Aircraft measurements within a warm conveyor belt during the T-NAWDEX-FALCON campaign

Andreas Schäfler¹, Maxi Boettcher², Stephan Borrmann³, Reinhold Busen¹, Andreas Dörnbrack¹, Christian Grams², Andrea Hausold⁴, Stefan Kaufmann^{1,3}, Marcus Klingebiel³, Yannick Lammen¹, Marc Rautenhaus⁵, Philipp Reutter³, Hans Schlager¹, Harald Sodemann², Christiane Voigt^{1,3}, Heini Wernli²

¹ Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft und Raumfahrt (DLR)

- ² Institute for Atmospheric and Climate Science, ETH Zurich
- ³ Institute for Atmospheric Physics, Johannes Gutenberg University Mainz
- ⁴ Flugabteilung, Deutsches Zentrum für Luft und Raumfahrt (DLR)

⁵ Computer Graphics and Visualisation Group, Technische Universität München

Knowledge for Tomorrow

- obtain new insight in the structure and evolution of WCBs
- how realistic are moisture and latent heating represented along the WCB in NWP models?
- how do diabatic processes modify the PV structure of cyclones and upper-level flow?
- investigate importance for the predictive skill in the mid-latitudes
- Lagrangian matching of flight paths: in-situ measurements during different stages of the WCB

aircraft obs are needed from the boundary layer to the lower stratosphere

- in-situ instruments to measure T,u,v,w and p
- 3 instruments to observe both total and gas phase water vapor
- trace gas instrumentation to measure O3, CO, NO/NOY, CH4, CO2, SO2
- dropsondes

Our vision

- fly at various altitudes, leave airways
- drop sondes from high levels
- adapt the flight pattern to the latest forecast runs
- probe the same WCB in a second flight

Operation regulations

- dense air traffic over Europe
- a number of authorities need to be contacted for permission to operate away from airways (areal work permit) and to release dropsondes
- first announcement to ATCs already 2-4 days
- military trainings
- airport opening hours and crew duty hours

Biggest challenge (beside the op regulations): reduced predictability WCBs and their associated cyclones (which was in turn one of the aims to be investigated). \rightarrow conflicted with the required early planning reliability

For filing meaningful flight plans it was fundamental to have information to answer

- From where and at which altitude does WCB air ascend?
- How much does the air ascend?
- Where is the WCB ascent located relative to the cyclone and its fronts?
- Where is the airmass located after a few hours up to one day?
- Can we expect a Lagrangian matching with the observed airmass during a second flight?
- How reliable are the forecasts of the WCB?

October climatologically very promising month - small chance remained for no WCB

State at the test of the test of test o

IOP 1: 11 – 12 Oct

IOP 3: 19 – 20 Oct

WCB trajectories and positions valid at 12 UTC 19 Oct based on the **deterministic forecast** (12 UTC, 17 Oct). WCB trajectories started at 18 UTC, 18 Oct.

Planning of IOP 3 (19 October 2012)

Virtual tracer plume simulated by FLEXPART

Suitable synoptic pattern and a novel chain of forecasts products and WCB diagnostics allowed to obtain a dataset of 3 WCB events.

T-NAWDEX-Falcon cases are now investigated:

- Mesoscale structures of WCBs and their representation in NWP models
- Analysis of Lagrangian matches of airmasses
- Analysis of cloud types: compare with NWP cloud microphysics
- Predictability investigation of WCB forecasts
- Research in Ensemble Forecast Visualization for Flight Planning (Thu, 11 Apr 13:45, R14, M. Rautenhaus)

T-NAWDEX (THORPEX-North Atlantic Waveguide and Downstream Impact Experiment)

- scheduled for 2016
- internationally coordinated

Overarching hypothesis:

There are systematic errors in model representation of waveguide perturbations that are attributable to diabatic processes . Errors are manifested as errors in PV distribution that correspond to errors in the jet stream \rightarrow forecast errors of high-impact weather downstream

