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Abstract— In this paper we describe a framework for fully
automatic and model-free generation of accurate and realistic
3D city models using multiple overlapping aerial images. The
underlying DSM is computed by dense image matching, using a
robustified Census transform as cost function. To further reduce
the noise of mismatches, we afterwards minimize a global energy
functional incorporating local smoothness constraints using vari-
ational methods. Due to the convexity of the framed problem,
the solution is guaranteed to converge towards the global energy
minimum and can be efficiently implemented on GPU using
primal-dual algorithms. The resulting point cloud is then being
triangulated, local planarity constraints are exploited to reduce
the number of vertices and finally a multi-view texturing is
applied. The quality of the DSM and the 3D Model is evaluated
on a complex urban environment, using reference data generated
by laser scanning (LiDAR).

I. INTRODUCTION

Digital Surface Models (DSM) are the basic input for a

wide range of applications like flood simulation, 3D change

detection and radio beam propagation. Additionally for the

normal end-consumer, 3D city visualizations are becoming

more important for navigation every day. While all of these

applications require a high accuracy, the 3D visualization

systems additionally require the data to be of modest size,

since they often operate with limited ressources (e.g. web-

based applications or navigation devices). In this paper we

describe a framework which achieves a good trade-off between

high accuracy and small data size.

We start with Section II-A, describing the creation of an

efficient epipolar geometry between the input images, and use

the results for the computation of the cost function in Section

II-B. Cost functions in dense stereo matching need to be

descriptive and robust on the one hand (e.g. DAISY [7]), and

easy to compute on the other hand (e.g. Absolute Difference).

The Census transform [8] proved to be a good trade-off

between these requirements for remote sensing imagery and

is used by us in a robustified version.

Since the raw matching costs are still prone to mismatches

and noise, we have to apply an additional regularization,

forcing the disparity map to be locally smooth. A common

choice is the well-established Semi Global Matching [2],

which approximates a truly global optimization by combining

different one-dimensional cost aggregations.

However, framing the stereo problem as a convex variational

Fig. 1. Left: Example aerial input image. Right: An artificially rendered
view of the reconstructed 3D model.

problem [5] and optimize it globally offers some advantages:

Being theoretically well-founded, it guarantees to converge

towards the global energy minimum. Its implementation being

a simple and general framework, adding different image cues

or constraints is quite straight forward. Furthermore, it can be

efficiently accelerated on modern parallel GPU architecture,

which makes it computational appealing again, as it scales

directly with the number of parallel processors available

(see Section II-C). To finally generate visually appealing 3D

models with a low number of polygons needed, we describe

our meshing, mesh simplification and multi-view texturing

approach in Section II-D and II-E. The quality of the produced

DSMs and 3D modelling is finally evaluated in Section III.

II. METHOD

Let the image space of a reference image I1 be denoted as

Ω ⊂ R
2. For every pixel x = (x, y)T ∈ Ω and every depth

hypothesis γ ∈ Γ = [γmin, γmax], we compute a matching

cost ρ(x, γ) with respect to a second image I2. The matching

cost function is defined as

ρ(x, γ) = | C(I1,x) − C(I2, F(1,2)(x, γ)) | (1)

with C being an arbitrary local image descriptor (see Section

II-B) and F(1,2) a function projecting the pixel x in I1 to

image I2 by using the disparity γ (see Section II-A).

In the resulting disparity space image (DSI) we then search

for a functional u(x) (the disparity map), which minimizes

the energy function arising from the data term Edata and the
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additional smoothness constraints Esmooth

u(x) = argmin
u

{∫
Ω

Edata + Esmooth dx
}

(2)

= argmin
u

{∫
Ω

ρ(x, u(x)) + h (∇(u(x))) dx
}

This energy is non-trivial to solve, since the smoothness

constraints (implied by the function h) are based on gradients

of the disparity map and therefore cannot be optimized

pixelwise anymore. In Section II-C we go into detail about

our choice of the optimization problem and how to solve it.

A. Epipolar Geometry

In case of multi-image matching, where the images can

be arranged arbitrarily, pairwise rectification is cumbersome

to implement and introduces additional numerical inaccuries.

Also, for satellite images and the corresponding Rational

Polynomial Camera (RPC) model, the epipolar lines of an

image pair are not straight, but curved [4], increasing the

complexity of an image rectification approximation.

We therefore establish the epipolar geometry between two im-

ages I1 and I2 directly by evaluating the function F(1,2)(x, γ),
which projects a pixel x from I1 to I2 using the disparity

γ, for a sparse set of grid points in Ω × Γ space. For all

other points we interpolate the projected pixel coordinates by

using trilinear interpolation. The lookup-table L is increased

and refined iteratively until the reprojection error of the in-

between grid points is < 0.001 pixel. To furthermore reduce

the need for rotational invariant cost functions we apply a fast

plane-sweep approach by warping image I2 for each disparity

γ ∈ Γ into the coordinate system of image I1 and evaluate

the cost function at the same position (x, y), using the same

local support window, in both I1 and I2.

Fig. 2. Plane-sweep based warping of image I2 into the coordinate system
of image I1 using a disparity γ.

B. Cost Function

The Census transform CT as described in [8] is a non-

parametric transform which encodes the local image structure

within a small patch around a given pixel. It is defined

as an ordered set of comparisons of intensity differences

and therefore invariant to monotonic transformations which

preserve the local pixel intensity order. Image matching is

then performed by comparing the resulting vectors at different

image positions. However, the Census transform strongly de-

pends on the center pixel and a slight variation of its intensity

can cause the descriptor to vary significantly. We adress this

issue by using the following (robustified) modification of the

Census transform

MCT (I,x) =
⊗

[i,j]∈D ∪ [0,0]

ξ(Ī(x), I(x + [i, j])) , (3)

where we replaced the intensity of the center pixel by a

weighted average of the intensities in its direct neighborhood

(see Figure 3). The matching cost of different Census vectors

s1, s2 is then computed as their Hamming distance dH(s1, s2)
and is scaled to the real-valued interval [0, 1]

ρC(x, γ) =
dH

(
MCT (I1,x), MCT (I2, F(1,2)(x, γ))

)
maxi,j{dH(si, sj)}

(4)

Fig. 3. The Census displacement field D and the weights for computing the
center pixel intensity Ī(x).

C. Convex Optimization

To optimize Equation 2 globally, minimization of the Total

Variation based on the L1 norm (TVL1) proved to be a

good regularizer in image applications due to its disconti-

nuity preserving property [6]. With h(∇u) = TVL1(∇u) =∫
Ω
|∇u(x)| dx, the stereo problem then becomes

u(x) = argmin
u

{∫
Ω

ρ(x, u(x)) + |∇(u(x))| dx
}

(5)

whose minimization itself is hard to compute. Solving it,

most algorithms depend on gradient descent, which often

gets stuck in local minima and in general needs a very

good initialization. To overcome these problems, [5] proposed

to transform the general (non-convex) problem to a (higher

dimensional) convex problem, whose solution is guaranteed

to converge towards its global optimum. Additionally they

developed an efficient numerical algorithm for solving this

problem, by using a primal-dual algorithm. In the following

we give a short outline of how to transform and frame the

stereo problem of Equation 5 according to [5].

Forcing the energy of Equation 5 to be convex the original

problem is lifted to a higher-dimensional space (from minΩ

to minΩ×Γ) by representing u in terms of its superlevel sets:

φ : [Ω × Γ] → {0, 1}, with

φ(x, γ) =
{

1 if u(x) > γ
0 otherwise

where φ is an (initially) binary function, but in the following is

allowed to vary smoothly in the interval [0, 1]. Together with



the implied level-set properties, the set of feasible solutions

for φ is given by

D = {φ : Σ → {0, 1}|φ(x, γmin) = 1, φ(x, γmax) = 0} (6)

using the short notation Σ = [Ω × Γ]. Now, the solution of

Equation 5 can be formulated as

min
φ∈D

{∫
Σ

ρ(x, γ) · |∂γφ(x, γ)| + |∇2φ(x, γ)| dxdγ

}
(7)

and by using its dual formulation, we arrive at the primal-dual

problem

min
φ∈D

{
max
p∈C

{∫
Σ

∇3φ · p dΣ
}}

(8)

with the set of feasible solutions in dual space constrained to

C =
{
p : Σ → R

3 |
√

p1(x, γ)2 + p2(x, γ)2 ≤ 1 ,

|p3(x, γ)| ≤ ρ(x, γ) } (9)

This problem can now finally be solved by alternatingly

updating the primal and dual solution:

φk+1 = PD

(
φk + τp · div3pk

)
(10)

pk+1 = PC

(
pk + τd · w · ∇2φ

k+1
)

(11)

where τp and τd are the primal and dual step size, ∇2 and

div3 are the divergence and gradient operators in the primal

and dual space, PD denotes the projection onto the set D
(a simple truncation of φk+1 to the interval [0, 1]) and PC

denotes the Euclidean projection onto the set C. In Equation

11, we introduced an additional weighting of the smoothness

constraint of φ with a function w(x) depending on the image

gradient at position x. The weighting function w(x) is given

by

w(x) = e−α·||∇2I1(x)||2 , w(x) ∈ [0, 1] (12)

resulting in large regularization weights for low intensity

changes and small regularization weights for large intensity

changes. The parameter α is only used for the normalization

of the image gradient, and for 8Bit images is set to 1/255.

The iterative primal-dual algorithm is stopped if the energy of

Equation 5 does not change much anymore and the function

u can be recovered from the final level sets φ, by summing

them up for each pixel. After obtaining the disparity maps (one

per image pair), we project them to UTM coordinates, merge

them using a median filter and and interpolate the missing data

(resulting from the outlier removal and the projection itself).

D. Meshing and Simplification

Since our resulting DSM is a dense 2.5D representation

of the scene on a regular grid, we can create a mesh by

simply connecting the 4 incident vertices of a square into

two triangles. Of the two possible triangulations (Figure 4),

we adaptively choose the one which minimizes the second

derivative of the height surface in the neighborhood of the

square, as proposed in [1]. This is done by computing the sum

of the second derivative along two line segments for each of

the two choices of the diagonals w.r.t. the height information

d1 = |v20 − 2v11 + v02| + |v31 − 2v22 + v13|
d2 = |v23 − 2v12 + v01| + |v32 − 2v21 + v10| . (13)

If d1 < d2, the square (v11, v12, v21, v22) is triangulated using

the diagonal (v21, v12), otherwise by the diagonal (v11, v22).

Fig. 4. a) The two possible triangulations of a square and the vertices
involved in computing the optimal diagonal, b) Planar mesh simplification, c)
Collinear mesh simplification

Because the DSMs are represented by one height value per

pixel, meshing and texturing for visualization purposes is not

practical using such a dense 3D model. We therefore have

to reduce the amount of triangles needed to represent the 3D

model, while at the same time preserving its dominant features

and surface properties.

In a first step, we simplify planar structures by iterating over

all vertices and fit a 3D plane through its neighbors using least

squares method. If the minimum distance of the vertex to the

fitted plane is < Δplan, the vertex is removed (see Figure 4).

As this would sometimes remove the corners of buildings, we

add a further constraint that the vertex gets only removed, if

the height difference to all of its adjacent vertices is < Δdisc.

These two parameters depend on the grid resolution δ of the

DSM and are set to Δplan = δ and Δdisc = 10δ.

The second step of our mesh simplification is removing nearly

collinear triangles. If for any triangle (A,B, C), AB +AC <
BC ·Δcoll (with Δcoll > 1) the vertex A will be removed. We

chose to remove only very collinear triangles (Δcoll = 1.01).

E. Multi-view texturing

When aiming for a natural looking 3D model, we have to

assign 2D texture coordinates to the corners of each triangle.

Images of the scene taken from different viewpoints allow us

to extract the texture of parts of the scene hidden from a single

view, like for example the facades of buildings (see Figure 5).

In that case we have to devise a quality measure Q for the

projection π(ti, Ik) of a triangle ti into each image Ik available

for texturing. Of all these K projections, we then choose the

one with the best quality measure for texturing the triangle ti

k = argmax
k

{ Q( π(ti, Ik) ) } (14)

Since our image data was taken from roughly the same

distance to the scene, we choose the image Ik for texturing



Fig. 5. Textured 3D visualization of the test areas. Left: Munich obtained by aerial 3K+ camera, Right: London obtained by WorldView-2.

a triangle ti, where the 2D projection of ti has maximal

size (to capture fine details) and is least occluded by other

triangles (especially important for urban areas containing large

buildings and narrow streets). The texturing workflow is then:

• Sort all 3D triangles of the model according to the

distance to the camera center (z-buffering)

• Project the triangles onto the image plane and render them

using a unique identifier

• Sweep over the rendered image and compute the quality

of each triangle in term of its remaining visible pixels

• Assign texture coordinates for each triangle from the

corresponding best input image

III. RESULTS

Evaluation of the proposed algorithms on remote sensing

images is done on an aerial image set of the inner city of

Munich, obtained by the 3K+ camera system [3] and on

satellite images from the inner city of London. For both

test areas we have reference data obtained by airborne laser

scanning (LiDAR) at hand. Due to the different resolution of

the DSMs as well as the LiDAR point cloud, we compute the

error metrics as Euclidean distance between the points in the

reference data to the triangulated full DSM or simplified 3D

model (see Table I). Additionally we show the textured 3D

visualization of both test areas in Figure 5).

IV. CONCLUSION

It has been shown that using the robustified Census trans-

form together with the convex optimization of the Total

Variation TVL1 produces accurate DSMs for remote sensing

images. For creating visually appealing 3D city models, a

model-free approach for meshing, simplifying and multi-view

texturing was presented. In future work, we will focus on

incorporating additional image cues like edges and planar

structures into the optimization framework.

ACKNOWLEDGMENT

The author would like to thank European Space Imaging

(EUSI) for providing the WorldView-2 data of London.

TABLE I

DATA PROPERTIES AND ACCURACY OF THE PROPOSED ALGORITHMS -

MEAN ABSOLUTE ERROR (MAE), ROOT MEAN SQUARE ERROR

(RMSE), NORMALIZED MEDIAN ABSOLUTE DEVIATION (NMAD)

Munich 3K+ London WV2

Area [m] 750 × 450 800 × 800
GSD [m] 0.2 0.5
Area [pixel] 8.4 · 106 2.5 · 106

Vertices in 3D model 246, 000 155, 000
Vertices / m2 0.73 0.24
Vertices / pixel 0.03 0.06

DSM - MAE [m] 0.71 1.17
DSM - RMSE [m] 1.45 2.07
DSM - NMAD [m] 0.56 0.77

3D Model - MAE [m] 1.12 2.10
3D Model - RMSE [m] 2.09 2.88
3D Model - NMAD [m] 0.71 1.84
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