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Abstract

With ever smaller processors and ubiquitous internet connectivity, the pervasive com-
puting environments from Mark Weiser’s vision are coming closer. For their context-
awareness, they will have to incorporate data from the abundance of sensors integrated
in everyday life and to benefit from continuous machine-to-machine communications.
Along with huge opportunities, this also poses problems: sensor measurements may
conflict, processing times of logical and statistical reasoning algorithms increase non-
deterministically polynomially or even exponentially, and wireless networks might be-
come congested by the transmissions of all measurements. Bayesian networks are a good
starting point for inference algorithms in pervasive computing, but still suffer from in-
formation overload in terms of network load and computation time. Thus, this work
proposes to distribute processing with a modular Bayesian approach, thereby segment-
ing complex Bayesian networks. The introduced “Bayeslets” can be used to transmit and
process only information which is valuable for its receiver. Two methods to measure the
worth of information for the purpose of segmentation are presented and evaluated. As
an example for a context-aware service, they are applied to a scenario from cooperative
vehicular services, namely adaptive cruise control.

Keywords: Vehicle-to-Vehicle, Information Dissemination, Information Assessment,
Bayeslet, Bayesian Network, Context Inference, Machine-to-Machine Communication

1. Introduction

The added value of ubiquitous computing systems stems from the fact that partici-
pating devices have access not only to their own information, but also to the information
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of other relevant service providers, sensors or information consumers. The information
received from heterogeneous and redundant sources is usually evaluated and fused with
one’s own information to form new, more accurate, or more reliable knowledge [33]. This
inference on the available information is necessary for complex situation estimations e.g.
to avoid collisions in road transportation.

Information is exchanged via centralised architectures like the internet, but also in
ad-hoc networks like vehicle-to-vehicle (V2V) communication networks in safety-critical
driver assistance systems [38] (cf. Figure 1) or communicating personal smart spaces [10].
In particular the ad-hoc networks in the latter situations are always wireless, may exist
only for some moments and their capacity is limited. Depending on the current situation,
sensor measurements can have a high importance to a node and its neighbours (e.g. to
prevent a collision). However, the transmission of information over the wireless channel
consumes bandwidth and thus prevents others from transmitting their – maybe more
important – information. Whether information shall be exchanged hence becomes an
information-theoretic problem which requires decision-making based on the information
which is to be disseminated and the costs implied by the dissemination. The algorithms of
section 4 introduce concepts for adaptive information dissemination using a utility-based
decision-making approach.

Figure 1: Vehicle-to-vehicle communication helps to avoid collisions in unclear situations [37].

The information that would be available to be exchanged in such mobile and highly
dynamic environments exceeds the network capacity. Further to network bandwidth
being a critical resource, also the processing capacity of many mobile computers would
not be able to cope with an overload of perhaps even redundant information. Imagine
the following standard example of ubiquitous computing, from the domain of Unified
Messaging: Calls shall only be forwarded to the recipient if he is available, i.e. in a
position to answer the phone. This depends on his agenda, his location, his current
activity, time, the persons in his surroundings, ambient context (e.g. noise level) and
also the caller and his status (e.g. calls in emergency situations should be forwarded). In
addition, most of the mentioned input context information depends again on many other
context sources and sensors. All this information has to be collected and evaluated on
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the resource constrained mobile phone to infer the availability. The powerful methods for
Bayesian networks are a good starting point for realising such context inference. They
will be the basis for the approach presented in this paper. The NP-hard complexity [9] of
probabilistic inference however entails the need for dedicated algorithms which are able
to cope with high amounts of information.

The problem of information overload hence has to be solved, to reduce both, network
load and computation time. Our general idea for this solution is the introduction of
mechanisms where information is assessed before transmission and processing. The pre-
sentation of such mechanisms is the objective of this paper, i.e. rather the contribution
to solving the logical problem in computability theory than the tuning of performance.
We propose the Bayeslet concept to segment Bayesian networks, allowing for distributed
inference of the situation and reduced transmission needs, as well as the “rating” of infor-
mation which can automate the decision of which information needs to be transmitted for
an inference target. We demonstrate the applicability in cooperative driving assistance
using V2V networks as a special case of context inference where it reduces the network
traffic and computational burden for processors.

After a review of the background theory and the related work in the following section,
section 3 introduces the Bayeslet concept, a way to bundle information for local value
determination and evaluation. Section 4 describes the approaches to define the worth
of information which are then applied to an example from collision avoidance in vehicle
networks in section 5. Finally, we close this paper with a conclusion and an outlook on
how we will pursue and integrate this work in the future.

2. Background Theory and and Related Work

2.1. Fundamentals of Bayesian Networks

Often Bayesian Networks (BNs) are used for information processing and situation
estimation [41]. They provide the necessary freedom in modelling situations for inference
as well as the adaptability to new situations by automated learning from data. A BN
consists of a set of Random Variables (RVs) V = {A1, A2, . . . , An}, a set of dependencies
E = {(Ai, Aj)|i 6= j, Ai, Aj ∈ V } between these RVs and a joint probability distribution
(JPD) P (V ) = P (A1 ∩ A2 ∩ · · · ∩ An). P is the product of the Conditional Probability
Distribution (CPD) of every RV P (Ai)∀Ai ∈ V . A BN must not contain directed cycles.
This model subsumes a great variety of other stochastic methods, such as Hidden Markov
Models or stochastic dynamic systems [2].

An important concept in BNs is d-Separation with the “d” standing for dependence.
It helps to reduce the network to relevant parts for given observations. If two variables
are d-separated relative to a set of RVs Z, then they are independent conditional on Z in
all probability distributions of its BN. Taking advantage of d-separation constellations, a
BN exploits the conditional independence to represent a JPD more compactly [32]. The
minimal set of nodes that d-separates A from the rest of the network is called Markov
Boundary [30]. Furthermore BNs are able to deal with missing or uncertain data (arising
from stochastic sensors or via uncertain data links) and can be built or modified either
by machine learning algorithms or by human expertise.

A particular class of BNs are Causal Networks [31], where dependencies are inter-
preted as causal influence in the real world. Despite the fact that the dependency is
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Figure 2: A grossly simplified Bayesian network representing important contextual aspects of a pervasive
system user. Her high level context is influenced by environmental conditions, location, agenda, the
presence and the interaction level with other persons, as well as her motion and behaviour. All these
input factors again depend on other information or sensors, again represented as random variables.

directed, it allows for inference in both directions, inductive and deductive. Two exam-
ples for BNs can be found in Figures 2 and 3. While Figure 2 shows how complex and
confusing already a strong simplification of a modelled snapshot can get, Figure 3 allows
to understand the causal modelling.Pavement ConditionPrecipitation Wheel SlipBlack Ice WarningTemperature Wheel Slip Sensor
Figure 3: This basic version of a Bayesian network shows a small part of an inference network as used
in a car to assess the danger of the current driving situation. The PavementCondition (which can be
dry, wet, or icy is caused by Precipitation and Temperature. The pavement condition itself causes
BlackIceWarning in the news and WheelSlip which causes reactions of a WheelSlipSensor.

BNs have also been presented for use in context reasoning, e.g. in [5, 14, 15]. Using
causal networks in context modelling and inference, every random variable represents a
contextual entity (e.g. context attribute, sensor or service) and its values the states in
which the entity can be. The structure and the probabilities in the CPDs encode the
existing knowledge about a certain context. This can come from human expertise or
from statistical analysis of contextual knowledge bases. Context inference is the process
of generating knowledge for at least one of the context entities for which no knowledge is
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available, in terms of Figure 2 for instance the level of a person’s availability depending on
the knowledge about the current time and his current activity. With Bayesian networks
this process is performed by probabilistic inference, which assigns the RVs in question
the marginalised and normalised probabilities for all its values.

Just like for other inference approaches like logics (the satisfiability problem, SAT,
is NP complete), the exact evaluation of large problems is intractable for Bayesian al-
gorithms: inference in static Bayesian Networks is NP hard in the number of random
variables [8]. The number of nodes, number of edges, and number of values per node are
the factors which determine the evaluation time.

2.2. Related Work for Modular Bayesian Networks

Some approaches for modular Bayesian networks have been presented in the literature.
They can be categorised as follows:

1. Different modules are composed to a common structure for inference.

2. A complete BN is used to set up a separated inference structure in which indepen-
dent and separate inference is possible.

3. Completely independent and distributed inference is realised.

Examples for the first category with a common inference structure are the network
fragments of Laskey and Mahoney [23] or also Paskin’s and Guestrin’s approach to mod-
ular Bayesian networks [27]. With this approach a BN can be adapted to the needs of
a specific situation and under certain conditions reduced in size. However, distributed
inference is not supported, all knowledge has to be aggregated on one computer. No
transmission savings are realised.

The second category is used in Xiang’s Multiply Sectioned Bayesian Networks (MS-
BNs) [46], and consequently also in the Object Oriented Bayesian Network (OOBN)
[3, 4, 22] approaches and in Pavlin’s and de Oude’s modular BNs [28] which build upon
MSBNs. Also Hwang’s modular Bayesian networks [20] represent the second category.
Inference duration is reduced by building a common secondary inference structure of the
different modules (like a join tree, [21]) in which different modules can be evaluated in
parallel. However it does not make the different modules independent from each other
and the system has to have knowledge of all existing connections between the modules.
These approaches are not suitable for highly dynamic systems as in Ubiquitous Com-
puting, as the construction of the secondary structure is more expensive than for normal
BNs.

The requirements of large scale, highly dynamic environments are fulfilled in general
by the third category, which however restricts the inference approaches to provide approx-
imations of the searched posterior probabilities. The inference approaches of Hwang’s
modular BNs [19] or the hierarchical and hybrid BNs [45] could realise this, but are not
ideal implementations of this idea. Both approaches only allow for static modelling and
do not optimise the network and dependency design, but use knowledge of the over-
all BN to distribute information into different modules in the design phase. Dynamic
construction of networks of BN modules is not considered.

2.3. Basics of Probabilistic Information Assessment

The worth of any information depends on the situation. Functions are needed to
compute this worth. In general they are called value functions. These are often treated
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Ut ilityActions Output Node
Figure 4: A Decision Network with one decision node, one utility node and one standard node repre-
senting a random variable.

in the framework of utility theory, e.g. in [24]. Functions suitable for value function
should be e.g. never negative [21]. Further, it is desirable that some information gives
certainty, i.e. the respective value function should assign such information (probabilities
close to 1 or 0) high values in contrast to uncertain information (close to uniformly
distributed RVs, e.g. probabilities around 50 % for binary RVs). Examples could be the
classic entropy function as defined by Shannon [43], or the variance function.

Moreover, in the field of probabilistic information retrieval, probabilities are computed
that a document is relevant for a given query. Hence, also the relevancy assessment turns
into a problem of probabilistic inference. The underlying model thereby determines the
relevancy decision: The Probabilistic relevance model [35] is often used with the Okapi
BM25 [36] relevancy model for the relevancy assessment of documents. The Latent
Dirichlet Allocation was first presented as a graphical model for topic discovery by David
Blei et al. in [6]. Many of these models can be summarized as feature-based retrieval
models [26] where relevancy is subdivided in features (e.g. relative frequency of search
terms) and these are combined to an overall value function.

A more elegant way however is the direct usage of the functionalities offered by
Bayesian networks. An extension of them allows for the direct inclusion of value functions
in the so called decision networks or influence diagrams [21]. Decision networks introduce
two new types of nodes, decision nodes and utility or value nodes. Utility nodes represent
a utility or cost function in which every combination of events can be assigned a value.
They cannot have states nor RVs as child nodes and are modelled as child nodes of
decision nodes whose values represent the possible actions. They are imposed from the
outside to meet some optimisation objective [30]. Within a decision network, decision
variables are typically depicted as rectangular boxes and value functions as diamond-
shaped boxes as shown in Figure 4.

2.4. Conclusion and Requirements

Bayesian networks and methods for information assessment provide the necessary
tools to infer context in ubiquitous computing environments and to determine the utility
of information. The approaches for modular networks are however not directly applicable,
as they always infer the result based on all the information available. It is necessary
however to reduce this amount of information and to infer only upon the most relevant
information. The necessary approach has to support the following features:

(1) Decentralised, modular inference:
To reduce load on servers, information coming from remote devices or smart environ-
ments should be preprocessed at their origin as far as possible. Therefore inference
has to be modular, encapsulating context from different environments and enabling
to plug the different modules together for final inference.
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(2) Reduction to relevant input:
To shorten inference time, the amount of low level context taken into account has to
be reduced to a minimum. Only situational information relevant for the respective
high level context must be taken into account. Modules that are not relevant can be
neglected.

(3) Support for different characteristics of context, different inference algorithms:
Not all context will be stemming from Bayesian inference approaches, but should
still be incorporated in high level context inference, as far as possible. This can be
realised with different inference modules using different inference methods.

(4) Efficient adaptability to changes in the dynamic environment:
As soon as previously disregarded information becomes relevant to the system it
should be considered. Thus, due to the dynamic nature of context-aware computing
systems, inference has to be adaptable to changes, such as the inclusion of new
sensors or new contextual aspects.

3. Bayeslets: Segmentation of Bayesian Networks

Bayesian networks representing the full knowledge of all known influence to a certain
fact can be immense. An example cited very often is the BN of the Computer-based
Patient Case Study (CPCS) described by Pradhan et al. in [34]. This multiply connected
network covering knowledge about internal medicine consists of 448 multi-valued nodes
and 906 links. The provision of an inference result which would allow for a fast medical
diagnosis is not possible with such a network.

The situation of a user of a ubiquitous computing system can encompass a very
large range of human activities, sensor readings, system usage information, as well as
such data relating to other people – all represented as random variables in a very large
BN. As demonstrated by the author in detail in [11] it is impossible to include all such
RVs in a representation used in inference, as the resulting BN would be too large to
be processable. The example from Figure 2 is only a gross simplification where some
nodes already aggregate the information of complete sensor BNs, and where only a small
subset of information relevant for a user is represented, ignoring its relation to all other
users, such as family, friends or colleagues, as this would result in networks with several
thousands or millions of RVs.

We can conclude that a complete Bayesian network, modelling all possible influence
factors, would be intractable for the high number of nodes and the resulting compu-
tational complexity. Therefore this work proposes to segment all this information into
thematic groups called Bayeslets [11]. This word has been composed of “Bayes”, as
Bayeslets represent knowledge in the way of Bayesian networks, and “let” suggesting
(like in the term “Applet”) that they are small, mobile and self-contained modules, exe-
cutable wherever needed.

3.1. Specification of Bayeslets

The properties defining a Bayeslet are the following:

Owning Entity. The owning entity is the identifier of the Bayeslet’s owner in the ubiq-
uitous computing system. It is necessary for privacy and unique identification.

7



Output Context Attributes. The output context attributes are the random variables in-
ferable with a particular Bayeslet. Together with their Markov boundary, they constitute
the nodes contained in the Bayeslet.

Input Context Attributes. The input nodes specify the observed nodes in the inference
rule. It is only these nodes into which other Bayeslets can be plugged. Only those
Bayeslets can be plugged which provide the respective context attribute as output context
attribute. Output and input context attributes constitute the interface of a Bayeslet.
The example in Figure 5 shows how input and output nodes are represented differently.

WheelS lipS ensor1W heel 1T emperatureBlack Ice WarningPrec ipitat ionMy Car
W heel 2Wheel SlipWheelS lipS ensor2W heel 2

Pavement ConditionWheel SlipTemperat ureBlack Ice WarningPrec ipitat io nMy Car Wheel Slip WheelS lipS ensor1W heel 1
(b)(a)
Wheel SlipPavement Condition

WheelS lipS ensor2
Figure 5: Connection of Bayeslets: the Bayeslet for the inference of the PavementCondition is connected
to two Bayeslets determining the WheelSlip incorporating a WheelSlipSensor. Input nodes are shaded
in grey, output nodes have a double border.

Context Inference Rule. The field for this property specifies the actual inference rule
module. For static discrete BNs it consists of the nodes with their states and the re-
spective CPDs which implicitly define the BN structure. According to requirement (3)
from section 2.4 however, also other contextual rules have to be supported, e.g. A-boxes
and T-boxes from Description Logics [17], mathematical rules between values of RVs or
dynamic Bayesian networks. Hence the contents of this field depend on a used context
model and the inference algorithm.

For Bayeslets which are not evaluated locally, because they are related to remote
information or information of a different user, no context inference rule is specified in
this field, but a link to a remote access point providing the inference result.

Inference Algorithm. The field for this property specifies the algorithm used to evaluate
the inference rule, specified in the Context Inference Rule field. This is necessary, as the
Bayeslet concept allows other inference algorithms beyond Bayesian, in order to be able to
cope with the heterogeneity of inference problems. The only requirement for the required
algorithm is the provision of a posterior distribution for the output context attributes.
Examples are the algorithm Probability Propagation in Trees of Clusters (PPTC) [18] for
a static BN as inference rule, C.45 [44] for a decision tree as inference rule or a Kalman
filter for a suitable dynamic Bayesian network.
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Meta information. A context inference system based on Bayeslets requires further infor-
mation about the Bayeslets to increase its efficiency. Examples for such meta information
are the type of the value ranges (numerical, ordered, hierarchical, etc.), the expected pos-
terior probability of the output nodes, or the costs caused, depending on size, inference
duration and inference frequency.

3.2. Guidelines for Bayeslet Modelling

Using Bayeslets, the BN from Figure 2 can be grouped into several subdomains shown
in Figure 6. Thereby, only those Bayeslets which are necessary for an inference request
have to be connected, together with relevant information of other users which can differ
from situation to situation. High levelActivityAvailabilityAgenda InteractionSituationTime MotionBehaviourEnvironmentLocation

User_B

High levelActivityAvailabilityAgenda InteractionSituationTime MotionBehaviourEnvironmentLocation
User_C

Figure 6: Inference network based on Bayeslets. The main components from Figure 2 are grouped into
Bayeslets, shown in rectangles with rounded corners. The composition of those smaller Bayeslets forms
Bayeslets per user which contain only the relevant inner Bayeslets.

There are some general guidelines on how and where to separate all available random
variables into Bayeslets, i.e. how to define the borders of domain knowledge.

1. An input node forms a separate Bayeslet together with the nodes influenced. The
simplest case can be seen in Figure 5, where only one input node and the measured
random variable form a Bayeslet. This rule can be specified for sensors as input
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nodes. Both the number and the selection of sensors are not crucial for the inference
target. It is desirable that sensors can be added or removed and that no sensor is
used if not necessary and that several sensors can be used if this adds value. Hence
they should be individual Bayeslets.

2. A Bayeslet only contains information about one user, the owner of the Bayeslet.
Information about other users is plugged in when necessary. The big advantage
of this approach is that not all information of possibly relevant people has to be
modelled and inferred upon, but only of the currently relevant people.

3. Unconnected parts of BNs can be separated into different Bayeslets. Obviously,
if there is no path (ignoring edge directions) between two random variables of
a Bayesian network, they are independent and do not mutually impact on the
inference of the other RV.

4. Parts of the overall information that would be d-separated [29] by an evidence
node in a monolithic BN can be divided into Bayeslets. If there is a node (set)
directly connected to a sensor or always available information, as it is specified
for dynamic Bayesian networks, it can be regarded as always observed. If this
node (set) d-separates two parts of the network, these can be separated in different
Bayeslets.

5. Weak edges, i.e. those representing (almost) uniform distribution can be disre-
garded, if this enables a separation. Almost uniform distributions are those where
there is only a small standard deviation among all single likelihoods in the CPD.
Removing edges can disconnect graphs, if the edge had been a bridge. A bridge
is the only connection (ignoring edge directions) between two subgraphs. After
its removal, both subgraphs are independent, as no child-parent relation between
any two nodes from the different subgraphs exists. Removing edges that have not
been bridges still influences the d-separation of the formerly connected nodes and
therefore fulfill the conditions of point 4.

6. A maximum number of nodes per Bayeslet can be defined. A number of 20 – 30
nodes has shown to be tractable on mobile devices and easy enough to manage.
Cuts should be made by removing a minimum number of edges, hence preferably
bridges, preferring weak links and such that enable d-separation. Furthermore,
assuming evidence in nodes which are not in reality marked as evidence nodes,
enables d-separation and can be used to force a separation into several Bayeslets.

Weakness of edges thereby can be determined by different means, e.g. Mutual Infor-
mation of the linked random variables [43], or the deviation of the child’s CPD from a
uniform distribution.

4. Composition of Bayeslets

The application of the Bayeslet concept requires the introduction of an additional
step before the actual context inference process: single Bayeslets have to be assembled to
the BN eventually evaluated. In order to allow for efficient and precise Bayesian context
inference taking into account the available information at request time, the concept of Dy-
namic Composition of Bayeslets has been introduced by the authors in [12, 13]. To save
transmission costs and inference time, the relevant Bayeslets have to be selected. As the
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relevancy depends on the current situation and the requested output node, composition
has to be a dynamic process at run-time of the context aware computing framework.

Prerequisite for such dynamic assembly is a database of the available Bayeslets with
the information necessary to compute costs and information gain. This database stores
all local Bayeslets. Information about remote Bayeslets enters the database by adver-
tisements when remote smart spaces meet. The advertisements are not fully fledged
Bayeslets, but only stubs representing the Bayeslet header and an access point for re-
mote evaluation.

For joining two BayesletsX and Y, mechanisms to find pluggable Bayeslet candidates
in the database are necessary. Plugging candidates are such Bayeslets where an input
node of X matches an output node of Y.

4.1. Dynamic Bayeslet Assembly Process

The BN composed of Bayeslets has to be minimal, but should not disregard important
links. Moreover, assembly of Bayeslets poses challenges, as it is recursive, because linked-
in Bayeslets can allow or require input from other Bayeslets. This introduces two main
risks:

• Loops: If a Bayeslet Network, i.e. the directed graph consisting of Bayeslets and
their directed connections, would result in having a loop, also the complete BN
formed by this graph could contain a directed loop, which is forbidden in BNs.
Algorithms for deadlock prevention or breadth-first search can be applied to exclude
such cases every time a new Bayeslet is to be added.

• Excessive Linking: if all available interface nodes in Bayeslets are linked and joined
with other Bayeslets, at least in a large scale pervasive computing framework this
would result in a very large network, possibly until all Bayeslets in the knowledge
base are linked. So the same, complete inference BN that was referred to in section
3 would be recreated. Its evaluation could lead to unacceptably high delays.

To answer an inference request, the Bayeslet with the target (output) node is selected
and has to be assembled with Bayeslets linked into the input nodes. The selection of
such Bayeslets has to be performed in a new step, preceding the inference itself as shown
in Figure 7. Decision criterion has to be the costs added by joining the network weighted
against the information gain. Costs are mainly transmission and evaluation costs of a
Bayeslet, depending on the size and the communication costs. The information gain is
determined by the expected impact on the posterior probability of the output node. Only
those Bayeslets exceeding a certain threshold of added value will be joined.

4.2. Composition Criteria

To decide whether to connect two Bayeslets, the utility of the additional information
has to be determined. In utility theory the term utility is defined by the value a piece of
information provides to the system.

The utility of an additional piece of evidence y ∈ Y can be quantified by the differ-
ence between the utility with the additional evidence and without the additional evidence.
Here, y refers to the evidence of a random variable (e.g. a measurement of an accelerom-
eter) which is not independent of another random variable X (e.g. the activity of the
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Identification oftarget Bayeslet
InferenceRequest

ComposingBayesletsContext Inference
Calculation ofadded ValueValue > Threshold

InferenceResult
LinkableBayesletsexist? YesNo Yes No

Figure 7: The process of composing Bayeslets to a complete inference rule.

person). Thus, the utility of evidence y shall be determined by its impact on X . This
impact is defined by:

U(X : y) = U(X |y)
︸ ︷︷ ︸

Utility of X
given known y

− U(X)
︸ ︷︷ ︸

Utility of X
not given y

, (1)

with U(X) : X → R being the utility function which maps a random variable X to
a real number. U(X |y) is the utility function that maps the random variable X given
evidence y to a real number. Since X is subject to uncertainty, Eq. (1) can be enhanced
to calculate the expected utility (EU) gain by summing over all states weighted by their
probability of occurrence:

EU(X : y) = EU(X |y) − EU(X) (2)

=
∑

x∈X

U(x|y)P (x|y)

︸ ︷︷ ︸

Expected Utility of X
given known y

−
∑

x∈X

U(x)P (x)

︸ ︷︷ ︸

Expected Utility of X
not given any y

.

However, it is not possible to determine y unless the Bayeslets are connected. The
solution is to calculate the expected utility which can be gained from acquiring any
y ∈ Y instead. Therefore, one has to sum over the utility U(x|y) of all possible outcomes
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of y, weighted not merely by P (x|y) but also by P (y), the prior probability of y:

EU(X : Y ) = EU(X |Y )− EU(X) =
∑

x∈X

∑

y∈Y

U(x|y)P (x|y)P (y)

︸ ︷︷ ︸

Expected Utility of X
given unknown Y

−
∑

x∈X

U(x)P (x)

︸ ︷︷ ︸

Expected Utility of X
not given any y

.

(3)

The equations above are defined in utility theory to rate the importance of a node Y
for X with a known direction of their dependency. Bayeslets however represent sets of
nodes calculating a posterior probability which is introduced as soft evidence to the input
node of another Bayeslet. The substitute structure of virtual evidence for soft evidence
[41] allows the direct application of the concepts above: Soft evidence is mapped to the
conditional probabilities of a virtual child node with hard evidence. The expected poste-
rior distribution of Bayeslets is static and therefore maintained in the meta information
of the Bayeslet specification. Hence we can always assume that the plugged-in Bayeslet
is represented by a child node Y of an input node YX in the Bayeslet with the queried
output node X .

To account for already acquired knowledge, e.g. from already connected Bayeslets,
Eq. (3) can be enhanced to consider contextual knowledge c:

EU(X : Y |c) =
∑

x∈X

∑

y∈Y

U(x|y, c)P (x|y, c)P (y, c)

︸ ︷︷ ︸

Expected Utility of X
given unknown Y and known c

−
∑

x∈X

U(x|c)P (x|c)

︸ ︷︷ ︸

Expected Utility of X
given known c

. (4)

The term EU(X : Y |c) determines the utility which can be expected by the connection
of a Bayeslet represented by Y given already acquired context c to input node X .

In the following subsections, it will be shown that EU(X : Y |c) ≥ 0 for the proposed
utility functions. This means that additional evidence never decreases the utility and,
thus, Bayeslets in most cases shall be connected. Therefore also the costs have to be
taken into account which can arise from e.g. higher processing load, communication
costs in case Bayeslets reside on remote entities or monetary costs if evidence from a
remote Bayeslet is provided by a commercial service, e.g. a commercial weather service
for highly accurate weather information.

To take into account costs that reduce the gross utility, Eq. (4) can be enhanced to
the so called Net Expected Utility (NetEU):

NetEU(X : Y |c) = EU(X : Y |c)− C(Y ) , (5)

in case costs for all y ∈ Y are equal. If this is not the case, the NetEU(X : Y |c) is
calculated by:

NetEU(X : Y |c) =
∑

x∈X

∑

y∈Y

(U(x|y, c)− C(y))P (x|y, c)P (y, c) −
∑

x∈X

U(x|c)P (x|c) .

(6)

In the following, two different kinds of utility functions are proposed which can be
used as criteria for the connection of Bayeslets similar to the concepts of information
gathering and dissemination by Röckl in [40].
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4.2.1. Probability-based Utility Functions

Often the utility of a random variable increases the “better it is known”, i.e. the
less the inherent uncertainty is. Also humans regularly acquire new information from
independent sources if they are uncertain about the “true” state of an unknown process
until they feel confident enough: If we are uncertain about the weather tomorrow, we
check the recent weather forecast.

A suitable utility function would increase (for instance logarithmic), if new informa-
tion adds value. The binary logarithm of the probability as used by Shannon in [43]
fulfils the requirements. In this case EU(X : Y ) of Eq. (3) is equivalent to Shannon’s
Mutual Information I(X : Y ):

EU(X : Y ) ≡ I(X : Y ) =
∑

x∈X

∑

y∈Y

log2P (x|y)P (x|y)P (y) −
∑

x∈X

log2P (x)P (x)

= −H(X |Y ) + H(X) [in bits] , (7)

with H(X) being the entropy of the random variable X , H(X |Y ) being the conditional
entropy of X given Y .

In this case, EU(X : Y ) ≥ 0 because:

EU(X : Y ) = −
∑

x∈X

∑

y∈Y

P (x, y) log
P (x)

P (x|y)
(8)

≥(∗) − log
∑

x∈X

∑

y∈Y

P (x, y)
P (x)

P (x|y)

= − log
∑

x∈X

∑

y∈Y

P (x, y)
P (x)P (y)

P (x, y)

= − log
∑

x∈X

∑

y∈Y

P (x)P (y) = − log 1 = 0 .

As (− log) is a convex function [7], in the line in Eq. (8) marked (∗), the Jensen inequality
Ex[f(x)] ≥ f(Ex[x]) for convex functions f [25] has been used.

To compute the net expected utility, a measure for the costs has to be specified. It
can include memory consumption, communication, and CPU costs, depending on the
needs of the implementing system.

Regarding CPU costs, i.e. inference time, the following could be an adequate measure:

CCPU (Y ) = H(Y )−
H(Y )

na
Y + b

, (9)

with the entropy of Y , H(Y ), a ∈ R, b ≥ 1 constants and nY the size of the biggest cluster
in the junction tree [18] of the Bayeslet containing Y . CCPU (Y ) has the entropy of Y as
an upper bound, to remain comparable with the mutual information. If the maximum
cluster in the junction tree (which has large influence on the evaluation complexity, see
[16]) is very small, the denominator of the second summand na

Y + b ≈ 1 and the costs
CCPU (Y ) ≈ 0.

For transmission and memory costs CTxM (Y ), the size of the rule and its represen-
tation are the relevant factors. nY from Eq. 9 could be replaced by the number of bits
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necessary for a serialized representation. Requirements for a Bayeslet representation lan-
guage have been discussed by the authors in [14]. Battery costs are influenced both by
CPU costs and transmission costs, hence should be represented as a weighted sum of the
individual costs. This also holds for the overall costs C(Y ):

C(Y ) =
∑

i

ai × Ci(Y ), (10)

where
∑

i ai = 1 and Ci is representing an individual cost function like CCPU or CTxM .
With this approach, the comparability to the mutual information can be maintained. The
costs should be static and can be stored as a constant in the Bayeslets meta information
field.

4.2.2. Decision-based Utility Functions

Although normally it is beneficial to head towards less uncertainty in the higher level
information, in decision support systems utility shall be based on the outcome of actions
instead of uncertainty reduction. Therefore the Bayeslet model can be extended by the
notion of action, known from decision theory. Formally, Savage defines an action as “a
function attaching a consequence to each state of the world” [42]:

a : X → X (11)

a(x) = xa, with x, xa ∈ X ,

with xa being the consequence of x after performing the action a.
To incorporate actions into Bayesian networks, decision networks can be used. A

rational decision maker will choose the action which maximises the resulting utility.
Thus, the expected utility can be replaced by the maximum expected utility (MEU) [41]:

EU(X |Y ) ≡ MEU(X |Y ) = argmax
a∈A

EU(X |Y, a) = argmax
a∈A

∑

x∈X

U(x|Y, a)P (x|Y ) .

(12)

If EU(X |Y ) is substituted by MEU(X |Y ) in Eq. (3), EU(X : Y ) is equivalent to
the so called Value of Information (VoI) in information value theory [21]:

EU(X : Y ) ≡ V oI(X : Y ) = MEU(X |Y )−MEU(X) . (13)

Intuitively understandable, additional evidence never decreases the V oI, however V oI(X :
Y ) ≥ 0 can also be shown by the following proof:

MEU(X |Y ) =
∑

y∈Y

P (y) MEU(X |y)

=
∑

y∈Y

P (y) argmax
a∈A

∑

x∈X

P (x|y)U(x|y, a)

≥ argmax
a∈A

∑

x∈X

∑

y∈Y

P (y)P (x|y)U(x|a)

= argmax
a∈A

∑

x∈X

P (x)U(x|a) = MEU(X)

Here, the conditional independence of the utility function U(x|y, a) = U(x|a) and the
Jensen inequality Ex[f(x)] ≥ f(Ex[x]) [25] have been used.
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4.3. Summary

Both approaches, probability- and decision-based utility determination, fit the re-
quirements of dynamic composition. They use the expected evidence of a plugging can-
didate Bayeslet to measure the impact on either the output node itself or on actions
relevant to the output node. The information necessary for this is static and there-
fore can be maintained in the Bayeslet specification and used without computation and
communication overhead.

For the V oI, the design of the utility function and its harmonisation with the cost
function for the composition is challenging and tedious, but adds flexibility to the system
in comparison to pure uncertainty reduction. It would be the task of a human domain
expert.

5. Application and Evaluation

The following subsections shall illustrate and verify both utility measures proposed
in the preceding section with a common application. Thereby, we will focus rather
on showing the solution of the computability problem than on a generic performance
analysis.

5.1. Application Example

The application Cooperative Adaptive Cruise Control (CACC) [1, 39] is used to
compare the behaviour of the two approaches to utility determination presented above.
CACC is an applications in vehicle-to-vehicle communication for collision avoidance.

Hence, the vehicles are part of the ubiquitous computing environment. The commu-
nication channel has to be used collaboratively by all vehicles in the network and timely
reception of messages is crucial for safety relevant applications like CACC. Therefore,
bandwidth has to be shared intelligently. This implies in particular that irrelevant infor-
mation should not be transferred. Applied to context inference, this means that a vehicle
trying to infer its status should not request soft evidence from a remote Bayeslet which
does not add significant value. Transmission over the wireless channel would consume
bandwidth and thereby prevent others from transmitting their, maybe more important,
information.

In the following a CACC application running in a car is considered. On a road
with multiple lanes in the same direction, CACC has to be aware of the actual lane the
preceding vehicle is driving on. If, for instance, the car is located on the centre lane of a
three-laned road, the preceding vehicle can be located on the same, the right or the left
lane. Context inference can infer this from the available information and provide this
information to CACC [13].

A part of this situation is modelled in Figure 8. The three states of the possible
location of the preceding vehicle are denoted in the following as values centre, right and
left of the random variable Lateral Distance (LD). Information sources for the lateral
distance are the built-in radar system of the car itself, but also the messages with Global
Navigation Satellite System (GNSS) information of the preceding vehicle received via
V2V communications. Both information sources form Bayeslets which can be connected
to the Bayeslet for the Lateral Distance, if their NetEU , cf. Eq. (5), is sufficiently high.
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V2V LD
V2V InformationEvaluation

Radar LD
Radar Measurements

Lateral Distance
V2V LDRadar LD

LDP(RLD|LD) left centre rightleft 0.6 0.05 0.15centre 0.25 0.9 0.25right 0.15 0.05 0.6 0.80.10right 0.20.80.2centre 00.10.8left rightcentreleftP(VLD|LD) LD0.33right 0.33centre 0.33left P(LD)

100right 010centre 001left rightcentreleftP(RM |RLD) LD 100right 010centre 001left rightcentreleftP( VIE |VLD) LD 0.33right 0.33centre 0.33left P( VLD)0.33right 0.33centre 0.33left P(RLD)
Figure 8: Three simplified Bayeslets to infer the Lateral Distance (LD) of two cars for Context Aware
Adaptive Cruise Control . The dotted lines indicate the possible connections of the Bayeslets, the boxes
next to the random variables give their corresponding prior and conditional probability tables, respec-
tively.

The Bayeslets used for this purpose are simplified to the minimal case so the concepts
from section 4.2 can be illustrated best. In particular the Bayeslets of the information
sources have been strongly simplified, so they have the same priors of their output nodes,
the same size, and the same connections. Both information source Bayeslets hence have
the same computational costs, so the evaluation can focus on the two proposed utility
functions.

5.2. Mutual Information Based Composition Decision

Section 4.2 has presented the mutual information I(X : Y) as an appropriate, proba-
bility based utility function to evaluate the relevancy of a Bayeslet Y for the evaluation
of Bayeslet X. Thereby, the mutual information between two Bayeslets X and Y is re-
duced to calculating the mutual information between two random variables in the same
Bayesian network – the output node of X and the input node of X with the prior prob-
abilities of Y as evidence.

The following evaluation concentrates on the behaviour of the mutual information
between the three Bayeslets for LateralDistance (LD), RadarLateralDistance (RLD),
and V 2V LateralDistance (VLD) shown in Figure 8, as the cost function for both input
Bayeslets are the same, following the proposed cost function for computational costs from
Eq. (9). H(RLD) = H(VLD) = 0.86, as the output variables of both Bayeslets have

17



three values with uniformly distributed prior probability. The same size of the Bayeslets
results then in the identical value for the cost function, e.g. C(RLD) = C(VLD) = 0.77,
if a = b = 1.

In the simplistic example used, Bayeslet LD has to decide, if one or both of the
Bayeslets RLD and VLD should be connected. Bayeslet LD only contains input and
output nodes, so the decision is made without incorporating any evidence:

I(LD : RLD) = 0.43 (14)

I(LD : VLD) = 0.78 (15)

Both Bayeslets hence add value to Bayeslet LD. The value of Bayeslet VLD, how-
ever, is expected to be higher, as the conditional probability distribution of node V LD
expresses higher certainty and the CPD of RLD expresses lower sensor quality for the
detection of left and right, e.g. due to reflections on the guard rails. Using Eq. (5) and
taking into account that at this point the contextual knowledge c = {}:

NetEU(LD : RLD) = I(LD : RLD)− C(RLD) = −0.34 (16)

NetEU(LD : VLD) = I(LD : VLD)− C(VLD) = 0.01

In this case only Bayeslet VLD is connected, saving 50% of CPU time.

0.000. 100.200.300.400.500.600.70
left centre rightxI(LD :VLD|RLD =

x)
Figure 9: Evaluation of the mutual information between the Bayeslets LD and V LD given the different
outcomes of Bayeslet RLD.

In the case of cars, the computing power is not as limited as for small devices. The
critical resource in traffic is rather the network bandwidth. Taking this into account,
context inference could decide in this case to always connect all local sensor systems like
radar and to evaluate only the relevancy of external sources like the Bayeslet VLD. Its
relevancy depends on the values observed for the other Bayeslets.

Figure 9 shows the results for the mutual information between the Bayeslets LD and
VLD given all possible observed values of BayesletRLD. The mutual information varies
between 0.59 and 0.27, as the utility of an additional Bayeslet depends on the probability
of LD which has already been influenced by the already available evidence. The different
degrees to which it still can be impacted by the additional Bayeslet determine the mutual
information. Hence also in this case, given the costs of C(RLD) = C(VLD) = 0.77, no
further Bayeslet is connected, independent from the value ofVLD ⊆ c, as the added value
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is lower than the costs. In our simplistic scenario we would save all network transmission
costs for the result of the remote Bayeslet.

The information dissemination with a probability-based utility function (sec. 4.2.1)
has been implemented within a sequential Monte Carlo estimator (SMC) which is also
known as particle filter (more details can be found in [38]). The detailed parameter
specifications for the filter configuration can be found in Röckl et al. [40].

For the evaluation we implemented a time-triggered simulation environment which
generates sensor output for simulated vehicles with 10 Hz update rate. The evaluation
scenario used in this work is a straight and a “zig-zag” road with two vehicles following
each other. Each vehicle is assumed to be equipped with a GNSS receiver, an odometer
and a compass which provide erroneous measurements. The preceding vehicle sends out
these measurements according to the algorithms defined in section 4.2.1.

Fig. 10 shows the expected utility EU(X : y) of the preceding vehicle during a
simulation run on the “zig-zag” road. During the straight road segments the EU(X : y)

Simulat ion T ime (s)2 4 6 8 10 12 14 16
Figure 10: Mutual information on a “zig-zag” road with sharp 90◦ bends.

varies about 0.15 bit around 1.1 bit. Thus, there is no significant change and the message
priority is low. After each sharp bend EU(X : y) shows distinguishable peaks since the
prediction of the future position acts on the assumption of an ongoing straight movement
with an unknown map. The update with recent evidence provides an unexpected change
in this movement and thus has a high EU(X : y). The peak height depends on the
current measurement quality which is not shown in the figure.

Assuming now a threshold for the NetEU of 0.5 (cf. Figure 7), next to the same
Bayeslet connection costs as above, then only values greater than the average are trans-
mitted. This reduces the transmission frequency from the sensors’ 10 Hz to approximately
0.5 Hz – a reduction of 95% in transmission costs during the 17 seconds of this simulation.

Fig. 11 shows the progress of the EU(X : y) for the target vehicle driving on a straight
road. Due to assumed faults in the positioning system, GNSS updates arrive more rarely
with an update rate of 0.4 Hz. Every time a new measurement becomes available a peak
in EU(X : y) can be recognized since the uncertainty of the prediction is significantly
reduced by the new measurement. Up to now only the variation of EU(X : y) depending
on the measurement value and its uncertainty has been inspected. In Fig. 12 the actual
resulting update rate is evaluated when the EU(X : y) is used to decide whether to
disseminate the measurement. If the measurement was retained, its EU(X : y) value
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Simulat ion T ime (s)10 12 14 16 18 20 22 24
Figure 11: Mutual information on a straight road with GNSS position fixes every 2.5 s.

was added to the expected utility of the upcoming measurement resulting in a cumulative
expected utility value. The costs for the dissemination were uniformly set to 10. Thus,
every time the cumulated EU(X : y) > 10 the message containing the evidence position,
velocity and heading is disseminated.

051015202530354045
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000Time (in ms)

S peed(i nm/ s) 00.20.40.60.811.21.4
A verageU pd at eR at e
(i nH z)AccelerationConstant high speedDecelerationStandstillVehicle Speed

Figure 12: Average update rate during the driving manoeuvres acceleration, constant high speed, decel-
eration and standstill. Compared to the sensors’ update rate of 10 Hz, reductions between 90 and 95 %
can be achieved.

The continuous line depicts the velocity of the preceding vehicle. The vertical bars
show the mean update rate during the acceleration, the constant high speed, the decel-
eration and the standstill phase. During the standstill the update rate is the lowest with
about 0.4 Hz. During the acceleration and deceleration phase the update rate raises to
0.9 − 1 Hz and during the high speed movement the update rate reaches its maximum
with about 1.1 Hz. This is justified due to the higher uncertainty of the movement pre-
diction at higher speeds. Also here, compared to the sensors’ update rate of 10 Hz, we
can achieve reductions between 90 and 95 %.

5.3. Value of Information Based Composition Decision

The decision based utility function can be used to determine the (un-)certainty in-
troduced by a Bayeslet as shown by the author in [11]. More importantly however, it
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offers the possibility that more specific utility functions and decisions are defined. The
following demonstrates the latter option, according to [13]. A tripartite utility function

LD left center rightLC acc dec acc dec acc decUtility 1 0 1 0 1 0LD left center rightLC acc dec acc dec acc decUtility 0 .5 0 .5 0 1 0 .5 0 .5 P(LD) leftleft 0 .33center 0 .33right 0 .33LDP(RLD|LD) left center rightleft 0 .6 0 .05 0 .15center 0 .25 0 .9 0 .25right 0 .15 0 .05 0 .6 LDP(VLD|LD) left center rightleft 0 .8 0 .1 0center 0 .2 0 .8 0 .2right 0 0 .1 0 .8

LCacceleratedecelerate 0 .75*Safety+0 .25*EfficiencyLongitudinalControl

Figure 13: Longitudinal Control decision based on the Lateral Distance considering the information
sources radar and V2V communication like in Figure 8. Efficiency and Safety measure the utilities as
shown in the boxes next to their node representations. The overall utility influencing the decision is
calculated by 0.75 · Safety + 0.25 · Efficiency. Taken from [13].

has been specified. The basic utility functions measure the Safety and the Efficiency
utility of an action. The overall utility function then represents the weighted sum of the
two basic ones at the ratio of 3:1. The decision differentiates the two states accelerate
and decelerate. The whole probabilistic decision network, extending the situation shown
in Figure 8, is depicted in Figure 13. The explicit representation of the Bayeslets is
neglected here as their outcome is introduced as evidence into the nodes Radar LD and
V2V LD and the value of information can be computed only in this Bayeslet.

If no Bayeslet provides information, the state of LD is uniformly distributed, each
state with a probability of 1/3, see Figure 14 (left). In this case there is a tie between the
actions accelerate and decelerate. Both have a utility of 0.5. In order to decide whether
another Bayeslet including additional sensor measurements either from radar or V2V
communication should be connected, the V oI is calculated. Figure 14 (left) shows that
both Bayeslets yield V oI > 0, hence are relevant. V oI(RLD) = 0.11 and thus carries
more information than the Bayeslet for the information from V2V communications with
V oI(V LD) = 0.10. These calculations are independent of the unknown actual state of
the evidence and only use the prior probabilities of the Bayeslets’ output nodes available
from their specifications. Thus, the Bayeslet of the radar measurements is connected and
evaluated.

When the radar Bayeslet is connected and has provided evidence to the input node
RLD, the value of information and therefore the decision whether to connect the second
Bayeslet is different. If, for instance, the radar has measured a centre state, the V oI of
VLD reduces to 0.07, because both evidences are dependent due to the common cause
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LD. Thus, the belief in the centre state as the actual outcome of the VLD already has a
probability of 59 %, see Figure 14 (middle).

The V oI of VLD is still positive however and, hence, is expected to add value for
decision-making. This is justified, as the MEU can still change significantly, depending
on the actual value of the second Bayeslet. For example, after the incorporation of the
state centre for RLD a connection of the second Bayeslet to VLD may provide state left,
as depicted in Figure 14 (right). This makes the MEU change to 0.51 for the accelerate
action. Thus, the best action changes from decelerate to accelerate by the connection of
the second Bayeslet.

V al ueofI nf ormati
on

0 0Radar V2V

V2V=center
a*=accelerate

a*=accelerate
a*=accelerate

Figure 15: Variation of the maximum expected utility (MEU) with different outcomes of the V2V
evidence after observing the radar evidence left. Taken from [13].

The V oI is not static for Bayeslets, but depends on the evidence already available.
This can be seen in Figure 15. The figure is based on the same parameters and as-
sumptions as Figure 14, but instead of centre, the outcome of the Bayeslet for RLD
is left. Accordingly, the best action is accelerate with a MEU of 0.60. In this case
V oI(V LD) = 0.

The figure shows on the right side the consequences of a hypothetical connection
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of the Bayeslet for VLD. If its evaluation yields left, the best action obviously stays
accelerate. If it provides centre, still accelerate is the best action and even if it provides
right, the best action is accelerate. Thus, independently of the outcome of the Bayeslet
the decision remains unchanged. Hence, it does not add information and this Bayeslet is
not connected. In the case of the shown application example all transmissions of Bayeslet
results could hence be neglected and also local evaluation is reduced to 50 %.

5.4. Summary of Evaluation

This section has shown a simplistic example to illustrate the concepts presented in
sections 3 and 4. We have seen that in this example we can save up to 50 % of inference
time and 90 % of the related network traffic and, more importantly, that the complexity
of inference is reduced significantly. By limiting the number of nodes included in an
inference process, the factor responsible for the exponential growth in processing time,
we approach a lower complexity class in computability theory. This makes initially more
complex BNs computable in the first place.

6. Conclusion

This work has proposed the Bayeslet concept for structuring context inference net-
works which allows one to cope with very large amounts of information both from a
computational and a remote communications point of view. Bayeslets represent enclosed
and encapsulated knowledge domains that are, due to their size, easily manageable and
processable and allow for distributed evaluation and selection of relevant information.
The restrictions, reduced modelling flexibility and inference precision, have to be ac-
cepted in order to take advantage of tractable and bandwidth efficient context inference.

The approach presented for the composition of Bayeslets is novel and formal. It
concretises the rather vague concept of relevancy used in many definitions of context.
For a given objective, the most relevant information is selected and thereby, depending
on an application specific threshold, information transmission is limited. This reduces
inference time and increases bandwidth efficiency. In the presented simplistic example,
we were able to show that in many cases the connection of a second Bayeslet is not useful.
We could reduce transmissions over the network by about 90 % and reduce the inference
time necessary to incorporate a Bayeslet to 50 %.

The determinator of the worth of information, utility, can be defined in various ways.
Both approaches presented yield different results for the application example. This is
due to the different objectives of both approaches. The objective of mutual information
based on the entropy is always the reduction of uncertainty. The objective of the decision
based approach, however, can be defined freely by the configuration of the utility node(s).

Consequently, both methods are not mutually exclusive, but are valid alternatives
which can be chosen depending on the current situation. The creator/owner of a Bayeslet
has the option to define decision and utility nodes for a specific objective. If no objective
is defined, the standard would be the uncertainty reduction. This can be realised with
the mutual information based composition decision.

In the future these results already confirmed in theory, have to be tested in real
inter-vehicle communication. To this end, the Bayeslet management system has to be
incorporated in the vehicle communication system.
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A further step should be the consideration of maximum response times. They could
be realised e.g. with an adaptive cost function for the composition of Bayeslets. In
general, the work on cost functions for composition still offers room for research. A
range of requirements (network response time, speed of computation, adaptation to sit-
uation, comparability among different Bayeslets, etc.) can be defined which has to be
fulfilled for all different domains causing composition costs, such as time, memory and
communication costs.
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