Autonomous Robotic SLAM-based Indoor
Navigation for High Resolution Sampling with
Complete Coverage

Iris Wieser®, Alberto Viseras Ruiz, Martin Frassl,
Michael Angermann, Joachim Mueller, Michael Lichtenstern
Institute of Communications and Navigation
German Aerospace Center (DLR)

Wessling, Germany
Email: *wieseri @online.de

Abstract—Recent work has shown the feasibility of pedestrian
and robotic indoor localization based only on maps of the
magnetic field. To obtain a complete representation of the
magnetic field without initial knowledge of the environment
or any existing infrastructure, we consider an autonomous
robotic platform to reduce limitations of economic or operational
feasibility. Therefore, we present a novel robotic system that
autonomously samples any measurable physical processes at high
spatial resolution in buildings without any prior knowledge of
the buildings’ structure. In particular we focus on adaptable
robotic shapes, kinematics and sensor placements to both achieve
complete coverage in hardly accessible areas and not be limited to
round shaped robots. We propose a grid based representation of
the robot’s configuration space and graph search algorithms, such
as Best-First-Search and an adaption of Dijkstra’s algorithm, to
guarantee complete path coverage. In combination with an op-
tical simultaneous localization and mapping (SLAM) algorithm,
we present experimental results by sampling the magnetic field in
an a priori unknown office with a robotic platform autonomously
and completely.

Index Terms—Autonomous Navigation, Holonomic Robotic
Platform, Complete Coverage, Path Planning, Optical SLAM,
Graph Search, Robot Sensing Systems, Magnetic Field.

I. INTRODUCTION

A. Motivation

The characteristics of physical phenomena in space are a
valuable input source of information for many applications:
They range from the domain of network coverage planning,
which can be improved given a map of radio signal strength,
to evacuation planning after an incident including chemical,
biological, radioactive or nuclear material (CBRN), where
extension and motion of the hazardous cloud need to be pre-
dicted. To obtain such information at high spatial resolutions
without any initial knowledge of the environment, we aim
to capture samples of an underlying physical process using
autonomous mobile robots.

We are particularly interested in magnetic fields within
building structures. It has been shown that the highly non-
uniform perturbations of the Earth’s magnetic field inside
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Fig. 1. Autonomous holonomic ground robot capturing the magnetic field
with a spatial resolution of 0.05 m in an office at DLR with an overlayed
trajectory estimation for the robotic platform by an optical SLAM algorithm.
The color scale corresponds to the magnetic field intensity of the captured
map.

buildings can be used for localization purposes. As the micro-
structured disturbances appear to be persistent and unique
in terms of direction and intensity, the magnetic field has
proven to be very rich in recognizable features [1]. This
allows localization of both pedestrians and robots [2] with
sensors that are affordable, portable and do not require any
existing infrastructure. The foundation for the development
and evaluation of such algorithms is ground truth information
of the three-dimensional magnetic field map, which may
be obtained by the approach described in this paper with
autonomous mobile robots.

The limited perception ability of robots as well as the
diversity of common indoor environments require a more
flexible and adaptive path planning algorithm, as newly dis-
covered obstacles in various geometric shapes need to be
considered. Moreover, we are especially interested in capturing
samples in hardly accessible areas (e.g. narrow spaces or
corners). Therefore, we formulate and propose a system that is
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Fig. 2. Illustration of the environment and the robot’s position and orientation.

independent of the robot’s geometry as well as motion model.
Furthermore, we aim to achieve (i) a complete representation
of the physical process, (ii) collision avoidance with obstacles
in the explored environment and (iii) efficiency in terms of
exploration time.

B. Problem Statement

We want to obtain a complete representation of physical
phenomena (such as the magnetic field) in an a priori unknown
environment by an autonomous robotic platform in a minimum
amount of time, while avoiding any collisions.

We formulate the model and algorithm for a two-
dimensional space in order to avoid notational clutter. The
scenario is composed of the environment, in which the plat-
form operates, the physical process, that is to be observed, and
the robotic platform itself.

The environment is divided into a regular grid of N,
cells, and therefore, represented by the set of cells S =
{si}ien,.. n.) (seeFig. 2a). Bach cell s; (1, n,} has a state,
which is either free or occupied. If no obstacle is located in s;,
we define the cell as free. The set of cells that are considered
as free, is called free space S, ... The occupied space Sy is
composed of the set of the remaining cells.

We define the physical process as M = {m;},c;;  n.p»
with the physical quantity m; located in s;. We assume the
spatial frequency of the process to be low enough compared
to the cell size, so that a single measurement inside a cell
provides a sufficient estimation of the process at the cell’s
location.

The robotic platform is completely defined by the robot’s
pose r = (p, ), as shown in Fig. 2b, with p being the robot’s
spatial position with p € R? and 6 representing the robot’s
independent rotational transformation with 6 € [0°, 360 °[.

We desire to develop a system that allows the robotic
platform to take at least one sample m,; within each free cell
s; in a minimum amount of time without entering occupied
space.

C. Related Work

Coverage path planning is a very essential component in
numerous autonomous mobile robot applications, such as
floor cleaning, lawn mowing, area inspection, mine sweeping
and surveillance. Some of the first approaches for coverage

path planning [3] included heuristic and randomized compo-
nents. Encouraged by their simplicity and robustness, heuristic
approaches can save costly localization sensors as well as
computational resources. However, random walks cause path
overlap and require more time to complete the task.

Another disadvantage of heuristic approaches relies in the
not guaranteed full coverage. To achieve guaranteed cover-
age, Huang [4] introduced a divison of the coverage region
in subregions and studies the optimal sweep direction for
covering each subregion. Moreover, Yang and Luo [5] have
shown a neural network approach for complete coverage path
planning, that is especially distinguished by its computational
simplicity. They describe the environment as the dynamic
activity landscape of the neural network. However, the model
requires complete knowledge of the environment in advance
and assumes noisefree sensors.

Most applications, such as cleaning robots [6], usually imply
large footprints with a given symmetrically shaped robot to
cover an area. Viet et al. [7] utilize a commercial round
shaped vacuum cleaning robot by iRobot to experimentally
demonstrate a coverage path planning algorithm, in which
critical points are used as backtracking points for a new
bousdrophedon motion.

In contrast, we propose a system that is easily adaptable
to any geometric shape and kinematic of a robot as well as
its sensor’s placement. As the footprint size of our utilized
sensor is assumed to be infinitesimally small, an interpolation
of measured points might be applied to achieve a complete
representation.

K. Thiayagarajan and C. G. Balaji [8] achieve complete
coverage with a minimum path overlap by a graph traversal
algorithm. However, they assume full knowledge of the robot’s
environment and compute the path offline.

Our system does not require an a priori map of the environ-
ment, as a map of the environment is generated online during
the experiment by simultaneous localization and mapping
(SLAM). Also, the path planning algorithms are calculated
at real time. To perceive the robot’s workspace, it has been
proven to be very successful to combine wheel encoder and
optical sensors, such as laser scanner or cameras, in a SLAM
algorithm. Grisetti, Stachniss and Burgard [9] have contributed
an algorithm based on Rao-Blackwellized Particle Filter to
enable an optical SLAM algorithm with decreased numbers of
particles required to build a map substantially. Based on this
approach, we propose a system to capture samples of physical
quantities at high spatial resolution by a sensor with an in-
finitesimally small footprint within unstructured environments,
of which we do not have a priori knowledge. The proposed
system achieves complete coverage and is adaptable for any
robotic geometry and kinematics.

The remainder of this paper is organized as follows. In
Section II the overall system is presented with its components,
such as coverage path planning, an efficient state space repre-
sentation and an optical SLAM algorithm. Section III describes
our experimental setup for enabling a mobile robotic platform
to explore an environment autonomously using a laser scanner.
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Fig. 3. Sequence diagram of proposed system. The optical SLAM algorithm
estimates the current position and orientation of the robot and generates a map
of the observed environment (workspace). A configuration space is created
to allow an efficient path planning algorithm that calculates the next best
configuration for the robot to navigate to.

Experiments carried out by capturing the magnetic field within
an office at DLR are discussed in Section IV to support the
validity of our system. Finally, in Section V conclusions and
directions for further work are drawn.

II. MODELS AND ALGORITHMS

Working with autonomous mobile robots involves managing
and synchronizing four main tasks: perceiving the environ-
ment, localizing the robot within that environment, planning
the next motion and executing the planned task. Fig. 3 illus-
trates the main sequence of the proposed system, which will
be explained in the following sections in more detail.

Precise localization is required for acquiring a map of the
environment (workspace) as well as an adequate robot control.
In this paper, rotary encoders are utilized for the robot’s
odometry. However, an estimation error is accumulated over
time, which results in a significant drift. Therefore, we utilize
a SLAM algorithm to improve the localization by detecting
recognizable features. The SLAM algorithm [9] is based on
a Rao-Blackwellized Particle Filter, that enables grid map
learning for laser scan data.

To guarantee complete coverage, we present a fine-grid
based representation of the environment S (see Fig 2a).
Approximating the environment by cells with the same size
and shape, each free cell needs to be passed at least once for
complete coverage.

A. Robot Model

The robotic platform is modeled as an n-sided polygon R,
defined by the tuple P := (P, P,,..,P,), P, e R: 1 < h <
n. In Fig. 4a the polygonal base is shown, that describes the
robotic platform utilized in our experiments (see Fig. 4b). Due
to a grid based representation of the environment, the robot’s
configuration g; 5, can be defined by ¢; = (s;,0;), with s;
being the corresponding cell to the robot’s current position p.

For path planning we consider p as the sensor’s spatial
position to capture the physical process under study. 6
represents the robot’s independent rotational transformation.
Let k, Ny define a quantization of one complete rotation, so
that 0, = k - 12\,—7; with k& = 1,..., Nyg. The robot’s body
B(g; 1) is considered as the set of cells of the environment
occupied by the robot with the configuration g;, so that

B(gik) = {si}s,crs s
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Fig. 4. Models of robotic platform utilized in our experiments.

B. Optical SLAM

Our robot is equipped with an optical sensor which enables
to perceive parts of the environment, depending on the sensor’s
position and orientation. A SLAM algorithm estimates the
robot’s current configuration by matching optical features to
its previously obtained map. Let the set of cells that have been
already perceived be stored in the robot’s workspace W with
W C S. We define {S;} as the set of cells newly observed by
the optical sensor, with {S;} C S. Given those observations,
the updated workspace is W = W U {S;}. W is initialized as
an empty set.

An additional sensor is mounted on the robotic platform to
measure the physical process under investigation. The robot
updates its set of measurements Z by the new measurement
{ma, 84}, with m, defined as the most recent measurement of
the physical process taken within the cell s, corresponding to
the estimated spatial position of the sensor. The updated set of
measurements is Z = Z U {my, s, }. The set of measurements
Z 1is initialized as an empty set.

C. Configuration Space Generator

An efficient representation of the robot’s workspace is
essential to synchronize between perception and planning.
This representation needs to be compact, eligible to plan in,
memory-efficient and - most important - complete, i.e. hold
all desired information.

Based on the workspace W a configuration space C is
calculated, that combines the kinematic and geometric as-
pects of the problem in one single description. Considering
C as a space that holds all possible configurations of the
robot, it provides an abstraction of all reachable spatial cells
s;. We define the configuration space as C' = {¢ 1} =
{800k hmr, . Np.siew

Each configuration g¢;j is specified in the configuration
space as safe or unsafe, and if it is safe, as sensed or
pending. This enables an efficient path planning, as only safe
configurations are considered for path planning with the aim to
reach all pending configurations. The set of safe configurations
C; is defined as Cs = {qix|B(qix) N Soce = 0}. If any
intersection exists between an obstacle and the robot’s body
B(g; k). the configuration g; ; is considered as unsafe. The
set of pending configurations C, holds all configurations
associated to a cell, that is safe and has not been measured

yet, Wlth Cp = {qi’k}Qi,kECS7(mi>S'i)¢Z.
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Fig. 5. Tllustration of the currently perceived workspace (green rectangles
show free space, red illustrate occupied space). The remaining environment
is still unknown. It shows the determination of states, illustrating only states
with 8 = 180 © for a rectangular robot model.

Fig. 5 illustrates a safe state, an unsafe state and an
indeterminable state, as the workspace occupied by the robot’s
body B(qg; k) is still partly unknown.

The computation time needed to determine the set of cells
occupied by B(g; ) is strongly increased not only by the
robot’s rotational offset to the workspace’s grid, but also the
shape of the robot’s polygon. However, we assume a static
polygonal description of the robotic platform with discretized
orientations 0 and a grid-based representation of the envi-
ronment. Therefore, all set of cells occupied by the robot
are calculated beforehand for each possible orientation 6y
independent of the robot’s translational transformation and are
stored for later determinations of the configurations. As the
workspace changes during the experiments, all states of the
configurations need to be constantly updated, e.g. if human
enters the sensor’s view.

The configuration space is represented as a weighted graph
with each configuration considered as a vertex. Configurations
are connected by edges, if they are safe and no intermediate
configuration is visited by the robot’s movement from one
to the other. The edges’ weights are derived by means of
measuring the duration of rotational and translational move-
ments. Therefore, efficiency in terms of exploration time can
be optimized by minimizing the costs for accessing all nodes
within the graph. Fig. 6 illustrates a graph for a configuration
space in a grid-based representation of the environment. For
this particular case, each vertex can have a maximum amount
of 10 edges.

Fig. 6. Illustration of a vertex, its successors and their edges’ costs
Cd, Ch, Cv, ¢ for each possible transformation in the configuration space.

This setups allows the replacement of the ground-based
robotic platform by simply exchanging the robot’s geometric
(polygonal model) and kinematic (costs) description.

D. Path Planner

Given the graph which represents the configuration space,
we aim to calculate the robot’s new configuration. Following
a Best-First-Search approach we derive a low-complexity path
planning algorithm to avoid time consuming calculations.

Let the robot’s configuration g; , correspond to the vertex
v(gi k). We define all pending vertices connected by an edge
to the vertex v(g; ) as its pending neighborhood. The vertex
of this neighborhood offering the lowest cost, that is given by
the edges’ weights, is chosen as the robot’s new configuration.

In case there are no pending vertices connected to the vertex
v(gi,1), we apply an adaption of the Dijkstra-algorithm [10]
to navigate the robot to the closest pending configuration, in
terms of minimum costs. Incrementally summing up the costs
from the inital vertex to each vertex, it will expand to its
neighbors. However, the vertices with least costs are always
expanded first until the first pending configuration is reached.
To guarantee finding the vertex with the minimum total
costs all vertices need to be further explored. The algorithm
terminates if the summed up costs of each vertex is greater
or equal to the cost of the first found pending configuration.
The pending configuration explored with the least total costs
to the inital vertex is chosen and its path will be applied to
the robot.

The set of states {q; r}re1,...,n,] i defined as sensed, as
soon as a sample m; was taken at a position p within the cell
s;. The algorithm is only terminated when no pending and
reachable configurations exist anymore, so that the sensor has
been placed in all perceived and free cells.

III. EXPERIMENTAL SETUP

For our experiments, we used a holonomic robotic platform
and equipped it with a magnetic sensor to sense the physical
process, as well as an optical range sensor to provide naviga-
tional information, see Fig. 7. We used a commercial laptop
(with 8 GB of RAM at 1600 MHz and a 2.1 GHz Intel Core
17-4600U processor), which was carried on-board to analyze
the data and run the algorithms.

We conducted experiments in two different locations, first
in a lab equipped with an accurate ground truth system
(optical Vicon tracking system) which we only utilized for the
development and verification of our algorithms. In addition
we carried out experiments in an office without external
localization system. The results presented in this paper focus
on the infrastructureless experiments.

A. Robotic Platform

The robotic platform employed is a customized version
of the Slider150 (see Fig. 7), developed and manufactured
by Commonplace Robotics GmbH. Its outer dimensions are
0.45 m x 0.3 m x 0.17 m. Due to its four mecanum wheels
the platform is able to perform omnidirectional movements,
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Fig. 7. Holonomic mobile robotic platform equipped with a laser scanner on
top and a magnetic sensor extended on a wooden arm.

following input commands for forward, lateral and rotational
velocities. Each of the four gear motors is equipped with a
magnetic encoder that provides information about the rota-
tional state of the motors at a rate of 10 Hz, used to estimate
the traveled distance.

B. Magnetic Sensor

To measure the magnetic field vector, we equipped the
mobile platform with a wireless sensor unit, the XSens
MTw. Besides the tri-axial magneto-resistive magnetometers,
this commercially available sensor package incorporates ac-
celerometers, gyroscopes and a barometer. We captured the
sensor data with a rate of 100 Hz. The sensor unit was installed
on a wooden arm with a length of 0.75 m. This construction
minimizes undesired perturbations by the platform’s ferro-
magnetic structures and electric currents. Additionally, it also
enables measurements in otherwise hardly accessible locations
of indoor environments, e.g. narrow spaces or corners. The
sensor’s placement is crucial for path planning considerations,
as collision-free constraints require specific configurations of
the robot to cover a position in free space.

C. Optical Sensor

The optical sensor which is mounted on top of the robotic
platform is used to measure the distance to objects in the
environment surrounding the robot. This information is used
in a SLAM algorithm to create a map of the environment
which is needed for navigation and to determine the possible
measurement locations. We considered two different types of
sensors for this task: an RGB-D sensor (Microsoft Kinect)
and a scanning laser range finder (Hokuyo URG-04LX). The
RGB-D sensor provides color (red, green and blue) as well as
depth information, which can be used to generate the needed
maps in three dimensions. According to its specifications the
depth sensor ranges from 1.2 m to 3.5 m and its opening
angle is 57°. The URG-04LX is a planar scanning laser
range finder, that takes 683 samples on a broad opening
angle of 240° at a rate of 10 Hz. Following the specification
sheet its guaranteed range is between 0.06 m and 4 m and
the measurement accuracy varies +0.01 m for measurements

in the range between 0.02 m and 1 m, and £0.001 m for
measurements between 1 m and 4 m.

Although it just provides two-dimensional data, we decided
to use the scanning laser range finder for our experiments,
as it is more stable under daylight conditions (e.g. in halls
with large windows). Moreover, its output data requires less
processing, but still provides sufficient data for our purposes.
Due to its wide range, it also enables a more efficient path
planning, as no turns need to be explicitly considered to
perceive more of the environment’s structure.

D. Ground Truth Tracking

To provide an accurate ground truth validation for local-
ization, a commercial motion tracking system (Vicon) has
been utilized. Consisting of 16 infrared cameras, it yields
sub-millimeter accuracy at a rate of 100 Hz, determining the
position and orientation of an object equipped with infrared
strobes.

E. System Setup and Software Framework

A system overview of the prototype is shown in Fig. 8.
The physical component (“Slider”) is comprised of the op-
tical sensor, the magnetic sensor and the robot’s locomotion
subsystem (wheels and motors). Three threads (localization
and mapping, path planner, robot controller) form a feedback
loop, whereas the fourth thread (configuration space mapper)
records samples and monitors coverage. All threads and their
communication are realized within the ROS (robotic operating
system) framework.

IV. EXPERIMENTS AND DISCUSSION OF RESULTS

In a set of initial experiments we have investigated and
compared the location accuracy of the raw odometry, which is
based on the robot’s wheel encoders, and the location accuracy
obtained by combining this raw odometry with sensor data
from the on-board laser in a SLAM implementation. For this
purpose we have equipped the robot with tracking markers and
have utilized the optical motion tracking system described in
Section III-D to obtain ground truth. Fig. 9 and Fig. 10 show
that the raw odometry (dotted blue line) exhibits significant
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Fig. 8. The system diagram shows the feedback loop formed by the optical
sensor on-board the robot (Slider) and the three threads (localization and map-
ping, path planner, robot controller), with the robot’s locomotion subsystem
(wheels and motors). The fourth thread (configuration space mapper) records
samples and monitors coverage.
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Fig. 9. Trajectories for a robot run. The solid line in black shows the ground
truth trajectory. The position estimated by the wheel encoder is illustrated
by the dotted blue line. This estimation combined with an optical SLAM
algorithm results in the trajectory shown in dashed red.

location error after very short time. In contrast, the SLAM-
based position estimate (red line) remains accurate with less
than 0.07 m of error over time.

In order to validate the feasibility of the overall sampling
task we have chosen an office environment, due to its challeng-
ing nature in terms of fairly fine-grained geometry of obstacles
and navigable space.

We utilized a spatial resolution of the sampling grid of
0.05 m in both horizontal directions. Furthermore, in this
experiment we partitioned the robot’s configuration space
into 12 discrete directions, i.e. 30 ° rotational step size. The
experimental setup used for the results presented here has been
an office space of 4 m x 6 m and approximately 8 m? of
reachable space. Without any a priori knowledge the robot
achieved complete coverage in 63 minutes of driving time. All
computations were carried out on-board the robot and during
the experiment. Fig. 11 depicts the model of the workspace
learned by the robot during the experiment. The estimated
trajectory of the robot is shown in Fig. 12. We see that whereas
all grid cells have been measured at least once, only few
positions in the grid are covered multiple times, resulting in
complete coverage with little redundancy, as intended.
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Fig. 10. Error of the estimated trajectory. Dashed blue represents the odometry
by the wheel encoder and solid red the optical SLAM.

S

Fig. 11. Final workspace for an experiment within an office at DLR. Black
indicates occupancy, gray shows recognized free space. The transformation
frames illustrate the estimated position of the robot’s center and its sensors, as
well as the corrected odometry by the SLAM algorithm (odometry to map).

In Fig. 1 the resulting trajectories and magnetic measure-
ments (shown is the intensity of the magnetic field) are
superimposed onto a rectified overhead picture of the office.
We see how well the office space is covered. Note that the
apparent jumps in the magnetic field result from offsets in the
uncalibrated magnetic sensor. We further note that the full pose
of the robot is estimated which yields not only the magnetic
intensity but results in full observability of the field vector.

Fig. 13 shows further, that 95 % percent coverage was
achieved after 50 minutes exploration. The experiment termi-
nated after 63 minutes as 100 % coverage was reached.

V. CONCLUSIONS AND OUTLOOK

The presented experimental results show the feasibility of
sampling a physical process (here the magnetic field) with high
spatial resolution by an autonomous robot. The combination
of an optical SLAM algorithm and various graph based path
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Fig. 12. Estimated trajectory of a sensor capturing the magnetic field within
an office at DLR. The zoomed illustration shows that at least one sample was
taken in each cell.
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Fig. 13. Illustration of the percentage of covered area over time.

planning algorithms achieve complete coverage and efficient
trajectories with little redundancy. In particular a Best-First-
Search and an adaption to the Dijkstra’s algorithm have been
applied for an efficient exploration in terms of time and com-
pleteness. The robot is capable of autonomously exploring an
a priori unknown indoor environment. It successfully perceives
and represents the accessible workspace in the form of its con-
figuration space. By planning within this configuration space,
collision avoidance can be achieved, as observed occupied
space is captured by an optical sensor during exploration and
considered implicitly within the robot’s configuration space.

We have validated our approach by realizing a fully au-
tonomous ground robot to efficiently produce high resolution
magnetic maps of previously uncharted buildings with com-
plete coverage. The quality of the results suggests that this
system may be able to economically obtain suitable magnetic
maps for pedestrian localization as presented in previous
work [2].

Several avenues exist for future improvements of the pre-
sented approach. To reduce the time to sample at a given
spatial resolution, it is worthwhile to investigate how to
compute more efficient paths. Path efficiency may be improved
by further preventing redundancy in visited locations as well
as improved modeling of the robot’s dynamic behavior and
associated (time) cost of movements.

Depending on the application domain and intended usage
of the obtained data, significant gains may be achieved by
more elaborate models of the underlying physical phenomena
and adaptive adjustment of spatial sampling frequencies. Such
models may include Gaussian Processes [11] and predict val-
ues at still unvisited locations to reduce the amount of spatial
locations that need to be visited for a complete representation.

Furthermore, multiple refinements of the mechanical plat-
form, such as weight reduction and more agile dynamics, as
well as its sensors, such as increased range or mechanical
sweeping may significantly improve economic feasibility.

We believe that a cost-efficient and simple to operate plat-
form is very desirable in order to achieve wide-scale adoption
for both commercial and scientific purposes that will lead
to a much deeper understanding of physical phenomena at
previously neglected spatial resolutions.
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