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ABSTRACT: 

Three-dimensional building models are important in various applications such as disaster management and urban planning. In this 

paper a method based on fusion of LiDAR point cloud and aerial image data sources has been proposed. Firstly using 2D map, the 

point set relevant to each building separated from the overall LiDAR point cloud. In the next step, the mean shift clustering 

algorithm applied to the points of different buildings in the feature space. Finally the segmentation stage ended with the separation of 

parallel and coplanar segments. Then using the adjacency matrix, adjacent segments are intersected and inner vertices are 

determined. In the other space, the area of any building cropped in the image space and the mean shift algorithm applied to it. Then, 

the lines of roof’s outline edge extracted by the Hough transform algorithm and the points obtained from the intersection of these 

lines transformed to the ground space. Finally, by integration of structural points of intersected adjacent facets and the transformed 

points from image space, reconstruction performed. In order to evaluate the efficiency of proposed method, buildings with different 

shapes and different level of complexity selected and the results of the 3D model reconstruction evaluated. The results showed 

credible efficiency of method for different buildings. 
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1. INTRODUCTION 

Accurate and up-to-date 3D geo-spatial information, including 

building models, is quite valuable for several applications. A 

few examples where accurate digital building models are useful 

include the following: evaluation of the aftermath of natural 

disasters, search and rescue, urban planning, environmental 

studies, telecommunication network planning. 

In recent years, by introducing the LiDAR system and using the 

3D geo-referenced data, different methods have been proposed 

for 3D building modelling. In recent years, several methods 

have been proposed for 3D building reconstruction. The 

algorithms comprise methods that only employ LIDAR point 

cloud for model generation while some others use additional 

data sources such as aerial or satellite imagery. (Ma, 2006) 

proposed a methodology of 3D building model reconstruction 

will be examined based on the integration of aerial photographs 

and LIDAR data. The methodology is comprised of two 

elements. The first one is to reconstruct 3D building models 

from LIDAR data. Rough building models are the outcome of 

this step. The second element is to refine the rough models with 

information derived from aerial photographs. Cheng et al. 

proposed an approach by integrating aerial imagery and LiDAR 

data to reconstruct 3D building models (Cheng, Gong, Li, & 

Liu, 2011). In this approach, an algorithm for determination of 

principal orientations of a building was introduced and 3D 

boundary segments were then determined by incorporating 

LiDAR data and the 2D segments extracted from images, a 

strategy including automatic recovery of lost boundaries was 

finally used for 3D building model reconstruction. The focus of 

this study is to improve the quality of building boundaries, not 

building roofs. (Satari, 2012) proposed a multi-resolution 

hybrid approach for the reconstruction of building models from 

LiDAR data. The detection of the main roof planes is obtained 

through a polyhedral approach, whereas the models of 

appended parts, are reconstructed by adopting a model-driven 

approach. Clustering of the roof points is based on the FCM. 

The verification of planes between multi-resolution spaces 

adopts a method based on a least squares SVM that, in the 

model-driven section, is applied for detecting types of 

projecting structures. Finally, the detection of boundary roof 

lines is obtained through a fuzzy Hough transform. (Awrangjeb, 

Zhang, & Fraser, 2012) proposed a method for automatic roof 

reconstruction by integrating LIDAR data and photogrammetric 

imagery. In the detection step, image lines are classified into 

different classes. In the reconstruction step, lines in ‘roof edge’ 

and ‘roof ridge’ classes are primarily employed to fit the 

LIDAR plane boundaries. (Arefi & Reinartz, 2013) also 

proposed a method for extraction of 3D building models from 

high resolution DSMs and orthorectified images produced from 

Worldview-2 stereo satellite imagery. Accordingly, a building 

block is divided into smaller parts according to the direction 

and number of existing ridge lines for parametric building 

reconstruction. The 3D model is derived for each building part, 

and finally, a complete parametric model is formed by merging 

the 3D models of the individual building parts. The edge 

information extracted from orthorectified image has been 

employed as additional source of information in 3D 

reconstruction algorithm.  

Due to direct accessibility of 3D coordinate of LiDAR points, 

planar patch’s mathematical equations of building roofs could 

be determined accurately.  However, extracting the edges and 

boundary of buildings with high accuracy from LiDAR points is 

a difficult task and will not be always precise. When points of 

some parts of the roof not exist or LiDAR point cloud density is 

low, this problem is more noticeable. In new aerial laser 

scanning systems, in addition to using laser to adopt 3D point’s 

cloud of surface features, equipped by high resolutions small 
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format RGB camera. So besides spatial data of features, RGB 

and spectral information are also available. Since the resolution 

of the images is high, the building edges and the other man-

made structures are detectable with a higher accuracy. In this 

paper a method proposed to integrate the LiDAR point cloud 

and aerial imagery.  

 

 

2. PROPOSED METHOD FOR BUILDING 

RECONSTRUCTION 

In this study, firstly by using 2D plane (building footprint), 

points located inside polygon of each building are extracted 

from the overall scatter, individually. In this research, to 

reconstruct the 3D model of building roofs, data-driven 

approach has been used. In data-driven methods, point’s 

segmentation is a fundamental step. Several algorithms have 

been proposed for segmenting the point cloud such as region 

growing (Jarząbek-Rychard, 2010), RANSAC based algorithms 

(Tarsha-Kurdi, Landes, & Grussenmeyer, 2008), 3D Hough 

transform (Tarsha-Kurdi & Grussenmeyer, 2007).  

 

Figure 1. presents the proposed workflow for the generation of 

building roof 3D models. Detailed explanations are given in the 

following sections. 

 

 

Figure 1. Workflow for the proposed method 3D building roof 

reconstruction. 

In this research, to segmentation the different parts of the roof, 

clustering approach based on mean shift algorithm is used. This 

algorithm has been widely used in various fields of pattern 

recognition and remote sensing such as: image segmentation, 

object tracking etc. This algorithm is a nonparametric method 

therefore it is not necessary to know the priori information 

about the data. In the segmentation stage using mean shift 

clustering algorithm, different parts of the building roof which 

have a similar normal vector, are located in a same cluster. In 

the final stage of segmentation, the planes that are parallel or 

coplanar, with regard to other features (points distance from a 

fitted plane and 3D spatial position of points) are separated. 

After segmentation, by using the intersection points of adjacent 

facets, vertex and ridge line of roof could be calculated. 

On the other in the image space by applying mean shift 

algorithm, segmentation is performed on the image. Thereby, 

small parts of the roof are removed and by applying edge 

detection algorithms, building outlines are identified. And in the 

next stage, by using Hough transform algorithm, edge lines of 

roof are extracted. In the final stage (3D reconstruction) using a 

combination of extracted outlines from the image and  

calculated vertex and  ridges from LiDAR point cloud (two 

different roof structural information), 3D models of building 

roofs are produced. 

 

2.1 Eigen Value Analysis 

The normal of some points are either non-existent or 

ambiguous. Therefore, they should be detected and excluded 

from the subsequent clustering operation (Sampath & Shan, 

2006). In this research by using eigenvalue analysis these points 

are detected and kept out from the following steps. 

 

 
Figure 2. Eigenvalue Analysis. Planar Points (red) Non-Planar 

Points (blue) 

 

2.2 Normal Vector  

In order to apply the mean-shift method to clustering, a feature 

space needs to be built up first. In this paper PCA (Liu & 

Mason, 2009) algorithm has been used for calculate the normal 

vector. 

 

 
Figure 3. Normal Vector calculation using PCA 

 

 

 

 

 

2.3 Mean Shift Algorithm 

Mean-shift is an algorithm for nonparametric density gradient 

estimation using a kernel. A mode means a local density 

maximum. It was first proposed by Fukunaga and Hostetler  to 

calculate density gradient (Fukunaga & Hostetler, 1975). 

The main idea behind mean shift is to treat the points in the d-

dimensional feature space as an empirical probability density 

function where dense regions in the feature space correspond to 

the local maxima or modes of the underlying distribution 

(Derpanis, 2005). For each data point in the feature space, one 
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performs a gradient ascent procedure on the local estimated 

density until convergence. The stationary points of this 

procedure represent the modes of the distribution. Furthermore, 

the data points associated (at least approximately) with the same 

stationary point are considered members of the same cluster. 

Given n data points xi ϵ Rd, the multivariate kernel density 

estimate using a radially symmetric kernel (e.g., Epanechnikov 

and Gaussian kernels), K(x), is given by, 

 

(1) 

where h (termed the bandwidth parameter) defines the radius of 

kernel. The radially symmetric kernel is defined as, 

 (2) 

Taking the gradient of the density estimator (1) and some 

further algebraic manipulation yields, 

 
(3) 

where g(x) = −k’ (x) denotes the derivative of the selected 

kernel profile. The second term, called the mean shift vector, m, 

points toward the direction of maximum increase in density and 

is proportional to the density gradient estimate at point x 

obtained with kernel K. The mean shift procedure for a given 

point xi is as follows: (see Figure 2): 

1. Compute the mean shift vector m(xi
t). 

2. Translate density estimation window: xi
t+1 = xi

t  + m(xi
t). 

3. Iterate steps 1. and 2. until convergence, i.e.,  = 0 

 

Figure 4. Mean shift procedure 

Figure 5 present the clustering result. As shown in this 
figure facets that have similar normal vector are in the same 
cluster. These similar clusters are grouped in two different 
types of facets which one of them is parallel facet (green 
facet) and other one is coplanar facets (two middle parts of 
red cluster). 

 

Figure 5. Clustering results 

 

2.4 Parallel and Coplanar Separation 

Since in the clustering process only normal vector is used, the 

facets with similar normal vectors are placed in the same 

cluster, however all points which have similar normal vector, 

are not belong to the same facets. At the end of the 

aforementioned clustering process, we have the directions of all 

the roof planes, described by their normal vectors. Each cluster 

actually describes a family of parallel planes with the equation 

ax + by + cz − d =0. The value of d can be used to further 

segment the parallel planes. Lidar points that yield similar d 

values are regarded to belonging to the same planar segment. 

Finally, a building roof can have two or more planar segments 

that are mathematically the same, but spatially separated. Such 

coplanar segments could be separated in the original data space 

based on the concept of density clustering and connectivity 

analysis (x,y,z). 

 

 
Figure 6. Final results of segmentation 

 

2.5 Reconstruction 

Building roof hypotheses mathematical equation were generated 

from the LiDAR data through plane segmentation and facet 

intersection. However one of the most common problems 

encountered when using LiDAR data within a data-driven 

approach is determining a way to regularize the LiDAR-derived 

boundaries, because of LiDAR point cloud limitations in 

boundary determination. Therefore in this research building 

roof edges were extracted from high resolution aerial image, 

using Hough Transform. 

The first step in the roof reconstruction process is to generate a 

topologic framework of adjacency constraints for all the roof 

plane segments (Sampath, 2010). This is accomplished by 

generating an adjacency matrix. In the next step, the adjacency 

constraints are used to determine the internal vertices of the 

roof. 

The adjacency matrix maps the adjacency of each plane segment 
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on the roof. The primary measure of adjacency is the distance 

between two roof segments, which is defined as the minimum 

distance of all possible point combinations between the two 

segments (Sampath & Shan, 2010). 

(4)  

Here d(P,Q ) is the distance between the two planar segments P 

and Q, d(pi,qi) stands for the distance between any two points 

respectively in the boundary of the segments P and Q. 

 

 
Figure 7. (a) Building roof, (b) Adjacency matrix 

 

If the equations of planes 1 through 3 are given by: 
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(5) 

The solution to vertex E is determined by simultaneously 

solving the equations of correspondence planes: 
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(6) 

In other side on image space, using 2D map information and 

point cloud height, the image of each building are cropped from 

overall image and then Mean Shift segmentation algorithm is 

applied. Then roof edges that are in buffer zone near the 

building outline, detected and then hough line extraction 

algorithm is applied on outline edges. Then the resulted points, 

by monoplotting equations and correspond segment equation of 

any point in Lidar space, will transform to the ground. Finally, 

by integration of inner vertices from LiDAR and outer points 

from image building models are reconstructed. 

 

 

3. EXPERIMENT AND RESULT 

The input LIDAR data in this study were obtained by Topscan 

using ALTM 1225 airborne laser scanner system. These data are 

irregular structures and average density of points is one point 

per square meter. This data is related to the city of Stuttgart in 

Germany that shown in Figure 8. 

 

  
a b 

Figure 8. Data set; (a) LiDAR point cloud; (b) Aerial Image; 

Figure 9 illustrates different steps of proposed method to 3D 

roof reconstruction of sample building. 

 

 

 

 

 

 
 

 

Figure 9. 3D building roof reconstruction; 
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In order to reconstruct the 3D model of the building roof, 

several buildings with different shapes, sizes and levels of 

complexity are selected. Consequently, according to obtained 

results of proposed method on buildings with different 

complexity levels reflect the ability of this method to accurately 

3D modelling of buildings.  

 

 

 

 

Figure 10. (Top) Segmentation results (Bottom) Reconstruction 

results 

 

4. CONCLUSION 

An algorithm for 3D reconstruction of the buildings based on 

LiDAR point cloud and aerial imagery is proposed which uses 

the advantage of both data sources, thus accurate planar patches 

from LiDAR and edge information from aerial image. In order 

to evaluate the proposed method, several different buildings 

were selected. The performance of proposed method in dealing 

with different types of buildings was significant. Also in this 

paper Mean Shift algorithm is used, that is a non-parametric 

method, hence it doesn’t require priori knowledge about data 

distribution and cluster shapes.  
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