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Abstract The objective of the German BMBF research project Highly Efficient Im-
plementation of CFD Codes for HPC Many-Core Architectures (HICFD) is to de-
velop new methods and tools for the analysis and optimization of the performance
of parallel computational fluid dynamics (CFD) codes on high performance com-
puter systems with many-core processors. In the work packages of the project it
is investigated how the performance of parallel CFD codes written in C can be in-
creased by the optimal use of all parallelism levels. On the highest level MPI is
utilized. Furthermore, on the level of the many-core architecture, highly scaling,
hybrid OpenMP/MPI methods are implemented. On the level of the processor cores
the parallel SIMD units provided by modern CPUs are exploited.
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1 Introduction

The research project HICFD is funded by the German Ministry for Education and
Research within the programme IKT 2020 - Research and Innovation. The projects
objective is to develop new methods and tools for the analysis and optimization of
the performance of parallel CFD codes on high performance computer systems with
many-core processors and to exemplarily apply these to DLRs CFD programs TAU
[11] (computation of external flows) and TRACE [12] (simulation of internal flows).

In the workpackages of the project it is examined how the performance of parallel
CFD codes can be increased by the optimal exploitation of all parallelism levels. On
the highest, with MPI (Message Passing Interface) parallelized level an intelligent
mesh partitioning in order to improve the load balance between the MPI processes is
promising. For the block-structured grids used in TRACE a many-core compatible
partitioning tool is developed.

Furthermore, on the level of the many-core architecture, highly scaling, hybrid
OpenMP/MPI methods (OpenMP: Open Multi-Processing) are implemented for the
CFD solvers TAU and TRACE. Within the block-structured CFD code TRACE the
iterative algorithm for the solution of linear systems of equations has to be opti-
mized, among other things by preconditioning methods adequate for many-core ar-
chitectures.

On the level of the processor cores a pre-processor is developed which makes
a comfortable exploitation of the parallel SIMD units (Single Instruction Multiple
Data) possible, also for complex applications. For a detailed performance exami-
nation of SIMD operations the tracing abilities of the performance analysis suite
VAMPIR Visualization and Analysis of MPI Resources [13] is further developed.

2 A Generic SIMD Preprocessor

Data parallelism at the level of the processor cores using their SIMD units cannot
be exploited simply by hand. First, using SIMD instructions makes the code highly
platform dependent. Second, data-level parallel programming using SIMD instruc-
tions is not a simple task. SIMD instructions are assembly-like low-level, and often
steps like finalization computations after a vectorized loop become necessary. Thus
it is essential to find or develop a tool suitable to comfortably and automatically
vectorize CFD codes.

A vectorization tool is best built in a compiler. All current C compilers pro-
vide autovectorization units. We tested the compilers being in consideration for the
HICFD project wrt. their autovectorization capabilities but had to decide not to rely
on them regarding the vectorization process due to the following reasons:

• Each compiler has its own means to provide meta information. It is impossible
to hide the different syntactic forms in a catch-all macro since some annotations
like pragmas cannot be generated by the C preprocessor. Thus, in order to gain



Highly Efficient Implementation of CFD Codes for HPC Many-Core Architectures 3

the required relative independence from a particular compiler we would have to
pollute the source code with a lot of vendor-dependent annotations.

• During our tests a lot of subtle issues arose around compiler-generated vectoriza-
tion. For instance in one case a compiler suddenly rejected the vectorization of
a particular loop just when we changed the type of the loop index variable from
unsigned int to signed int. A compiler expert can often reason about
such subtleties and can even dig in the documentation for a solution. An applica-
tion programmer, however, normally concentrates on the algorithms and cannot
put too much effort in the peculiarities of each compiler used.

• The vectorization of certain (often more complex) loops was rejected by all com-
pilers regardless of inserted pragmas, given command-line options etc.

We checked other already available vectorization tools [4, 7], but the develop-
ment focus of these tools did not match our requirements. Thus eventually we de-
cided to develop a new tool in order to comfortably exploit the parallel SIMD units.
Based on the requirements imposed by the numerical kernels of the CFD codes and
based on experiences collected in former projects [6] the main function of the tool
is the vectorization of loops. Beyond the specific target of CFD codes, the tool is
usable as a universal vectorizer and aims at becoming an industrial-strength vector-
izing preprocessor.

2.1 The Vectorizing Source-to-Source Transformator Scout

We opted for a strict semi-automatic vectorization. That is, as with compilers, the
programmer has to mark the loops to be vectorized manually. Thus the analysis
phase can be limited to the minimum necessary for vectorization and the focus can
be put on code generation. We have called this vectorization tool Scout.

Most properties of Scout are direct consequences of the demands of the HICFD
project:

• The input language is C since this is the programming language of the CFD codes
considered in HICFD.

• The output language is C, too. This comes due to the fact that the simulation
based on the CFD codes has to run on heterogeneous platforms each with differ-
ent C compilers available.

• Scout focuses on short SIMD architectures. These architectures are very common
in the current processor cores of even high performance computer systems.

• Scout is configurable in order to support the various already existing SIMD in-
struction sets as well as upcoming ones.

• Scout is usable on a day-to-day basis in the software production process. That
is, at first a programmer can experiment with the tool in order to find the best
transformation possible. In addition he is able to check the correctness of the
output with a graphical user interface. Secondly, Scout exposes a command line
interface as well and thus can be used as part of an automatic build chain.
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2.2 Practical Results

We have applied Scout to two different CFD production codes used in the German
Aerospace Center (DLR). Both codes are written using the usual array-of-structure
approach. That approach is rather unfriendly wrt. vectorization because vector load
and store operations need to be composite. Nevertheless we did not change the data
layout but only augmented the source code with the necessary Scout pragmas. Thus
the presented performance results were generated using the source code as is. All
presented measurements were done on an Intel R© CoreTM 2 Duo P8600 processor
with a clock rate of 2.4 MHz, operating unter Windows 7TM using the Intel R© com-
piler version 11.1. Other systems showed similiar results, however the GNU com-
piler 4.4.1 appeared to optimize the SSE intrinsics differently and thus produced
slightly slower code.

The first code, TRACE, uses a structured grid. Direct indexing is used in loops,
and array indices are linearly transformed loop indices. We extracted four differ-
ent computation kernels from the code and measured each individually. Kernel 1
computes the viscous fluxes of the RANS equations over a cell area of the control
volume while kernel 2 determines the corresponding convective fluxes. In kernel
3, the derivatives of the fluxes according to the state vector (density, velocity etc.)
are calculated due to the implicit time discretization of the RANS equations. Ker-
nel 4 solves the equation system resulting from the implicit discretization with the
Backward-Euler scheme by an incomplete LU decomposition of the matrix and a
subsequent Gauss-Seidel iteration. The four kernels contribute to the wall clock time
of a TRACE run with distinctly more than 50%. Fig. 1 shows typical speedup fac-
tors of the vectorized kernels produced by Scout compared to the original kernels.
On the right, the speedup using double precision is shown (two vector lanes), on
the left, the speedup using single precision is shown (four vector lanes). The overall
picture does not change for larger problem sizes. Usually the number of iterations
are roughly problem size cubed since most computations are done in triply nested
loops.

Fig. 1 Speedup of TRACE kernels gained due to the vectorization performed by Scout.
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As expected, we gain a higher speedup with more vector lanes since more com-
putations can be executed in parallel. The speedup of each particular kernel heavily
depends on the computation workload compared to the number of load and store
operations. Kernel 2 even outperforms its theoretical maximum speedup which is a
result of further transformations (in particular function inlining) performed by Scout
implicitly.

Unlike TRACE, TAU exploits unstructured grids. Thus the loops mostly use indi-
rect indexing to access array data elements. We concentrated our efforts on the most
performance critical kernel. The loops in that kernel could only partially be vector-
ized and to our best knowledge there is currently no other tool capable of vectorizing
these loops automatically. Nevertheless we could achieve some speedup as shown in
Fig. 2. We had two different grids as input data to our disposal. First we vectorized
the code as is. However the gained speedup of about 1.2 was not satisfying. Hence,
we merged some loops inside the kernel together to remove repeated traversal over
the indirect data structures. This not only resulted in a better performance of the
scalar code but also in a much better acceleration due to vectorization.

Fig. 2 Speedup of a partially
vectorized TAU kernel.

3 Performance Analysis of SIMD Codes

In the following, the performance of the parallel CFD programs TAU and TRACE
with respect to the application of SIMD techniques for code acceleration are exam-
ined. By means of SIMD techniques, a single machine instruction can, at the same
time, be applied to multiple data elements.

In order to investigate where and when a (parallel) program makes use of SIMD
methods a special benchmark suite was developed and the performance analysis
software VAMPIR was extended to visualize and analyze the SIMD operations.
With the help of graphical VAMPIR displays, a user is able to verify where the
SIMD preprocessor Scout (cf. section 2) produces source code on the basis of SIMD
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techniques. In detail, the development of the displays targets answering the follow-
ing questions: Are SIMD techniques used? If so where are they used? At which
scale SIMD techniques are used? How can the quality of the application of SIMD
techniques be measured?

Detailed information about the application of SIMD techniques during a program
run can be collected by exploiting the information stored in hardware performance
counters. These counters are special registers on microprocessors, in which values
about hardware events (the total number of all executed SIMD intructions, e.g.) are
stored.

For the development of the new graphical VAMPIR displays, it is advantageous
to first analyze the SIMD performance of a program on a coarse-grained level.
Therefore, a benchmark suite designed to statistically measure the SIMD perfor-
mance of a program based on the information stored in hardware performance coun-
ters was developed. This SIMD benchmark suite (called simdperfana) consists of a
C library (called simdbench) and a (bash) shell script collection (called ccperfsimd).
SIMD instructions are recorded by means of hardware performance counters which
will be accessed in the high level programming language C via PAPI (Performance
API)[10].

simdbench and ccperfsimd interact in the following way: By means of the C
library simdbench, a user can instrument source code parts of a program. By means
of the shell script collection ccperfsimd, the SIMD performance of the instrumented
program is automatically measured (program runs with different compiler options:
vectorization type, optimization level, SIMD technique).

The benchmark suite is slim, clearly arranged and easy to use: simdbench offers
four C macros (prolog, start, stop, epilog) to trigger a measurement, measurement
parameters are changeable via bash environment variables. Furthermore, simdper-
fana supports PAPI and VampirTrace (a tool for tracing program runs which works
together with VAMPIR) [14]. Thus the SIMD performance can easily be analyzed
with VAMPIR.

On the basis of various tests (e.g. program runs of different numerical kernels), a
VAMPIR display was adapted so that a user can detect where a program makes use
of SIMD techniques and at which scale they are used.

4 Hybrid Shared-Memory/MPI Parallelization

In the modern process of the aerodynamic design of aircrafts or turbines for jet
engines, CFD plays a key role. Large-scale computing resources allow more detailed
numerical investigations with bigger numerical configurations. Up to 50 million grid
points in a single simulation are becoming a standard configuration in the industrial
design. These requirements demand a shift from the paradigm of single-program
single-data (SPSD) per MPI-Rank to a more sophisticated approach with single-
program multiple-data (SPMD) per MPI-Rank. The benefit and techniques of this
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hybrid parallelization approach are demonstrated with the two DLR CFD solvers
TAU and TRACE.

4.1 Hybrid Multistage Shared-Memory/MPI Parallelization of the
TAU Flow Solver

At project start the parallelization of the TAU solver was based on MPI using a
vertex-oriented domain decomposition per process with one layer overlap between
the domains for the MPI communication. Typical simulations with TAU for three
dimensional geometries use grid sizes between 10 to 50 million grid points and are
computed with 32 to 512 MPI processes. Usually, such computations are performed
employing a geometrical multigrid method with a 3- or 4-level W multigrid cycle.
For e.g. a grid with 30 million grid points and 512 MPI processes, each grid domain
contains approximately 60,000 grid points (without overlap) on the finest grid and
7500, 940, and 120 points on the second, third, and forth grid level, respectively. For
such applications TAU has a very good parallel efficiency as can be seen in Fig. 3.

Fig. 3 TAU-Code perfor-
mance up to 4096 cores on
AMD Barcelona 1.9 GHz
with Infiniband DDR Con-
necX interconnect. Strong
scaling for a mesh with 31
million points, cell-vertex
metric, one MPI process per
core. Explicit Runge/Kutta
RANS solver with multi-grid
(pre-smoothing only; 3V/4W:
3-level V/4-level W cycle):
central discretization, scalar
dissipation, Spalart/Allmaras
turbulence model.

 0

 20

 40

 60

 80

 100

 120

 140

 512  1024  1536  2048  2560  3072  3584  4096

 400

 800

 1200

 1600

 2000

 2400

 2800

S
ec

o
n
d
s 

/ 
5
0
 I

te
ra

ti
o
n
s

P
ar

al
le

l 
S

p
ee

d
-U

p

#Cores

single-grid  
3V multi-grid  
4W multi-grid  

This figure also shows that, at least for a 4-level W multigrid cycle, the parallel
efficiency decreases significantly when using more than 2000 MPI processes (see
also [2]). The degradation of the efficiency is caused by the effect that the grid parti-
tions become very small, especially on the coarse multigrid level so that the number
of grid points in the overlap layer is no longer negligible. For instance with 4096
partitions, the number of additional points to be communicated is already about 35
percent of the total number of points in the non-decomposed grid. This effect is even
worse on the coarse multigrid levels. One possibility to avoid such small grid parti-
tions (for this number of processes) is a hybrid shared-memory/MPI parallelization.
Following this concept, the grid is partitioned into as many domains as cluster nodes
(or sockets) are to be used (rather than the number of cores). This increases the grid
sizes per partition by one order of magnitude as today’s clusters have nodes with 8
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to 24 cores. Thus, the potential of this strategy is to improve the (strong) scalability,
i.e., to shift the decrease of parallel efficiency to much higher core numbers.

Therefore, a prototype version of TAU has been implemented using multiple
threads per cluster node (one per core) for the flow computation inside the grid
domain. Between the grid domains, data is exchanged using MPI as before. The
main computational work in the solver is in loops over points and edges of the grid.
Points and edges of each grid domain are grouped into sub-domains, called colors,
which are used to optimize the cache access. The computation of these colors is per-
formed in parallel by multiple threads. As there are points that belong to more than
one color, the updates of these points have to be serialized to avoid data races (when
different threads update the same point at the same time). For this serialization, a
locking mechanism for the colors has been developed to ensure mutual exclusion
of neighboring colors. Namely, at any point in time, all colors processed (in par-
allel by multiple threads) do not share any points. The computation of the colors
is asynchronous except at some synchronization points when MPI communication
with neighboring domains has to be done. Performance benchmarks for the hybrid-
parallel implementation are ongoing work; preliminary results are encouraging (cf.
[2]).

4.2 Hybrid Shared-Memory/MPI Parallelization of the TRACE
Flow Solver

In the design phase of multistage compressors and turbines for jet engines, or sta-
tionary gas turbines, complete computations of the configurations over night are
mandatory for the engineers in order to analyze and improve the design throughout
the next business day.

At the Institute for Propulsion Technology of the German Aerospace Center
(DLR), the parallel simulation system TRACE (Turbo-machinery Research Aerody-
namic Computational Environment) has been developed specifically for the calcu-
lation of internal turbo-machinery flows. TRACE applies a finite volume approach
with block-structured grids for solving the associated Navier-Stokes equations. In
the MPI parallelization of the code one MPI process is assigned to each block. Thus
the scalability of TRACE is limited to the number of blocks. Moreover the load bal-
ance is dominated by the largest block. While it is possible to split the largest block
into smaller ones, it is often not advisable to do so since smaller MPI domains have
a larger overhead (due to the overlap region) and also decrease the convergence rate
of an implicit solver. Hence a hybrid parallelization is the matter of choice in order
to improve the performance and scalability of the TRACE code.

The implementation of the hybrid parallelization concept made a complete re-
design of the TRACE data structures necessary. In order to maximize spatial and
temporal data locality the data structures of TRACE were reorganized into hot and
cold parts. The employment of a novel hyperplane formulation of the Gauss-Seidel
relaxation algorithm, where the respective elements were addressed directly in hy-
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perplane coordinates, makes it possible to improve also the scalar efficiency by a
considerable margin. Speedup factors of up to 2.4 were observed, depending on the
use-case and hardware platform.

The hybrid parallelization concept itself is based on pthreads and MPI. In this
implementation pthreads are used for all processing units of a CPU socket and the
enveloping MPI process is bound to the socket.

With these improvements an engineer is now able to compute a complete com-
pressor map over night. The example given in table 1 is a 15 stage compressor with
an additional inlet guide vane and an outlet guide vane. The mesh has 19,11 million
grid points overall for 32 blade rows. Table 1 shows the runtime for a single point
on the compressor map. If Hyperthreading is enabled a speedup factor of 2.7 on
the 4 cores of an Intel Xeon 5540 (Nehalem) is obtaind by the shared-memory par-
allelization introduced (see also [9]). The hybrid parallelization made the efficient
use of a much higher node number for the compressor problem possible so that the
execution time could be reduced from 6 h 45 min (pure MPI) to 2 h 31 min (hybrid
concept), cf. Table 1 for details.

Table 1 Runtime comparison for the compressor use-case

Testcase Compiler MPI # nodes # MPI processes # threads/MPI process Runtime in h
Compressor icc 11.1 Openmpi 8 60 1 06:45:30
Compressor icc 11.1 Openmpi 30 60 8 02:31:46

5 Scalable Algorithms for Many-Core Architectures

In order to increase the scalability of CFD solvers with multi-block grids like
TRACE the development of a generic partitioning tool for block-structured grids
is required (cf. section 5.1). On the other hand it is necessary to improve the paral-
lel efficiency of the linearized TRACE solvers by scalable preconditioning for the
iterative solution method for sparse systems of linear equations (cf. section 5.2).

5.1 Partitioning for Block-Structured Grids

A promising approach to increase the scalability of parallel CFD solvers with block-
structured grids on the highest, with MPI parallelized level is an intelligent grid par-
titioning for improving the load balance between the MPI processes. For TRACE,
we developed a many-core compatible partitioning tool which will be available as
open-source library after the end of the project.

A first version was already integrated into TRACE and exploits ParMETIS [5]
for partitioning the block graph. The nodes of this graph are weighted with the
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computational load per block while the edge weights represent the data exchange
volume between the block faces. The advantage compared with the standard block
distribution in TRACE which just considers the calculations per block is a reduction
of the communication overhead. Fig. 4, left, shows that this advantage increases
with increasing core number for TRACE sample runs on DLRs AeroGrid cluster
(45 Dual-processor nodes; Quad-Core Intel Harpertown; 2.83 GHz; 16 GB main
memory per node; InfiniBand interconnection network between the nodes).

New partitioner

TRACE load balance

TRACE - linear
100 iterations

Fig. 4 Execution times of TRACE sample runs with the new partitioner and the standard TRACE
load balancer (left) as well as with and without manual splitting of the largest block using the new
partitioner (right).

Another main source for scalability losses in TRACE is the significant size dif-
ference of the blocks. Therefore, the partitioning tool developed will be extended by
a splitting feature of large blocks into smaller ones. This makes on the one hand a
more advantageous load balance and on the other hand the efficient exploitation of a
higher core number possible. Fig. 4, right, illustrates this for the case that the largest
of 255 blocks is manually split into halves for TRACE sample runs on the AeroGrid
cluster. The resulting 256 blocks are then distributed with the new partitioner.

5.2 Preconditioning for the Linear TRACE Solvers

For the parallel iterative solution of sparse equation systems to be solved within the
linearized TRACE solvers, FGMRes with Distributed Schur Complement (DSC)
preconditioning [8] for real or complex matrix problems has been investigated.

The DSC method requires adaquate partitioning of the matrix problem since the
order of the approximate Schur complement system to be solved depends on the
number of couplings between the sub-domains. Graph partitioning with ParMETIS
[5] from the University of Minnesota is suitable since a minimization of the number
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of edges cut in the adjacency graph of the matrix corresponds to a minimization of
the number of the coupling variables between the subdomains. The latter determine
the order of the approximate Schur complement system used for preconditioning.

For the the solution of TRACE linear equation systems, we developed a par-
allel iterative FGMRes algorithm with DSC preconditioning. In [3] and [1], we
demonstrated the superiority of the DSC preconditionier over (approximate) block-
Jacobi preconditioning. Block-local preconditioning methods like block-Jacobi are
the standard preconditioners in TRACE. Here, we particularly discuss numerical
and performance results of DSC methods for typical complex TRACE CFD prob-
lems on many-core architectures.

Fig. 5 Execution times of the DSC solver for a complex and the corresponding real small size
TRACE matrix problem (left) as well as for a complex large TRACE matrix problem (right) on a
many-core cluster.

Fig. 5, left, displays execution times of the real and complex DSC solver soft-
ware developed on 4 to 32 processor cores of the AeroGrid cluster for a complex
and the corresponding real small TRACE matrix problem of order 28,120 or 56,240.
The FGMRes iteration was stopped when the current residual norm divided by the
initial residual was smaller than 10−5. The complex DSC solver version distinctly
outperforms the real version. This is caused by the lower problem order and a more
advantageous matrix structure in the complex case opposite to the real case. In ad-
dition, the complex formulation results in higher data locality (storage of real and
imaginary part in adjacent memory cells) and a better ratio of computation to mem-
ory access due to complex arithmetics in comparison with the real formulation.
Fig. 5, left, also shows an advantageous strong scaling behavior of the DSC method
on the many-core cluster, even for this small matrix problem.

Fig. 5, right, shows execution times of the complex DSC method on 4 to 192
processor cores of the AeroGrid cluster for a large complex TRACE matrix problem
of order 4,497,520 and with 552,324,700 non-zeros. In order to achieve the required
accuracy in each component of the solution vector the FGMRes iteration was here
stopped when the current residual norm divided by the initial residual was smaller
than 10−10. Fig. 5 demonstrates that the complex DSC algorithm scales very well
on many-core clusters for differnt CFD matrix problems of varying size.
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6 Conclusions

After two of three HICFD project years, the methods and tools developed showed
promising performance results for the targeted CFD codes TAU and TRACE on
all three parallelism levels considered. Significant speedups could be gained by the
optimized exploitation of SIMD operations on the processor core level, hybrid par-
allelization techniques on the level of the many-core architecture and more scalable
algorithms on the highest, with MPI parallelized level.

In the remaining project time, the developments on all parallelism levels will be
completed and fully integrated into TAU and TRACE. An evaluation with industri-
ally relevant test cases will demonstrate the increased competitiveness of the CFD
simulations codes modified in HICFD.
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