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ABSTRACT

Context. Clouds play an important role in the radiative transfer of planetary atmospheres because of the influence they have on the
different molecular signatures through scattering and absorption processes. Furthermore, they are important modulators of the radia-
tive energy budget affecting surface and atmospheric temperatures.

Aims. We present a detailed study of the thermal emission of cloud-covered planets orbiting F-, G-, K-, and M-type stars. These
Earth-like planets include planets with the same gravity and total irradiation as Earth, but can differ significantly in the upper atmo-
sphere. The impact of single-layered clouds is analyzed to determine what information on the atmosphere may be lost or gained. The
planetary spectra are studied at different instrument resolutions and compared to previously calculated low-resolution spectra.
Methods. A line-by-line molecular absorption model coupled with a multiple scattering radiative transfer solver was used to calculate
the spectra of cloud-covered planets. The atmospheric profiles used in the radiation calculations were obtained with a radiative-
convective climate model combined with a parametric cloud description.

Results. In the high-resolution flux spectra, clouds changed the intensities and shapes of the bands of CO,, N,O, H,O, CHy, and
O;. Some of these bands turned out to be highly reduced by the presence of clouds, which causes difficulties for their detection. The
most affected spectral bands resulted for the planet orbiting the F-type star. Clouds could lead to false negative interpretations for
the different molecular species investigated. However, at low resolution, clouds were found to be crucial for detecting some of the
molecular bands that could not be distinguished in the cloud-free atmospheres. The CO, bands were found to be less affected by
clouds. Radiation sources were visualized with weighting functions at high resolution.

Conclusions. Knowledge of the atmospheric temperature profile is essential for estimating the composition and important for avoiding
false negative detection of biomarkers, in both cloudy and clear-sky conditions. In particular, a pronounced temperature contrast be-
tween the ozone layer and surface or cloud is needed to detect the molecule. Fortunately, the CO, bands allow temperature estimation

from the upper stratosphere down to the troposphere even in the presence of clouds.
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1. Introduction

The search for life on extrasolar planets is of main interest in
exoplanetary sciences. More than 880 exoplanets have been de-
tected so far with a few thousand candidates that have been
gathered by NASA’s Kepler mission and are waiting for con-
firmation (Batalha et al. 2013). Some of these planets have been
estimated as similar in size to the terrestrial planets (e.g., Fressin
et al. 2011; Gilliland et al. 2013; Barclay et al. 2013), and sev-
eral studies have identified exoplanets within the habitable zone
(Lovis et al. 2006; Udry et al. 2007; Borucki et al. 2011; Koch
et al. 2012). In terms of mass and radius, about ten planets with
0.5 < M/Mg < 2.0 and roughly 15 with 0.8 < R/Rg < 1.3 have
been found. Future missions (e.g., ESA’s PLATO and EChO)
dedicated to the search and characterization of exoplanets will
further raise the probability of finding planets that are similar to
Earth.

Article published by EDP Sciences

The study of potential habitability concentrates on Earth-like
planets because Earth is the only known example of a planet
sustaining life. Here, “Earth-like” is used to characterize planets
with the same mass, radius (hence gravity), and total irradiation
level. Moreover, nitrogen and oxygen abundances are identical
to Earth today. However, due to the different spectral distribu-
tion of the stellar radiation, temperature and water can be signif-
icantly different in the upper atmosphere.

Remote sensing offers the only way to determine the planet’s
atmospheric state and composition. Therefore, it is essential to
study signatures of its constituents under varying conditions in
order to understand possible changes in the spectrum. Along
with molecular constituents, planetary atmospheres may have
particle condensates forming clouds that influence chemistry,
dynamics, and radiation. Therefore, for remote sensing of plane-
tary atmospheres, it is important to analyze the impact of clouds
on the spectra.
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Clouds can inhibit the release of energy (warming green-
house effect), and they can reflect the incoming stellar light
back to space (cooling albedo effect). Since clouds affect atmo-
spheres, they can also generate false interpretations of spectral
signatures by masking the radiation arising from layers below
the cloud deck.

Observations of Earth and Venus have shown that clouds in-
fluence the radiation. Hearty et al. (2009) analyzed infrared (IR)
satellite spectra of Earth under clear and cloudy conditions and
showed that clouds led to a reduction of the intensity and signa-
tures, raising the difficulty of detecting some of the molecules,
especially at low spectral resolutions. Venus is probably the most
drastic example for demonstrating how a dense cloud deck can
significantly affect the spectrum (e.g. Haus & Arnold 2010).

For stellar objects outside our solar system, Ackerman &
Marley (2001), De Kok et al. (2011) and Burrows et al. (2011)
studied the spectra of brown dwarfs, including clouds in the ra-
diative transfer modeling. Cushing et al. (2008) and Witte et al.
(2011) showed that clouded atmospheres lead to better agree-
ment with the observations of brown dwarfs. Also, Helling et al.
(2008) analyzed the cloud particles on these bodies in detail.

Clouds are also studied for interpreting hot-Jupiter exoplanet
observations. For HD 189733, Pont et al. (2008) and Sing et al.
(2011) attributed missing molecular absorption lines to haze
composed of sub-micron particles, and Huitson et al. (2012) ex-
plained the featureless spectrum by scattering particles and es-
timated their composition. Charbonneau et al. (2002) analyzed
the exoplanet HD 209458 and proposed a high cloud in its
atmosphere.

Ground-based observations of the super-Earth GJ1214b
(Bean et al. 2010) have also shown a nearly flat transmission
spectrum in the visible. Radiative transfer modeling under differ-
ent atmospheric scenarios indicated that the lack of spectral fea-
tures could be attributed to high clouds. Berta et al. (2012) varied
the cloud optical thickness to fit the GJ1214b observations.

Biosignatures (i.e., the spectral footprints by atmospheric
molecules that could indicate the presence of life) of clear-sky
planets have been explored by several groups for different spec-
tral regions by radiative transfer modeling. Des Marais et al.
(2002) modeled the spectra of a terrestrial planet in order to
investigate the different molecular signatures in the visible to
IR regions that could be useful when charaterizing atmospheres
in the search for habitable planets. Schindler & Kasting (2000)
and Selsis et al. (2002) have addressed the false-positive detec-
tion of biosignatures using NASA’s Terrestrial Planet Finder and
ESA’s Darwin, respectively. Segura et al. (2003, 2005) mod-
eled Earth-like planets around different type of stars (i.e. F, G,
K, and M) in order to determine observable spectral signatures.
Grenfell et al. (2011) compared the different signatures from a
modern and proterozoic epoch Earth. Rauer et al. (2011) stud-
ied the transmission and emission spectra of super-Earth atmo-
spheres around M-type stars with emphasis on the atmospheric
chemistry. These studies survey the different biosignatures and
determined species observable in cloud-free spectra.

Several studies have also addressed the detection of biosig-
natures in the presence of clouds. Des Marais et al. (2002) dis-
cussed the Earth spectra by introducing absorbing and emitting
cloud layers at different atmospheric altitudes. Kaltenegger et al.
(2007) included clouds on Earth for different geological epochs
assuming weighted averages for low-, medium-, and high-level
clouds. In contrast to these studies, Tinetti et al. (2006a,b)
used a more sophisticated radiative transfer including multi-
ple scattering to study the disk-averaged spectra of Earth for
low-, medium-, and high-level clouds. In none of these studies
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a thermodynamically consistent atmosphere computed with a
proper treatment of cloud radiative forcing was considered.

In contrast, our work is founded on thermodynamically
consistent surface and atmospheric temperatures and water va-
por concentrations in cloudy atmospheres of Earth-like plan-
ets around main sequence stars (see Kitzmann et al. 2010).
The atmospheric model sustains a more accurate treatment of
the clouds radiative forcing that affects the radiation budget
of a planet by including water and ice particles scattering and
absorption.

Based on these modeling studies, Kitzmann et al. (2011) pre-
sented the first analysis of IR spectra (albeit at low resolution
due to the correlated-k approach) in thermodynamically con-
sistent cloudy Earth-like exoplanetary atmospheres. They found
that clouds reduced the strength of the molecular bands, espe-
cially in the planet orbiting the F star. In addition, they concluded
that no absorption features could be distinguished for high cloud
coverages in the modeled spectra of the F-star planet. However,
an identification and a detailed analysis of the main molecular
bands found could not be performed owing to model flexibility
and spectral-resolution limitations.

We overcome these limitations by using a flexible line-by-
line multiple-scattering radiative transfer model that allows us to
make the first rigorous study of the important molecular bands
in the thermal IR with different cloudy conditions. The thermal
emission spectra of Earth-like planets are calculated by taking
the effects of clouds on planets orbiting different types of main
sequence host stars into account: F2V, G2V, K2V, and M3.5V.
The atmospheres for these planets are built upon the radiative-
convective atmospheric model of Kitzmann et al. (2010). The
planetary spectra for cloud-free atmospheres have been analyzed
in detail in Vasquez et al. (2013b, henceforth called Paper I),
which contains a description of the main biomarkers found in
the thermal region that are investigated for habitability. These
signatures are also investigated in detail in this work but now
including clouds. Accordingly, this study also extends the inves-
tigations presented by Kitzmann et al. (2011).

Our objective is to provide a comprehensive analysis of
IR spectra at high resolution and to explore the molecular bands
of cloud covered Earth-like planets. This study, along with
Paper I, may serve as a guide in the future phase of terrestrial
exoplanet observations in which it might be possible to directly
analyze of observed planetary spectra.

A description of the radiative transfer model is found in
Sect. 2. Details of the atmospheric scenarios and cloud optical
properties used as input are also given here. An analysis of the
modeled spectra at different resolutions is given in Sect. 3 along
with comparisons of the low-resolution spectra to the previous
study of Kitzmann et al. (2011). Assumptions, limitations, and
possible extensions of our study are discussed in Sect. 4, and a
summary is given in Sect. 5.

2. Models, data, and scenarios
2.1. Radiative transfer model

The radiative transfer model GARLIC (Generic Atmospheric
Radiation Line-by-line Infrared Code, the Fortran 90 version
of the MIRART/SQuIRRL model, Schreier & Schimpf 2001)
is used to calculate line-by-line IR spectra of Earth-like plan-
ets (Paper I). To take multiple scattering events into account,
GARLIC has been coupled with the radiative transfer solver
DISORT (Discrete Ordinates Radiative Transfer), which solves
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the radiative transfer for a one-dimensional atmosphere in a
multi-layered plane parallel medium (Stamnes et al. 1988).
GARLIC takes the pressure and temperature profiles of the
planet as input, together with the atmospheric composition and
the cloud optical properties (optical depth, single scattering
albedo, and asymmetry parameter). These input data are taken
from Kitzmann et al. (2010) and discussed in the following sec-
tions. Molecular optical properties are calculated in GARLIC
using HITRAN 2008 spectroscopy data (Rothman et al. 2009)
and the CKD water continuum (Clough et al. 1989), which then
passes the total atmospheric optical depths with particle and
molecular contributions to DISORT. GARLIC was successfully
used with a single scattering approximation to model the Venus
spectra measured by SCTAMACHY considering a haze region
above the planet main cloud deck (Vasquez et al. 2013a).
Radiative transfer in the atmosphere is determined by ab-
sorption, emission, and scattering. Taking these processes into
account, the formal solution to the radiative transfer equation
used in GARLIC, is given by (e.g., Zdunkowski et al. 2007)

Iv) = To(m)e ™ + f J()e ™ dr, (1)
0

where 7, is the incident intensity at the boundary, originating at
the planet’s surface, and 7~ = e™") represents the transmission.
The optical depth, 7, is the integral along the photon path of the
volume extinction coeflicient,

T= deS = Pt g pmol ()

where the optical depth is comprised of the optical depths of the
cloud particles and molecules.

Since contributions from molecular scattering (Rayleigh) are
neglected in the thermal region, the source term in Eq. (1) in-
cludes only thermal emission and scattering by particles,

J = (1-w)BWT)+ w, f " P(cos ®) I(Q') de, 3)
0

where the thermal emission source is determined by the Planck
function, B at temperature 7', and single scattering albedo, w,,
which represents the fraction of light that undergoes a scattering
event. Accordingly, (1 -w,) represents the fraction of absorption.
The scattering source term depends on the (normalized) scatter-
ing phase function P(cos ®) (where ® = Q - )’ is the scattering
angle), which represents the probability of light being scattered
by an angle between ® and © + dO.

The total single scattering albedo is given by w, =
wXrrat/r and the Henyey-Greenstein phase function at the
cloud layer required to solve (3) is

1-g4°
47 (1 + g?> — 2g cos @)3/2

The phase function depends on the asymmetry parameter, g,
which describes the amount of backward and forward scattering,
ranging from —1 (totally backward) to 1 (totally forward).

The planetary spectra of a distant object, such as exoplanets,
is customarily expressed in flux rather than in intensity, which is
obtained through the hemispherical integration of the outgoing
intensities. The spectra were modeled using an ideal instrument
at different resolutions (low, medium, and high) represented by
respective convolutions with Gaussian response functions. Here,
we use the word “ideal” to denote an instrument without any
noise contamination (for a detailed discussion see Rauer et al.
2011 or von Paris et al. 2011), so the only instrumental effect is
due to finite spectral resolution.
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Fig. 1. Cloud particles optical depth, single scattering albedo and asym-
metry parameter for low- and high-level clouds. For more details see
Kitzmann et al. (2010).

2.2. Cloud optical properties

The parametric cloud description used in the atmospheric model
is based on observations of clouds in the Earth’s atmosphere.
In particular, two cloud layers are considered: a low-level lig-
uid water and a high-level water ice cloud. The optical prop-
erties of the low- and high-level clouds provided by Kitzmann
et al. (2010) were used in the multiple scattering calculations
and are shown in Fig. 1. The particle size distribution of the
low-level cloud is assumed to be log-normal with measured
parameters (e.g., mean particle radius and standard deviation)
taken from Kokhanovsky (2006). For the high-level ice cloud,
Kitzmann et al. (2010) used the power law size distribution
published by Heymsfield & Platt (1984) which were based on
in-situ measurements. Other average cloud properties, such as
the cloud top temperature and pressure, as well as their optical
depth, have been taken from the long-term satellite-based mea-
surements within the International Satellite Cloud Climatology
Project (ISCCP; Rossow & Schiffer 1999). Kitzmann et al.
(2010) iteratively adjusted the altitude of each cloud layer to
match the corresponding observed pressures (i.e., cloud heights
were not fixed) and used Mie theory to obtain the size-integrated
scattering and absorption cross-sections and asymmetry param-
eters (Bohren & Huffman 1983). The ice crystals were assumed
to be composed of hexagonal columns, and an equivalent sphere
approach was used.

The low-level cloud presents a larger optical depth than the
high-level cloud due to the larger particle number density. The
spectral dependency of the optical depth is different for the water
and ice clouds.

The single scattering albedo controls the relative impor-
tance of scattering against absorption contributions to the op-
tical depth. Values close to unity mean that the cloud-light inter-
action is mostly scattering, whereas values close to zero indicate
that the interaction is mostly absorption. For the low-level cloud,
most of the light at short wavelengths is scattered predominantly
in the forward direction (Fig. 1), while at longer wavelengths
(above 11 um) most of the light is absorbed. A different situation
occurs for the high-level cloud, which scatters a larger portion of
the light around 25 um, while at shorter wavelengths (4—10 um)
absorption and scattering are of comparable magnitudes.
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2.83. Planetary scenarios

The equilibrium atmospheric profiles were calculated with a
one-dimensional radiative-convective climate model that takes
the cloud radiative forcing into account (Kitzmann et al. 2010)
and is based on the photochemical model of Kasting et al.
(1984); Segura et al. (2003); Grenfell et al. (2007). The distance
between the planets and their host stars were scaled in order for
them to receive the same amount of stellar energy that Earth re-
ceives at the top of its atmosphere, ToA.

The pressure-temperature profiles of atmospheres for dif-
ferent coverages of low- (top) and high-level (bottom) clouds
depending on planet and cloud are illustrated in Fig. 2, where
the impact produced by these two different cloud composi-
tions and coverages on the atmospheric temperatures can be
seen (Kitzmann et al. 2010). Different molecular concentra-
tions profiles exist for different planet types (Grenfell et al.
2007). Nevertheless, to maintain consistency with Paper I and
Kitzmann et al. (2011), we used the Kitzmann et al. (2010) atmo-
spheric scenarios; that is, temperature, pressure and H,O con-
centrations depending on planet and cloud.

In the lower atmosphere the abundances of H>O in the gas
phase are not controlled by chemistry, but rather by convective
transport of H,O from the surface up to the tropopause. The rel-
ative humidity in the troposphere is determined by the empirical
distribution of Manabe & Wetherald (1967), which implicitly as-
sumes that any supersaturated H,O is removed from the vapor
phase by condensation to form cloud particles.

The atmospheric profiles of the major chemical species were
obtained with a detailed photochemical model (Grenfell et al.
2007) representing modern Earth. Isoprofiles are used for the
well mixed gases Ny, O,, and CO,. The profiles of H,O (in
the upper atmosphere), CHy, O3, and N,O were derived for
the modern Earth. This atmospheric composition is assumed
for all calculations, thereby neglecting any change in the pro-
cesses influencing the chemical composition of the planetary at-
mospheres (see Kitzmann et al. 2010, for details).

The profiles of the planets around K and M stars indicate
that the different low cloud coverages have a greater impact on
their stratospheres than in the ones around the F and G stars.
In the presence of the high cloud, the stratospheric temperatures
in all the planets are not affected much by the different cloud
coverages. However, this type of cloud raises the tropospheric
temperatures of the planets, while the low-level cloud produces
the opposite effect.

The planetary surface temperature is also strongly influenced
by clouds. The low-level cloud produces a cooling effect, while
the high-level cloud produces a warming effect. In some of the
coverage cases of the low-level cloud, the temperatures even
drop below the freezing point of water. In the presence of the
high-level cloud for all the different cloud coverages, the tem-
peratures remain below the boiling point of water (see Kitzmann
et al. 2010, for more details).

3. Infrared spectra in the presence of clouds

Clouds can have an impact on the shape and the strength of the
spectral absorption bands, which may cause false negative re-
sults. This impact can be caused by a temperature difference be-
tween the cloud layer (major emitting source in cloudy atmo-
spheres) and the surface of the planet (major emitting source
in cloud-free atmospheres, see Paper I). Also, the thickness of
the cloud plays a role in the degree of modification of the spec-
tra. Optically thick clouds have a larger impact on the radiation

A46, page 4 of 14

10

103t

10-2 E

Pressure (bar)

-1t
10 vel Clouds

100 T
10

Pressure (bar)
[
o
N

240 280
Temperature (K)

o, ;
10°160 200
Fig. 2. Pressure—temperature profiles influenced by low and high clouds
for four different coverages (Kitzmann et al. 2010): 0% (solid lines),
30% (dotted), 70% (dash-dot), and 100% (dashed). Planets are modeled
around typical F (olive green), G (brown), K (orange), and M (blue) star
types. The location of the low- (top) and high-level (bottom) clouds is
also illustrated.

arising from layers below the cloud deck than thinner clouds ow-
ing to the greater strength of absorption and number of scattering
events. Low- and high-level clouds affect the spectra in different
ways since their corresponding temperatures (Fig. 2) and opti-
cal properties (Fig. 1) differ considerably. In the context of this
paper, false negatives denote the failure to identify signatures
of molecules present in the planetary atmospheres owing to the
impact that clouds have in the radiative transfer. The opposite
effect, known as false positive results, could not be found in the
planetary spectra.

3.1. High-resolution spectra

The spectra of Earth-like planets influenced by four different
cloud-cover fractions were analyzed, namely 0%, 30%, 70%,
and 100%, with emphasis on the CO, (4.3 and 15um), N,O
(4.5 um), H,O (6.3 um), CHy (7.7 um), and O3 (9.6 um) bands.
The cloud fraction characterizes the area of the planet covered
by clouds. Cloud-free (0%) and complete cloud (100%) covered
planets were chosen as extreme cases and 30% and 70% as in-
termediate cases. For cloud-free atmospheres, a detailed analysis
of the physical processes with an explanation of the shape and
strength of the spectral appearance is provided in Paper I. In the
following, we emphasize cloud related aspects.

Figure 3 illustrates the planetary spectra in flux units at a
resolution of 3000 (R = A/AA). In accordance with Paper I,
molecular bands are shown by separate for a smaller range
of wavelength in the figures to follow in equivalent brightness
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Fig. 3. Thermal emission spectra of Earth-like planets around four different types of stars for two cloud conditions with four different percent

coverages.

temperature, essentially the inverse of the Planck function, 7g =
B! (e.g., Hanel et al. 2003). At a given monochromatic wave-
length, the brightness temperature is close to the atmospheric
temperature in the altitude regime providing the dominant con-
tribution to the upwelling radiation.

This mapping of spectral regions to altitudes is indicated
by weighting functions (see Paper I for a more detailed discus-
sion), defined by the partial derivatives 07 (v, z)/9z of the trans-
mission along the different altitudes (Fig. 4). These reveal the
contributions arising from each atmospheric layer to ToA. The
weighting functions of the F-star planet are shown for the cases
of 100% low-level liquid water and high-level ice water clouds
(see Paper I for the corresponding cloud-free atmosphere). In the
presence of the high-level cloud, contributions from below the
cloud can be seen at the ToA, while contributions from below
are almost completely blocked with the low-level cloud. This
is mainly because the optical depth of the liquid water cloud is
higher than the one of the ice water cloud — typically for a ter-
restrial boundary layer compared to cirrus clouds (see Kitzmann
et al. 2010 for detailed information about the cloud scenarios).

For most wavelengths, the main contributing layer to the ra-
diation flux is at the atmospheric altitude at or near the cloud

deck (see Fig. 4), which is at a lower temperature than the
planet’s surface. This results in a decrease of the planetary emis-
sion flux, since their corresponding blackbody curves are lower
than in the cloud-free atmosphere. Accordingly, the planetary
emission flux is reduced the most in the 100% coverage for both
cloudy conditions.

In the atmospheric window, between about 800 and
1250 cm™" (8-12.5 um), for cloud-free conditions, the atmo-
sphere is nearly transparent but not in the presence of clouds.
The temperature difference between the low-level cloud and
the surface is less than the difference between the surface
and the high-level cloud. Figure 5 depicts the emission spec-
tra of the planet F star under different cloudy conditions with
the respective blackbody curves corresponding to the surface
(T guit), cloud-level temperature (7 ¢1q) and curves matching the
spectra (T ) best. For low-level clouds with a high percent cov-
erage, the brightness temperature observed at the ToA is related
to the cloud-level temperature due to the large optical depth (see
Fig. 1). Nevertheless, in the presence of high clouds, this bright-
ness temperature is related to layers found below the cloud, since
the optical depth is not so large and only partly blocks these
layers.
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For the atmospheres with high-level clouds, the cloud layer
temperature differs considerably from the surface temperature,
which prevents the use of the atmospheric window to infer the
planet’s surface temperature. For the 30% low-level cloud, one
can still obtain a reasonable estimate of the surface temperature.

3.1.1. Carbon dioxide

Carbon dioxide is a uniformly mixed gas throughout the atmo-
sphere with dominant features at 4.3 yum and 15 um (see Paper I
for more details on this and the following molecules). The rela-
tive depth of the 4.3 um CO; band is reduced by the presence of
clouds in all planetary cases. As already mentioned in Paper I for
cloud-free atmospheres, the absorption optical depths (Eq. (2))
in the center of the 4.3 um CO; band are very large and, conse-
quently, only radiation emitted in the upper stratosphere reaches
the ToA. It was also mentioned that in the planet orbiting the
F star, the CO, bands appear as an emission spectrum due to a
temperature inversion found in the stratosphere.

Figures 4 and 6 show that in the F-star planet, the different
cloud coverages have almost no influence on the central region
of the band, between 4.2—4.4 um. The same occurs in the G-star
planet. However, in the K- and M-star planets, the different cov-
erages have a greater impact on the band. Figure 2 can be used
to relate the atmospheric temperatures to the brightness temper-
ature spectrum. The low-level cloud leads to a stronger cooling
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Fig. 5. Spectral flux for the F-star planet under the influence of low-

and high-level clouds for different percent coverages. The blackbody

curves of the surface temperatures (7 q,s), the cloud layer tempera-

tures (7 .q4,) and the curves that best match the spectra (7 ) are shown
for comparison.

effect in the upper stratosphere of the K- and M-star planets than
in the other two planets, visible at the center of the band (see
Fig. 6-top). In the F- and G-star planets, the low cloud leads
to a stronger cooling effect in the troposphere, but in the upper
stratosphere, the temperatures are not so affected and are slightly
lower compared to the clear atmosphere.

In the band wings (i.e., for wavelengths shorter than 4.2 um
and longer than 4.4 um), the situation is completely different.
In these spectral regions, absorption by CO, is smaller, and ra-
diation coming from lower atmospheric layers reaches the ToA.
This absorption occurs above the cloud deck in the case of 100%
low clouds or from levels near the cloud position for partial cover
and 100% high clouds. Since the surface and the tropospheric
temperatures are the most affected by the presence of clouds, the
impact from the different cloud-cover fraction is higher in these
regions.

The high-level cloud impacts the planetary spectra in a dif-
ferent way. In the K- and M-star planets, the center of the 4.3 um
band, where radiation arises from the upper atmosphere, is not
as affected as when having the low-level cloud, which indicates
that the high-level cloud barely affects the stratospheric temper-
atures of these planets (Fig. 6-bottom). The right wing of the
4.3 ym band, between 4.35 and 4.48 um, shows higher temper-
atures with increasing percent coverage, when compared to the
clear sky. This occurs because the high-level cloud produces a
warming effect on the troposphere of the planets, where the ra-
diation seen at this spectral range mainly originates.

In the F- and G-star planets, the center of the 4.3 um band
also shows that the stratospheric temperatures are only slightly
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Fig. 6. Spectra in brightness temperature showing the CO, band at
4.3 um for different planets influenced by low (top) and high (bottom)
clouds. The N,O band at 4.5 um can also be seen.

affected by the presence of high-level clouds (see also Fig. 6-
bottom). The effect of high clouds for different coverages at the
center of the 4.3 um band is less than in the low cloud cases for
all four star-type planets. The explanation is that high clouds af-
fect the stratosphere of the planets to a lesser extent (see Figs. 2
and 4) and this is the region in the atmosphere where the radia-
tion at these wavelengths originates.

Similar effects to those observed at 4.3 um for the different
planetary cases can also be seen at the strong 15 um band for
low- (Fig. 7-top) and high-level clouds (Fig. 7-bottom). Changes
in the state of the upper atmosphere due to the presence of clouds
can be observed again at the band center since CO, presents
strong absorption in this region. The K- and M-star planets are
the most affected ones in the stratosphere when influenced by
low clouds, while high clouds result in a much lower impact.

3.1.2. Nitrous oxide

Nitrous oxide is a uniformly mixed gas found at relatively low
concentrations that greatly decrease in the stratosphere. The nar-
row N,O absorption band centered at 4.5 um at the right edge of
the 4.3 um CO, band is still distinguishable even for the 100%
cloud cover in all planetary cases (see Fig. 6). In the case of low
clouds with total overcast, radiation at ToA mostly arises from
regions above the cloud deck (within the troposphere), whereas
in the partial coverage cases, radiation receives significant con-
tributions from the tropospheric levels below the cloud as well.
The different low cloud coverages have a large impact on tro-
pospheric temperatures, where N,O presents more absorption
and therefore, the depth of the band decreases, especially for the
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Fig.7. CO, band at 15.0 um in the presence of low (top) and high-level
(bottom) clouds.

100% cloud that is emitting at a much lower temperature than
the surface and has a strong blocking effect (see Fig. 4).

In the atmospheres influenced by the high-level cloud with
total overcast, the radiation seen at the right wing of the 4.5 yum
band comes mainly from regions below the cloud, since the high
cloud has a small optical depth and does not completely block
the radiation emitted at lower levels (see Fig. 4).

3.1.3. Water vapor

Water vapor shows high concentrations in the low troposphere
that rapidly drop with altitude. In the clear sky atmosphere, the
band presents absorption arising from the very low troposphere
to the upper regions. In the presence of low clouds, the 6.3 um
H,O band is highly affected for the 100% coverage in all the
different star planets (see Fig. 8-top). By comparing the bright-
ness temperatures to the atmospheric temperatures from Fig. 2,
it can be observed that the spectral regions of strong absorption
present radiation arising from levels above the cloud deck till the
upper troposphere, whereas the radiation originating below the
cloud is mostly blocked and cannot be seen (see Fig. 4).

In the high-level cloud for the 100% coverage, the band is
not so reduced (Fig. 8-bottom). As already pointed out in Sect. 2,
this type of cloud has a small optical depth (i.e., it is more trans-
parent), which allows the radiation emitted below the cloud deck
to reach the ToA (see Fig. 4). Therefore, the strength of the band
is not so affected as in the 100% low-level cloud.

At the very center of the 6.3 um band, the H,O absorp-
tion is very weak, and it reveals temperatures corresponding to
layers close and below the cloud deck. The high-level cloud
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Fig. 8. Spectra showing the H,O band at 6.3 um influenced by low (top)
and high-level (bottom) clouds.

allows radiation originating below the cloud to reach the ToA.
Therefore, the differences at the band center between the various
high-level cloud coverages and clear spectra are not significant
as in the low cloud, where the blocking effect of the layers below
is greater and radiation originates at or near the cloud deck.

3.1.4. Methane

Methane is a well-mixed gas found in the planet’s troposphere
with concentrations decreasing in the stratosphere. The CHy
band at 7.7 um is reduced in depth by the different types of
clouds and percent coverages. Figure 9 shows that in the cloud-
free case, the molecule presents strong absorption in levels with
temperatures corresponding to the mid-troposphere (see Fig. 2
and Paper I). Nevertheless, clouds change the tropospheric tem-
peratures and the cloud (100% coverage in case of low clouds)
or nearby (100% high cloud and partial coverages) layers be-
come the main emitting source, which are all colder than the sur-
face. For both low and high clouds, the spectrum decreases with
increasing cloud coverage. Even though the CH4 band shows
strong absorption above the cloud deck, the reduction occurs
both because the cloud is emitting at a lower temperature than
the levels below (where radiation seen at ToA originates from
in case of the cloud-free case) and because absorption by CHy
is taking place at layers of temperatures decreased by the cloud.
The CH4 band in the F- and G-star planets are the most influ-
enced ones since the atmospheric temperatures of these planets
are the most affected ones since the atmospheric temperatures of
these planets are more affected than in the K- and M-star planets.

The impact produced by low clouds (see Fig. 9-top) on the
CH, band is greater than for high clouds (Fig. 9-bottom), since
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they block radiation upwelling from lower layers more effi-
ciently. In the presence of high-level clouds, the tropospheric
temperatures (see Fig. 2) are less affected even though they still
increase, and the spectrum is not so influenced when compared
to the low-level clouds.

3.1.5. Ozone

Ozone is found at low concentrations in the troposphere, while
its abundance increases in the stratosphere. The very center of
the band, where the absorption is relatively weak, indicates tem-
peratures corresponding to the low troposphere for the 0% cloud
cover. In the presence of clouds, the temperatures appearing in
the absorption band of the molecule (i.e. roughly 9.4 ym-9.5 um
and 9.7 um—10 um) correspond to the mid-stratosphere.

In the presence of low-level clouds, one only sees tempera-
tures corresponding to levels close to the cloud deck, since the
flux coming from below the cloud is partially and completely
blocked by the 70% and 100% coverages, respectively. In the
F-star planet, the shape and depth of the O3 band at 9.6 um for
the low-level cloud coverages of 70% and 100% is strongly af-
fected when compared to the 0% and 30% cases (Fig. 10-top).
The band takes a different shape for the 100% low-level cloud,
since the main emitting source (cloud deck) is at a lower tem-
perature than the mid-stratosphere for the F-star planet. For the
70% cloud cover, the temperatures from the mid-stratosphere are
very similar to that of the cloud deck, giving the flat appear-
ance to the band. However, in the G-, K-, and M-star planets
for all different low-level cloud coverages, the shape of the O3
band remains unchanged, since the mid-stratosphere is at a lower
temperature than the levels close to the cloud deck. Moreover,
this points out that the F-star planet possesses a much warmer
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mid-stratosphere than the rest of the planets. In the spectrum in-
fluenced by the 70% low-level cloud, the O3 band becomes very
flat, which could lead to false negative results.

The 70% and 100% high-level cloud coverages have a strong
impact as well on the Oz band for the F-star planet (Fig. 10-
bottom). The altitudes close to the cloud deck where the main
energy is being emitted are at temperatures that are comparable
to those of the mid-stratosphere, which produces a reduction in
the depth of the band. For the rest of the planetary cases, the O3
band is clearly distinguishable even for the total overcast cloud.

The reduction of the depth of the O3 band could lead to the
false negative, thus indicating its absence. However, the wrong
interpretation of the O3 band could be avoided by studying other
spectral regions simultaneously. In particular, the temperature of
the effective bottom-level (i.e. cloud or surface essentially) can
be inferred in the atmospheric window (8—12 ym). Additionally,
the 4.3 and 15 um CO, bands contain information about atmo-
spheric temperatures between the effective bottom and the upper
atmosphere. Combining all this information makes it possible to
discard O3 false negatives. If the spectrum is flat around 9.6 um,
and the temperature at the ozone level (estimated from the CO,
bands) differs considerably from the temperature of the effective
bottom (estimated from the atmospheric window), then it is very
likely that O3 is absent in the atmosphere. This analysis can also
be applied for other molecules to discard false negatives.

3.2. Spectra at different resolutions

The spectra of planets around F, G, K, and M stars have been
simulated at different resolutions under the influence of a 100%
cloud coverage, due to the strong effect that it produces on the
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Fig. 11. Spectra of Earth-like planets with a 100% cloud cover at differ-
ent resolutions.

spectral molecular bands. Figure 11 shows the spectra at differ-
ent resolutions under the influence of low and high cloud cov-
erages. It turns out that the most indistinguishable bands result
for the spectral resolutions of 10 and 100 in the F-star planet.
This planet presents a strong temperature inversion in its strato-
sphere with temperatures comparable to those found in the tro-
posphere or even higher than the surface temperature that, as a
consequence, produces greater effects on the spectral appearance
of the different molecules. Moreover, the impact of clouds on the
absorption bands is greater, since the contrast between the strato-
spheric temperatures and the cloud deck (or levels close to the
cloud deck) is not as large as for the rest of the planets. Owing
to the strong effect that clouds produce on the F-star planet, the
study of the spectral resolution presented in this section is fo-
cused on this one.

The CO,, H,0, and O3 absorption features can still be dis-
tinguished at a resolution of 100 in all planetary cases. However,
at a spectral resolution of 10, the CO; band at 4.3 um cannot be
separated from the N,O band, as already mentioned in Paper 1.
To assess the presence of CO, at 4.3 um, the actual spectrum of
the F-star planet (Fig. 12) has been compared to the spectrum
without CO,. The difference between the two spectra in the cen-
tral bin is larger compared to that between the side bins. Larger
differences can be seen under the influence of the low-level cloud
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for the drop in the central bin. Consequently, the presence of
CO; can still be determined at 4.3 um in the presence of clouds.

In the 15 um band influenced by the 100% high-level cloud,
the differences between the center bin and the outermost side
bins with and without CO, can also be seen. These differences
are smaller in the presence of the low-level cloud. In Fig. 13, it
is possible to observe that in the absence of the molecule, the
flux in the center bin of the 15 um band increases, but the op-
posite effect occurs at 4.3 um. The 4.3 um band is stronger and
therefore, the net effect it produces is emission due to the strato-
spheric inversion found in the F-star planet. In the 15 um band,
the net effect that the molecule produces is absorption, which
results in an increase in the spectral flux in the absence of CO,.

The absorption by H,O has a contribution from spectral lines
and from continuum, which can be found everywhere within the
spectral range. Therefore, the presence of H,O has an effect on
the absolute values of the whole spectrum.

In the previous section, the F-star planet spectra with total
overcast showed that the O3 absorption at 9.6 um is less distin-
guishable than in the presence of partial cloud coverages. This
could lead to the wrong conclusion that the molecule is not
present in the planetary atmosphere under the 100% overcast
conditions and at a spectral resolution of 10, since the contri-
bution from O3 to the 9.6 um region is highly reduced, and at
this mentioned resolution the band is not separable from oth-
ers. Figure 14 shows the contrast between the O3 band and the
neighboring bands. It can be seen that in the presence of the low
cloud, the decrease of flux in the center of the 9.6 yum region with
and without Os is larger than in the side bins. In the case of the
high-level cloud, the drop in flux at the band center is very small
so the difficulty of assessing the presence of O3 is greater than
in the presence of the low-level cloud.
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The CH4 band at 7.7 um is distinguishable at a resolution
of 100 in both cloud cases. Nevertheless, as stated in Paper |
at a resolution of ten the band cannot be separated from the
H,O band, and the difficulty of establishing the presence of the
molecule raises. By following the same technique as used to as-
sess the presence of the dominant molecules of the spectra, it is
also possible to determine the presence of CH4. The strength
of the 7.7um CH4 band is also highly affected by the pres-
ence of the 100% low and high cloud coverage, but as one can
see in Fig. 15(-left), the differences between the center and the
side bins with and without CHy are not negligible. To establish
whether the contributions to the 7.7 um region mainly comes
from CHy or from H,O, the same approach was performed for
the H,O molecule (Fig. 15-right).

In the center bin of the spectra influenced by the low-
level clouds, the H,O molecule has an insignificant contribu-
tion (Fig. 15-top-right). This is because the low-level cloud has
a blocking effect on the levels below the cloud deck, where
some of the tropospheric H,O emission passes through the
cloud and contributes strongly to the 7.7 um region at R = 10.
Consequently, the CH4 molecule is the main contributor to
the 7.7 um region, contrary to the cloud-free atmospheric case,
where the H;O molecule is the main contributor (see Paper I).
This facilitates any assessment of the presence of CHy in the
planet.

In the presence of the 100% high-level cloud, the H,O
molecule is the main contributor to the 7.7 um region (see
Fig. 15-bottom-right). As stated in the previous section, some of
the absorption taking place below the cloud deck can be seen un-
der these cloudy conditions. Therefore, this makes H>O the main
contributor, since the 7.7 um CHy band cannot be separated from
the interfering neighboring H,O band at a spectral resolution of
10. However, the contribution by CHy4 to the 7.7 um region can
still be assessed.

In the top left of Fig. 16, the contribution by N,O at 4.5 um
for the low-level cloud is negligible, and the main contributor at
this wavelength is CO;. For the high-level cloud, N,O makes a
greater contribution to the band; nevertheless, the CO, molecule
is still the main absorber (Fig. 16-bottom-right).

3.3. Comparison to low-resolution studies

Since the atmospheric profiles and cloud optical properties used
to calculate the spectra of Earth-like planets in the present paper
have already been used by Kitzmann et al. (2011, herein called
Kitzmannl1 in this section) to produce low-resolution spectra,
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both resulting computations at resolutions 1 < R < 40 are com-
pared in this section.

Figure 17 illustrates the spectra modeled with GARLIC and
RRTM/2s from Kitzmannl1 for the four different planets with
the 0% cloud coverage and for the 100% low- and high-level
clouds. It can be seen that, in general, the spectra calculated us-
ing GARLIC shows slightly lower fluxes than the spectra calcu-
lated using RRTM/2s.

The IR radiative transfer model (RRTM/2s) in Kitzmannl 1
consists of a hemispheric mean two-stream method (Toon et al.
1989), while the gaseous absorption is described by the cor-
related k-method via the RRTM model (Mlawer et al. 1997).
GARLIC considers line-by-line and discrete ordinate methods.
For all the calculations presented in this paper, a four-stream
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Fig. 17. Low- resolution spectra (1 < R < 40) calculated with GARLIC
and RRTM/2s are shown for comparison.

approach was selected. To test the sensitivity of the spectrum
to different numbers of streams, computations using GARLIC
and the two-stream radiative transfer model, RTSPEC (Deeter &
Evans 1998), were performed. Also, the sensitivity of the spec-
trum to different spectroscopy databases were tested (RRTM
k-distribution is based on HITRAN 96). However, in none of
these studies does the spectra show a significant difference,
which leads to the conclusion that the main differences arise
from the different methods that were used to account for the
spectral dependency of the atmospheric properties (correlated-k
and line-by-line treatments).

Due to the limitations of the tabulated k-distribution data,
Kitzmannl1 did not investigate the impact of the various ab-
sorbers on the spectra by excluding a particular molecule.
Therefore, computations of the spectra using the same procedure
as in Sect. 3.2, with and without the selected molecules, have
been carried out for the low-resolution spectra (1 < R < 40)
to determine whether the main absorbing molecules are identi-
fiable. For this, only the planet around the F star has been con-
sidered, since based on the previous results, this one presents a
large temperature inversion in the upper atmosphere that has a
strong impact on the spectra. The 100% cloud cover has been
used in the comparisons due to the extremity of the case, as well
as the 0% cloud cover, which was analyzed in Paper 1. The spec-
tral bands examined in the previous sections of this work have
been considered in this study to determine the main molecular
contributor to each one of them.

In Fig. 18-top, the spectra influenced by the 100% low-level
cloud are shown with and without the main absorbing molecules
in the thermal region. At 9.6 um the main contributor is O3, as
can be seen from the large difference that the spectrum without
the molecule presents when compared to the one containing all
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Fig. 18. Low-resolution spectra (1 < R < 40) calculated using GARLIC
with all main molecules (total) and in the absence of them. The spectra
are shown in the absence of clouds (fop) and in the presence of low-
(middle) and high-level (bottom) clouds.

molecules. This is also the case for the cloud-free case (see also
Fig. 18-mid). However, in the presence of the high-level cloud,
the molecule having the greatest impact on the 9.6 um region is
H,O0 (see Fig. 18-bottom).

In the cloud-free spectrum at R = 10, the H,O molecule
makes a greater contribution to the 4.3 um region; however, in
the presence of clouds the CO, becomes the main contributor.
As shown in Sect. 3.1, the low- and high-level clouds partially
block the levels below the cloud deck, where H,O is absorbing
strongly, but for the 0% cloud cover, the absorption taking place
at these low atmospheric levels reaches the ToA. Therefore, for
the cloud-free case, the CO, molecule cannot be identified as
the main contributor at 4.3 um. In the 15 um region, CO, is the
major molecule characterizing the band in the presence of clouds
and in the absence of them.

The 7.7 um CH4 band is highly affected by H,O absorption,
which has even a greater impact than CHy for the cloud-free
and high-level cloud. Nevertheless, for the low-level cloud, CHy4
is still the leading absorbing molecule. It was already shown in
Sect. 3.1 (Fig. 4) that even though the water cloud is located
at a lower altitude than the ice cloud, it strongly attenuates the
radiation arising from the levels where H,O presents strong ab-
sorption. This fact makes the CH4 molecule dominate at 7.7 um
in the presence of the low-level cloud.

N,O dominates the region at 4.6 um for the 0% and 100%
low-level cloud coverages. For the high-level cloud, the levels
where N,O presents stronger absorption are partially blocked,
and the radiation that reaches the ToA at these wavelengths is
mostly due to absorption by H,O.

Kitzmann11 stated that for high-percent cloud coverages, the
O3 and CO, absorption features were not distinguishable in the
planet of the F star. However, based on the more detailed analysis
presented above, one can state that CO, is still identifiable, even
for the 100% cloud cover at 4.3 and 15 um. On the other hand,
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O3 is distinguishable at 9.6 um for the 100% low cloud, but not
in case of the 100% high cloud.

4. Discussion

This study is confined to cloud-covered Earth-like planets orbit-
ing main sequence stars. Clouds in other objects outside the solar
system have already been extensively studied. Brown dwarfs are
very massive and very different from terrestrial planets in terms
of, say, their atmospheric structure, pressure, chemical compo-
sition, and scattering matter properties. Nevertheless, the wide
variety of cloud properties encountered serves as a guide for ex-
ploring other planetary bodies, such as hot Jupiters. Therefore,
the study of clouds in substellar atmospheres gives an idea about
the wide variety of species that can potentially condense in plan-
etary atmospheres and their effects on e.g. the spectral appear-
ance. This provides a wide range of scenarios that might help for
understanding the radiative transfer in the cloudy atmospheres of
terrestrial exoplanets.

The planet around the G-star could be considered as an
Earth twin, whereas similarity to Earth conditions for F-, K-,
and M-star planets could only be achieved by scaling the dis-
tance in order to assure similar incoming “solar” energy, thereby
achieving moderate Earth-like surface conditions. However, up-
per atmospheric conditions are significantly different from Earth,
such as for the lack of an inversion for the M-star planet or the
high stratopause temperatures for the F-star planet. This restric-
tion to Earth-like planets is in line with most papers investigat-
ing the spectral appearance of exoplanets and the detectability
of biosignatures (see Sect. 1). Clearly it would be interesting
to study radiative transfer for a much larger class of exoplan-
ets. However, the actual state of numerous exoplanets discov-
ered in recent years is likely to be way beyond our imagination,
and defining atmospheric scenarios (using coupled radiation —
convection — chemistry models) required as input for radiative
transfer modeling could easily become speculation.

The diversity of possible gas atmospheres is already large,
but clouds clearly add another dimension of complexity. To fo-
cus on the cloud impact on biosignatures, we limit our study
to water and ice clouds as found on Earth. In particular we ex-
cluded, for example, H,SO,4 or CO, clouds known from other
planets (e.g. Venus and present Mars) because in these hostile
environments, the probability of life (as we know it) is drasti-
cally reduced. In view of the wide diversity of clouds we further
confined our study to two important, yet rather distinct, cloud
types (see Kitzmann et al. 2010 for a discussion of this choice).

Different cloud parameters make an impact on the radia-
tive transfer. Particle type and size distribution influence the
cloud optical properties, hence the radiative forcing and ulti-
mately the atmospheric conditions. Particles of larger optical
depth have a greater impact on radiative transfer and, accord-
ingly, on the strength and shape of the molecular absorption
bands. This may also raise difficulties when determining and
identifying the molecules that contribute the most at the different
spectral bands, especially at low resolution.

The cloud optical properties vary with particle size and com-
position. Typically, larger cloud particles lead to larger optical
depths and sharper forward-peaked phase functions. The refrac-
tive index of liquid water and ice water particles has differ-
ent spectral dependencies leading to different optical properties.
Figure 19 shows the cloud optical depth of water and ice cloud
particles for two different effective radii, 1 um and 10 um, re-
spectively. Although the composition has an impact on the opti-
cal depth, the influence of the effective radii is stronger.
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The weighting functions depend on the cloud optical depth,
and implicitly, on the cloud particle size and composition. Since
the impact of composition on the optical depth is moderate, the
impact on the weighting functions is also moderate. In contrast,
the effect of the cloud particle size, through the modification of
the optical depth, is large. Figure 20 presents the weighting func-
tions for the F-star planet with 100% low-level water clouds of
effective radii 1 um and 10 um. Optically thin clouds have a low
impact on the radiative transfer since the amount of photons sub-
jected to extinction events by particles is low. Accordingly, the
optically thin r.g = 1um cloud allows a considerable amount
of photons arising from the atmospheric layers below the cloud
deck to reach the ToA. On the other hand, the optically thick
reg = 10um cloud blocks most of the photons from subcloud
layers and prevents them from reaching the ToA.

Cloud properties affect the radiative transfer, but the impact
becomes more or less pronounced depending on the spectral res-
olution. For optically thin clouds, contributions from molecu-
lar emission below and above the cloud reach the ToA. At low
spectral resolution, these contributions are convolved. Therefore,
optically thin clouds raise difficulties for stratospheric target
species (i.e. O3). At high spectral resolution, the spectra are
highly affected as well, but the mixing of the cloud contri-
butions above and below is less since the instrument can re-
solve narrower spectral regions. For optically thick cloudy con-
ditions, contributions from below the cloud are mostly blocked.
Therefore, the differences at low and high resolution spectra
arise from the convolution of contributions above the cloud.

The radiative-convective scheme accounted for the influence
of clouds on temperature, pressure, and H,O concentrations,
whereas an enhanced model would also consider the chemi-
cal impact on the abundances of other molecular constituents.
Atmospheric clouds influence UV and temperature-profiles,
which would give feedback on atmospheric photochemistry via,
e.g., photolytic reaction rates and temperature-dependent gas-
phase reactions. In turn, the photochemistry would influence the
atmospheric abundances of radiative gases, such as CH; and
N,O, which affect the climate. However, since cloud microphys-
ical processes (needed for cloud-chemistry feedback) are time-
dependent, coupling such processes into a one-dimensional sta-
tionary model (Grenfell et al. 2007) is problematic and should
be reserved for future work with time-dependent schemes.

Our study can be extended further in several ways: ra-
diative transfer modeling the impact of other cloud compo-
sitions and multilayered clouds is possible without any code
upgrades. Likewise, analysis of transmission spectra or the
short-wave IR is planned. Furthermore, for an assessment of
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Fig. 20. Weighting functions for the F-star planet influenced by 100%
low-level water clouds of particle radius of 1 um and 10 um at a spectral
resolution of 3000.

future observations, specifications of a more realistic instrument
(in particular noise) should be considered.

5. Summary

The thermal emission spectra at high and low resolutions of
Earth-like planets around different type of stars (F, G, K, and
M stars) were simulated under the influence of single layer low
or high-level clouds for different coverages. In general, the dif-
ferent cloud conditions decreased the depth of the molecular
band’s flux (contrast center vs. wing) and impacted the shape
of the high-resolution spectra. Moreover, the strengths of the
molecular bands were reduced.

In agreement with Kitzmann et al. (2011) the planet around
the F star was the most affected one. The H,O and O3 bands
showed a great reduction in depth for total overcast cases and
even appeared very flat in shape. In the K- and M-star plan-
ets, the effect on the different molecular bands was less than in
the planets orbiting the F and G stars. The strong CO, bands
at 4.3 and 15um in all the different planets offered valuable
information about stratospheric temperatures, independently of
the presence of high- and low-level clouds, since CO, absorbs
throughout the whole atmosphere, as indicated by the weighting
functions. This means that the bands are the least affected ones
in the thermal region. The N,O band at 4.5 um was still distin-
guishable even for the total overcast in all four different planets.

In the atmospheric window (8-12 um), clouds can prevent
any estimation of the surface temperature, which is consistent
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with Kitzmann et al. (2011). In case of the high-level cloud, the
temperature difference between the cloud layer and the surface is
greater. Even low cloud coverages bias the surface temperature
estimation considerably. On the other hand, one can still obtain
a good estimate for partially covered planets.

The contributions to different spectral bands were studied in
order to determine the main biosignatures in the atmosphere at
a spectral resolution of 10. It was found that the contribution by
CHy to the 7.7 um region can be better established in the pres-
ence of the low-level cloud because the H,O contribution at this
wavelength gets blocked by the cloud. In the high-level cloud,
the contribution by H,O is greater than the CHy4 contribution,
which raises the difficulty of identifying the molecule at 7.7 um.
Contributions of N,O at 4.5 um cannot be assessed for the 100%
low-level cloud. In the highly affected H,O, and O3 bands one
can still established their contributions in the planet’s atmo-
sphere at a spectral resolution of 10.

Analysis of individual IR bands of cloud covered planets can
lead to false negative interpretations. Nevertheless, these nega-
tives could be avoided by analyzing a combination of certain
regions of the spectra (i.e., the atmospheric window, CO, bands
and the desired molecular band). In particular, knowledge of the
temperatures is crucial for avoiding false interpretations.

Even for low-resolution spectra, the detailed analysis al-
lowed the different molecules to be identified. Although some
information is contained in a low-resolution spectrum, certain
information may be missing without any additional study. For
some of the molecules (i.e., CH4 and O3), the clouds were found
to be advantageous to determine their presence.

In conclusion, we used a high-resolution line-by-line multi-
ple scattering radiative transfer model to analyze the IR thermal
emission spectra of cloud-covered exoplanets. To our knowl-
edge, Kitzmann et al. (2011) and the present work are the
first studies of the radiative transfer of Earth-like planets that
use thermodynamically consistent atmospheric scenarios from a
coupled radiative-convective climate model including an explicit
cloud parameterization. In particular, here we have studied the
main IR molecular bands under different cloudy conditions and
provided weighting functions to identify the radiation sources.
This helps in interpreting the spectral appearance of terrestrial
exoplanets, which is essential for retrieving of atmospheric and
surface parameters and for seeking habitable worlds.
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