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Abstract
This paper demonstrates how the robust performance analysis framework can be used to
determine worst case loads of flexible aircraft due to “1-cosine” gusts. This framework
is a part of control theory and is used to characterize a system by input-output norms:
e. g. the induced L2-L∞ norm represents the worst case energy-to-peak gain. Two very
efficient ways to compute this norm are presented. Based on the physical interpretation
of this norm, an aircraft model is weighted such that the induced L2-L∞ norm of the
weighted system represents a close but guaranteed upper bound for “1-cosine” gusts
and similar excitations. The analysis results are compared to simulations. Since the
energy-to-peak gain can be computed in a very efficient way for linear time invariant
(LTI) models, the norm is used to quickly obtain an upper bound for loads and to
identify critical flight conditions. In a second example, the analysis is additionally
performed on an uncertain model.

Nomenclature

d(t) Input vector
e(t) Output vector
G(ρ) Linear parameter-varying (LPV) system
G(ρ)d→e LPV system: path from d to e
h Flight level
Ma Mach number
P Parameter space
PWRB Wing root bending (WRB) moment
Q Controllability Gramian matrix
ρ(t) Parameter vector
R/R+ Set of real / nonnegative real numbers
üz Vertical acceleration
vgust Vertical wind
W Weighting filter
X(ρ) Parameter dependent Lyapunov matrix
‖x‖L2

L2 signal norm of x(t) (energy norm)
‖x‖L∞

L∞ signal norm of x(t) (peak norm)
‖G‖L2→L∞

Induced L2-L∞ norm of G (worst case energy-to-peak gain)

(·) Normalized value of (·)

1 Introduction

In order to certify a new aircraft, it must be proved that it can withstand loads
caused by turbulence and gusts, see [6]. According to the CS-25 of the European
Aviation Safety Agency (EASA) [1], two types of excitation have to be considered:
discrete “1-cosine” gusts and continuous turbulence. In the first case, an aircraft
model is excited with a single “1-cosine” gust profile and the model outputs,
e. g. the wing root bending (WRB) moment or the vertical accelerations, are
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computed. Next, the trim loads are superimposed and the procedure is repeated
for several gust lengths. Moreover, the complete process has to be performed
for lots of flight points such that the entire flight envelope (defined by velocity,
altitude, loading etc.) is covered. Finally, the maximum and minimum peak
of every output for all these simulations defines the limit loads due to discrete
gusts. The other type of excitation – namely continuous turbulence – considers
the stochastic nature of turbulence. Here, the von Karman wind turbulence
model is used to excite the aircraft and the results are evaluated by stochastic
means. The limit loads are derived from the root mean square (RMS) value of
the model response. A detailed description of the discrete gusts and continuous
turbulence scenarios can be found in [6].

Since these millions of simulations are very time consuming, there is a need
for fast and reliable algorithms to identify worst case flight points and to compute
maximum loads. Consequently, this problem is intensively studied in literature:
in [20] the so called matched filter theory is used to compute worst case gusts.
By exciting an aircraft with these gusts worst case loads can by identified. In
[4], the RMS value of the aircraft model output due to white noise excitation is
computed by solving a Lyapunov equation. The usage of surrogate modeling
and optimization techniques is considered in [8] for identifying critical flight
conditions and for predicting worst case gust loads.

Indeed, the approach from [4] is equivalent to computing the H2 norm for
linear time invariant (LTI) systems and the considered interpretation is well
known in control theory. However, there are further interesting system norms. In
terms of loads computation, the induced L2-L∞ norm is promising, because this
norm specifies the worst case energy-to-peak gain, i. e. an upper bound for the
output peak for all excitations with a maximum energy of one. By introducing a
weighting filter, which is able to shape a “1-cosine” gust of arbitrary length with a
maximum energy of one, an upper bound for gust loads can be directly computed.
Moreover, the robust performance analysis framework allows the computation of
these upper bounds also for uncertain and for linear parameter-varying (LPV)
systems, see e. g. [3] and [5]. Consequently, this control theory method allows the
computation of upper bounds for gust loads for a parameter dependent model
by only one analysis. At this point, it is mentioned that this paper does not
present the first application of robust control theory methods for an aeroelastic
problem; in [11] and [2] the µ-analysis framework is used for flutter analysis.

The aim of this paper is to show how the worst case energy-to-peak gain
can be used in the process of loads computation. The paper is structured as
follows: an overview about important preliminaries is presented in Section 2. In
Section 3, the induced L2-L∞ norm is formally defined and it is explained how
it can be computed. Next, in Section 4, LTI performance analyses are performed
and compared to simulation results. It is shown how the energy-to-peak gain
can be used to compute a close but guaranteed bound for the model output
caused by a “1-cosine” gust excitation. In Section 5, the robust performance
analysis is performed on an uncertain model. Finally, a summary and an outlook
to further applications of the robust performance analysis for loads computation
is presented in Section 6.

2 Preliminaries

In this section, LPV systems are briefly introduced and two important signal
norms are defined.

2.1 Linear Parameter Varying Systems

In order to introduce the class of LPV systems, differentiable parameter vector
trajectories are defined first. The time dependent parameter vector is defined
as a function ρ : R+ → P, where R+ is the set of all nonnegative real numbers,
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the parameter space P is a compact subset of Rnρ and nρ is the number of
parameters.

Definition 1 (LPV system [19]): The linear parameter-varying (LPV) system

G(ρ) :

{
ẋ = A(ρ(t))x+B(ρ(t))d
e = C(ρ(t))x+D(ρ(t))d

(1)

maps an input vector d ∈ Rnd to an output vector e ∈ Rne , where the continuous
matrix functions A : P → Rnx×nx , B : P → Rnx×nd , C : P → Rne×nx , D : P →
Rne×nd and a state vector x ∈ Rnx are used. The notation G(ρ)d→e system is
used to refer to the specific path from d to e.

LPV systems are hence very similar to the well-known LTI systems, with
the difference that the system matrices depend on parameters. Figuratively
speaking, these parameters can be considered as additional inputs, which alter
the plant dynamics. Typical examples for parameters are the flight level or the
Mach number.

Since the here considered parameters change very slowly, they are treated as

time invariant, i. e. dρ(t)
dt = 0. However, for the sake of readability, the explicit

time dependence of ρ is dropped below.

2.2 Signal Norms

An n-dimensional signal is a function of the time, i. e. x : R+ → Rn. Two
important signal norms are presented below.

Definition 2 (L2 signal norm [17]): The L2 norm of x(t) is defined as

‖x‖L2
=

√∫ ∞

0

x(t)Tx(t)dt. (2)

The L2 norm can be interpreted as the energy of a signal, so that it is also
referred to as energy norm.

Definition 3 (L∞ signal norm [17]): The L∞ norm of x(t) is defined as

‖x‖L∞
= sup

t≥0

√
x(t)Tx(t). (3)

For scalar valued signals x(t), the L∞ norm corresponds to sup |x(t)|. Hence,
the L∞ norm is also referred to as peak norm of a signal.1

3 Worst Case Energy-to-Peak Gain

Although the induced L2-L2 norm (or for LTI system alsoH∞ norm) is commonly
used in the robust performance analysis framework, the induced L2-L∞ is more
suited for loads computation since it allows the computation of an upper bound
for the output peaks. It is formally defined below and two possibilities to compute
it are presented.

3.1 Definition and Interpretation

Definition 4 (L2-L∞ norm for LPV systems [5] and [16]): The induced L2-L∞
norm for LPV systems ‖G(ρ)‖L2→L∞

is defined by

‖G(ρ)‖L2→L∞
= sup
d 6=0,d∈L2
ρ∈P

‖e‖L∞

‖d‖L2
.

(4)

1Note that the L∞ signal norm is not uniquely defined in the literature. Throughout this
paper, only Definition 3 is used.
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It is easy to see that the induced L2-L∞ norm corresponds to the worst case
energy-to-peak gain. Hence, this norm allows to determine the maximum possible
amplitude of the output if the input energy is less than or equal zero. The latter
condition can be achieved by a suitable scaling of the system.

Note that a necessary condition for the L2-L∞ norm being finite is that the
feed-through matrix D(ρ) = 0. However, by adding a low-pass filter to the
system the latter condition can always be fulfilled. Since the excitation signal is
usually of a limited frequency range, the low-pass filter will not deteriorate the
results if the cutoff frequency is chosen high enough. Moreover, the filter can
be used to weight a relevant frequency range. Note that for LTI systems, the
induced L2-L∞ norm corresponds to the so called generalized H2 norm [16].

3.2 Computation via a Lyapunov Equation

The induced L2-L∞ norm for an LTI system can be computed by solving the
Lyapunov equation

AQ+QAT +BTB = 0, (5)

where Q is the so called controllability Gramian matrix. The Gramian matrix
can be easily computed by Matlab using the command gram, see [13]. From Q,
the LTI L2-L∞ can be computed as

‖G(ρ)‖L2→L∞
= max

(
eig
(
CQCT

))
. (6)

The advantage of computing the induced L2-L∞ norm by a Lyapunov equation
is that this approach is extreme fast and numerically robust. However, this
approach is restricted to LTI systems. See [16] for details and proofs.

3.3 Computation via LMIs

As already mentioned, the computation of the induced L2-L∞ norm by Lyapunov
equations is not possible for LPV systems. However, it is possible to determine
an upper bound for it by solving a semidefinite program (SDP). This approach
is based on a linear matrix inequality (LMI) constraint for the induced L2-L∞
norm: the LPV system G(ρ) is exponentially stable and its induced L2-L∞ norm
from d to e is smaller than a performance index γ if there exists a symmetric
Lyapunov matrix X : P → Snx s. t. ∀ρ ∈ P

X(ρ) > 0, (7a)
[
A(ρ)TX(ρ) +X(ρ)A(ρ) X(ρ)B(ρ)

B(ρ)TX(ρ) −γI

]
< 0, (7b)

[
X(ρ) C(ρ)T

C(ρ) γI

]
> 0. (7c)

In (7), the term X > 0 means that X is positive definite.2 An upper bound for
‖G(ρ)‖L2→L∞

can be thus determined by solving the SDP

min
γ,X(ρ)

γ s. t. (7) is fulfilled ∀ρ ∈ P. (8)

The decision variables of this convex optimization problem are the entries of the
Lyapunov matrix X(ρ) and the performance index γ. SDPs can be solved in a
numerically efficient way by Interior-Point methods. LMIs can be easily coded
using the LMI parser YALMIP [12]. Throughout this paper, the SDP solver
SDPT3 [18] is used to solve the resulting optimization problems. Further details

2A symmetric matrix X is positive definite if all eigenvalues of X are positive. Analogously,
X < 0 means negative definiteness of X. Note that X > 0⇔ −X < 0.
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as well as a proof for the LMI constraint of the induced L2-L∞ norm can be
found in e. g. [5] and [16].

There are still two problems in the SDP (8), which makes it numerical
intractable. On the one hand, the decision variables (the entries of the matrix
X(ρ)) can have an arbitrary functional dependence on the parameters of the
considered system. On the other hand, the constraints depend on the system
parameters, so that an infinite number of LMIs has to be considered. Remedies
from the literature for both problems are presented below.

In order to avoid the functional dependence of the decision variable X(ρ),
Wu [19] proposed to assign nf basis functions

X(ρ) :=

nf∑

i=1

fi(ρ)Xi, where Xi ∈ Snx . (9)

The new decision variables are the coefficients Xi of the basis functions fi(ρ).
More basis functions obviously reduce the conservatism. However, since every
basis function increases the number of the decision variables, this slows the opti-
mization process down or may cause severe numerical problems. Consequently,
the selection of the basis functions is an important step, which can have a crucial
effect on the results. Unfortunately, there are hardly any guidelines in literature
how to do this, but simple polynomials lead to good results in practice.

The simplest and maybe most popular way to avoid infinite dimensional
LMIs is introduced in [19] and is based on a gridding of the parameter space.
This means that the constraints are only enforced on a finite subset Pgrid ⊂ P.
Because this is a mere approximation of the original problem, sufficiency is
lost. It is thus self-explanatory that the density of the grid must be carefully
chosen. In order to check the validity of the results, it is possible to optimize
the performance index γ again with the obtained Lyapunov matrix on a second,
much finer grid. A slight increase of the new performance index indicates – but
does not prove – the validity of the results. However, the fact that sufficiency
is lost should not be overrated. Even in the µ-framework, the analysis is often
performed on a finite grid of frequency points. Moreover, an intensive benchmark
study in [10] confirms the validity of the gridding approach.

4 Performance Analysis of LTI Models

The aim of this section is to show how the energy-to-peak gain can be used to
compute upper bounds for loads resulting from “1-cosine” gust excitations. First,
the aircraft model is presented. Next, a weighting filter is introduced. Afterwards,
the energy-to-peak gain is compared to simulation results at a representative
flight condition. Following this, it is shown how the trim loads can be included in
the analysis. Finally, the comparison is generalized to the entire flight envelope.

4.1 Aircraft Model

As explained in the introduction, this paper aims to investigate how the robust
performance analysis can be used for loads analysis. In order to yield meaningful
conclusions, a model of industrial complexity for a generic transport aircraft is
used. The comparison is pursued at the example of the wing root bending (WRB)
moment PWRB and the vertical acceleration üz. The considered model input
is the vertical wind vgust, due to turbulence or gusts. Here, an open loop
configuration is analyzed.

The model is based on the generalized linear equations of motion, which are
typically used for gust and turbulence loads analysis. Due to the symmetric
excitation in the considered scenario, it is sufficient to use only the heave and
pitch rigid body mode. Moreover, 20 symmetric flexible modes are used. The
loads are recovered using the force summation method. For details, see e. g. [9].

ASDJournal (2013) Vol. 3, No. 1, pp. 39–50
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Figure 1: Comparison of
the Bode diagrams of the
state space aircraft model
with the more common fre-
quency domain model. A
very good agreement can
be observed.
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The aerodynamics are modeled using the vortex lattice method and doublet
lattice method. In order to obtain a state space representation, a rational
function approximation (RFA) of the unsteady aerodynamic influence coefficient
matrix is performed with a number of 8 poles, [9]: to capture the spiral nature
of the gust column, the gust model is divided in 20 zones, each having its own
reference point. The time delay between the collocation point and the preceding
reference point is considered in the RFA. To include the delay between the
reference points, Pad approximations of the dead time are applied. See [7] for
details.

In order to cover the entire flight envelope, aerodynamic models are built
for the Mach numbers Ma ∈ {0.50, 0.55, . . . , 0.90} and for the flight levels
h ∈ {0.0 km, 0.5 km, . . . , 10 km}. However, some permutations are outside of the
valid flight envelope and only the 133 valid combinations are considered below.

Connecting the aerodynamic models with the structure model yields 133
state space models with 236 states each. A Bode diagram of a normalized model3

at a representative flight condition is depicted in Figure 1. Moreover, the Bode
diagram of a model obtained by the more common frequency domain approach
is shown and a very good agreement can be seen.

It is finally noted, that the total loads are composed by the 1g trim loads
and by the dynamic response, e. g. for the WRB moment

P total
WRB = P trim

WRB ± PWRB. (10)

The reason for the ± sign is that the wind can be directed upwards or downwards,
which changes the sign of gust loads.

4.2 Weighting Filter

In order to yield significant results by a performance analysis, it is often necessary
to add a weighting filter W , for example to weight the relevant frequency range,
see Figure 2. In the considered case, the energy-to-peak gain is used to compute
an upper bound for the loads due to “1-cosine” gust excitations. For that reason,
a pre-filter must be able to shape a “1-cosine” gust of arbitrary length with an
maximum energy of ‖d‖L2

≤ 1. This can be achieved by a suitable choice of the
parameters k and T of the first order low-pass filter

W :=

{
ẋW =− 1

T xw + k
T d

vGust = xw .
(11)

It has to be mentioned, that the weighting filter has to be adapted for every
flight condition: the time constant T has to be adapted to the aircrafts true
airspeed and the gain k according to the design gust velocity [1].

3Note that the normalization of any parameter (·) is indicated by overlining it (·).
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Aircraft
Model

Weighting
Filterd

vgust
e =

[
PWRB
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]
Figure 2: Aircraft model
with weighting filter.
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Figure 3: Validation of
the weighting filter. The
disturbances d(t) are de-
signed such that the cor-
responding filter output
matches the considered
“1-cosine” gust and that
‖d‖L2

≤ 1. (Please note
the different scalings of the
time axis.)

Simulation results for the 30 ft and the 350 ft gust as defined in [1] are
presented in Figure 3. Note that in order to clearly depict the results, the scaling
of the time axis is adapted to the considered gust length. In the upper left
subplot, the input to the weighting filter can be seen. The signals are designed
such that the corresponding filter output matches the considered “1-cosine” gust
and that ‖d‖L2

≤ 1. In the lower left subplot, the output of the filter and the
actual gust are depicted. A perfect agreement can be seen. Finally, in the right
subplot, the output of the unweighted model (directly excited by the gust) and
the output of the weighted model (excited by d(t)) are shown. Again, a perfect
agreement can be seen. The same result is obtained for the vertical acceleration.

4.3 Analysis Results at one Flight Point

Simulations with the original model for seven different gust lengths between 30 ft
and 350 ft are performed and the results are depicted in Figure 4. In addition,
the energy-to-peak norm of the weighted model is computed (separately for both
transfer paths) and also illustrated in Figure 4. Since the weighting filter can
shape an arbitrary “1-cosine” gust, the simulation results do not exceed the
norm. Moreover, it can be guaranteed that there exists no gust length in the
range between 30 ft to 350 ft which exceeds the norm.

Another important result is that the worst of the considered seven gusts
reaches 71 % and 72 % of the energy-to-peak norm. An over-estimation of loads
by 40 % is certainly significant. However, the estimation is in the correct order
of magnitude so that the information is still valuable.

It is further possible to compute the worst disturbance d(t) with unit energy,
which actually reaches the norm by the matched filter theory, see [20]. This
result is depicted in Figure 5. In the left subplot the disturbance d(t) is shown.
In the middle, the weighting filter output – so the actual gust – can be seen. In
the right subplot, the resulting WRB moment is depicted and it can be seen
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Figure 4: Comparison of
the results from gust simu-
lations with the worst case
energy-to-peak gain.
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that the norm is reached. Again, a similar result is obtained for the vertical
acceleration.

4.4 Inclusion of Trim-Loads

As already mentioned, the trim loads have to be considered to yield the total
loads. Similar to the normal loads computation process, this can be achieved by
superimposing the norm with the trim loads. This leads to the following bounds
for the maximum and minimum loads:

P trim
WRB − ‖Gd,PWRB

‖L2→L∞
≤ P total

WRB ≤ P trim
WRB + ‖Gd,PWRB

‖L2→L∞
. (12)

This is illustrated in Figure 6. Loads resulting from an upwards and a downwards
directed 350 ft gust are superimposed with trim loads. The total loads do not
exceed the bounds from (12). Only the gust loads are considered below, since
the norm covers only the gust increment.
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4.5 Analysis Results for the Complete Flight Envelope

In order to validate the results, the analysis from the preceding section is repeated
for the entire flight envelope and the results are depicted in Figure 7. In the
left column the WRB moment is considered and in the right one the vertical
acceleration. In the first row, the maximum peak of all simulations at one flight
point is plotted as a function of the true air speed vTAS and the flight level
h. The maximum loads occur for high velocities and low flight levels. This
agrees to the physical consideration that the maximum loads occur, where the
dynamic pressure is maximal. In the second row, the induced L2-L∞ norms
are plotted in the same manner. Obviously, the trend of the peaks and of the
norms have almost the same shape. The ratios of the maximum peaks and of the
energy-to-peak gains are depicted in the last row. It can be seen that the ratios
never exceed a value of one. This confirms again that the norm provides an
upper bound for the loads. Further, the ratio varies only slightly between 62 %
and 77 %. Consequently, the energy-to-peak norm is as an excellent indicator
for critical flight conditions.

Finally, the computation times are compared. The required time to compute
the energy-to-peak norm for all 133 flight conditions is 16 s. On the contrary, the
computation time for the “1-cosine” gust simulations is 1.85 h. The computation
via the norm is thus more than 400 times faster. Certainly, this result has to
be put into perspective that a frequency domain computation of loads is faster
than a simulation in the time domain.

Summarizing, it can be stated that the energy-to-peak gain can be used to
quickly compute useful bounds for loads resulting from “1-cosine” gust excita-
tions.

5 Robust Performance Analysis of a Parametric Model

Finally, the robust performance analysis is used to compute an upper bound for
the energy-to-peak gain, which is not only valid for one flight condition but for
a specific parameter range. In the considered scenario, the altitude h is assumed
to be uncertain in the interval from 0 km to 10 km, while the Mach number is
held constant at Ma = 0.5.

To this end, the weighted models at Ma = 0.5 from Section 4 are used and a
grid based LPV model is derived. The considered model parameter is the flight
level, which changes – at least for civil transport aircrafts – such slowly that a
zero parameter bound is assumed. In order to obtain a reasonable problem size,
the LPV order reduction from [15] is applied to create a grid based LPV model
with 25 states. The original and the reduced model are compared in Figure 8
and an excellent agreement can be clearly seen. Moreover, the relative error
measured by the induced L2-L∞ norm is less than 2 % at all grid points.

The analysis results are compiled in Table 1. As a reference, the maximum
LTI norm of all grid points is computed by solving the Lyapunov equation.
The LPV analysis is performed by the gridding approach. The SDP is solved
using only every second grid point, referred to as rough grid. This allows to
validate the results on the full grid. First, a quadratic basis function for the
Lyapunov matrix is used. Since the solution of the rough grid fulfills the LMIs
also on the full grid, it is concluded that the solution is valid. However, since the
result is approximatively twice as large as the maximum LTI norm, the result is
considered to be too conservative. Consequently, a cubic basis function is used
and the analysis is repeated in the same way. In that case, the robust induced
L2-L∞ norm is only slightly greater than the maximum LTI norm.

The advantage of this approach is that by only one analysis an upper bound
for a complete parameter space can be computed without any danger of missing
a critical flight condition. A large gap between the maximum LTI norm and
the LPV norm can be indicative for conservatism. Another explanation for a
large gap is that too few grid points for the LTI analysis have been used. Finally,
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Figure 7: Peaks from
gust simulations are com-
pared with the worst
case energy-to-peak gain
for the complete flight
envelope.
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X(ρ)

∥∥Gd→PWRB

∥∥ ∥∥Gd→üz
∥∥

Rough grid Full grid Rough grid Full grid

max LTI N/A 0.910 N/A 0.909
quadratic 1.497 1.498 2.152 2.152
cubic 0.955 0.959 0.924 1.065

Table 1: LPV analysis
results.

these grid points whose LTI norms are closest to the LPV norm are supposedly
the critical ones.

6 Summary and Outlook

The versatile possibilities of the robust performance analysis framework for loads
computation are demonstrated. It is shown how the worst case energy-to-peak
gain can be used to compute a close but guaranteed upper bound for loads due
to “1-cosine” gust excitations. It is further shown that there exists an excitation
which reaches the computed upper bound. Finally, it is demonstrated how a
robust performance analysis can be used to identify the worst flight condition
without any danger of missing a critical point.

This paper is only a first step in using the robust performance analysis
framework for loads computation and there are still many open questions. First,
it should be possible to reduce the gap between the peak of the “1-cosine”
gust simulation and the LTI norm: Since the worst excitation is shaped by the
weighting filter, improving the filter could reduce the conservatism. Another
point are nonlinearities, e. g. the flight control system. They can be considered by
integral quadratic constraints (IQCs), which allow to treat many nonlinearities
like saturation and dead zones, [14]. Next, the LPV performance analysis
can be performed with more uncertain/varying parameters: for example, it is
possible to handle not only the flight level but simultaneously the Mach number.
Moreover, time varying parameters can be considered. Finally, there is the
question how much the ratio between the peaks from simulation to the norm
depends on the considered output. To investigate this, a study with a full aircraft
model with more than 1500 outputs is planned. However, in order to compute
correlated loads, which are needed in the further design/certification process,
time simulation responses of the identified critical points will still be required.

Despite of these many open issues, the robust performance analysis framework
seems to be a very promising approach for many problems in loads computation.
Especially during a design optimization process it might be a valuable tool, since
guaranteed bounds for loads can be quickly obtained.
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