Influence of the MPL on PEM fuel cell performance

<u>A. Bauder</u>, J. Haußmann, H. Markötter, R. Alink, I. Manke, J. Scholta, K.A. Friedrich

Introduction:

Main requirements of GDL:

- Provision of gas and water transport
- Significant electrical and thermal conductivity
- Mechanical support of CCM

Objective:

- Investigation of the influence of the MPL on PEM fuel cell performance
- Approach: Development of self-supporting MPL
- Advantage: Manufacturing and following treatments of the MPL are independent from the GDL substrate

GDL assembly:

GDL25BC

In-house GDL

SEM:

CT:

3D micrograph visualization of in-house GDL

macro porous carbon nonwoven of fiber substrate

synthetics

mixture of carbon and PTFE

Commercial GDLs		In-house GDLs		
25BC	25BA	P40	P20	P20D
		•		

V_{DLI}

Characteristics of C/PTFE mixture:

Characteristics of GDLs:

Characteristics of GDLs:

In situ characterization

In-situ characterization (5cm²):

V DLR

In-situ characterization (5cm²):

- w/o MPL: higher i_{lim}
- high PTFE content: low
 i_{lim} and P_{max}
- low PTFE content: higher i_{lim}, low P_{max}
- low PTFE content and double MPL thickness: higher i_{lim}, higher P_{max}

In-situ characterization (5cm²):

- w/o MPL: high $R_{\Omega_{-HF}}$ lower $R_{ct+diff}$
 - high PTFE content:

high $\mbox{ R}_{\Omega_\text{HF}}$ and $\mbox{ R}_{\text{ct+diff}}$

- low PTFE content: high
 R_{Ω_HF} and low R_{ct+diff}
- low PTFE content and double MPL thickness: low R_{Ω_HF} and R_{ct+diff}

In situ radiography

Zentrum für Sonnenenergie und Wasserstoff-Forschung

In situ investigation of water management of in-house MPL

Summary and conclusions:

- The comparison of GDL25BC and GDL25BA shows that the ohmic resistance of the MEA decreases with a MPL and the maximum power density increases, in spite of constricted gas transport
- A high PTFE content and thereby increased hydrophobicity of in-house MPLs is disadvantageous for the electrical conductivity and the gas permeability of the MEA at the same time.
- A low PTFE content and a high thickness of in-house MPLs decreases the ohmic resistance. That lead to high power densities, but high humidity conditions constricts the gas transport strongly. This could caused by the increased appearance of liquid water that in the synchrotron tests could be observed.

Thank you for your attention