PROBES TO THE INFERIOR PLANETS - A NEW DAWN FOR NEO AND IEO DETECTION TECHNOLOGY DEMONSTRATION FROM HELIOCENTRIC ORBITS INTERIOR TO THE EARTH'S?

2011 IAA Planetary Defense Conference

09-12 May 2011

Bucharest, Romania

Jan Thimo Grundmann ${ }^{(1)}$, Stefano Mottola ${ }^{(2)}$, Maximilian Drentschew ${ }^{(6)}$, Martin Drobczyk ${ }^{(1)}$, Ralph Kahle ${ }^{(3)}$, Volker Maiwald ${ }^{(4)}$, Dominik Quantius ${ }^{(4)}$, Paul Zabel ${ }^{(4)}$, Tim van Zoest ${ }^{(5)}$
${ }^{(1)}$ DLR German Aerospace Center - Institute of Space Systems - Department of Satellite Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany
Email: jan.grundmann@dlr.de, martin.drobczyk@dlr.de
${ }^{(2)}$ DLR German Aerospace Center - Institute of Planetary Research - Department Asteroids and Comets Rutherfordstraße 2, 12489 Berlin, Germany Email: stefano.mottola@dlr.de
${ }^{(3)}$ DLR German Aerospace Center - Space Operations and Astronaut Training - Space Flight Technology Dept. 82234 Oberpfaffenhofen-Wesseling, Germany Email: ralph.kahle@dlr.de
${ }^{(4)}$ DLR German Aerospace Center - Institute of Space Systems - Dept. System Analysis Space Segments (SARA) Robert-Hooke-Straße 7, 28359 Bremen, Germany
Email: volker.maiwald@dlr.de,dominik.quantius@dlr.de, paul.zabel@dlr.de
${ }^{(5)}$ DLR German Aerospace Center - Institute of Space Systems - Department of Exploration Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany
Email: tim.zoest@dlr.de
${ }^{(6)}$ ZFT Zentrum für Telematik
Allesgrundweg 12, 97218 Gerbrunn, Germany
Email: maximilian.drentschew@telematik-zentrum.de

Abstract

With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. Several missions to Venus and Mercury are planned to follow in this decade. Increased interest in the inferior planets is accompanied by several missions designed to study the Sun and the interplanetary medium (IPM) from a position near or in Earth orbit, such as the STEREO probes and SDO. These augment established solar observation capabilities at the Sun-Earth L1 Lagrangian point such as the SOHO spacecraft. Thus, three distinct classes of spacecraft operate or observe interior to Earth's orbit. All these spacecraft carry powerful multispectral cameras optimized for their respective primary targets. MESSENGER is scheduled to end its six-year interplanetary cruise in March 2011 to enter Mercury orbit, but a similarly extended cruise with several gravity-assists awaits the European Mercury mission BepiColombo. Unfortunately, the automatic abort of the orbit insertion manoeuvre has also left AKATSUKI (a.k.a. Venus Climate Orbiter (VCO), Planet-C) stranded in heliocentric orbit. After an unintended fly-by, the probe will catch up with Venus in approximately six years. Meanwhile, it stays mostly interior to Venus in a planet-leading orbit. In addition to the study of comets and their interaction with the IPM, observations of small bodies akin to those carried out by outer solar system probes are occasionally attempted with the equipment available. The study of structures in the interplanetary dust (IPD) cloud has been a science objective during the cruise phase of the Japanese Venus probe Akatsuki from Earth to Venus. IPD observations in the astronomical H-band ($1.65 \mu \mathrm{~m}$) are supported by its IR2 camera down to $1.5 \mu \mathrm{~W} / \mathrm{m}^{2}$ sr in single 2 minute exposures. In the same setting, point sources of 13 mag can be detected. Obviously, a number of large asteroids exceed this threshold. The EARTHGUARD-I study, completed in 2003 by the DLR Institute of Planetary Research and Kayser-Threde under ESA contract, proposed a dedicated steerable Ø$\varnothing 20 \ldots 35 \mathrm{~cm}$ telescope and CCD camera payload on a probe to the inner

solar system, to detect Near-Earth and Inner-Earth Objects (NEOs, IEOs) in favourable opposition geometry. A rideshare on a Mercury orbiter and a dedicated low-thrust propulsion spacecraft to a heliocentric 0.5 AU orbit were studied. A similar-sized telescope is presently being developed for the ASTEROIDFINDER satellite of DLR.
Therefore, the technical feasibility of a number of asteroid observation scenarios involving spacecraft and targets interior to Earth's orbit is assessed based on the latest available spacecraft information and asteroid population models. A rough estimate of the required effort in terms of ground-based spacecraft operations and on-board resources is given for selected representative scenarios.

IN THE BEGINNING... THE EARTHGUARD I STUDY

Background

Small solar system bodies (SSSB) which are classified as a Near-Earth Objects (NEO) approach the Sun to 1.3 Astronomical Units (AU) or less. The Near Earth Asteroids (NEA) among them are divided into four classes:

- Amor class
- semi-major axis > Earth's, \quad a >1 astronomical unit (AU)
- perihelion $>$ Earth's aphelion, $\quad \mathrm{q}>1.017 \mathrm{AU},<1.3 \mathrm{AU}$
- Apollo class
- semi-major axis $>$ Earth's,
- perihelion $<$ Earth's aphelion,

$$
\mathrm{a}>1 \mathrm{AU}
$$

$$
\mathrm{q}<1.017 \mathrm{AU}
$$

- Aten class
- semi-major axis > Earth's,
$\mathrm{a}<1 \mathrm{AU}$
- aphelion > Earth's perihelion, $\quad \mathrm{Q}>0.983 \mathrm{AU}$
- Atira class
- semi-major axis > Earth's, $\quad a<1$ AU
- aphelion $<$ Earth's perihelion, $\quad \mathrm{Q}<0.983 \mathrm{AU}$

A separate class definition exists for Potentially Hazardous Objects (PHO) which are larger than 140 m estimated diameter (() and on an orbit which approaches the Earth's to within 0.05 AU or less. [1] Note that the thresholds for perihelia and aphelia of the 'A' NEA classes do not imply automatically that a close approach geometry exists. Also, the fraction of comets (NEC, PHC) is very small in NEOs. [2]
Due to the location of the Earth within the cloud of NEOs, geometrical observation conditions are rarely favorable, especially for objects that cross the Earth's orbit. Of these Earth-Crossing Asteroids (ECA), Apollo class objects have most of their mostly outside of the Earth's, and Aten class objects mostly within. Favourable observation conditions only exist while they are near aphelion, outside of the Earth's orbit and while the Earth passes on the inside, closer to the Sun. For ground-based observations, most of the celestial sphere is inaccessible due to the additional interference of the Sun and Earth's atmosphere, in the form of the bright day-time sky, and extinction close to the horizon. Only during brief periods of opposition, for which aphelion of the object of interest and conjunction with the Earth have to coincide, detection probability within the capabilities of given equipment is high. Atira class NEAs, also known as Inner-Earth Objects orbiting the Sun entirely Interior to Earths Orbit (IEO) are still harder to detect than Aten class objects. Only 10 of an estimated > 1000 IEOs larger than $\emptyset 100 \mathrm{~m}$ are presently known, all but one of them in borderline Aten-like orbits.

EARTHGUARD I

EARTHGUARD I was a mission proposal studied under an ESA contract by the DLR Institute of Planetary Research with Kayser-Threde in July 2002 to January 2003. The mission concept revolved around the idea of sending a NEO detection telescope to an inner solar system orbit to observe NEOs, ECAs, and IEOs in opposition where they are easiest to detect by observing geometry, and without additional interference due to Earth's atmosphere.
The space segment studied included two design options, a separate spacecraft or an instrument added to another space probe, depending on available launches and at the time planned missions:

- instrument-only option:
- rideshare of the telescope mounted on an independent pointing platform on a space probe
- flight to Mercury studied, based on BEPI-COLOMBO as then envisaged
- independent spacecraft option:

○ dedicated launch to ~ 0.5 AU heliocentric orbit

- study focus on the use of advanced low-thrust propulsion in interplanetary space
- e.g. solar sail from GTO rideshare with own kick stage

The EARTHGUARD I mission was to be equipped with a $\emptyset 20 \ldots 35 \mathrm{~cm}$ reflector telescope using a 2048^{2} pixel resolution CCD camera augmented by 3 in-field star tracking sensors. A mission duration of 400 days was envisaged, and the detection of approximately 80% of all NEA's $>\varnothing 1 \mathrm{~km}$ expected in this time. [3,4,5]

The IEO search component of EARTHGUARD I evolved into the current ASTEROIDFINDER project in the German national 'Kompaktsatellit' programme of the DLR Research \& Development programmatic branch. [6] The EARTHGUARD I telescope design study baseline was, for some time and with extensive modifications, held as a fall-back option for the more advanced concept to be used in AsteroidFinder.

DEEP SPACE PROBES AND CAMERAS IN THE REGION OF THE INFERIOR PLANETS

Background

The past decade has seen a renaissance of exploration of the inferior planets, Mercury and Venus. Currently, three missions equipped with various cameras and spectrometers operate in the interior solar system; VENUS EXPRESS, MESSENGER, and AKATSUKI. More planetary research missions are planned for this decade, including the ESA mission BepiColombo. Also, solar research missions equipped with cameras now venture into interplanetary space, for example the pair of STEREO spacecraft orbiting the Sun ahead and behind the Earth in very similar orbits to it, to provide a complete coverage of the Sun in cooperation with Earth-based observatories, Earth-orbiting satellites such as SDO, and solar probes stationed at the Sun-Earth Langrange point L1 such as SOHO.

Spacecraft and Cameras

The following planetary research space probes equipped with cameras and sensitive spectrometers are currently active on orbits significantly interior to the Earth's or in the advanced stages of planning:

- VEnUs Express [7]
- Venus Monitoring Camera (VMC) [8]
- 17.5° Field of View (FoV), 13 mm focal length (f.l.), $f / 5$ wide-angle camera
- Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) [9]
- 64 mrad FoV, $f / 5.6$ UV/VIS channel, 2 nm resolution
- 64 mrad FoV, $f / 3.2$ near to mid IR channel, 10 nm resolution
- $0.45 \cdot 2.25 \mathrm{mrad} \mathrm{FoV}, f / 2 \mathrm{mid}$ IR channel, 3 nm resolution
- SPectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) [10]
- $1 \cdot 3.16^{\circ} \mathrm{FoV}, 118 \mathrm{~mm}$ f.l. UV channel, 0.55 nm resolution
- $2^{\circ} \mathrm{FoV}, 40 \mathrm{~mm}$ f.l. VIS to near IR channel, 0.55 nm resolution
- 180 mm f.l., $f / 4 \mathrm{mid}$ IR channel
- MESSENGER
- Mercury Dual Imaging System (MDIS) [11]
- $10.5^{\circ} \mathrm{FoV}, 78 \mathrm{~mm}$ f.l., multispectral Wide Angle Camera (WAC)
- $1.5^{\circ} \mathrm{FoV}, 550 \mathrm{~mm}$ f.l., $f / 22$ multispectral Narrow Angle Camera (NAC)
- Mercury Atmospheric and Surface Composition Spectrometer (MASCS) [12]
- $0.04 \cdot 1^{\circ} \mathrm{FoV}, 258 \mathrm{~mm}$ f.l., $f / 5$ front-end telescope
- resolution 0.6 nm UV/VIS, 4.7 nm resolution IR
- AKATSUKI $[13,14]$
- common FoV 12°
- Ultraviolet Imager (UVI)
- Lightning and Airglow Camera
- $8 \cdot 8$ photodiode array, 50 kHz , filters for airglow and lightning emission lines
- $1 \mu \mathrm{~m}$ Infrared Camera (IR1)
- 84 mm f.1., $f / 4$, multispectral near IR camera
- $2 \mu \mathrm{~m}$ Infrared Camera (IR2)
- 84 mm f.l., $f / 4$, multispectral mid-IR camera (cf.[15])
- Longwave Infrared Camera (LIR)
- $f / 1.4$, thermal IR camera, $240 \cdot 240$ bolometer array
- BepiColombo
- Spectrometers and Imagers for MPO BepiColombo Integrated Observatory System (SIMBIO-SYS) [16]
- $1.47^{\circ} \mathrm{FoV}, 800 \mathrm{~mm}$ f.l., $f / 8$ High Resolution Imaging Channel (HRIC)
- $5.3^{\circ} \mathrm{FoV}, 90 \mathrm{~mm}$ f.l., $f / 6$ multispectral Stereo Channel (STC)
- $0.25 \cdot 64 \mathrm{mrad}$ FoV, 160 mm f.l., $f / 6.4$ Visible and Infrared Hyperspectral Imager (VIHI), 6.25 nm resolution
- Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) [17]
- $4^{\circ} \mathrm{FoV}$, 50 mm f.l., $f / 2 \mathrm{mid}$ to thermal IR spectrometer, 90 nm resolution

Note that there is a general similarity with respect to the FoV classes of the cameras used in many planetary spacecraft which suggests that Narrow-, Medium-, and Wide-Angle Cameras of approximately $1.5^{\circ}, 5^{\circ}$, and $15^{\circ} \mathrm{FoV}$ are favoured, with 2 out of 3 usually present. The following table gives an overview of key camera parameters:

Tab. 1. Camera Parameters of Spacecraft in the Interior Solar System

DETECTION CAPABILITY OF EXISTING SPACE ASSETS FOR NEOS IN OPPOSITION

NEO Observation Feasibility Demonstration Scenarios

From the perspective of planetary probes, asteroid encounters and observations have long been a welcome bonus objective for the extended periods of interplanetary transfer. However, these asteroid observations have mostly been close and fast fly-bys. Observations in the context of Earth-based asteroid surveys and such as intended for EARTHGUARD I require continuous wide-area scanning and regular revisits for the purposes of transient object discovery, motion detection, classification, and tracking. Between these extremes lies the potential envelope of EARTHGUARD I -like technology demonstrations using existing in-space hardware or future interplanetary spacecraft:

- minimum scenario: one-off observation of a known bright object in opposition to the spacecraft - e.g. Ceres, Vesta, or large known NEA which happens to be within detection range
- maximum scenario: cruise-phase full asteroid survey implemented aboard the spacecraft
- continuous mosaic imaging; on-board motion detection, processing \& autonomy

Methods

To evaluate the general feasibility of the detection of NEOs from probes in the region of the inferior planets, the performance of the camera systems was studied based on published camera system parameters. Wherever data was lacking, information from comparable systems was substituted. The NEO target was assumed as a point source with the spectrum of a G0 star, seen from the orbit of Venus at 0.7 AU in opposition. A Signal-to-Noise (SNR) of 5 was assumed for object detection.

Results for Spacecraft Cameras

The following list gives a brief overview of the capabilities and possible NEO detection feasibility demonstration scenarios for the respective spacecraft and cameras which are marked by light green lines in Tab.1:

-	Venus Express
\bigcirc	Venus Monitoring Camera (VMC) - Fig. 1 filter: F4 (VIS) - $513 \mathrm{~nm}, 50 \mathrm{~nm}$ bandwidth
\bigcirc	even large NEOs would need to come exceptionally close to become detectable
\bigcirc	sensor large, but shared between 4 instrument channels
\bigcirc	no useful potential for Earthguard I -like technology demonstrations
\bigcirc	observation of very bright comets may occasionally become possible
\bullet	MESSENGER
\bigcirc	Mercury Dual Imaging System Narrow Angle Camera (MDIS NAC) - Fig. 2 filter fixed monochromatic - $750 \mathrm{~nm}, 100 \mathrm{~nm}$ bandwidth
\bigcirc	due to the limited time of exposure $\leq 10 \mathrm{~s}$, even large NEOs would need to come very close to become detectable
\bigcirc	large, > 100 km mainbelt asteroids can be detected
\bigcirc	a limited Earthguard I -like technology demonstration is feasible
-	AKatsuki
\bigcirc	$1 \mu \mathrm{~m}$ Infrared Camera (IR1) - Fig. 3 filter: $900 \mathrm{~nm}, 40 \mathrm{~nm}$ bandwidth
\bigcirc	$\begin{aligned} & 2 \mu \mathrm{~m} \text { Infrared Camera (IR2) } \\ & \text { filter: Zodiacal IPD }-1650 \mathrm{~nm}, 30 \mathrm{~nm} \text { bandwidth } \\ & \text { stated point source sensitivity: } 13 \mathrm{mag} \text { H-band in single exposure, } 2 \text { min integration } \end{aligned}$
\bigcirc	long integration, wide FOV \& many similar-bandwidth filters are available
\bigcirc	large NEOs would need to come close to become detectable
\bigcirc	large, > 100 km mainbelt asteroids can be detected
\bigcirc	the spacecraft is in a long cruise period to a re-encounter with Venus at ~ 0.7 AU
\bigcirc	Zodiacal InterPlanetary Dust (IPD) observations were part of the cruise to Venus
\bigcirc	extended Earthguard I -like technology demonstration is feasible taxonomy may be included for a subset of the detectable objects
	BepiColombo
\bigcirc	Spectrometers and Imagers for MPO BepiColombo Integrated Observatory System High Resolution Imaging Channel (SIMBIO-SYS HRIC) - Fig. 4 filter: panchromatic
\bigcirc	sub-km class NEOs can be detected - if long exposures $\sim 100 \mathrm{~s}$ are possible
\bigcirc	10 km class objects can be detected throughout the main belt - if long exposures possible
\bigcirc	Earthguard I-like observations could be conducted as a regular cruise component, survey patterns or region of interest adapted to the small FOV, e.g. Trojans limited taxonomy potential due to filter bandwidth and imaging channel contrast - if on-board data reduction implementation is feasible

SSSB Detection Limit Size-Distance Functions for Spacecraft Cameras

The following figures show the minimum size of detectable objects with respect to the distance from the spacecraft under the conditions given above, for the cameras as previously listed:

Asteroid Detectability from VenusExpress VMC F4(VIS)

Fig. 1. Detection Limit Size-Distance Functions for the Venus Express VMC channel using the F4(VIS) filter

Fig. 2. Detection Limit Size-Distance Functions for the MESSENGER MDIS Narrow-Angle Camera

Fig. 3. Detection Limit Size-Distance Functions for the AKATSUKI $1 \mu \mathrm{~m}$ Camera IR1 using the 900 nm filter

Asteroid Detectability from BepiColombo SIMBIO-SYS HRIC pan filter

Fig. 4. Detection Limit Size-Distance Functions for the BepiColombo SIMBIO-SYS HRIC (panchromatic)

OBJECTS AND OBSERVATION REGIONS OF SPECIAL INTEREST

From the interior of the respective planet orbits, co-orbital and L4/5 Trojans become more easily detectable. Also, the structure of the Interplanetary Dust (IPD) may be investigated, including its perturbations caused by the planets. Of particular interest with respect to planetary defence are observations of known PHAs to augment ground-based assets by the different perspective available, or to continuously refine the PHA orbit during periods of invisibility from Earth. As an example, the following table and figure show selected opposition encounters of three known PHAs with space probes currently in the interior solar system, and their orbits. Note that the orbit of AKATSUKI was propagated from the last available state before the failed Venus orbit insertion. It is therefore known to be inaccurate, but nevertheless believed to represent the general characteristics of the actual current orbit which are similar to the Venus-leading EARTHGUARD I design option using a separate spacecraft. [3] The orbit of Venus is virtually identical to that of VEnUS Express. BepiColombo is not shown for clarity. The characteristics of its possible envisaged trajectories depend on the actual launch date, but are similar to MESSENGER in general, with the addition of propelled cruise phases. Both present ample geometrical opportunities for observation of regions and objects of special interest in opposition due to the short orbital periods, especially of the revolutions mainly inside of Venus towards Mercury rendezvous.

Tab. 2. Spacecraft opposition encounters with selected PHA of interest and Fig. 5 colour code

Probe	Asteroid	Closest Approach
MESSENGER	Toutatis	$24 / 09 / 2009$
	1999RQ36	$21 / 09 / 2005$
	Apophis	$28 / 11 / 2006$
	Apophis	$08 / 10 / 2008$
Akatsuki	Apophis	$18 / 08 / 2018$

sun Inartial

Fig. 5. Orbit geometry of space probes currently in the interior solar system

REFERENCES

[1] D. Yeomans, R. Baalke, "NEO Groups", http://neo.jpl.nasa.gov/neo/groups.html as of 23 May 2011.
[2] D. Yeomans, D.K. Yeomans, A.B. Chamberlin, "Comparing the Earth Impact Flux from Comets and Near-Earth Asteroids", this conference.
[3] Kayser-Threde, DLR, "EARTHGUARD I - A Space-Based NEO Detection System - Executive Summary", 2003, http://www.esa.int/gsp/completed/neo/earthguard1_execsum.pdf.
[4] M. Leipold, A. von Richter, G. Hahn, A.W. Harris (DLR), E. Kührt, H. Michaelis, S. Mottola, "EARTHGUARD I - A NEO Detection Space Mission", Proceedings of Asteroids, Comets, Meteors - ACM 2002, ESA SP-500, http://adsabs.harvard.edu/full/2002ESASP.500..107L
[5] A.W. Harris (DLR), "Man sieht nur die im Dunkeln, die im Lichte sieht man nicht.", http://berlinadmin.dlr.de/HofW/nr/138/.
[6] R. Findlay, O. Essmann, J.T. Grundmann, H. Hoffmann, E. Kührt, G. Messina, H. Michaelis, S. Mottola, H. Müller, J.F. Pedersen, "A Space-based Mission to Characterize the IEO Population", this conference.
[7] M. Lauer, L. Jauregui, S. Kielbassa, "Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft", http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080012650_2008012553.pdf.
[8] W.J. Markiewicz et al, "VMC: The Venus Monitoring Camera", ESA SP-1295
[9] G. Piccioni et al, "VIRTIS: The Visible and Infrared Thermal Imaging Spectrometer", ESA SP-1295
[10] J.L. Bertaux et al, "SPICAV: Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus", ESA SP-1295
[11] S.E. Hawkins III, "The Mercury Dual Imaging System on the MESSENGER Spacecraft", Space Sci Rev (2007) 131: 247-338, DOI 10.1007/s11214-007-9266-3
[12] W.E. McClintock, M.R. Lankton, "The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER Mission", Space Sci Rev (2007) 131: 481-521, DOI 10.1007/s11214-007-9264-5
[13] ISAS, JAXA, "Venus Climate Orbiter "AKATSUKI / PLANET-C" - 4. Science instruments and targets", http://www.stp.isas.jaxa.jp/venus/E_instrument.html
[14] Nakamura et al, "Present Status of Japanese Venus Climate Orbiter", 3Nakamura.pdf
[15] M. Kimata et al, "PtSi Schottky-barrier infrared folcal plane arrays", Opto-Electronics Review 6(1), 1-10 (1998)
[16] E. Flamini et al., "SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter", Planetary and Space Science 58 (2010) 125-143, 30SEP2009
[17] G.E. Arnold et al, "Mercury radiometer and thermal infrared spectrometer - a novel thermal imaging spectrometer for the exploration of Mercury", 2008

The analyses, views and opinions expressed in this conference contribution are the authors' own. This work is not part of the programmatic framework of DLR and does not originate from it or any of its parts. This work received no dedicated funding by DLR. Designations used in this work are purely technical terms for the purpose of unambiguous identification within this study, and do not signify any kind of project or other formal status within or approval by DLR and may not be intended for use in communications with the wider public. The authors would like to thank DLR for the unbureaucratic, flexible and family-friendly working environment that has contributed significantly to the creation and development of this idea.

