
Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

89(8) 935–963

� 2013 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549713484077

sim.sagepub.com

A new framework for the
simulation of equation-based models
with variable structure

Dirk Zimmer

Abstract
Many modern models contain changes that affect the structure of their underlying equation system, e.g. the breaking of
mechanical devices or the switching of ideal diodes. The modeling and simulation of such systems in current equation-
based languages frequently poses serious difficulties. In order to improve the handling of variable-structure systems, a
new modeling language has been designed for research purposes. It is called Sol and it caters to the special demands of
variable-structure systems while still representing a general modeling language. This language is processed by a new
translation scheme that handles the differential-algebraic equations in a highly dynamic fashion. In this way, almost arbi-
trary structural changes can be processed. In order to minimize the computational effort, each change is processed as
locally as possible, preserving the existing computational structure as much as possible. Given this methodology, truly
object-oriented modeling and simulation of variable-structure systems is made possible. The corresponding process of
modeling and simulation is illustrated by two examples from different domains.

Keywords
variable-structure systems, equation-based modeling, differential-algebraic equations, index reduction

1. Introduction

Modern modeling methodologies in the field of physical

systems are increasingly based on equation-based model-

ing languages. Such languages have a declarative character

and are based on differential-algebraic equations (DAEs).

Furthermore, they feature various object-oriented con-

structs that enable a proper organization of knowledge. In

this way, models can be built up hierarchically and com-

posed out of submodels belonging to various domains.

Nowadays, the most prominent equation-based lan-

guage is Modelica.1,2 It was designed in the late 1990s by

an international standardization committee. A number of

companies have meanwhile adopted the Modelica technol-

ogy. Large-scale system models, e.g. describing the

dynamics of cars, consisting of several hundreds of thou-

sands of lines of code have been encoded in this language.

These models have proven to be as run-time efficient as

the best manually encoded models of the past.

Nevertheless, there are also other languages that feature

equation-based modeling. For instance VHDL-AMS3 or

gPROMS4 are being used in industry. Smaller languages

such as Chi5,6 serve academic interests.

Unfortunately, many of these languages share a com-

mon deficiency. They suppose a fixed computational

structure of the resulting model and, hence, the support of

variable-structure systems is very limited. However, many

contemporary models contain structural changes at simula-

tion run-time. The motivations for these models are

manifold:

• The structural change is caused by ideal switching

processes. Classic examples are ideal diodes in

electric circuits and rigid mechanical elements that

can break apart.
• The model features a variable number of variables:

this issue typically concerns social or traffic simu-

lations that feature a variable number of agents or

entities, respectively.
• The variability in structure is to be used for reasons

of efficiency: a bent beam should be modeled in

German Aerospace Center, Institute of System Dynamics and Control,

Weßling-Oberpfaffenhofen, Germany

Corresponding author:

Dirk Zimmer, German Aerospace Center, Institute of System Dynamics

and Control, Münchner Strasse 20, D-82234 Weßling-Oberpfaffenhofen,

Germany.

Email: dirk.zimmer@dlr.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31006857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

more detail at the point of the buckling and more

sparsely elsewhere.
• The variability in structure results from user inter-

action: when the user is allowed to create or con-

nect certain components at run time, this usually

results in a structural change.

Evidently, the collective term variable-structure systems is

very general and can be applied to various modeling para-

digms such as agent-simulations or finite-element meshes.

In this paper, we focus on the modeling within object-

oriented equation-based languages for multi-physics sys-

tems (e.g. Modelica1,2 or gPROMS4). In order to obtain a

more precise picture for the particular problems in this

domain, let us look at a suitable example: the trebuchet.

1.1. The trebuchet

The trebuchet is an old catapult weapon developed in the

middle ages. It is known for its long range and its high pre-

cision. Figure 1 depicts a trebuchet and presents its func-

tionality. It is a seemingly simple system but its simulation

involves severe structural changes on a higher-index sys-

tem (see Sections 4 and 5). Technically, the system can be

described within planar mechanics and it is a double pen-

dulum propelling a projectile in a sling. The rope of the

sling is released on a predetermined angle γ when the pro-

jectile is about to overtake the lever arm. Furthermore, the

following assumptions hold true for the modeling:

• All mechanics are planar. The positional states of

any object are therefore restricted to x, y, and the

orientation angle ’.
• All elements are rigid. Also the sling is non-elastic.
• The rope of the sling is ideal and weightless. It

exhibits an inelastic impulse when being stretched

to maximum length.
• The revolute joint of the counterweight is limited to

a certain angle β (in order to prevent too heavy

back-swinging after the projectile’s release). It also

exhibits an inelastic impulse when reaching its limit.

Whereas these idealizations simplify the parameterization

of the model to a great extent, they pose serious difficulties

for a typical simulation environment of an equation-based

language. This ideal modeling leads to various structural

changes that occur during the simulation of the system. At

t = 0:5 s, one of these changes is recognizable in the trajec-

tory of the projectile (Figure 2) as discrete change of the

first time derivative.

1.2. Modeling the trebuchet

The most direct approach is to model the system as a

whole. In modern object-oriented modeling environments

0 0.5 1 1.5

-15

-5

5

15

25

t[s]

x
[m

]

0 0.5 1 1.5
0

10

20

30

4040

t[s]

y
[m

]

-20 0 20 40
0

10

20

30

40

x[m]

y
[m

]

Figure 2. Trajectory of the projectile.

Figure 1. Functionality of a trebuchet.

936 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

such an approach is still possible but certainly unfavored.

The resulting model would be highly complex and none of

its parts could be properly reused. For another mechanical

system, the modeling would have to be redone from

scratch again.

Instead, the system is composed out of individual com-

ponents that form a model library and interact with each

other by a common interface. For this example, the follow-

ing components suffice:

• one fixation component (F);
• four fixed translations (T0, T1, T2, T3);
• one revolute joint (R1);
• one limited revolute joint (R2);
• two bodies with mass and inertia (B1, B2);
• one ideal rope with a body attached to it (TB).

The assembly of the system from these components is rep-

resented by the model diagram of Figure 3. In the next

step, we have to assign a correct set of equations to each

component. Let us look at the equations for the simple

revolute joint:

’2 =’1 +’R1

x2 = x1

y2 = y1

fx, 1 + fx, 2 = 0

fy, 1 + fy, 2 = 0

t1 + t2 = 0

t2 = 0

These equations relate the interface variables of the com-

ponent. These are the variables that represent the position:

x, y, and the angle ’. The second set describes the force

and torque fx, fy, and t. The interface variables are indexed

by subscripts 1 or 2 according to which of the two inter-

faces they belong to.

The angle ’R1 of the revolute is not the sole variable of

interest; also its velocity ωR1 and acceleration αR1 can be

helpful variables for the simulation of mechanical systems.

Hence the set of equations is extended by the following

two differential equations:

ωR1 = _’R1

αR1 = _ωR1

The trebuchet contains not only a simple revolute joint,

but also a version with a limited range that is similar in its

functionality to an elbow. The corresponding model can be

described by two major modes: free or fixated. The mode

free is equivalent to a normal revolute joint whereas the

model equals a fixed orientation in the fixated mode. The

transition between these modes is triggered when the angle

of the revolute exceeds a predetermined limit β. Since this

transition causes a discrete change in velocity, it involves an

inelastic impulse on the rigidly connected components.

Furthermore impulses from other components (such as for

instance the ideal rope) need to be handled as well in this

component. The different modes and their transitions are

presented in the graph of Figure 4, where the continuous-

time modes are depicted as round boxes and the rectangular

boxes denote intermediate modes that cause discrete (imme-

diate) changes in the value of variables.

m=100

B1

m=10e3

B2

a b

r={-10,0}

T3
a b

r={2,5,0}

T1

F

r=
{0

,0
}

a
b

R
1

a
b

r=
{-2

,-1
.5

}

T
2

m=15

TB

a b

R2

a
b

r=
{0

,8
}

T
0

Figure 3. Model diagram of the trebuchet.

Zimmer 937

The modeling of variable-structure systems by different

modes cannot be achieved by a pure equation-based mod-

eling in a convenient manner. The modeling of different

modes and their transition needs to be considered as well.

Furthermore events need to be described that trigger the

transition. In addition, equations for the impulse behavior

of the system need to be formulated. In order to be concise,

we omit these aspects here and focus only on the structural

change between the continuous-time modes. Here, each

mode has its separate set of equations.

The difference between these two modes is presented in

Table 1. The variables ’R2, ωR2, αR2 cease to exist in the

fixated mode and, therefore, there are three fewer equa-

tions in the corresponding set of equations. Five of the

remaining six equations are shared by both modes and,

thus, the structural change concerns only a subset of the

total modeling equations.

We see that we can represent this structural change by

a simple modification in a set of DAEs. Thus, it may ini-

tially seem surprising that such an easy model cannot be

realized within current equation-based languages for phys-

ical systems. Although the structural change may seem tri-

vial for the individual component, it is severe for the

complete model of the trebuchet. It changes the number of

continuous-time states and leads to different algebraic

equations systems. The index reduction of the DAE sys-

tems requires the automatic differentiation of certain

model equations (see Section 5). Depending on the

continuous-time mode of the limited revolute, different

equations need to be differentiated.

The situation is even more complicated, when we con-

sider that the limited revolute joint is not the only compo-

nent of the trebuchet that causes structural changes. The

component for the torn body introduces another three inde-

pendent continuous-time modes:

1. The body is at rest as long as the rope has not been

stretched.

2. The body represents a pendulum as long as the

release angle γ has not been reached.

3. The body is free.

For each of these modes, different variables are used to

describe the positional state of the body. In the first mode,

the position is constant and the model contains no state

variables. In the second mode, the angle and angular velo-

city define the positional states, whereas the body is free

in the last mode and consequently defines the maximum

of six state variables.

There are three components that define all state vari-

ables of the system. These are the limited and non-limited

version of the revolute joint and the component for the torn

body. The combination of modes from these three compo-

nents forms the modes of the complete system. Figure 5

displays that in total there occur five modes where only

two of them are equivalent. Furthermore, there are two

intermediate modes for the inelastic impulses that are rep-

resented by the vertical lines spanning over the affected

components. Here the velocities ωR1 and ωR2 are disabled

as state variables. Hence, the number of continuous-time

state variables in total varies from 2 to 10.

Even for such a simple mechanical system as the trebu-

chet, it is difficult for a modeler to foresee all of these

combinations of modes. In order to enable a truly object-

oriented modeling, it is therefore an essential prerequisite

that the corresponding simulation environment supports

the automatic derivation of these mode combinations and

can generate the correct set of equations. If the modeler

would be forced to model all modes and their transitions

at the top level, the modeling would become extremely

laborious. Furthermore, the resulting solution would not

be generic, and its parts would hardly be reusable.

1.3. Related work

Obviously, the modeling and simulation (M&S) of

variable-structure systems is a challenging task. Even a

simple mechanical system as the trebuchet poses a number

of difficulties for a general M&S framework. Hence, such

a system cannot be modeled in Modelica. There are, how-

ever, alternative modeling languages that are better geared

towards variable-structure systems.

Table 1. Transition form free to fixated mode.

Free Fixated

’2 = ’1 +’R2 ’2 = ’1 +b
x2 = x1 x2 = x1
y2 = y1 y2 = y1
fx,1 + fx,2 = 0 fx,1 + fx,2 = 0
fy,1 + fy,2 = 0 fy,1 + fy,2 = 0
t1 + t2 = 0 t1 + t2 = 0
t2 = 0
oR2 = _’R2

aR2v = _oR2

angle

exceeds

limit

external
impulse fixatedfree

inelastic
impulse

torque becomes

negative

contact signal

triggers

Figure 4. Mode-transition graph of the limited revolute.

938 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

The project MOSILAB7 created an extension to the

Modelica language that enables the formulation of struc-

tural changes by means of state charts. In this way, differ-

ent parts of the model can be activated or deactivated. To

enable a formulation with the aid of state charts, it is nec-

essary that the complete system is decomposable into a

finite set of modes. Thus, MOSILAB represents a feasible

solution only when the structural changes are modeled on

the top level. If, however, these changes emerge from sin-

gle components, MOSILAB becomes insufficient. The tre-

buchet represents a suitable example for this. Its

implementation in MOSILAB would require that all of its

modes are described on a global level. Although theoreti-

cal possible, it would be difficult to achieve. The advan-

tage of MOSILAB is that it is a true compiler and

generates efficient simulation code.

More promising approaches with respect to a true

object-oriented modeling style have been achieved in the

field of hybrid bondgraphs. In this methodology, structural

changes are modeled by ideal switches that connect or dis-

connect components of the bondgraph. This suffices for

most structural changes in physical systems as long as the

number of components is known beforehand. It is insuffi-

cient when components need to be instantiated or removed

during simulation time. Within the field of hybrid bond-

graphs, the projects HYBRSIM8 and the work of

Roychoudhury et al.9 are notable. In case of HYBRSIM,

the bondgraph is simulated by an interpreter that is able to

handle up to index-two systems. The work of

Roychoudhury et al.9 favors a translation to a causal block

diagram that is being simulated in Matlab Simulink. The

approach that tries to preserve the previous causal struc-

ture of the bondgraph by applying incremental update

algorithms is interesting. It is similar to the approach

described in this paper, but less general as it is restricted

to bondgraphs.

A recent project is represented by Hydra.10–12 This is a

modeling language that originates from functional pro-

gramming languages such as Yampa and has been devel-

oped at the University of Nottingham. Hydra is based on

the paradigm of functional hybrid modeling. This makes

it a powerful language. In principle, it is possible to state

arbitrary equation systems with Hydra and to formulate

arbitrary changes. Also new elements can be generated

at run-time. Practically, the simulation engine has not

yet been able to demonstrate support higher-index sys-

tems to a sufficient extent. The way Hydra is processed

is rather unique in the field of M&S. Hydra features a

just-in-time compilation. At each structural change, the

model is completely recompiled in order to enable a fast

evaluation of the system. This approach makes Hydra

interesting with respect to this paper since it represents a

complementary approach to the incremental algorithms

presented here.

Unfortunately, none of these tools demonstrates the

ability to model and simulate the trebuchet in a true object-

oriented style. Therefore, we decided to develop a new

framework called Sol. There are two major objectives

behind this project:

1. The language Sol shall enable a true object-

oriented modeling style where physical compo-

nents containing structural changes can be

assembled componentwise. This part of the project

is published elsewhere.13–15

2. The computational framework of Sol shall investi-

gate how the structural changes in the set of DAEs

can be handled by incremental algorithms includ-

ing higher-index problems. To this end, classic

methods for index reduction for static systems are

revisited and integrated in a more dynamic frame-

work. This is the main content of this paper.

Time

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Resting: { }Torn Body Pendulum: {φTB, ωTB} Free: {xTB, yTB, φTB, vTB,x, vTB,y, ωTB}

Free: {φR2, ωR2}
Limited

Revolute
Free: {φR2, ωR2} Fixated: {}

Free:
{φR2, ωR2}

Continuous
time states

4 6 10 8 10

82

{ φR1, ωR1}
Main

Revolute
{ φR1, ωR1}{ φR1, ωR1}

...at impulse

Figure 5. Structural changes of the trebuchet.

Zimmer 939

Hence, we proceed by presenting the computational frame-

work of Sol. Its final capability and performance is then

presented in Section 6.

1.4. The Sol framework

Figure 6 depicts the typical processing scheme that is

shared by many equation-based languages such as

Modelica and involves multiple stages of compilation. It

starts with the parsing of the model files and ends with the

generation of code that serves simulation or optimization

tasks. In this way, a quasi-static computational structure of

the model is imposed that prevents the simulation of many

classes of structural changes.

In order to enable the handling of variable-structure sys-

tems, these processing stages need to be rearranged so that

the set of equations can arbitrarily change over run-time.

To this end, we provide a new simulation framework

called Solsim. Figure 7 depicts the new processing scheme.

Since Solsim represents an interpreter, the code-generation

is replaced by a direct evaluation. This evaluation stage is

used for performing time integration but it may also trigger

events that lead to structural changes in succession. To

manage these structural changes, new components have to

be reinstantiated and flattened. Furthermore, the causality

of the whole system may need to be updated. Thus, these

three stages that represented a sequence in the classic pro-

cessing scheme form now a loop.

The most central part in the processing scheme of Sol

is the dynamic DAE processing that replaces the former

causalization stage. In this stage, the flattened set of equa-

tions is transformed into a set of computations that suits

numeric ordinary differential equation (ODE) solvers. It is

especially this stage that makes equation-based modeling

languages so powerful. The modeler is relieved of the

tedious task that consists of the computational realization

of his models. It enables also that models can be stated in

a declarative manner and are generally applicable. To this

end, a great number of elaborate algorithms have been

developed for the static case. For many commercial sys-

tems such as Dymola16 most of these algorithms repre-

sents the heart of their compiler and partly because of this,

their major parts are mostly still under non-disclosure.

Even the static causalization of DAEs is far from being

trivial. Handling arbitrary changes in a system of DAEs

represents a major challenge. The exchange of single equa-

tion may enforce a complete rebuild of the whole computa-

tional form. In most of the cases, however, a partial update

of the system suffices. In this paper, we present a

framework with its algorithms and methods for the

dynamic case that can track changes in an efficient

manner.

To this end, it is necessary that we look in detail at the

processing of DAEs. Hence, the next four sections present

the theoretic fundamentals of the Solsim simulation envi-

ronment and are not directly application oriented. Section

2 introduces the terminology and presents the basic entities

of the applied data structures. Section 3 then explains the

handling of index-zero systems and the main principles of

our processing algorithm. Systems that contain algebraic

loops are discussed in Section 4 whereas higher-index sys-

tems are discussed in Section 5. The final section revisits

the trebuchet catapult and presents another application

example of the Sol framework.

The implementation of Solsim represents a prototype

simulator that shall demonstrate the feasibility of the sug-

gested methodology and the functionality of the proposed

algorithms. The program itself is a command-line program

implemented in C++ . The resulting simulation data is

dumped to a file. Since the program is a proof of concept

and not a mature software tool, the software has not been

published but interested readers may contact the author.

2. Dynamic DAE processing
2.1. Fundamentals

This section defines fundamental notions and terminology

used in the following. In order to ease the understanding

Parsing

Instantiation
and Flattening

Preprocessing

Dynamic DAE
Processing

Evaluation

Time

Integration

Event

Handling

Figure 7. Dynamic processing of Sol.

Parsing
Instantiation

and Flattening
Preprocessing Causalization

Code
Generation

Figure 6. Typical processing of equation-based languages.

940 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

of the abstract definitions, we provide a small and simple

example for illustrative purposes. Figure 8 presents an

electric circuit with a capacitor. It contains a multi-switch

that triggers various structural changes.

Listing 1 presents the corresponding Sol model for this

circuit.

1 model Circuit

2 implementation:

3 static Real R;

4 static Real C;

5 static Real i;

6 static Real u_C;

7 static Real u_R;

8 static Real u_Sw;

9 static Integer mode;

10 C = 0.01;

11 R = 100;

12 u_C + u_R + u_Sw = 0;

13 u_R = R*i;

14 i = C*der(x=u_C);

15 mode << f(x=time);

16 if mode == 0 then

17 u_Sw = 10;

18 else if mode == 1 then

19 static Real freq;

20 freq = 5;

21 u_Sw = 10* cos(x=freq*(time -5));

22 else if mode == 2 then

23 i = -0.2;

24 else then

25 static Real R2;

26 R2 = 1000;

27 u_Sw = R2*i;

28 end if;

29 end Circuit;

Listing 1. Flat Sol model of an electric circuit with multi-switch.

In order to present a concise and traceable example, the

Sol model here refrains from any object-oriented con-

structs that are provided by the language: the model has

already been manually flattened and contains no hierarchic

structure. The precise syntax and semantics of Sol are out-

lined by Zimmer.13 However, the presented example can

be briefly explained: it consists of the declaration of vari-

ables (e.g. static Real R;) and relations. Relations
are either non-causal equations (e.g. u_R = R*i) or
causal assignments. For example, line 15 states that the
value of the integer variable mode is assigned (with
fixed causality) by the result of the function f whose
input parameter x equals time. Please note that the syn-
tax for function calls in Sol (e.g. f(x = time))

requires an explicit binding between formal and actual
parameters. Some of the variables and equations are
stated within conditional branches (if . then .
else .). The activation and deactivation of these
branches yield structural changes.

The Sol model of Listing 1 represents a set of DAEs. In

general, such a system can be described in the implicit

DAE form:

0=F(_xp(t), xp(t), u(t), t)

The target of the dynamic DAE processor (DDP) is to

achieve a transformation of F into the state space form f

that is directly applicable for the purpose of numerical

ODE solution

_x(t)= f (x(t), u(t), t)

The level of difficulty of this transformation is described

by the perturbation index.17,18 The transformation itself is

consequently denoted as index reduction. This classic

DAE perspective is essential but not sufficient.

Unfortunately, many models contain more than just DAEs.

In particular, variable-structure models are hybrid models

that involve both continuous and discrete parts. It is there-

fore too simplistic to look at the problem from the

continuous-time perspective of DAEs only. We need a

more general approach.

We give a few remarks regarding the notation of the

following sections: lowercase characters are applied to

individual entities such as variables, tuples, relations, etc.

Capital letters are applied to sets or certain functions.

With respect to relations, when we refer to a specific

relation of Listing 1, we use italic line numbers as indices.

For instance r13 represents u_R = R*i.

2.1.1. Relations. We define a system s as a pair (2-tuple)

that consist in a set of active relations R, a set of active

variable identifiers V :

s= (R,V)

Mostly, the variables identifiers point to real numbered

values, but there are no restrictions applied. The variables

identified in V may be of any basic or compound type. A

relation may represent a non-causal equation or a causal

assignment of the model. A relation represents typically an

equation of the model or a causal assignment. Three func-

tions can be applied on a relation r in order to determine

its dependences on variables in V .

The system s often represent just the current mode of

the system. For a variable structure system, this means that

the sets R and V are subject to change during time.

The function D(r) returns a set of all variables identi-

fiers that the relation r depends on: its dependences. These

variables need to be evaluated first before the relation r

Zimmer 941

can be processed. The function U (r) returns the set of vari-

ables identifiers that may be determined by the relation: its

potential unknowns. Furthermore, the presence in the set R

of a relation may depend on a certain set of variables iden-

tifiers that is represented by L(r). Such dependences are

denoted as logic dependences.

For illustration, let us take a look at three relations of

our example above.

• r12 represents u_C + u_R + u_Sw = 0.

This relation is a simple, non-causal equation between

three variables: D(r12)= fu_C, u_R, u_Swg. Since the
equation does not stipulate the causality, all of the vari-
ables are potential unknowns: U (r12)=D(r12). There
are no logic dependences involved: L(r12)=1.

• r15 represents mode << f(x=time).

This relation is a causal assignment and contains two vari-

ables of different type: D(r15)= fmode, timeg. The
assignment predetermines the causality, so there is only
one potential unknown: U (r15)= fmodeg. Again, there
are no logic dependences involved: L(r15)=1.

• r17 represents u_Sw = 10.

Since this equation is stated within a branch statement, its

presence in the active set of relations R is related to

the variable mode. This is a logic dependence L(r17)=

{modeg. Consequently: D(r17)= fu_Sw, modeg and
U (r17)=D(r17)\L(r17).

2.1.2. Causality graph. In order to transform the system s into

a form that is useful for computational purposes, we need to

assign a causality c to each of the relations in R. The causal-

ity determines which of the occurring variables an equation

should be solved for. Hence, a causality c is defined to be a

pair of a relation and one of its potential unknowns:

c= (r, u)with u∈U (r)

The set of causalities C has to represent a bijective map-

ping between subsets of V and R. Relations that have a

causality assigned are being denoted as causalized, other

relations as non-causalized. The sets of variables V , rela-

tions R and causalities C can be composed to a tuple:

(R,V ,C)

This tuple can be represented as a causality graph. This is

a directed acyclic graph (DAG) G(V ,E) where the ver-

tices represent the relations of the system VG =R. A rela-

tion r1 that determines one of its unknowns u∈U (r1) has

outgoing edges to all of those relations r2 that are depen-

dent on u. In this way the causality graph depicts the com-

putational flow:

EG = (r1, r2)jr1 6¼ r2 ^ ((r1, u)∈C ^ u∈Dr2)f g

R=100

R

R=
1000

R2

G

C
=
0.01

C

V=
10

+

U
0

+
-

I=
0.2

clock

t

-

Figure 8. Diagram of an electric circuit with multi-switch.

942 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

In the causality graph, the edges depict the causal

dependences within the system of relations. Figure 9

shows a (slightly simplified) causality graph for the exam-

ple model in mode == 1. The relations that include a
derivative relation act here as explicit time integrators
and depends thus on the (internal) system clock that is
stipulating the simulation time. The dashed edge repre-
sents a logic dependence in the graph. These depen-
dences assure that relations are not being evaluated
before their underlying condition of existence is being
checked.

With respect to causality graphs, let us define the fol-

lowing terms. Vertices without ingoing edges are denoted

as causal roots. Since a causality graph has to be cycle-

free, the terms predecessor and successor can be defined

with respect to any relation r:

• A relation ra is a predecessor of rb iff there exists a

directed path from ra to ra.
• A relation ra is a successor of rb iff there exists a

directed path from rb to ra.
• Direct successors or direct predecessors are those

relations where the length of the corresponding

directed path is exactly 1.

2.2. Evaluation within the causality graph

A causality graph can be used to schedule the set of rela-

tions into an appropriate order for evaluation. This is

always possible, since any acyclic graph gives rise to a

partial order on its vertices.

Orderings of the causality graph can also be used for

the purpose of code generation instead of a direct evalua-

tion. For instance, a just-in-time compiler can be applied.

In this case, one has a strong motivation during a structural

change to preserve as much as possible of the causality

graph. All parts that remain untouched do not need to be

recompiled.

Listing 2 shows one possible schedule that is compati-

ble with the causality graph.

C = 0.01; [C]

i = C*der(x=u_C); [u_C]

mode << time < 5; [mode]

freq = 5; [freq]

u_Sw = 10* cos(x=freq*(time -5)); [u_Sw]

u_C + u_R + u_Sw = 0; [u_R]

R = 100; [R]

u_R = R*i; [i]

Listing 2. A possible schedule resulting from the causality
graph. The brackets contain the unknown of each relation.

To attain such a complete order, one can apply a topo-

logical sorting algorithm. The standard algorithm19 works

in linear time O(jVGj+ jEGj) with respect to the size of

the graph. It is however not well suited to cope with the

dynamic framework of Sol, since the sorting has to be

completely redone whenever the causality graph is chang-

ing. Most critical, of course, is the insertion of a new edge.

For this purpose, a number of algorithms have been

designed that update the ordering by tracking the changes

in the graph.

These algorithms are denoted as dynamic topological

sorting20 or on-line topological ordering.21 Their amortized

complexity per edge insertion is in O(
ffiffiffiffiffiffiffiffiffi
jEGj

p
logjVGj).

However, a worst-case analysis is misleading since these

algorithms perform much better in practice.

2.3. The black box

We can abstract the stage of DDP-processing by a specifi-

cation of its output and input interfaces. The output of the

DDP-processing is a causality graph. Furthermore, the out-

put may contain information about over- and underdeter-

minations of the current system s.

The input consists in a set of commands that create the

desired equation system. The following operations can be

applied in order to construct a complete system or to cause

a structural change.

• Enter a variable v: V 0=V ∪ fvg.
• Enter a relation r: R0=R∪ frg.

C = 0.01 clock freq = 5

i=C*der(x=u_C) mode << f(x=time)

u_Sw = 10*cos(x=freq*(time-5))

u_C + u_R + u_Sw = 0 R = 100

u_R = R*i

Figure 9. Causality graph resulting from Listing 1. The variable
that has been selected as the one being determined by a specific
relation is highlighted in bold.

Zimmer 943

• Remove a relation r: R0=R\frg.
• Remove a variable v: V 0=V\fvg.

This list of operations provides us with an abstraction

layer that enables us to interpret the DDP processor as a

black box. For convenience, we will use the symmetric dif-

ference _s between two system s1 and s2 to describe a struc-

tural change:

_s= f _R, _Vg= (s1\s2)∪ (s2\s1)

Hence, _R contains all relations that are being removed

or added and _V contains all variables that are being

removed or added.

3. Index-zero systems
3.1. Demands on a dynamic framework

In the dynamic framework, variables and their corresponding

relations can be added and removed at all times. To avoid

overdetermination, old relations are removed from the system

before they are replaced by new relations. Thus, intermediate

underdetermination must be tolerated. Overdetermination, in

contrast, shall be detected immediately.

Both processes, removing and adding, cause changes

in the corresponding causality graph. The DDP tracks

each of these changes in an efficient manner. However, a

worst-case analysis is not a good performance measure,

since the replacement of a single relation may cause the

recausalization of the whole system. In the worst case,

the smartest thing to do is a recausalization of the com-

plete system. Obviously, this is not a good approach in

general.

In order to be efficient, the DDP should preserve the

existing causality graph as much as possible, so that the

causality graph and the corresponding ordering must not

be changed more often and more widely than necessary. It

is the goal to prevent unnecessary changes in the causality

graph and restrict modifications to those parts only that are

affected by the change.

3.2. Forward causalization

Forward causalization is the base algorithm for causaliza-

tion. It assigns a causality c to a non-causalized relation r.

It represents a simple straightforward algorithm, a variant

of topological sorting that is part of many similar algo-

rithms, for instance the Tarjan algorithm.22

This algorithm can be implemented as a graph algo-

rithm. In the dynamic framework, this procedure is exe-

cuted whenever a new relation is added. It calls itself

recursively and potentially updates all successors of the

relation. For Algorithm 1 and all following algorithms, the

sets R (relations), V (variables), and C (causalizations) are

available as global variables.

Input: a relation r
Output: causality c = (u, r)
D′ is the set of direct predecessors of r.
It is initially empty: D′ := ∅;
for all v ∈ D(r) do

if v is determined,
i.e. (v, r′) ∈ C with r′ �= r then
D′ := D′ ∪ {v};

end

end
Attempt to causalize r, given D′;
if causalization was successful then

Retrieve its unknown u;
Assign and enter the causality: C := C ∪ {(u, r)};
for all relations ra succeeding r with u ∈ D(r) do

apply forward causaliz. recursively for r = ra;
end

end

Algorithm 1. Forward causalization.

The actual causalization of a single relation r is not described

here, but later on in Section 3.6. However, the causalization of r

depends always on its knowns D0⊆D(r) and on its kind. There are

two kinds of relations in Sol: causal relations (assignments) and

non-causal relations (equations).

For instance, a causality can be assigned for non-causal

relations, if all but one element of D(r)\L(r) are deter-

mined by other relations. Further kinds of relations are

presented in Sections 4 and 5 that have their own charac-

teristics and serve special purposes.

If the computational flow of a system can be expressed

in the form of a simple causality graph, forward causaliza-

tion is fully sufficient. Forward causalization will fail, if

the system is under- or overdetermined. It will fail as well,

if the system contains algebraic loops. This case is dis-

cussed in Section 4.

Another reason for failure is that not all relations can

be solved for all of its unknowns. For instance, a relation r

like sin(x=phi) = a can only be solved for a but not
for phi. However, this demands no modification of the
presented algorithms. The inability to solve for phi is
simply expressed by the set of unknowns: U (r)= {a}
whereas D(r)= {a, phi}. If the causal structure of the
system demands for instance the inversion of the sine
function, an artificial algebraic loop will result by the
application of the methods in Section 4.

3.3. Potential causality

The reverse process to forward causalization would be for-

ward decausalization. It consists in removals of causalities in

C. One could implement this in a similar way. This process

would then be executed, each time a relation is removed.

However, this represents an overeager approach, since each

944 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

structural change might involve a temporal underdetermina-

tion of the system. If this temporal underdetermination

affects a causal root of the system, forward decausalization

would remove many or even all causalities from the system,

just to see them potentially reinstated a few steps later.

In order to avoid such overhasty reconfigurations of the

causality graph, we introduce the concept of potential cau-

salization. This means that, once a causalization has been

assigned to a relation, the relation will not lose this causal-

ity again. This is even the case if some of its ‘‘knowns’’

are not determined anymore; instead the relation is being

marked as potentially causalized.

Whenever a relation r with its causality c(u, r) is

removed, the following steps are executed:

1. The causality c= (u, r) is removed: C : =
C\f(u, r)g.

2. Attempt to causalize all direct successors rsucc of r.

3. If the attempt fails, the relation rsucc remains poten-

tially causalized.

4. Remove r: R : =R\frg.

For instance, let us consider the switch from mode 1

to mode 0 in the example of Listing 1:

_s= (fr17, r20, r21g, ffreqg). First, the two relations r20
and r21 are removed. The relation r12, representing u_C
+ u_R + u_Sw = 0 is dependent on r21 and is there-
fore causalized again. It remains potentially causalized.

Now the relation r17 is added to the system. It is directly

causalized by the subsequent forward causalization and deter-

mines u_Sw again. As a consequence, r12 releases its
potential state, and the causality graph is once more com-
plete. This specific structural change could be handled
with minimal effort: no unnecessary decausalization had
to be performed.

3.4. Causality conflicts and residuals

Potentially causalized relations only replace their former

causality, if they are being contradicted by other relations.

To illustrate this, let us suppose that we are now switching

from mode 0 to mode 2 in the example model. The corre-

sponding change is _s= (fr17, r23g,1).

This change does yield a causality conflict. After

removing the relation r17, r12 remains potentially causa-

lized. The newly added relation r23 cannot be causalized,

since its only potential unknown i is already determined

by the relations r13, representing u_R = R*i. The relation
r23 is overdetermined.

To cope with this conflict, r23 generates a residual ρ

and U (r23) expands in correspondence. The residual ρ rep-

resents the difference between the two sides of the equa-

tion. It should of course be zero. Also the causality

c= (ρ, r23) is generated. Residuals are globally collected

in the set O. Whenever the process of forward causalization

stops and O 6¼1, the residuals are thrown. Throwing resi-

duals means that sources of overdetermination are looked

up and assigned to the residual. Potentially causalized rela-

tions represent one possible source of overdetermination.

The lookup for sources includes all predecessors of the

relations that determine a residual. Whenever a potentially

causalized relation is assigned to a residual, all causalities

of the corresponding predecessor paths are first marked

and finally collectively removed. Algorithm 2 presents one

possible implementation. It detects all sources in a recur-

sive depth-first traversal and marks them and all of their

predecessors while tracking back the traversal path. Finally

all marked relations are decasualized.

In the given example, the relation r12 is potentially causa-

lized and assigned to the residual as source of overdetermina-

tion. The relations r13, r23 are those predecessors of the

residual that are successors of r12 and are marked by adding

them to the set P. Their causalization is collectively removed.

By applying forward causalization on the members of

P, the relation r23 will be causalized again and remove its

residual, since it determines the variable i. The conflict has

been resolved, and all relations can be causalized. In gen-

eral, the lookup for the potential path can be achieved by

the recursive Algorithm 2. The algorithm is called for the

relations that have thrown the residuals in O.
The presented processing scheme represents the general

approach of the DDP.

1. Overdetermined relations generate a residual. This

residual is thrown into the set O.
2. When forward causalization stops, all residuals in

O are examined.

3. The examination looks for a source of overdeter-

mination in all predecessors of the corresponding

overdetermined relation.

4. If a source is found, the conflict is resolved by

means appropriate to the type of the source.

Input: a relation r
Output: global set P of members of the potential path
Initially (non-recursive), P := ∅;
Recursive section:
for each direct predecessors ra of r do

if ra is potentially causalized then
P := P ∪ {r, ra};

else
call this algorithm recursively for r = ra;
if ra ∈ P then

P := P ∪ {r};
end

end

end
Finally (non-recursive) begin

for each r′ ∈ P do
remove causality: C := C \ {(, r′)};

end
for each (non-causalized) r′ ∈ P do

perform forward causalization on r′;
end

end

Algorithm 2: Potential path detection and removal.

Zimmer 945

The last point in the list makes a very general statement:

‘‘by means appropriate’’. For this particular problem, over-

determination was caused by potentially causalized rela-

tions. The appropriate procedure was to recausalize the

path that has been potentially causalized.

We shall see in the next sections that there are other

sources of overdetermination as well. They will call for

other means in order to resolve the conflict, but the out-

lined processing scheme proves to be of general value.

3.5 Avoiding cyclic subgraphs

The causality graph is defined to be an acyclic graph. If it

is constructed solely by the process of forward causaliza-

tion, it is guaranteed to be acyclic. Yet having potentially

causalized relations in the graph, this statement does not

hold true anymore. We need to ensure that it remains

acyclic.

A cycle may occur whenever a potentially causalized

relation rp gets causalized again. If this occurs, one has to

verify that none of the predecessors of rp is also a succes-

sor of rp.

If the verification fails, the graph contains a cyclic sub-

graph with at least one potentially causalized relation. The

cyclic subgraph is defined to be the union of all directed

paths starting and ending at rp. The causalities of all rela-

tions belonging to this cyclic subgraph have to be

removed. An algorithm for this purpose would be similar

to Algorithm 2.

Their causality will not necessarily get reinstated by

further forward causalization. The system may contain

an algebraic loop. An example for this is the switch from

mode 0 to mode 3 with _s= (fr17, r26, r27g, fR2g). Again
r12 becomes potentially causalized. After adding r26
the relation r27 is added and is causalized to u_Sw.
This would reinstate the causality of r12, but r12, r13,
and r27 form a cyclic subgraph. All their causalities
will be removed.

Forward causalization will not be able to complete the

causalization anymore. However, the system is not under-

determined. It contains an algebraic loop. For this particu-

lar example, this means that a linear equation system needs

to be solved, in order to compute the voltage divider that is

created by the two series-connected resistors. Section 4

will discuss how such systems and more complicated ones

can be handled in a dynamic manner.

3.6. States of relations

We have not yet described how the causalization of a sin-

gle relation works. We know from the previous sections

that the dynamic framework expects that the relations can

be in different states. By name, these are:

• non-causalized: the relation has no causality c

assigned to it;
• potentially causalized: the relation retains its former

causality although it is currently not valid anymore;
• causalized: the relation determines one of its poten-

tial unknowns;
• causalized with residual: the relation is overdeter-

mined and determines a residual.

The dynamic framework may remove the causality of any

relation at any time, as this happens with the potentially

causalized paths that lead to a residual. Otherwise, the rela-

tion may change its state by any attempt of causalization

during forward causalization.

The transition between the states is best described by a

state-transition diagram. It is dependent on the type of the

relation. Sol offers mainly two types: equations, these are

non-causal relations; and transmissions, these are causal

relations.

For instance, equations in Sol represent non-causal rela-

tions r and fulfill the condition U (r)=D(r)\L(r). In order

to be causalized, they require that all but one variable of

U (r) are causalized. Figure 10 depicts the corresponding

behavior of non-causal relations. The labels at the edges

denote the events that trigger a state transition. If none of

these conditions is fulfilled, the relation rests in its current

state. The states not-causalized and causalized may serve

as intermediate states.

3.7. Asymptotic complexity

The first objective is to show that the proposed algorithms

terminate. The second objective is to present an upper

bound for the complexity of the algorithms. Since these

algorithms are graph algorithms, it is the most natural

choice to use the number of vertices jVGj and the number

of edges jEGj as definition for the problem size. Often

however, one is simply referring to the system size n. For

all meaningful applications of Sol, it is a safe assumption

to state that n= jVGj and O(jEGj)=O(jVGj). The latter

assumption implies the sparsity of the equation system.

Let us start with forward causalization. This algo-

rithm will terminate simply because it can only increase

the number of variables that are being determined by a

relation. This requires that the individual relations do

not lose their causality by the determination of arbitrary

variables. This requirement is fulfilled for both kinds of

relations.

The causality graph is generated by forward causaliza-

tion. The state transitions for causal and non-causal rela-

tions imply that a relation can be causalized if it is a

causal root or if all of its predecessors in the causality

graph have been causalized. Since forward causalization

will process all relations at least once, all causal roots will

946 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

be causalized. Since the algorithms processes all direct

successors of a causalized relation, also the non-root rela-

tions will be causalized. Forward causalization fails if

there are algebraic loops or equations that cannot be cau-

salized as desired because of non-linearities.

The algorithmic complexity of forward causalization is,

not surprisingly, the same as for the topological ordering.

Each relation is processed at least once. If a relation has been

causalized, all its outgoing edges are being traversed. If all

relations have been causalized, all edges will have been tra-

versed. Since each relation is causalized only once, the total

complexity of the algorithm is in O(jVGj+ jEGj) or O(n).

Here O(jVGj+ jEGj) is also the upper bound for any

traversal of successors or predecessors in the causality

graph. Hence, the throwing of residuals requires

O(jOj(jVGj+ jEGj)), since each residual requires a traver-

sal of its predecessors in order to find its sources of over-

determination. It is possible to reduce the upper bound to

O((jVGj+ jEGj)) by a collective traversal in the graph, but

that does require an additional, non-constant cost in mem-

ory per vertex in the graph.

Another traversal of successors or predecessors is

needed to assure that the causality graph remains cycle

free. Hence, the recausalization of potentially causalized

equations requires costs in O(jVGj+ jEGj). Mostly, how-

ever, this operation is much cheaper. The ordering that is

required for the evaluation of the causality graph may be

used for a quick test if the graph is cycle-free. In our

implementation, we use priority numbers, and in this way,

cycle-freeness can be quickly affirmed.

Finally, we have to show that any arbitrary structural

change is handled correctly. Since such a change may

cause an alternating sequence of forward causalizations

and causality removals, it is not evident that the algorithm

will terminate. Therefore, it is of importance that all resi-

duals are collectively thrown and the corresponding

potential paths are collectively removed. This includes the

potential cycles.

By doing so, one ensures that the subsequent forward

causalization is processed on a subgraph without poten-

tially causalized relations. If there remain residuals or new

residuals have been created, there will be no source of

overdetermination for them, and the residuals indicate an

overdetermination of the complete system.

In this way, four steps are sufficient to correctly handle

any structural change that leads to a regular system of

index-zero.

1. Equations that are being replaced are removed. Their

direct successors remain potentially causalized.

2. New equations are added to the system. Forward

causalization is applied to them. Potential causali-

zations may get re-established.

3. Residuals are thrown (if any). Potentially causa-

lized paths are reset.

4. Forward causalization is executed once more on

the reset part.

It is possible to implement all these steps in

O(jVGj+ jEGj). This guarantees that the handling of struc-

tural changes has the same algorithmic complexity as a

complete rebuild of the system. This would be optimal since

the worst-case scenario would cause a complete rebuild.

The following list describes those structural changes in

index-zero systems that can be handled more efficiently.

• Structural changes that add components to the exist-

ing computational flow.
• Structural changes that replace components but

retain the computational flow.
• Arbitrary structural changes that depend only on a

small set of variables.

not
causalized

potentially
causalized

causalized

in residual
form

• >(n-1) variables determined

• external reset
<(n-1) variables determined

external reset

>(n-1) variables determined

n variables determined• < n variables determined

• external reset

Figure 10. State transitions of non-causal relations. The cardinality of U(r) is denoted as n.

Zimmer 947

4. Index-one systems
4.1. Algebraic loops

The target of the DDP is to transform the system s= (R,V)

of relations into a form that is suited for numerical evalua-

tion. To this end, the evaluation stage and the DDP share

the same data structure: a causality graph.

Nevertheless, let us look at another representation of

the system s: the so-called structure incidence matrix.23,24

This is a Boolean matrix M , where the rows correspond to

the relations R, and the columns refer to the variables V .

The order of rows and columns is given by pV and pR that

assign to each integer of the index range an element of the

corresponding sets V and R. The values M(i, j) of the

matrix are then defined by

M(i, j)= pV (i)∈ pR(j)ð Þ

Since the causality graph gives rise to a partial order of its

relations, it can be used to directly determine pV and pR

such that Ms has a lower triangular form where the

unknown of each relation is placed on the diagonal. Figure

11(a) depicts an example of such a matrix. This form is

highly desired, since it enables the direct solution of the

whole system through forward substitution. Unfortunately,

it cannot not be achieved for all DAEs.

The most desired form that can represent all possible

index-one systems of equations is the block lower triangu-

lar (BLT) form.25 Here the system is divided into lower tri-

angular parts and blocks. An example is depicted in Figure

11(b). It contains two diagonal blocks, one of size 4 and

one of size 2. They are separated by a lower triangular part

of size 1. In order to transform a system into BLT form

with minimal block sizes, one can apply the Dulmage–

Mendelsohn permutation,26 whose central part consists in

the strong component analysis of Tarjan. 22 The BLT trans-

formation is efficient since the Tarjan algorithm has a

complexity of O(jVGj+ jEGj). The blocks in the matrix

represent these strong components. We denote them also

as algebraic loops.

The term perturbation index17,27 formalizes the differ-

ence between systems that are directly solvable through

forward substitution and those that require at least subsys-

tems of equations to be solved. Index-zero DAEs are

directly transformable into ODE form. DAEs that contain

one or more algebraic loops are of at least index one.

Because algebraic loops originate from the object-

oriented models, they are mostly inflated. This means that

they include a significant number of intermediate or aux-

iliary variables that result out of the object-oriented formu-

lation of the model. Hence, the corresponding blocks are

mostly sparse, and a few variables are often sufficient to

determine the complete subsystems. The preferred method

is therefore often the tearing method.23,28 To this end, we

determine a sufficient number of tearing variables and

assume them to be known. The forward causalization of

the block is now possible and will generate overdeter-

mined equations that yield residuals. The number of resi-

duals will match the number of tearing variables, if the

subsystem is regular. Given the pair of the tearing vector

and its corresponding residual vector, it is now possible to

solve the system by any iterative solver, as for instance

Newton’s method or the secant method.

The procedures outlined so far represent a common

approach for the static treatment of DAEs. They are how-

ever insufficient for a dynamic framework, such as Sol. The

methods and algorithms of the DDP differ therefore from

the outlined procedure. For instance, it is not efficient to

acquire a BLT transformation after every structural change,

especially considering the fact that intermediate underdeter-

minations shall be tolerated. For this reason, we refrain from

finding the strong components in advance and will identify

them at a later stage by an analysis of the resulting residuals.

The following sections will explain the methodology of

the DDP. These explanations are supported by a small

example in Listing 3.

Figure 11. Two structural incidence matrices: (a) in lower-triangular form; (b) in BLT form.

948 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

1 model Circuit2

2 implementation:

3 // declarations are omitted [...]

4 u1 = 10* sin(time*pi*50);

5 u2 = 5*sin(time*pi*30+pi/4);

6 u3 = 16* sin(time*pi*20+pi/2);

7 u1-v1 = R1*i1;

8 u1-v2 = R12*i12;

9 u2-v2 = R2*i2;

10 u3-v2 = R23*i23;

11 u3-v3 = R3*i3;

12 v3-v2 = R5*i3;

13 i1 + i12 + i2 + i23 + i3 = 0;

14 cout << v1 + v2 + v3;

15 static Boolean closed;

16 closed << f(x=time);

17 if closed then

18 v1 - v2 = R4*i1;

19 else then

20 i1 = 0;

21 end if;

22 end Circuit2;

Listing 3. Flat Sol model of a resistor network.

It represents an electric circuit (cf. Figure 12) that linearly

combines three voltage sources through a resistor network.

To illustrate the algebraic loop, let us suppose that the

switch in the circuit is open: so the equation r20 holds. The

process of forward causalization will then manage to cau-

salize the relations r4, r5, r6, r7, r16, r20 and determine the

variables u1, u2, u3, v1, closed, i1. The rest of
the systems represents an algebraic loop.

An algebraic loop cannot be directly represented in a

causality graph because the graph would contain a strong

component24 and the graph would not be acyclic. Forward

casualization generates only acyclic graphs and hence will

fail for systems that contain algebraic loops.

4.1.1. Example tearing. In order to complete the causaliza-

tion of the example system, we can proceed by applying

the tearing method. First, we have to choose a tearing vari-

able. Let this for instance be v2. Further we state that
this variable is now determined. This assumption will
enable the forward causalization of the relations r8, r9,
and r10. Furthermore, relations r11 and r13 are being
causalized.

The equation r12 is now overdetermined and therefore

transformed into residual form: ρ= (v3-v2) - (R5*i3).
This residual may then be used as a target for root-
finding algorithms. Since all equations of the loop are
linear in this example, a single Newton iteration on
the tearing variables would be sufficient.

4.1.2. Representation in the causality graph. In the causality

graph, we cannot directly represent algebraic loops but we

can represent the torn loops. To this end, we introduce a

new kind of relations: the tearing relation. It forms an

additional node in the causality graph that expresses the

selection of the tearing variables.

A tearing relation may be added by the system in order

to determine an arbitrary vector of variables. In return, the

resulting vector of residuals is managed by a special resi-

dual relation. In contrast to normal types of relations, these

special relations may determine several variables.

The causality graph of our example model (with an

open switch) is depicted in Figure 13. The torn loop forms

a subgraph, and hence all of its members are grouped by a

frame. The root within this frame is the tearing relation.

Although it is solely determined by the simulation system

and its (iterative) solvers, the tearing relation is made

dependent on all of those relations outside the loop that

determine any variables used inside the loop. In this way,

any premature evaluation of the loop is avoided.

The sink of the algebraic loop is the residual relation.

All relations outside the loop that use variables deter-

mined within the loop are made dependent on the resi-

dual relation. In this way, their premature evaluation is

prevented.

4.2. Selection of tearing variables

The predominant procedure in the DDP processing is for-

ward causalization. Whenever algebraic loops occur, for-

ward causalization will stop and leave the remaining part

non-causalized. This remaining part may now consist of

several blocks of different sizes. However a complete BLT

transformation is not desired in an incremental framework

and, thus, the selection of tearing variables takes place

without knowing the individual blocks.

Whenever a tearing variable has been selected, forward

causalization is executed again, and an increasingly larger

part of the system gets causalized. Selection of tearing

variables and forward causalization may therefore be exe-

cuted alternately several times, until the complete system

has been causalized.

The effort that is needed for the evaluation of an alge-

braic loop is dependent on the selection of tearing vari-

ables, and different selections may yield different

residuals. Let us suppose we have chosen the variables

i23 and i3 instead of v2. Then two residuals would
result, for instance out of r12 and r13. We shall later see
that the former residual is a fake residual (cf. Section
4.4) that reveals i3 as an obsolete tearing variable.
Although the choice of tearing variables is arbitrary,
there are good choices and bad ones.

In general, the solution of a linear or non-linear equa-

tion system requires an effort that is cubic to the size of the

residual vector.29 Hence, we would like to choose the

Zimmer 949

tearing variables such that a low number of preferably

small residual vectors result. This would optimize the fol-

lowing term:

XNρ

i

ρij j3

where ri represents a residual vector, and Nρ represents

their total number. Unfortunately, this is presumed to be

an NP-hard optimization problem.28 A standard depth-first

search for the optimal set of tearing variables will there-

fore need exponential time. In a first approach, 25 a reduc-

tion of the problem was suggested using a so-called cycle

matrix. This algorithm will find the best tearing, but even

the reduction to the cycle matrix needs exponential time

(at least as proposed by Steward25). Other approaches use

dynamic programming but require even an exponential

amount of memory.30

Also non-optimal tearing variables can be used, and

hence some algorithms attempt an approximation. The

algorithm of Ollero and Amselem31 tries to deduce a good

tearing by contracting equations and eliminating variables

in alternation. The algorithm proceeds in polynomial time,

but an analysis of the output performance for this algo-

rithm is missing.

Many processors of DAEs (as Dymola) are based on or

supported by heuristics. One possible heuristic is proposed

by Cellier and Kofman,23 but also this set of rules may lead

to arbitrarily bad performance.

Nevertheless in a dynamic framework, expensive opti-

mization algorithms are mostly not affordable, and we

restrict ourselves to a rather simple heuristic approach.

Since it is the goal of the tearing to enable a subsequent

forward causalization, it seems a natural choice to take any

variable out of the equation that is the closest to being cau-

salized. This will be the equation that contains the smallest

number of undetermined variables. We can refine this heur-

istic by choosing the variable out of these equations that is

shared by the most other non-causalized equations and is

therefore likely to cause further forward causalizations.

It is important to note that the optimality of a tearing

has been solely regarded from a structural viewpoint. Even

if the torn system is structurally regular, it might still be

numerically singular or ill-conditioned. With respect to the

numerical evaluation, a small set of tearing variables is

definitely preferable but not the only aspect. In particular,

for non-linear systems, it may occur that a larger set of

tearings can lead to a numerically better solution.

Unfortunately, these numerical considerations are hard

to quantify and to relate with the structural criteria. Within

G1

R=80

R3

R=50

R2

R=100

R1

R
=
1
5
0

R
4

R
=
2
5
0

R
5

U3

+ -

U2

+ -

U1

+ -

G2

V

v3

V

v2

V

v1

R=200

R23

R=300

R12

s

Figure 12. Electric circuit diagram of a resistor network.

950 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

the framework of Sol, these aspects are only taken into

account in a limited way.

For certain relations in Sol, the set of potential

unknowns Ur is artificially restricted. This may be the case

for non-linear equations such as a=sin(x=b) or for lin-
ear equations that involve a potential division by zero
such as a = b*C with C being a variable. This restric-
tion reduces the set of possible causalizations and may
give rise to additional tearing variables or even com-
plete algebraic loops that would not be required from a
purely structural viewpoint.

4.3. Matching residuals

As described in the previous section, forward causalization

will detect overdetermined equations and generate corre-

sponding residuals. Those are collected in the set O. In a

second stage, those residuals are thrown. This means that

we investigate their predecessors for potential sources of

overdetermination. Tearing relations are one possible

source of overdetermination.

In order to extract the algebraic loops, we need to match

the residuals to their corresponding tearing variables. The

members of the algebraic loop are finally determined by a

pair consisting in a vector of tearing variables and its vec-

tor of residuals. A complete system may contain several

loops and, hence, several pairs. To find the optimal decom-

position into pairs is not a trivial task.

Again, a graph representation helps further analysis.

The set of tearing variables T and the set of residuals O
form vertices of a bipartite graph GB((T ,O),EB) where

the edges EB represent the set

EB = f(τ, ρ)jτ ∈ T ^ ρ∈O ^ τ is predecessor of ρg

In order to form a pair that consists of a tearing vector and

a residual vector, we have to find the smallest subset of

residuals OT ⊂O, so that the size of its direct neighbors δ

(that are in T) is equivalent: jOT j= jδ(OT)j.
For arbitrary bipartite graphs, this is a difficult optimi-

zation problem. For regular systems of equations that con-

tain no singularity, the number of residuals must match the

number of tearing variables. Here we can derive an opti-

mal decomposition in polynomial time. The first objective

is therefore to extract a component from the bipartite graph

so that both partitions are of equal size. We shall use the

greedy Algorithm 3 for this purpose.

T ′ := ∅;
Ω′ := ∅;
repeat

Ω̄ := Ω \ Ω′;
select ρ ∈ Ω̄ with smallest neighborhood δ(ρ) in T \ T ′;
Ω′ := Ω′ ∪ {ρ};
T ′ := T ′ ∪ δ(ρ);

until Ω̄ = ∅ or |T ′| = |Ω′|;
if |T ′| = |Ω′| then

found one matching: (Ω′, T ′);
restart algorithm to find another matching for:
Ω := Ω \ Ω′;
T := T \ T ′;

else
no matching could be found;

end

Algorithm 3. Greedy matching algorithm for residuals.

For each component in GB, we start with the residual ρ1
that owns the smallest neighborhood δ(ρ1) and store it in

the set T 0. The residual is stored in OT 0 . T 0 shall be larger

than OT 0 , otherwise we have an overdetermined system

(see Section 4.7.1). The next residual ρ2 shall be the one

in the neighborhood of T 0 so that δ(ρ2)\T 0 is minimal.

Whenever O0T becomes equivalent in size to T 0, we have
found a pair and can close the tearing. Thereby the sets T 0

u1=10*sin(…)

clock

i1 = 0

u1-v2=R12*i12

tearing[v2]

u3-v2=R23*i23

i1+i12+i2+i23+i3 = 0

u3-v3=R3*i3

v3-v2 = R5*i3

u2=5*sin(…)u3=16*sin(…)

residual

u2-v2=R2*i2

closed<< f(x=time)

cout << v1+v2+v3

u1-v1=R1*i1

Figure 13. Causality graph with a torn algebraic loop.

Zimmer 951

and O0T are removed from the graph, and we can continue

with the algorithm for the remaining graph.

Figure 14 presents a small example (that is not correlated

with the prior examples): the graph consists of two compo-

nents. The small component that is just the node τg repre-

sents a tearing with no matching residual. There is no loop

that can be closed yet. Further tearing variables will have to

be selected in order to causalize the remaining parts of the

system and yield the required residuals. Alternatively, the

system could turn out to be underdetermined.

Let us focus on the large component. We select

O0= fρf g. The neighborhood T 0= fτf g is then of equal

size and we can close this loop: ρf and τf form a pair and

are both removed from their global sets O and T . We

restart the algorithm for the remaining part of the bipartite

graph:

1. O0= fρag) T 0= fτa, τbg;
2. O0= fρa, ρbg) T 0= fτa, τb, τcg;
3. O0= fρa, ρb, ρcg) T 0= fτa, τb, τcg.

After three steps, we have found another matching pair of

a tearing vector (τa, τb, τc) and a residual vector

(ρa, ρb, ρc). There remain two residuals (τd, τe) with two

corresponding tearing variables (ρd, ρe). At the end, there

are three tearings that could be closed. In this example, the

greedy algorithm led to the optimal solution, but if we

would have chosen ρe in place of ρa, the outcome would

have been different: the last two resulting tearings merge

to one tearing of size five. This outcome is not optimal

anymore. The proposed greedy algorithm is not even an

approximation algorithm. Counterexamples can be pro-

vided that lead to an arbitrarily bad performance of the

result.

To derive the optimal decomposition in polynomial

time, we have to assume that the system is regular. This

assumption holds true for the result of the greedy algorithm

(Figure 15(a)). For a regular system, it must be possible to

assign each tearing to a residual. Hence, the bipartite graph

contains a perfect matching.24 This is a maximum match-

ing covering all vertices. It can be found in a bipartite

graph within O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j(T ,O)j

p
jEBj).19 Once the perfect match-

ing has been found, we turn all of those edges that do not

belong to the matching into directed edges pointing to the

residuals (Figure 15(b)).

If we now join the vertices that share an edge of the

perfect matching, there results a directed graph (Figure

15(c)). The strong components of this graph now indicate

the optimal decomposition. If a tearing with its matched

residual is not strongly connected to another one, this

means that the corresponding systems of equations can be

solved separately. As shown before, the strong compo-

nents can be extracted by the Tarjan algorithm in O(jT j2)

where jT j2 is an upper bound for the maximum number of

edges. Essentially, this procedure represents the approach

of the Dulmage–Mendelson permutation,26 simply per-

formed on an extracted subset of tearing variables and

residuals instead of the whole system of equations.

In this way, we can avoid a strong component analysis

for the complete system of relations and instead perform

the analysis on the set of tearings and residuals. Here, the

problem size is (for all problems of interest) much smaller,

and the blocks of the BLT form can be derived after the

causalization has taken place. Since the tearings are also

more robust with respect to a temporary underdetermina-

tion, this approach suits the demands of a dynamic frame-

work much better and justifies the blind tearing without a

priori knowledge of the BLT form.

Finally, an algebraic loop is represented by a diagonal

block in the structure incidence matrix. Knowing a pair of

tearing and residual vectors enables us to extract such a

block from the system. We denote the corresponding pro-

cess as the closure of an algebraic loop. By closing a loop,

we ensure that the torn loop is correctly embedded in the

causality graph as described in Section 4.1.2. The inverse

process is denoted as opening of an algebraic loop. More

details can be found in the work of Zimmer.13

4.4. Fake residuals

In a dynamic system, algebraic loops may not only appear;

they also may disappear. Unfortunately, this is not so easy

to handle. The problem is that once the assumption of a

tearing variable is established, it is maintained even when

it becomes superfluous. The resulting tearing is by no

means wrong, it just turns out to be partly redundant.

Fortunately, there is a mechanism to detect potentially

unnecessary tearings: the appearance of fake residuals.

Fake residuals are residual equations that could be cau-

salized even without one of the corresponding tearing vec-

tors. Therefore these residuals are avoidable and should

not be part of an algebraic loop. Let ρf be a residual and rf

its relation. Consequently, U (rf) is the set of corresponding

Figure 14. A bipartite graph that is used to match residuals to
their corresponding tearings.

952 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

potential unknowns, and D(rf) represents all its additional

variables. The residual ρf is a fake residual, if there exists

an open tearing τ so that τ is a predecessor of rf , and only

one of its potential unknowns, in U (rf) is dependent on τ

as well as no other variable in D(rf). In order to remove a

fake residual, the corresponding tearing τ is removed, and

all intermediate relations are decausalized, as s done for

the removal of potential paths.

Some bad tearings (but not all of them) include fake

residuals. The existence of a fake residual always enables

optimization. At least, the size of the tearing block can be

reduced by the fake residual itself, but it is likely that even

the number of residuals can be reduced.

Fake residuals should be detected and removed before

the residual causes any other action. The elimination of

fake residuals ensures that forward causalization is always

applied to the maximum extent. Please note also that fake

residuals do not only occur at structural changes; they may

even be generated through a non-ideal selection of tearing

variables. Thus, the detection and removal of fake resi-

duals helps avoid redundant and bad tearings. In this way,

the simple heuristics for the selection of tearing variables

can be partly improved in those cases where too many tear-

ing variables have been generated.

4.5. Integration of the tearing algorithms

We need to still clarify, how the proposed tearing algo-

rithms are integrated into the whole process of dynamic

DAE processing. As an illustration, we use the flow chart

in Figure 16.

The flow chart contains all major parts of the dynamic

framework, let that be forward causalization, tearing or the

evaluation of relations. To understand this chart, we have

to consider it as part of a processing loop: each time we

finish one task, we reiterate again from the start until the

complete system has been validated or an error has been

detected.

At the start of each iteration, we have to determine the

main objective first. To this end, there are four decisions

on the left-hand side of the flow chart that prioritize the

major subprocesses. Let us take a brief look at each of

those subprocesses.

1. Most important is to process all new relations. This

includes relations, the causality of which has been

removed and that have been reset from the system,

as this happens by the removal of a potential path

(see Section 3.4).

2. Residuals are processed in order to detect poten-

tially causalized paths or to close an algebraic

loop. The matching algorithm may detect an

overdetermination.

3. Relations that have been causalized but not yet

evaluated are ready for evaluation now. Please note

that the evaluation of subparts of the system may

cause structural changes, i.e. relations are removed

or new relations are entered into the system.

4. At last, tearing variables are selected in order to cau-

salize parts that are still non-causalized. The pres-

ence of open tearings indicates underdetermination.

In general, this enhanced processing scheme still fol-

lows the spirit of Section 3. Forward causalization is the

dominant process, and conflicts are analyzed and resolved

by means of residuals.

A final remark about Figure 16. The presented flow

chart is of course simplified. Other valid schedules of the

subtasks are thinkable as well. Indeed, the actual imple-

mentation of Sol differs from this flow chart for reasons of

efficiency, but, aside from adding complexity, this does

not provide any further insight.

4.6. Asymptotic complexity

It has yet to be shown that the proposed algorithms for

algebraic loops and their integration into the DDP yield a

correct solution for index-one systems. Although we can-

not formally prove this, we at least have a very strong indi-

cation for this to be true.

We know that index-zero systems are properly handled.

Adding tearing relations to the system is per se nothing

harmful, even if the chosen tearing variables turn out to be

redundant. The ongoing detection and removal of fake

Figure 15. Optimal decomposition of the bipartite graph using
perfect matching.

Zimmer 953

residuals ensures furthermore that forward causalization is

always pursued to maximal extent. This means that each

variable is only chosen as tearing variable, because it could

not be determined by forward causalization. This helps to

keep the number of tearing variables small. In a regular

system, the number of resulting residuals will match the

number of tearing variables.

It is not evident that the tearing process will terminate,

since one may fear that the removal of fake residuals with

their corresponding tearings and the subsequent reset of

causalizations (leading to a new tearing) could lead to an

infinite loop.

First of all, the selection of a tearing variable cannot

generate a fake residual that leads to its own removal, since

forward causalization is performed before any new tearing

variable is chosen. A tearing can only cause fake residuals

for the removal of tearings that have been selected earlier.

Let us therefore remember that a fake residual ensures

by definition that it can be causalized by forward causali-

zation and potentially many more relations can be causa-

lized with it. There might still be a need to replace the

removed tearing by a new one. Nevertheless, the non-

causalized subset of relations for the new tearing relation

will be strictly smaller than it was for the removed one. If

a potential replacement tearing only causalizes this subset

again (or less), it cannot cause any further fake residuals.

If a potential replacement tearing causalizes more than this

subset, it could cause further fake residuals but thereby the

causalization of the systems has to advance. In a finite sys-

tem, this cannot happen infinitely often. Hence, this pro-

cess will terminate.

Theoretically, a frequent occurrence of fake residuals

could lead to an inefficient handling of the DAE system.

In practice, however, that problem never occurred. In gen-

eral, the system is able to process most systems and their

structural changes rather quickly, because of its ability to

restrict the changes to only those parts that are indeed

affected. The processes for the closing and opening of

algebraic loops are in O(jVGj+ jEGj). The same holds true

for the heuristics of the selection of tearing variables.

The detection of fake residuals works practically in

constant time. The subsequent removal is also in

O(jVGj+ jEGj). The cost for the matching of residuals to

their corresponding tearings is polynomial, and the algo-

rithms are performed on a much smaller problem size.

Certain structural changes, however, may be treated in

an inefficient way. For instance, the exchange of a simple

equation within an algebraic loop by a structurally equiva-

lent equation will cause the opening and closing of

the complete algebraic loop. If the loop is large, the costs

can be substantial. The current strategy represents to some

degree an overhasty approach. This requires an

Figure 16. Processing of relations in the dynamic framework.

954 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

improvement since the switching of equations occurs fre-

quently within algebraic loops.

4.7. Detecting singularities

The primary task of the DDP is to enable the simulation of

regular DAEs with structural changes. No less important,

however, is its second task: Detecting singularities in the

model. In the given framework, we can distinguish between

two types of singularities that will yield error reports.

• Non-temporary underdetermination.
• Overdetermination.

4.7.1. Detecting over- and underdetermination. The detection

of over- and underdetermination is located in the process

flow of Figure 16.

Overdeterminations are detected whenever residuals are

processed. The greedy matching algorithm may find that

residuals are not dependent on any tearing variable or that

a residual vector is dependent on a smaller vector of tear-

ing variables.

Underdetermined systems of equations will result in open

tearings that cannot be closed. The underdetermined subsys-

tems are specified by the components in the corresponding

bipartite graph. All of those relations that are successors of

an open tearing are part of the underdetermined system.

Since underdetermination represents an intermediate

state of many structural changes, one shall report them

only when no further relations are scheduled for evalua-

tion. This is why their detection is placed at the end of the

priority queue in Figure 16.

5. Higher-index systems
5.1. Differential-index reduction

The preceding two sections dealt only with models where

each statement of a derivative resulted in a state variable for

time integration. This implicit assumption, however, only

holds true for a rather simple class of models. In particular,

the object-oriented design of model components requires the

statement of many derivatives, where only a subset of them

can represent state variables since many potential state vari-

ables are related by algebraic constraints. For variable-

structure systems, this means that the exchange of a single

equation can change the number of state variables, even if

the equation itself does not contain any derivative. Figure

17 illustrates a corresponding example.

The half-way rectifier with line inductance is a well-known

circuit, and there are many solutions available that handle the

structural change in a highly efficient manner. For instance,

inline integration32 can be applied. Yet, let us refrain from

specific solutions and look at the problem in general.

The structural change in this model is caused by the ideal

diode. In Listing 4, its state is described by the Boolean vari-

able open that represents the two possible modes.

1 model HWRLI

2 implementation:

3 // declarations are omitted [...]

4 i0 = iC+iR;

5 iC = C*der(uC);

6 uC = R2*iR;

7 u0 = sin(x = time *100* pi)

8 uR = R1*i0;

9 uL = L*der(i0);

10 u0 + uR + uD + uL = uC;

11 static Boolean open;

12 when uD <0 then

13 open << true;

14 end else when i0 >0 then

15 open << false;

16 end;

17 if open then

18 uD = 0;

19 else then

20 i0 = 0;

21 end if;

22 end HWRLI;

Listing 4. Flat Sol model of a half-way rectifier.

The switch between the modes is triggered by a corre-

sponding when-statements, whereas the actual exchange

of the continuous-time equations is modeled by the if-

branch. For both directions, the change is expressed by

_s= (fr18, r20g,1).

If the diode is closed, the voltage across the diode is

zero, and the system contains two state variables for time

integration: uC that represents the voltage across the
capacitor and i0 that represents the current through
the inductor. In the open mode, the current is not a
state variable any more since it is set to zero by the
diode. In order to determine the voltage across the
inductance, the derivative of the current i0 is required.
In this model, the derivative is obviously zero.

This model of a half-way rectifier is an example of a

system with variable differential index.33 The differential

index denotes the number of differentiations that are

required in order to transform the DAE into a form suit-

able for numerical ODE solvers. In this example, one dif-

ferentiation is sufficient, and hence the differential index

varies from zero to one. Mostly, systems of DAEs are

characterized by the perturbation index.17 Roughly speak-

ing, the perturbation index of a system equals the differen-

tial index if there are no algebraic loops as in this

example. Otherwise, it is larger by one.

5.2. Index reduction by Pantelides

Typically, index reduction is performed by means of sym-

bolic differentiation. The most common procedure for this

task originates from the Pantelides algorithm.34 This

Zimmer 955

method has been successfully applied in commercial soft-

ware such as gPROMS or Dymola.

The Pantelides algorithm proposes that initially all

potential state variables are assumed to be known. These

are all of those variables for which time derivatives appear

in the model. This assumption may result in overdeter-

mined equations that give rise to so-called structural sin-

gularities. For each of these constraint equations, a

corresponding integrator will be eliminated, and the con-

straint equations will be added to the system in its differ-

entiated form. The elimination of the integrator will

demand the recausalization of parts of the system. The dif-

ferentiation of the constraint equation is likely to invoke

further differentiations.

For the static treatment of DAEs, the Pantelides algo-

rithm is often implemented in such a way that it works in

alternation with the causalization of the DAEs. The causali-

zation determines the constraint equations, and the

Pantelides algorithm gets rid of this overdetermination

again. This two-phase behavior is the main reasons why the

Pantelides algorithm in this form is not suited for a dynamic

framework. First, it generates potentially many residuals that

are relatively expensive to handle and second, it requires

restructuring of larger parts of the system. Thus, we prefer a

different approach that suits the demands of our dynamic

framework. Common with the Pantelides algorithm is that

the index gets reduced by means of symbolic differentiation

and the elimination of potential state variables.

5.3. Tracking symbolic differentiation and
selection of states

Automatic symbolic differentiation of algebraic equations

is a common problem and has been solved (in its classic

form) long ago.35,36 What remains problematic is to deter-

mine, which parts of the system need to be differentiated,

especially with respect to a dynamic framework. To this

end, a set of update and downdate rules has been devel-

oped. The precise rules are contained in the work of

Zimmer,13 but essentially differentiated equations can be

added to and removed from the global set equations and

are not differently treated than all other equations.

In order to express the differential part of a DAE, we pro-

vide a special relation: the derivative relation. This relation is

stated by using the expression der() as in a = der(x=b).
It simply expresses that a is the derivative of b.

Table 2 presents the four different states for the causali-

zation of a derivative relation. In the previous sections, we

simply assumed that a derivative relation is causalized as

an integrator. Hence, a is supposed to be known, and b
is determined by time integration. However, if b is
determined by other parts of the DAE, the derivative
relation has to act as a differentiator. In this case, a is
the unknown, and a symbolic differentiation of b is
requested. Derivative relations can also become part of
an algebraic loop. Thus, when acting as a differentia-
tor, the relation may also throw a residual.

Like any other relation, derivative relations are also

integrated into the process of forward causalization. Figure

18 illustrates the corresponding state transition diagram for

the causalization. Another particularity of the derivative

relation is indicated in Table 2: a derivative relation is a

S
1

+
-

G

R=10

R1

R
=
5
0

R
2

L=0.002

L

C
=
0
.0

0
1

C

D

Figure 17. Half-way rectifier circuit.

Table 2 States of a derivative relation.

State Variables in D(r) Unknown

Non-causalized D(r)= fa,bg none
Integrator D(r)= fbg b
Differentiator D(r)= fa,b,db=dtg a
Differentiator with residual D(r)= fa,b,db=dt,rg r

956 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

polymorphic object. Depending on its current state, it

changes its set of variables. This is required since integra-

tors shall have no predecessors in the causality graph. In

this way, all integrators can be synchronized, a prerequisite

for the application of multi-dimensional, implicit algo-

rithms for time integration (such as DASSL37).

If a derivative relation acts as an integrator, we say that

it defines a continuous-time state variable of the system.

Figure 18 depicts two possible ways that lead to this state.

Either the state variable is determined directly by forward

causalization if their derivative is independent from the

state itself. Alternatively, the state variable is externally

selected. This selection is integrated into the DDP in a sim-

ilar way as the selection of tearing variables.

• Whenever forward causalization terminates but

there are still non-causalized derivative relations,

one of these derivative relations is arbitrarily

selected and determined as integrator. Then, for-

ward causalization proceeds.
• Only when there are no non-causalized derivative

relations, the selection of tearing variables will be

applied as described in Section 4.

The selection of continuous-time states is now

embedded in the DDP. Initially, the set of state variables

is empty. This is a first key difference to the Pantelides

algorithm. Then, the state variables will be gradually

selected in alternation with forward causalization. During

this process, differentiated equations may be added to the

system. Finally, the whole system should be causalized.

5.3.1. Example. Let us review this process of index reduc-

tion by a very simple example. Listing 5 corresponds to the

model code of an RC circuit with two parallel capacitors.

1 model ParallelCapacitors

2 implementation:

3 // declarations are omitted [...]

4 u0 = 10;

5 uR = R*iR;
6 i1 = C1*der(x=u1)

7 i2 = C2*der(x=u2)

8 iR = i1+i2;

9 u1 = u2;

10 uR + u1 = u0;

11 end ParallelCapacitors;

Listing 5. Flat Sol model of a simple RC-circuit.

Forward causalization can only causalize the relation

r4. There remain two non-causalized derivative relations.

Consequently, the variable u1 is selected as state variable,
and the corresponding derivative relation r6 is determined
as integrator. The next run of forward causalization cau-
salizes all remaining relations except r8. Among them is
the second derivative relation that is causalized as differ-
entiator. Consequently, the derivative of u2 is requested,
and the differentiated equations of Listing 6 are added to
the system.

i1 = C1*d_u1;

i2 = C2*d_u2;

d_u1 = d_u2;

Listing 6. Flat Sol model of a simple RC-circuit.

There are now four non-causalized relations, none of

them being a derivative relation. Hence the tearing method

is applied. The variable d_u2 is selected as tearing vari-
able, and relation r8 generates the corresponding resi-
dual. The DDP of this system is now complete. The

not
causalized

Differentiator

Differentiator
with residual

Integrator

b determined a determined

• external state selection

• a determined

external reset

external reset

Figure 18. State transitions of derivative relations.

Zimmer 957

system has one continuous time state and there is a
small system of equations that needs to be solved.

The selection of state variables can drastically influence

the computational performance of a system, both in preci-

sion and efficiency. An automatic mechanism can hardly

be expected to outperform the specific knowledge of a

well-experienced modeler. Hence, some modeling lan-

guages, such as Modelica but also Sol, provide means for

the modeler that enable him or her to suggest or prefer cer-

tain variables as state variables.

5.4. Removing state variables

In a dynamic framework, structural changes may cause

the number of state variables to change. Thus, we have

to handle the removal of state variables as well. In prin-

ciple, this follows the same principles as the removal of

potentially causalized relations or the removal of tearing

variables.

Too many state variables will result in an overdeter-

mined system and yield residuals. In order to cope with

these residuals, the sources of overdetermination will be

examined. There are now three different kinds:

1. tearing relations;

2. potentially causalized relations;

3. state selections.

The list represents the priority with which these sources

are being analyzed. In a first step, we examine the tearing

relations as potential source of overdetermination. It is

only if the matching algorithm of Section 4 detects an

overdetermined subsystem that other sources must be

removed.

In the case that both a potentially causalized relation

and a state selection are potential sources of overdetermi-

nation, the potentially causalized relations are decausalized

first. The reason for this is that potential causalizations

shall only maintain existing causalization but not change

the causality of other parts.

Hence, state variables get only deselected when they

are the sole potential sources of overdetermination left.

The deselection is achieved by decausalizing the corre-

sponding derivative relations.

5.4.1. Example. The half-way rectifier with line inductance

represents a simple example for the removal of state vari-

ables. If the diode is closed, the variable i0 is selected as
state variable. The corresponding relation r9 acts as an
integrator. The structural change exchanges relation r18
with r20: i0 = 0 that is immediately causalized in resi-
dual form. The only source of overdetermination is the
state selection and, therefore, the corresponding deriva-
tive relation gets decausalized. Forward causalization
now causalizes r9. This derivative relation determines

uL and acts now as a differentiator. Thus, r20 is being
differentiated.

5.5. Asymptotic complexity

The removal of state variables in Sol follows the general pat-

tern of the DDP. In order to undo an existing causality, a cor-

responding conflict must occur in form of a residual. Since

such a residual has now many potential sources of overdeter-

mination, we presented a strategy by prioritizing the sources

of overdetermination. This priority list, however, represents

an arbitrary, heuristic decision. It is not a general solution.

We can demonstrate for a broad set of examples (electrical

circuits and planar mechanical systems) that this strategy

works fine, but it may fail for other examples.

With respect to algorithmic complexity, the outlined

process of state selection and removal does not introduce

any new, computationally expensive processes. We know

that all costly processes are associated with residuals.

Hence, the outlined strategy for state selection avoids the

generation of residuals whenever possible. In contrast to

the Pantelides algorithm, potential state variables are sup-

posed to be unknown and are only successively chosen as

states when necessary.

In Section 4, we could show that the removal of tearing

variables will not lead to an infinitely self-repeating pro-

cess. Unfortunately, the same cannot be stated for the

undoing of state selections. It is therefore necessary to

keep track of the selected states during a structural change.

More research is needed to find a better, truly general

strategy for higher-index systems.

Another key point with respect to efficiency is the dif-

ferentiation of equations. In order to prevent overhasty

actions, the instantiation of derivatives is done in busy

form, whereas the removal is done in lazy form. This shall

avoid unnecessary re-instantiations.

5.6. Summary

The complete DDP is composed out of many different

algorithms and rules that are linked with each other in a

highly elaborate way. The actual software implementation

involves further details that have been omitted here for

brevity. Despite this high degree of complexity, there is a

common principle covering all important subtasks. In sum-

mary, the methodology of the DDP can be presented as

follows.

Forward causalization is the dominant strategy. If it

does not suffice alone, it is assisted by the selection of

state variables and tearing variables. Furthermore, existing

causalizations are protected from overhasty removal by

the concept of potentially causalized relations. These three

additional means form a potential source of overdetermi-

nation. Hence, whenever a residual is created, the potential

958 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

sources for the overdetermination are examined, and a cor-

responding action is taken in order to remove the conflict.

6. Validation

In this section, the proposed computational framework is

being evaluated. To this end, we apply the prototype

Simulator Solsim to two examples.

One obvious evaluation criterion is the computational

efficiency of the prototype implementation. Although, the

examples in this section demonstrate that the simulator

speed is sufficient to perform meaningful simulations, the

simulator is of course not very efficient, simply because it

represents an interpreter (in contrast to a compiler such as

Mosilab). Hence, for any specific simulation task at hand, it

is always possible to provide a manually coded solution that

significantly outperforms the Solsim simulator. It is impor-

tant to note, that there is no optimal computational frame-

work for variable structure systems in general. This question

can only be answered for a specific system at hand.

For the evaluation of this research work, other factors

are more important than the speed of its prototype imple-

mentation. In this section we focus on three criteria.

• Generality: is the framework able to handle general

classes of equation-based models?
• Scalability: does the computational framework

scale? Does it extend to problems with many thou-

sands of equations?
• Extendability: How can the proposed technology be

combined with other approaches, leading to more

powerful frameworks in the future?

The first two criteria are discussed by means of exam-

ples. The last one is discussed by giving a short outlook on

potential future work.

6.1. Example 1: Examining the generality by
revisiting the trebuchet

A prime test application for the Sol framework is the tre-

buchet catapult from the introduction. To this end, a planar

mechanical library has been developed in Sol. In addition

to the continuous-time equations (from that a few excerpts

have been shown), the components of this library contain

a second set of discrete equations that model the impulse

behavior. In fact, every force impulse causes a discrete

change in velocity is therefore modeled as small, tempo-

rary structural change.

The components have been assembled as outlined in

Figure 3. The total system contains roughly 250 equations

and represents an index-three system. A major subset of

equations need to be differentiated twice and there remain

two linear algebraic equation-systems to be solved. The

handling of the occurring structural changes is conse-

quently difficult and requires all capabilities of Solsim.

Including the structural changes for the force impulses, a

total of six structural changes occur during the first two

seconds of simulation. Whereas the processing of equa-

tions is highly elaborate in Sol, its numerical methods are

still very rudimentary. Hence, 2000 steps of forward Euler

have been applied. Yet the whole simulation, from parsing

to simulation output, could be performed roughly within

one second on a common, contemporary PC.

Being able to simulate the trebuchet means being able

to simulate a large class of models. Modeling of continu-

ous process, modeling of discrete processes, higher-index

problems: the trebuchet contains it all. Limitations in gen-

erality still may originate from difficult higher-index prob-

lems, where the implemented prototype still lacks the

required robustness. Also the event-based modeling is very

simple and is not able to cover all needs that occur in the

modeling of physical systems.

The trebuchet demonstrates that Sol provides a very

general framework. The benefit of this generality is to the

modeler. It enables to spread the formulation of structural

changes among several distinct components. These com-

ponents form a planar mechanical library whose entities

are reusable and could be reassembled to other mechanical

devices. Without this level of generality, the structural

changes would have to be formulated in a central way and

the resulting code would not be generic.

The trebuchet is not suited to show the value of the

incremental update approach. Since the structural changes

affect mostly large fractions of the system, a complete

recausalization at each change is of roughly the same

speed. Hence, let us look at another example.

6.2. Example 2: Examining scalability by modeling
population dynamics with genetic adaptation

In this application, we wish to model the rise and fall of an

abstract life form that thrives on a finite, global nutrition

and thereby transforms it into a global pollutant. An exam-

ple for such a life form could be yeast in a fermentation

tank that consumes sugar and poisons itself with the result-

ing alcohol. Any life form needs energy to sustain its meta-

bolism. This is obtained from the nutrition. We suppose

that the energy increment is proportional to the intake of

nutrient f , and that the intake itself is proportional to the

concentration of the nutrient cN . This is specified by the

parameters for the scope s of the life form and its absor-

bance r:

f = cN sr

The intake of nutrient will be proportional to the reduc-

tion of its concentration as well as to the increase of pollu-

tion cP:

Zimmer 959

_cN = _�cP / �f

We suppose furthermore that the life form is able to

store energy within its metabolism. Its current energy level

is represented by the variable E. The unit of this variable is

defined such that the value 1.0 represents the initial energy

of a life form. The inflow of nutrition is transformed into

power by the coefficient μE. Since energy is needed to

maintain the metabolism, we suppose that this is a constant

value M . Another sink of energy is caused by the concen-

tration of the pollutant cP. The corresponding sensitivity is

arbitrarily defined to be quadratic and is parameterized by

μcP
. This leads to the following differential equation for

the energy level:

_E = f μE �M � μcP
c2P

In dependence on this energy level, the life form is

enabled to reproduce itself, and it is forced to die at a min-

imum energy level. This goes along with a genetic adapta-

tion of its offspring to the environment. For the

reproduction, we select a non-sexual model that mimics

cell division. Each life form has three potential modes:

alive, divided, and dead. Initially, a life form is alive with

an energy level of 1.0. The transition to one of the other

modes is then triggered by a change in the energy level.

The life form dies when its energy level sinks below 0.5. It

divides when the energy level rises above 2.0 (Figure 19).

The adaptation process concerns the absorbance and

represents a trade-off between feeding and resistance. To

this end, the absorbance is coupled with the sensitivity of

the pollutant by the equation

μcP
= 0:5+μEr2

At each division, the absorbance of one of the two life

forms is randomly modified within the uniform range of

± 10%. A higher absorbance leads to a higher nutrition

level and the ability to reproduce faster than the competi-

tors. On the other hand, the high absorbance rate makes

the life form more vulnerable and decreases its ability to

survive in a polluted environment. Which of these capabil-

ities is more important is determined by the environment.

The resulting Sol model consist of roughly 100 code

lines and the output of the corresponding simulation is

shown in Figures 20 and 21. Initially, one single life form

is put into a tank with 1000 liters of volume and a nutrition

concentration of 20%. At the beginning, the population is

rising exponentially. This rise looks almost like a perfectly

continuous exponential curve but a closer look reveals the

discrete character that is introduced by the reproduction

cycle. Together with the population also the pollution is

rising and puts a rather sudden end to the growth. The pop-

ulation reaches a plateau and pauses, before die-off sets in.

Figure 21 depicts the genetic evolution of the absor-

bance r. At the beginning, there is plenty of nutrition, and

a higher absorbance enables a shorter reproduction cycle.

This naturally leads to an increase in the mean absorbance.

However, also life forms with low absorbance can still

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

time [min]

p
o
p
u
la

ti
o
n

0 20 40 60 80
0

5

10

15

20

25

30

35

40

time [min]

p
o
p
u
la

ti
o
n

Figure 20. Population size with magnification.

dead dividedalive
E < 0.5 E >= 2

∑E < 0.5

start

Figure 19. Modes of the reproductive life form.

960 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

thrive in this environment. Owing to the exponential

growth that is induced by the self-reproduction, the change

in nutrient concentration is rather sudden, and the pollu-

tion resistance becomes the key factor. Life forms with a

high absorbance are vulnerable and become victims of

their own success. A lower absorbance is now strongly

favored and those life forms remain alive for a while.

Nevertheless, the relation between nutrition and pollution

forms already a very hostile environment that finally

results in total extinction. Some of the nutrition remains

unused.

The simulation of this system is very interesting with

respect to its computational aspects. Whereas the model

definition is small, the resulting size of the simulation can

be huge. In this example, the population peaks around

4200 living life forms. Hence, the total system contains

several thousands of state variables and about 100,000

relations. During simulation, about 10,000 events are being

triggered.

Here the incremental update algorithm pays off. Each

structural change only affects between 10 and 25 equations

and can be handled locally. In this way the computational

load of structural changes accounts for only 4.5% of the

complete simulation time whereas a complete recausaliza-

tion at each change would cause a load of roughly 80% of

the simulation time. Also this model is very well suited to

test how the performance scales with respect to the model

size. To this end, the simulation was performed for differ-

ent volume sizes with computational time and memory

effort being recorded. Figure 22 shows the corresponding

results with respect to the number of model instances.

Evidently, the performance of Solsim scales linearly to the

problem size. This is certainly optimal and corresponds to

the performance analysis of Section 3.

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

v
o
lu

m
e
 c

o
n
c
e
n
tr

a
ti
o
n
 [
1
]

0 50 100 150 200 250 300
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

time [min]

a
b
s
o
rb

a
n
c
e
 [
1
]

absorbtion rate
nutrition
pollutant

Figure 21. Mean absorbance with respect to nutrition.

0 4000 8000 12000
0

50

100

instances

ti
m

e
 [
s
]

0 4000 8000 12000
0

300

600

900

instances

m
e
m

o
ry

 [
M

B
]

Figure 22. Scaling performance of Sol.

Zimmer 961

The implementation of Solsim, however, does contain

parts that behave worse than linear performance.

Fortunately, these parts do not dominate the simulation

and their influence is covered up by the main processes.

The memory overhead of Solsim is quite significant:

roughly 3.5 MB are needed per 1000 relations. This is cer-

tainly a lot, and there is definitely much potential for fur-

ther optimizations. Compared with other translators of

equation-based languages, this memory effort is not

exceptional. The memory usage of the Modelica translator

in Dymola is of the same order of magnitude with an esti-

mated 1–2 MB per 1000 relations.38

6.3. Examining the future potential

Examples 1 and 2 showed the general feasibility of the

approach in the sense that higher-index problems can be

treated and that also a larger model can be handled. Two

more examples are included in the work of Zimmer.13

The efficiency of the handling of structural changes can

be measured by relating the corresponding computational

effort to the overall computational effort for the complete

simulation. For both examples, the incremental algorithms

require less than 5% of the total simulation time (1.5% for

the trebuchet and 4.5% for the population dynamics exam-

ple). Hence, one might be tempted to state that the han-

dling of structural changes is very efficient but this

conclusion is flawed since the ODE-Simulator in Sol is

not a good point of comparison. First, the function evalua-

tion is done by an interpreter and second, an excessively

large number of steps are enforced by applying Forward

Euler instead of higher-order methods.

The good news is that if you can afford that your system

is being interpreted, you can also afford to simulate struc-

tural changes but it is also true in cases where an interpreta-

tion is feasible, a complete recausalization (avoiding the

incremental algorithms) is often feasible as well. So what is

the precise motivation for the incremental algorithms then?

For the static case, the classic method of index reduc-

tion is a key factor to simulation performance since it

enables the compilation and optimization of simulation

code in advance. In future, it is also the goal that the code

of variable structure system can be compiled at least in

parts and probably just-in-time (JIT). Now the importance

of the proposed incremental algorithms for structural

changes becomes evident. Since the effect of a structural

change can be contained to a part of the system, a com-

plete recompilation of the system can be avoided and large

fractions of already compiled code can be reused.

The efficient application of JIT compilers for variable

structure systems has already been demonstrated by

Nilsson et al.11,12 This work contains a notable comple-

mentary approach to the Sol framework. Ideally, the incre-

mental algorithms proposed in this paper might then be

used to identify the affected code pieces and generate the

index reduction for the new code in place. This of course

opens up another research field. How to determine an opti-

mal decomposition of the system in separately compiled

functions, when to cache compiled code, and when to gen-

erate code for many mode changes in advance are interest-

ing research questions that yet need to be answered.

For the current state of the art, Sol has successfully

demonstrated how to express and simulate DAE-based

variable structure systems in a very general way.

7. Conclusion

The dynamic processing of DAEs enables the modeling

and simulation of complex systems with arbitrary struc-

tural changes. Sections 2 and 3 introduced the general

framework. They presented the causality graph as a funda-

mental data structure as well as the concepts of forward

causalization and potential causalization. Sections 4 and 5

provided additional functionality for index reduction. The

system is now able to cope with algebraic loops and to

enforce differentiation for the purpose of index reduction.

The resulting DDP represents an almost general solu-

tion. It is perfectly suited for index-zero systems, it works

fine for index-one system with algebraic loops, and it rep-

resents a practical (but incomplete) solution for higher-

index systems.

The dynamic processing scheme enables also new mod-

eling techniques that are represented by the corresponding

language Sol. The population dynamics example and the

trebuchet model demonstrate the usefulness of this

approach. Altogether, we provided a complete, dynamic

framework for the equation-based modeling of variable-

structure systems. In this way, we have entered a new and

promising field for future research that lets us and other

researchers elaborate new modeling and processing tech-

niques. We hope that the research field can establish itself

and will lead to improved industrial standards for

equation-based modeling in the future.

Acknowledgments

I would like to thank Professor Francxois E. Cellier and Professor

Walter Gander for their helpful advice and their continuing

support.

Funding

This research project was generously sponsored by the Swiss

National Science Foundation (SNF Project No. 200021-117619/

1) and co-funded by the Department of Computer Science at

ETH Zurich.

References

1. Fritzson P. Principles of Object-oriented Modeling and

Simulation with Modelica 2.1. New York: John Wiley &

Sons, 2004.

962 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)

2. The Modelica Association. http://www.modelica.org

3. Ashenden PJ, Peterson GD and Teegarden DA. The System

Designer’s Guide to VHDL-AMS. San Mateo, CA: Morgan

Kaufmann, 2002.

4. Oh M and Pantelides CC. A modelling and simulation lan-

guage for combined lumped and distributed parameter sys-

tems. Comput Chem Engng 1996; 20: 611–633.

5. Fábián G. A Language and Simulator for Hybrid Systems.

PhD Thesis, University of Technology, Eindhoven, The

Netherlands, 1999.

6. van Beek DA. Variables and equations in hybrid systems with

structural changes. In: Proceedings of the 13th European

Simulation Symposium, Marseille, 2002, pp. 30–34.

7. Nytsch-Geusen C, Ernst T, Nordwig A, et al. Advanced

modeling and simulation techniques in MOSILAB: a system

development case study. In: Proc. 5th International.

Modelica Conference, Vienna, Austria, Vol. 1, 2006, pp.

63–71.

8. Mosterman PJ. HYBRSIM – a modeling and simulation

environment for hybrid bond graphs. J Syst Control Engng

2002; 216: 35–46.

9. Roychoudhury I, Daigle M, Biswas G and Koutsoukos X.

Efficient simulation of hybrid systems: an application to

electrical power distribution systems. SIMULATION 2011;

87: 467–498.

10. Giorgidze G and Nilsson H. Higher-order non-causal model-

ling and simulation of structurally dynamic systems. In:

Proceedings of the 7th International Modelica Conference,

Como, Italy, 2009.

11. Nilsson H, Peterson J and Hudak P. Functional hybrid mod-

eling from an object-oriented perspective. In: Proceedings of

the 1st International Workshop on Equation-Based Object-

Oriented Languages and Tools (EOOLT), Berlin, Germany,

2007, pp. 71–87.

12. Nilsson H and Giorgidze G. Exploiting structural dynamism

in functional hybrid modelling for simulation of ideal diodes.

In: Proceedings of EUROSIM 2010, 2010.

13. Zimmer D. Equation-Based Modeling of Variable-Structure

Systems. PhD Dissertation No. 18924, ETH Zürich,

Switzerland, 2010.

14. Zimmer D. An application of Sol on variable-structure sys-

tems with higher index. In: Proceedings of the 7th

International Modelica Conference, Como, Italy, 2009.

15. Zimmer D. Introducing Sol: a general methodology for

equation-based modeling of variable-structure systems. In:

Proceedings of the 6th International Modelica Conference,

Bielefeld, Germany, Vol. 1, 2008, pp. 47–56.

16. Dassault Systemes. www.dynasim.se.

17. Bujakiewicz P and van den Bosch PPJ. Determination of

pertubation index of a DAE with maximum weighted match-

ing algorithm. In: Proceedings of the IEEE/IFAC Joint

Symposium on Computer-Aided Control System Design,

Tuscon, AZ, 1994, pp. 129–135.

18. Bujakiewicz P. Maximum Weighted Matching for High Index

Differential Algebraic Equations. PhD Thesis, Technische

Universiteit Delft, 1993.

19. Widmayer P and Ottmann T. Algorithmen und

Datenstrukturen, 4. Auflage. Spektrum Akademischer Verlag,

2002.

20. Pearce DJ and Kelly PHJ. A dynamic algorithm for topologi-

cally sorting directed acyclic graphs. In: Experimental and

Efficient Algorithms (Lecture Notes in Computer Science,

Vol. 3059). Berlin: Springer-Verlag, 2004, pp. 383–398.

21. Katriel I and Bodlaender HL. Online topological ordering.

In: Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2005, pp. 443–450.

22. Tarjan R. Depth-first search and linear graph algorithms.

SIAM J Comput 1972; 1: 146–160.

23. Cellier FE and Kofman E. Continuous System Simulation.

New York: Springer-Verlag, 2006.

24. West DB. Introduction to Graph Theory, 2nd ed. Englewood

Cliffs, NJ: Prentice Hall, 2001.

25. Steward DV. Partitioning and tearing systems of equations. J

SIAM B Numer Anal 1965; 2: 345–365.

26. Pothen A and Fan C. Computing the block triangular form

of a sparse matrix. ACM Trans Math Softw 1990; 16: 303–

324.

27. Campbell SL and William C. The index of general nonlinear

DAEs. Numer Math 1995; 72: 173–196.

28. Richard S and Mah H. Chemical Process Structures and

Information Flows. London: Butterworth, 1990.

29. Golub GH and Van Loan CF. Matrix Computations, 3rd ed.

Baltimore, MD: The John Hopkins University Press, 1996.

30. Upadhye RS and Grens EA. An efficient algorithm for opti-

mum decomposition of recycle systems. AIChE Journal

1972; 18: 533–439.

31. Ollero P and Amselem C. Decomposition algorithm for

chemical process simulation. Chem Engng Res Des 1983;

61: 303–307.

32. Cellier FE and Krebs M. Analysis and simulation of variable

structure systems using bond graphs and inline integration.

In: Proceedings of ICBGM’07, 8th SCS International

Conference on Bond Graph Modeling and Simulation, San

Diego, CA, 2007, pp. 29–34.

33. Leimkuhler B, Gear CW and Gupta GK. Automatic integra-

tion of Euler–Lagrange equations with constraints. J Comp

Appl Math 1985; 12–13: 77–90.

34. Pantelides C. The consistent initialization of differential-

algebraic systems. SIAM J Sci Stat Comput 1988; 9: 213–

231.

35. Gander W. Computer Mathematik. Basel: Birkhäuser Verlag,

1985.

36. Joss J. Algorithmisches Differenzieren. PhD Thesis, ETH

Zürich, Switzerland, 1976.

37. Petzold LR. A description of DASSL: a differential/algebraic

system solver. IMACS Trans Sci Comput 1983; 1: 65.

38. Zimmer D. Multi-aspect modeling in equation-based lan-

guages. Sim News Eur 2008; 18(2): 54–61.

Author biography

Dirk Zimmer received his PhD degree at the Swiss Federal

Institute of Technology (ETH). He is currently pursuing his

research work at the Institute of System Dynamics and Control

belonging at the German Aerospace Center (DLR). In addition,

he is lecturer at the Technical University of Munich (TUM).

Zimmer 963

