact a Support Vector Machine classifier able
to group descriptors into relevant semantic classes [2]. The
classifier supports multitemporal image analysis and interactive
mapping.

The Data annotations stage considers dataset description,
data preparation and data classification in order to perform
user annotations. For each TSX product the image is tiled into
non overlapping patches (14700 items) using the patch tiling
algorithm described in [3]. The size of the patch was chosen
considering image resolution and pixel spacing and it is 100 x
100 pixels. These dimensions ensure that the extracted features
capture the local properties of a region (patch) rather than the
global properties of the image.

At the next level these patches are converted into local

Fig. 3. Instant of the SVM classifier highlighting in blue the semantic
label ”agriculture” obtained in one iteration by giving positive (in green) and
negative examples (in red) directly on the image. In the upper left corner
of the screen all the patches similar with the given examples ”agriculture”
are revealed while in the lower left corner of the screen the similar negative
example (like ”ocean”) are presented.

features [5] to be further used as content descriptors, relevant
to characterize image structures. The obtained feature vectors
are further stored in a database. The envisaged algorithms
for feature extraction includes: Grey Level Co-occurence Ma-
trix (GLCM), the Non Linear Short Time Fourier Transform
(NSTF), the Gabor Filters (GAFS) and the Quadrature Mirror
Filters (QMSF). Inputs for these algorithms are GeoTiff data
(byte, unsigned integer, and float).

Feature extraction is a key step in image content descrip-
tion. For this purpose the ”Bag of Words ” algorithm, shortly
detailed in [6] was used. Recently introduced in the remote
sensing community the BOW model is mainly applied to image
classification. This method comes from text analysis wherein
a document is represented by word frequencies irrespective of
their order.

Further, these frequencies are used to perform document
classification. Identifying the visual equivalent of a word
is therefore necessary before the method can be applied to
images. This is usually done by producing local invariant fea-
tures. Local features are extracted from the local neighborhood
around SIFT points or densely sampled patches. To construct
the vocabulary, a clustering, usually K-means, is performed
to find clusters. Cluster centers are used as vocabulary for
computing word occurrence histogram. After vocabulary gen-
eration, each local feature is assigned usually to the closest
cluster and thus the image can be represented as the word
occurrence histogram. Considering the extracted descriptors
the next step is clustering which aims to dissociate recognized
classes. Further on, an active learning stage is mandatory in
order to label the classes. To each of the established classes
one can add a semantic label.

A system that implements the concept of query by example
and the semantic definition by learning methods is a Search
Engine whose main core is a Support Vector Machine (SVM)
classifier. This tool relies on:

1) feature extraction methods providing the most rele-
vant descriptors of the images

2) SVM as classifier grouping the image descriptors into
generic classes (without semantics)

3) relevance feedback interacting with the end user.

A description of the search engine based on SVM is
given in [1]. The methodology consists in performing an
iterative annotation of TSX images patches using the Support
Vector Machine with a relevance feedback supplemented by
the human expertise. Before using the SVM classifier as
a search engine to assign semantic labels to patches, the



TABLE I. SEMANTIC CATEGORIES EXTRACTED FROM A)TSX PRODUCT 20.10.2010 (BEFORE) AND B)TSX PRODUCT 12.03.2011(AFTER)

Agriculture

Bridges

Aquaculture

HV Poles

Flooded areas

Bridges

Debris

HV Poles

extracted features need to be normalized. Considering up to
ten iterations, the SVM classifier is able to almost completely
retrieve all the similar patches belonging to the same semantic
label, in the example presented in Fig. 3, that is ”agriculture”.

Typical semantic classes extracted from the two TSX
images (before and after the tsunami) are presented in Table I.
Following several search scenarios and using the classifier, the
user is able to retrieve: ”human made structures”, ”bridges”,
high voltage poles”, ”aquaculture”, etc. Before the tsunami
one can observe clearly delimited structures relatively easy
to delineate like urban areas, agriculture regions and even
aquaculture of brown seaweed. After the event some of the
previously identified classes turned into ”flooded areas”.

IV. QUERY STAGE

In what follows, some examples of queries using the image
content are presented. These queries are the basics for the post
disaster evaluation, considering several scenarios like:

A. Assessment of the transportation infrastructures, high risk
of broken roads caused by damaged bridges

Query by semantic label ”bridges” in the image before the
tsunami jointly with the semantic label ”flooded area” in the
image after the tsunami, followed also by a query by ”bridges”
in the second image to assess the results (Table II).

TABLE II. PATCHES DEFINED BY THE SEMANTIC LABEL ”BRIDGES”,
BEFORE AND AFTER THE EVENT

Bridges before

Bridges after

B. Possible energy loss due to the damaged high voltage
poles, if any.

One of the categories highlighted in the annotation phase
is that containing the locations of high voltage poles. It is
possible to determine if some of these poles were damaged
querying to see if there are any patches defined by those

semantic labels. Part of the results of a query by ”high voltage
poles” and ”flooded area” are presented below, in Table III.

TABLE III. PATCHES DEFINED BY THE SEMANTIC LABEL ”HIGH
VOLTAGE POLES”, BEFORE AND AFTER THE EVENT

HV poles before

HV poles after

C. Assessment of agriculture areas, damaged crops and esti-
mation of losses.

In order to assess the damage caused by the tsunami to
agricultural fields, the first query has been done considering
the semantic label ”agriculture”, followed by a second one,
considering ”flooded areas”. Some of the results are presented
in Table IV, revealing the same areas, completely damaged.

TABLE IV. PATCHES DEFINED BY THE SEMANTIC LABEL
”AGRICULTURE”, BEFORE THE EVENT, TURNING INTO ”FLOODED AREAS”

AFTER THE DISASTER

Agriculture

Flooded areas

D. Debris detection

Because of the large potential area of debris drift in the
ocean, it is critical to consider debris detection. Environmental
organizations collaborates with the state and with local partners
interested to detect debris and its movement in order to
estimate potential impact along the coastline. In Table V some
of the patches identified by processsing the image taken after
tsunami are presented.



TABLE V. PATCHES DEFINED BY THE SEMANTIC LABEL ”DEBRIS”,
AFTER THE EVENT

Debris

E. Assessment of aquaculture areas.

Japan has long been recognized as a leader in aquaculture,
Matushima representing one of the most important culture
areas in Myagi prefecture. Over the years, this region was
converted from oyster culture to seaweed culture. Prior to
tsunami one can delimitate in this region large areas of
aquaculture. After the disaster none of this areas remained
unspoiled, everything becoming ocean.

TABLE VI. PATCHES DEFINED BY THE SEMANTIC LABEL
”AQUACULTURE”, BEFORE THE EVENT, TURNING INTO ”OCEAN” AFTER

THE DISASTER

Brown Seaweed

Ocean

V. CONCLUSIONS

The scenarios described in Section IV consider knowledge
discovery from pre and post disaster EO images by mapping
the extracted primitive features into semantic classes and
symbolic representations like: ”urban areas”, ”agriculture”,
”mountains”, ”bridges”, ”aquaculture”, ”high voltage pylons”,
”flooded areas”, etc. The results of the query include well-
recognized patches sharing the same semantic label. Thus,
it is possible to determine tsunami effects on several lev-
els: assessment of transportation infrastructure post disaster,
possible power outages due to the damaged high voltage
pylons, flooded urban regions, evaluation of agricultural fields,
damaged crops and estimation of losses and so on. In addition,
query results can be quantitatively evaluated and further used
to estimate the impact that the tsunami had on the Sendai
region. Through multitemporal images analysis this kind of
approach complements the Rapid Mapping products providing
the ability to detect changes using the user’s experience and
knowledge along the entire process of data mining.
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