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In boundary element methods (BEM), subregioning may be needed either to model complex solids (with
cracks, stiffeners, layers, inclusions, etc.) or simply to decompose a problem by computational reasons
(e.g. for parallelization). Since the development of the first BEM codes, many attempts have been made to
efficiently devise generic boundary-element subregioning techniques. Crucial points are how to profit
from the sparsity of the global matrix, and how to deal with traction discontinuities. In this work, the
most fundamental steps for efficiently devising reliable and efficient subregioning algorithms are
discussed. The subregion-by-subregion (SBS) algorithm and the preconditioning of the embedded Krylov
solver are addressed. Besides the BiCG solver, the BiCGSTAB(I) is newly incorporated into the BE-SBS
code. The 3D microstructural analysis of carbon-nanotube-reinforced composites (CNT composites) is
considered to verify the performance of the algorithm. Numerical results showing the efficiency of the
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preconditioned solvers studied are presented.
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1. Introduction

Realistic engineering problems commonly concern modeling a
number of coupled subsystems with different materials and
special interfacial (contact) constitutive laws. Such problems
typically happen in the microstructural analysis of general com-
posites, wherein fibers or particles are smeared within a host
material. Describing the macroscopic behavior of the composite
from the direct modeling of its constituents (particles or fibers,
and matrix material) is not a simple task, and even for small
specimens may lead to huge systems of algebraic equations. By
using the finite element method (FEM), domain-decomposition
(substructuring) techniques as balancing domain decomposition
(BDD) [1-4] and finite element tearing and interconnecting (FETI)
[4,5,6,7] methods have been largely employed to deal with this
class of problems.

These domain decomposition methods (DDMs) have been
proposed as general parallel solvers for the FEM, as for the analysis
of models with a very large number of degrees of freedom (e.g. for
the analysis of composites on the microscale), regular FE
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algorithms are unacceptably memory/time-consuming. For
boundary element methods (BEMs), besides the parallel-
computing aspect, substructuring techniques are also needed for
modeling material heterogeneity, as boundary-integral-based for-
mulations assume a homogeneous region for stating the
boundary-value representations of the corresponding responses.
Substructuring (or subregioning) are then fundamental techniques
in BEM, and have been pursued since the first implementations of
BEM [8].

Many 3D engineering applications such as in seismology,
computational fluid dynamics (CFD), the micromechanical analysis
of composites, etc., require a large number of variables. In these
cases, iterative solvers are commonly employed since direct
solvers (though robust in solving general dense systems [9,10])
generate a large amount of fill-ins and are computationally
expensive. In fact, in most practical applications by using the
FEM or the BEM, large sparse systems are generated, so that
employing direct solvers additionally requires devising complex
re-ordering (pivoting) strategies to reduce the fill-ins, and to
improve the numerical stability and scalability (for parallel pro-
cessing) of the algorithms [11-14]. Furthermore, high-precision
direct solvers also take into account iterative refinement of the
computed solution [15]. Thus, for truly large computational
models, iterative solvers, though not completely predictable con-
cerning convergence, have been, sometimes, the tool of choice for
their analysis [16,17].

Main advantages of iterative solvers include the complete
exclusion of fill-ins, reduced solution time (for few iterations),
easy implementation along with diverse matrix storage formats
(e.g. compressed sparse row/column [16], element-by-element
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[18], and edge-by-edge [19] data structures), scalability, and
simplicity of implementation in parallel. Moreover, iterative sol-
vers are the only alternative for fast BEM formulations such as fast
multipole methods (FMMs) [20,21] or precorrected-FFT methods
[22], as the matrix coefficients associated with the far-field
variables are not explicitly constructed.

Fast scalable (preconditioned) parallel Krylov solvers have been
under intense research in the engineering community in the last
years [3,23,24]. However, a hard and tricky way has been followed
towards devising engineering-reliable iterative solvers, sometimes
being attempted to get more advanced and more robust formula-
tions as BiCGSTAB(!) [25], GPBiCG [26], sometimes focused on the
construction of efficient preconditioners [27,17]. Many Krylov
subspace methods have been devised in the last 5-6 decades
[28,16,17]. They may be subdivided into two broad classes based
on the length of their recurrence formulas: long-recurrence
methods as the GMRES [29] and short recurrence methods as
the BiCG (biconjugate gradient) [30], the QMR (quasi-minimal
residual) [31], and the BiCGSTAB(l) (I-dimensional biconjugate
gradient stabilized) [25]. In fact, long-recurrence methods are
often ruled out for solving very large problems, because of their
high memory requirements, whereas short-recurrence solvers, as
the BiCG and the BiCGSTAB(I), are much more suitable.

Krylov iterative solvers enjoy many advantages but may be less
robust compared to sparse direct solvers. However, convergence
failure or slowness may be an indication of non-adequate models
for describing the physical response at hand, and preconditioners
have been successfully employed to accelerate the iterative pro-
cess [27,17]. In fact, it can even turn out that employing a simpler
solver as BiCG with a good preconditioner may bring about more
efficiency than using a more robust solver as the pure BiCGSTAB(!)
or the GPBiCG. Preconditioning is of fundamental importance
since the convergence rate and performance of iterative solvers
depend on the spectral conditioning of the preconditioned system
matrix. For BEM systems, a series of preconditioners have been
reported in the technical literature [27,32,33,28]. In general, the
splitting matrix of basic iterative methods as the Jacobi, block
Jacobi, Gauss—Seidel or of the ILU (incomplete LU decomposition)
methods can be used to construct preconditioners. Furthermore,
domain decomposition methods (DDM) allied with direct methods
have also been employed to construct global preconditioners [17].

The BE subregion-by-subregion (SBS) algorithm presented in
previous works [34,35] is based on iterative solvers, which allow
the treatment of coupled subregions as independent domains, i.e.
each subregion matrix is independently assembled and stored, and
comes into the solution of the system of equations only at the
matrix—vector products during the solver iterations. In this paper, the
subregion matrices are employed to construct a global block-diagonal
(BD) preconditioner. The SBS algorithm is nothing other than a
decomposition-domain-based (DDM) strategy to substructure a
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interface

physical problem via the BEM, and as the subsystems are indepen-
dently assembled, the block-diagonal matrices corresponding to each
subregion can be easily decomposed in their L and U factors. Herein it
should be noticed that the construction of the SBS-BD (subregion-by-
subregion block-diagonal) preconditioner is relatively cheap if few
degrees of freedom, say, less than 3—4 thousands, are considered per
subregion. Moreover, the price paid for constructing this precondi-
tioning (much higher than e.g. for a plain diagonal preconditioner) is
in fact insignificant if convergence reliability and convenience for
developing general parallel boundary-element codes is attained.

In this study, the efficiency brought about by the SBS-BD
preconditioning applied to the BicG solver is compared with that
of the Jacobi-preconditioned BiCGSTAB(!) solver, newly implemen-
ted along with the SBS data structure. A standard collocation 3D
BE formulation underlies the SBS technique. However, as the BE
formulation itself employed to assemble the BE matrices for the
many subregions is not the main goal of this study, but the
efficiency of the SBS-BD preconditioning in comparison to the
use of more elaborate Krylov solvers as the BiCGSTAB(I), no further
comments on it will be made. It will be just assumed that the BE
matrices are available for the many subdmains. Indeed, any BE
formulation or iterative solver may underlie the SBS data struc-
ture. Different complex carbon-nanotube (CNT) composites (con-
taining up to several tens of thousands of degrees of freedom) are
analyzed to verify the performance of the coupling algorithm. The
appropriateness of the preconditioning proposed for developing
general scalable BE parallel codes is also commented.

2. The BE-SBS technique

Particularly difficult issues for developing subregioning techni-
ques (in serial or parallel) are the unavoidable simulation of
traction discontinuity around internal corners or edges of sub-
domains, and the devising of optimized techniques to deal with
the highly sparse global matrices. Below, the generic BE subregion-

1%

Fig. 2. Corners at subdomains of a heterogeneous material (2D); node m is coupled
with node n, and node i with j.

smooth interface

non-smooth
interface

Fig. 1. Coupled 2D subdomains with non-smooth interface.
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by-subregion (BE-SBS) algorithm is described, wherein both these
issues are conveniently treated, respectively, by employing dis-
continuous elements and applying Krylov solvers to solve the
global (but not explicitly assembled) system of equations.

2.1. Traction discontinuity simulation

In this paper, to simulate traction discontinuity at inner corners
and edges (when the normal outward vector at interfaces
changes), the concept of discontinuous elements is employed.
Herein, the boundary nodes, when needed, are slightly shifted
towards the element interior. This artifice conveniently applies to
describe discontinuous flux/traction components, but on the other
hand gives rise to quasi-singular integrals, for we will have source
points very close to boundary elements, and so special integration
algorithms will be required. The evolving of the numerical inte-
gration quadratures implemented in code is detailed in Refs.
[34,35,36], and will be no longer addressed here.

In fact, without the use of discontinuous elements, it is simply
impossible to devise a competitive BE subregioning code for general
practical purposes, being a truly awkward task to model problems
defined in complex coupled domains as 3D solids with inclusions of
complex geometries. To explain this affirmative, we first consider a
node at a non-smooth interface between two subdomains of a 2D
scalar boundary-value problem (for it is simpler to illustrate the issue;
see Fig. 1a). We see that by employing only continuous elements,
double nodes are needed around the non-smooth interface point
because of the change in the normal vector, and so, it will not be
possible to solve the problem in this way as for these particular nodes
only two linearly independent equations are available (one for each
subdomain) to calculate three unknowns (u; = u; = U = Uy, p; = —p;,
and p,,, = —py)- Thus, an alternative for solving this problem is to create
an additional (physically unnecessary) subdomain so as to generate an
additional equation but no additional unknown, as depicted in Fig. 1b,
wherein we have now three equations (one for each subdomain) to
calculate three unknowns (u;=1uj=Upn=1Ug=1Un, P;=—Pj="Dn
Dm = —Pi)- However, we observe then that, besides coupled nodes
(defined here as nodes with the same coordinates, belonging to
different subdomains, and having opposite outward unit normal
vectors), we also have flux-continuity nodes, such as nodes j and n,
with the same coordinates, belonging to different subdomains, but
having the same outward unit normal vector. Thus, the generation of
the coupled systems becomes a bit more complicated. Furthermore,
for 3D vector (elasticity) problems, it starts to be very cumbersome to
generate the BE models based only on continuous elements, so as
about to kill one of the main benefits of the BEM (in comparison to the
FEM): its simpler meshing by describing a problem in terms only of its
boundary values instead of its domain quantities. This fact was
observed in [37], where continuous boundary elements were used
to model 3D frequency-dependent elastodynamic problems.

As a consequence of the use of discontinuous boundary elements,
the procedure for coupling the BE subdomains is exclusively based on
coupled nodes (no flux/traction continuity nodes are needed), and
thereby, the BEM keeps holding one of its most important character-
istics: easier modeling (see Fig. 2). However, noting that the system
order considerably increases with the use of discontinuous elements,
discontinuous boundary elements are generated (by means of a totally
automated process) just when strictly needed (depending on the

—>dois=1,ns (where ns is the number of subregions)

i . iter
iter
v <« {Z(meumi _Gimplm )+ An'xi + Z(Himuim + Gimpmi )}

m=1 m=i+1

enddo

Fig. 3. Implicit matrix-vector product for the iterative solver.

boundary/interface conditions). This implementation detail makes the
code more efficient.

2.2. The solution of the sparse system

Regarding ways to deal with the highly sparse resulting
matrices, many strategies have been proposed in the literature

block 1 block 2 block 3
| ‘ | |
I 1 |
Hi = [H[l H[,i*l A[[ Ht,i+1 H[n ]
Gi:[Gil Gi,z—l B, Gi,i+l Gm ]
Fig. 4. Data structure for the BE matrices.
inclusions
cell of host
material

Fig. 5. Particle-reinforced composite.

i=1 ns

allocation of memory for variables and matrices
of subregion i

1

reading of data for subregion i |

automatic generation of discontinuous boundary
elements for the i-th subregion when needed (not

for the entire subdomain at all)

calculation of Hi and G in case they have not been
previously calculated. If the subregion i is identical to the
subregion j, with j<i, their matrices are just copied.

i

introduction of the boundary conditions
for the i-th subregion

volume forces for the i-th subregion

1

determination of the right-hand side

vector for i-th subregion

i=1, ns

search for identifying coupled nodes
at every substructure:
determination of variables

icoupn(ndf;) and icoups( ndf;)

Fig. 6. Matrix-assembly of the SBS algorithm (including search for coupled nodes).
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[38-41]. Kamiya et al. [39,40] proposed a substructuring technique
based on the DDM to analyze coupled potential problems, wherein
an iterative procedure is employed to introduce the interface
conditions. This technique perfectly treats the matrix sparsity
but does not state any clear way to choose the parameters needed
for the iterative procedure so as to assure convergence of the
coupling process. In [41], condensing the system unknowns to the

is=1

preconditioning
matrix

preconditioning
matrix

preconditioning

interface tractions is proposed to solve 2D elasticity problems with
cracks. The strategy is also based on the DDM and allows the
independent assembling of the subdomain matrices. However, it
involves the calculation of Schur-like complements, and this may
be awkward and time-consuming for complex 3D models. Another
possibility is to find a way to optimize the memory requirements
as a function of the position of the non-zero blocks in the global

calculation of the
<——|preconditioning matrix
associated to each substructure

matrix

— iter = 1,2,...,until convergence

-----

updating of boundary-value data
(including interface values)
between substructures

structured matrix-vector

! '
-----

SMV (SMVP) and vector-vector (VVP)
products: calculations of the
‘ solver parameters

Fig. 7. Solution phase of the SBS algorithm.

b

Fig. 8. Hexagonal-packed long-CNT-based RVEs.
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matrix, as classically done for FE models. A parallelization strategy
along these lines was proposed by Kane [38]. Herein the matrix
sparsity is perfectly exploited by applying iterative solvers.
Differently from the strategies mentioned above, in the BE-SBS
algorithm considered in this paper [34-36], inspired in the
element-by-element (EBE) technique [18], the high sparsity of
the global system matrix is optimally handled just by merely non-
assembling it explicitly. In the analogy to the EBE technique, a
boundary-element subregion corresponds to a single finite ele-
ment. Then, by employing an iterative solver, a solution strategy
for general coupled problems may be derived for which the
matrix-vector products (involving the coefficient matrix and
possibly its transpose) are calculated from the separate contribu-
tions from each subsystem, and the interface conditions, given by

{ S atry, (1

subregions

L-associated
with the CNTs
(cylindrical
solids)

subregions
associated
with matrix
material

Fig. 9. Mesh details of the long-CNT-reinforced RVE.

are imposed iteration-by-iteration on a direct way. Thus, the global
matrix needs not be explicitly assembled. The subsystems are then
treated as physically independent from one another, so that only the
exact memory space for storing all of them independently is allocated.

For ns subregions, after introducing the boundary conditions,
the BE global system of equations is then given by

i-1 ng
'Zl(Hijuji_Gijpij) +AiXi + ZH(Hijuij +G;p;) =By, i=1,ns, (2)
j= j=i

where Hj and G; denote the regular BE matrices obtained for
source points pertaining to subregion £; and associated respec-
tively with the boundary vectors w; and p; at I'y. Herein I
denotes the interface between «; and &; if i#j; I'; is the outer
boundary of ©;. Note that H; = H;; = G;; = G;; = 0 if the there is no
coupling between i and j subdomains (which accounts for the
sparsity of the coupled system). Indeed, having then been defined,
when generating the mesh, which elements are boundary or
interface elements, the analysis involving coupled domains,
including the independent assembling of the subsystems accord-
ing to Eq. (2) and the determination of the global iterative solution
with no explicit assembling of the global system, flows in a totally
automated process.

In general, the scheme shown in Fig. 3 is considered to calculate
the matrix-vector products from the decomposed domain. To make
the BE-SBS algorithm still more efficient, structured matrix-vector
product (SMVP) and matrix-copy options have been implemented.
The former option reduces the solver CPU time per iteration by re-
ordering the matrix columns of the ith subregion in three separate
blocks: one associated with interfaces I';; for which i > j, a second one
associated with the outer boundary Ij;, at which boundary values are
prescribed, and a third one associated with interfaces Iy for i <j (see
Fig. 4). Thus, compared to unstructured matrix-vector product
(UNSMVP), many conditional tests, per every single degree of freedom
to identify its type of boundary condition (if boundary or interface
value), are avoided during the calculation of matrix-vector products
along the solver iterations (see [34,36]). For re-ordering the system

Fig. 10. Independent BE subregions composing the 3D RVE. (a) Matrix material. (b) Quarter-cylinder CNTs. (c) Half-cylinder CNTs. (d) Complete CNTs.
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matrices, the variables ‘icoupn(.) and ‘icoups(.), automatically gener-
ated for every subregion during the search for coupled nodes, are used.
These variables, say for the ith subregion, are of the form
icoupn(m)=j and icoups(m)=k, where m=1, ndf; ndf; is the
number of degrees of freedom of the subregion 7', j’ is the numbering
of the degree of freedom coupled with the mth degree of freedom of
subregion 7, and ‘k’ is the numbering of the subregion of .

The matrix-copy option mentioned above speeds up the matrix
assembly in case of (many) physically and geometrically identical
subregions (e.g. identical fibers in a composite) under the same
boundary/interface conditions (see Fig. 5) [35].

As iterative solvers, the BiCG and the BiCGSTAB(I) methods are
employed along with the BE-SBS code. The BiCG solver follows the
classical implementation proposed by Fletcher in 1974 (see [30,16])
while the more complex BiCGSTAB(!) routine [25] was directly down-
loaded from Sleijpen's web site (¢http://www.math.uu.nl/~ sleij101/))
and included into the BE-SBS code. Notice that, as long as the SMVP
routines for the BE-SBS algorithm have been implemented, the
inclusion of any other iterative solver is straightforward for the

Table 1
Model data for the hexagonal-packed long-CNT RVEs.

Model nsub? nel® nnodes® ndof? Sparsity (%)
1x1 6 138 856 2568 72
2x2 17 656 3456 10,368 86
3x3 34 1464 7800 23,400 93
5x5 86 4040 21,720 65,160 97

2 No. of subregions.

" No. of elements.

¢ No. of nodes.

4 No. of degrees of freedom.

Table 2
Engineering constants for the hexagonal-packed long-CNT RVEs.

Model Eq/Em Ey/Em,E3/Em V12,013 V23
1x1 1.8081 1.0889 0.2943 0.5107
2x2 1.8074 1.0839 0.2936 0.5107
3x3 1.8074 1.0916 0.2931 0.5185
5x5 1.8126 1.0813 0.2927 0.4997
Rule of mixture?® 1.8131 - - -

¢ RVE volume fraction is V; = 9.035%.

Table 3
Performance data for the hexagonal-packed long-CNT RVEs; tol = 1.0 x 1075,

EC. de Araiijo et al. / Engineering Analysis with Boundary Elements 37 (2013) 1267-1275

matrix-vector products are the basic operations needed for iterative
solvers.

3. The SBS-BD-based preconditioner

Organizing the boundary variables for the ith subregion according
to the sequence {p;;, P2, - -» Pij-1- Xii» Wij+ 1, - -, Wi }, ONE sees from Eq.
(2) that the block-diagonal matrices of the coupled system are given
by

Q= [ —Gin

In this study, the Q; matrices are considered to straig-
htforwardly construct the global SBS-based block-diagonal (SBS-BD)
preconditioner for the coupled system of equations. As the global
system matrix, the global preconditioner is not expli-
citly assembled either. It is separately stored per subregion at an
additional memory space of the size (nno x ndofn) x (nno x ndofn),
where nno is the number of nodes of the model, and ndofn is the
number of degrees of freedom per node. In the results presented later
on, the BE-SBS-based preconditioner is employed to left precondition
only the BicG solver, which means that systems like (L;U;)x; = X; and
(LiUp"x; = x; have to be solved, where x; is the iterative solution for
the ith subregion (for more details see Aratjo, d'Azevedo, and Gray
[42]). For the BiCGSTAB(!) iterations, only the plain Jacobi precondi-
tioning is left applied. Notice that the latter solver does not need any
transpose—-matrix—vector product.

To give a general idea of the whole SBS algorithm, the
flowcharts in Figs. 6 and 7 are presented. In Fig. 6, the assembling
of the system of equations along with the automatic search for
coupled nodes is illustrated, and that in Fig. 7, the solution phase
is shown.

—Gii.1 Ai Hijq an], i=1, n. 3)

4. Applications

To measure the performance of the solvers and precondi-
tioners, the hexagonal-packed long CNT-based composites shown
in Fig. 8 are analyzed. Herein, 3D representative volume elements
(RVEs) based on 1x1, 2x2, 3x3, and 5 x5 unit cells are
employed. The long CNT fibers are geometrically defined by thin
cylindrical tubes having outer radius ro=5.0 nm, inner radius
r;=4.6 nm, and length [ = 10 nm. Besides the practical relevance
of this application, which concerns a technique for modeling
general CNT (and other) composites, the problem considered also

Model

System order nmvp (SBS-BD BICG) nmvp (Jacobi BICG) nmvp (Jacobi BICGstab [=8) CPU time (s)

CPU time (s) CPU time (s) (Jacobi
(SBS-BD BICG) (Jacobi BICG) BICGstab [=38)

1 x 11ongCNT hex, 2568 112 532
load1

1 x 11ongCNT hex, 2568 128 722
load2

2 x 2longCNT hex, 10,368 388 1506
load1

2 x 2longCNT hex, 10,368 452 1670
load2

3 x 3longCNT hex, 23,400 520 2168
load1

3 x 3longCNT hex, 23,400 690 3034
load2

5 x 5longCNT hex, 65,160 944 6262
load1

5 x 5longCNT hex, 65,160 1314 6048
load2

338 1.44 2.09 144
386 1.56 2.84 1.62
Failed to converge 15.46 25.88 —

980 17.52 28.64 18.82
4183 46.82 88.73 179.71
1940 60.06 124.27 82.97
7276 230.27 740.07 906.42
7225 313.86 716.60 894.01

n is the system order; nmvp is the number of matrix—vector products.
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Fig. 11. Residual norm decaying vs. nmvp: 5 x 5 -unit-cell, hexagonal-packed long CNT.
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offers a series of intricate issues to be dealt within BE formulations
as subregioning, discontinuous elements, thin domains, nearly-
singular integrations, Krylov solvers, preconditioning, etc. Thus,
this application is very important to verify the overall performance
of the generic SBS technique. So as to describe it more clearly,
details of the BE mesh adopted are furnished in Fig. 9. In this
figure, part of the coupled model for the RVE is zoomed in so as to
show details of the discontinuous elements and how the many BE
subdomains are coupled to each other. Additionally, in Fig. 10,
some independent subregions employed to decompose the RVE
are shown separately. In fact, as mentioned above, the subregions
(as seen in Fig. 10) are generated, and allocated, one by one, in any
order, based only on local numbering for elements and nodes. The
coupling between them is considered only during the iterative
solution of the system.

In all (RVEs), the following pure phase constants are adopted
[43]:

CNT: Ecyr=1000 nN/rlm2 (GPa); vent =0.30,

Matrix :  Ep, =100 nN/nm? (GPa); wvenr = 0.30.

Notice that discontinuous boundary elements, employed to
simulate traction discontinuity, are, when needed, automatically
generated by shifting the nodes interior to the elements a distance
of d=0.10 (measured in the natural coordinate system), and, in
general, the BE models contain both continuous and discontinuous
elements (see Figs. 9 and 10a and b). Furthermore, physically and
geometrically identical subdomains are conveniently replicated by
the matrix-copy option, avoiding then repeated assembling of
their corresponding matrices. Thus, for example, for the set of
CNTs shown in Fig. 10d, the coefficient matrix is assembled for one
of them and copied for the other identical parts. The 8-node
quadrilateral boundary element is employed to construct the
models (see Figs. 9 and 10a and b), and in all analyses 8 x 8 and
6 integration points are used for evaluating respectively all surface
and line integrals involved in the special integration quadratures
embedded in the code [35]. In Table 1, important model data are
provided.

Although there have been other interesting issues addressed
while developing the SBS code, the main purpose of this paper is
to highlight the performance of the Krylov solver (embedded in
the SBS technique) preconditioned by the BE subregion matrices
themselves. To do this, the SBS-BD-based and plain-diagonal
(Jacobi) preconditioner are applied to accelerate the BiCG solver
while the BiCGSTAB(l) solver is accelerated exclusively by the
plain-diagonal preconditioner so as to highlight the efficiency
brought about by the SBS-BD-based preconditioner. The iterative
process is stopped when ||ry||/||Fo]| < £, where 1y, is the residual at
the mth iteration, and ¢ is the tolerance number, in the analysis
here taken as ¢=107%. A notebook with i3 core intel 2.13 GHz
processor, and 4 GB of random access memory, was used to run
the models.

In Table 2, the effective engineering parameters extracted from
the analysis of all the RVEs shown in Fig. 8 are confronted with
results calculated by the rules of mixture [43]. Very good agree-
ment between the results is observed. Furthermore, increasing the
number of unit cells per RVE does not cause any significant change
in the constant values. These values of material parameters have in
fact already been shown in previous papers by the authors [42]. In
this paper, mainly the contrasting of the performance between the
BE-SBS-BD-preconditioned BiCG and the Jacobi-preconditioned
BiCGSTAB(l), with BiCGSTAB dimension [=8, is focused. In
Table 3, the performance data of the solvers are shown, and in
the graphs in Fig. 11, the decaying of the residual Euclidean norm
for the largest model, with 65,160 degrees of freedom is presented.
As seen in this application, in general, the performance of the SBS-

BD-preconditioned BiCG is superior to the Jacobi-preconditioned
BiCGSTAB(/=8), which even fails to converge for model with 2 x 2
unit cells (model ‘2 x 2longCNThex,load1’).

5. Conclusions

The BE-SBS algorithm proposed in previous papers ([34], [35])
is employed in this work to straightforwardly construct block-
diagonal preconditioners, the BE-SBS-BD ones, for accelerating
Krylov solvers. The performance of this preconditioning strategy
was verified by analyzing complex composite RVEs.

Observing Table 3 and graphs in Fig. 11, we see that the BE-SBS-
BD preconditioning, compared to the Jacobi (plain diagonal) one, is
considerably more efficient. In fact, the SBS-BD preconditioning
states a transition between direct and iterative solvers, in the
sense that the less the number of interfaces in the model, the
closer to the global system matrix the preconditioning matrix, Q,
is. Furthermore, observing that the high sparse global coupled
matrix has just a relatively few number of non-zero coefficients off
the block diagonal, we see that the SBS-BD preconditioner is
actually a good approximation of the system matrix, which is
one of the requirements that good preconditioners should satisfy.

As the results show (see graphs in Fig. 11), applying the SBS-BD
preconditioner to the BICG solver brought about more efficiency
than just replacing the BiCG solver by the theoretically more
robust BiCGSTAB(!) one. In fact, for the models analyzed, even the
Jacobi BiCG solver is sometimes more efficient than the Jacobi
BiCGSTAB(/=8), which fails to converge for one of the models.
Varying the BiCGSTAB dimension, I, may also lead to different
solver performances but actually no criterion to choose optimal [
values has been stated in the literature yet; there are only
suggested values (I = 2,4, 8). Particularly for the models analyzed,
other [ values (not reported here) led to non-convergence in
many cases.

The results in this paper not only emphasize that precondition-
ing is a fundamental technique for iterative solvers but also
encourage looking for more efficient preconditioners instead of
just trying to develop more robust and complex Krylov methods.
Indeed, the results hint that a combination of good solvers with
good preconditioners may be the right way to generate reliable
and fast solvers.

In future works, the BE-SBS-BD BiCGSTAB(I) and its parallel
implementation should also be implemented. Of course, being the
BE-SBS-BD preconditioner based on the BE-SBS algorithm, its
parallelization is immediate. In general, we might see that
solver-convergence reliability and parallel-processing suitability
may be attained with the ideas discussed in this paper.
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