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Thermodynamic Interpretation of

Cryogenic Injection Experiments

Daniel T. Banuti∗ and Klaus Hannemann†

German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Göttingen, Germany

This paper discusses a thermodynamic rather than mechanic discussion and interpre-
tation of cryogenic injection of nitrogen in the vicinity of the critical point. There is no
concensus in the literature on how to properly interpret and treat injection phenomena
at supercritical pressures. While it is clear that the supercritical fluid loses many distinct
liquid properties, such as heat of vaporization and surface tension, flows are being treated
like they were liquid. Liquid core lengths are being determined in experiments, distinct
droplets are tracked in computational fluid dynamic studies. And in fact, these approaches
prove to be very successful. Nevertheless, a more appropriate treatment is desireable,
taking into account the specifics of supercritical fluids. A contribution is attempted in this
paper. The concept of pseudo-boiling, a maximum in heat capacity associated with a strong
increase in specific volume, is discussed. It will be shown that the ensemble of supercritical
maximum heat capacity states is in fact an extension to the saturation curve. A novel in-
terpretation of the Clapeyron equation of thermodynamics in the limit of the critical point
and beyond will be given. It will be shown that this generalization is able to characterize
the pseudo-boiling line. Furthermore it will be shown that the slope (d log p/dT ) is constant
for supercritical conditions and equals the value at the critical point. The pseudo-boiling
approach is then applied to characterize injection experiments. It can be shown that the
power needed to reach the pseudo-boiling state correlates with the structure of the axial
density distribution.

I. Introduction

Cryogenic propellants are a common sight among today’s space propulsion systems. Cryogenic oxygen and
hydrogen are used to fuel main stage engines (such as the European Vulcain II or the American Space Shuttle
Main Engine) as well as upper stage engines (like the European Vinci). In these engines, liquid hydrogen
is heated by regeneratively cooling the combustion chamber before being injected as a gas. Oxygen on the
other hand remains cryogenic upon entering the chamber. Typically, for this propellant combination coaxial
injectors are employed where a stream of cold, dense oxygen is surrounded by a stream of gaseous hydrogen.
The exact thermodynamic state of the oxygen is dependent upon the combustion chamber pressure and
injection temperature and strongly influences the atomization behavior.
Fundamental theoretical and numerical analysis of injection and combustion of cryogenic propellants have
been carried out by Oefelein and Yang9 and Yang.14 Furthermore, in order to study these phenomena isolated
from the complications of reactive flow in a real high pressure engine environment, inert model experiments
are the accepted method of choice. Oschwald et al.10 give a thorough overview of these experiments.
However, detailed data are scarce. Some of the best documented experiments on inert cryogenic injection
have been carried out by Mayer et al.8 and Branam et al.2 Shadowgraphs, density distributions and
temperatures are published of cryogenic nitrogen injection into a high pressure nitrogen environment. They
report that the jet does not resemble a liquid jet. With particular importance to numerical modeling of
rocket engine injection, no droplets have been observed. The stream instead behaves like a gaseous jet -
albeit with liquid like densities.
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Multiphase terminology and concepts are typically used to characterize flow in the vicinity of the critical
point. Droplet models are employed successfully despite a lack of surface tension. Jet mixing is discussed
in terms of atomization, primary and secondary break-up, and vaporization. Estimation of the ‘liquid core
length’ is often used to characterize such flows despite the unclarity concerning the presence of a liquid phase
during this process. In fact, CFD, ranging from the original papers of Mayer and Branam (RANS) to the
recent publications of Schmitt et al.11 (LES) and Kim et al.6 (RANS), predicts a region of constant high
density right after the injector. This appears to supports the notion of a liquid core despite the supercritical
thermodynamic state - but it is contrary to experimental findings. Only two out of eight published axial
density distributions of Mayer and Branam exhibit a constant density core. A dense core is hence merely
a special case of supercritical injection. The authors of this paper1 suggest that the jet density decay is
a thermodynamic rather than a mechanical process, resembling vaporization rather than atomization. In
fact, it appears that injector wall heat flux can prevent the jet from showing a constant density core in the
injection region by accelerating the vaporization-like process. This is indicated by numerical computations
using the DLR TAU code (Gerhold et al.,4 Mack et al.7) extended by a real gas equation of state treatment
by Bartolome Calvo and Hannemann.3

The purpose of this paper is to extend this previous study by introducing a quantitative thermodynamic
interpretation of supercritical pseudo-boiling, as discussed by Oschwald et al.10 The Clapeyron equation of
phase equilibrium will be interpreted for supercritical states. This approach is then applied to interpret and
characterize the nitrogen injection experiments of Mayer quantitatively. Especially a correlation between
thermodynamic state and axial density distribution will be discussed.

II. Background

II.A. Nitrogen Injection Experiment

Starting point of this study was the analysis of nitrogen injection experiments by Mayer et al.8 and Branam
et al.2

A detailed description of the experiment has been given by Branam.2 In their experiments, cryogenic
nitrogen is injected at supercritical pressures into a chamber filled with nitrogen at room temperature.
Axial and radial density profiles, core length, jet spreading angles, length scales and shadowgraphs are
published for 4 MPa, 5 MPa, and 6 MPa chamber pressure, 100 K, 120 K, and 130 K fluid temperature
at 5 m/s and 2 m/s injection velocity. Test cases are compiled in Table 1, case numbering follows Mayer.
The temperature T1 is measured upstream in the injector, i.e. 90 mm upstream of the injector exit. A
thermocouple of 1 mm diameter is introduced into the free jet in two positions: axially, reaching 1 mm
inside the injector (temperature Tbinj), and radially, 1 mm downstream of the injector exit (temperature
Tainj). The thermodynamic state of these experiments is chosen to be close to the critical point of nitrogen.
This results in a sensitive dependence of density on temperature, as can be seen in Fig. 1(a). Solid lines
represent real gas data, taken from the NIST database, based on Span et al.,12 dotted lines correspond to
ideal gas data. RCM1a and RCM1b correspond to cases 3 and 11, respectively, and are often used test cases
as defined in the Rocket Combustion Modeling Workshop 2001.5 Published axial density distributions are
shown in Fig. 1(b).

II.B. Pseudo Boiling

The term ‘pseudo-boiling’, e.g. as used by Oschwald et al.,10 denotes the extension of the saturated pressure
curve into supercritical states. At subcritical pressures, the heat of vaporization needs to be added for a
substance to change its state through the saturated pressure curve. Approaching the critical point, the
heat of vaporization vanishes. Nevertheless, when isobarically heating a substance above the critical point,
a distinct peak in specific heat can be found which needs to be ‘passed’. This can be seen in Fig. 2(a).
The peak coincides with the region of maximum ∂ρ/∂T as can be seen in Fig. 1(a). Figure 2(b) shows the
saturated vapor curve of nitrogen from the triple point to the critical point. Added are points of maximum
cp for, from low to high pressures, 4, 5, 6, 7, 8, 9, 10 MPa. Data are taken from the NIST database, based
on Span et al.12 Thus, when changing a state isobarically through the region of maximum specific heat, an
energy

∫
cpdT has to be added and the substance’s specific volume increases significantly. Hence the term

‘pseudo-boiling’, as it resembles subcritical vaporization. Eq. (1) quantifies the needed power PV to heat a
flow from the injection temperature Tin to the pseudo boiling temperature Tpb as the product of the required
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Table 1. Overview of test matrix from Mayer et al.8

Case pc v1 T

in MPa in m/s in K
1 4.0 2.0 120.0
2 4.0 2.0 130.0
3 4.0 5.0 120.0
4 4.0 5.0 130.0
5 5.0 2.0 120.0
6 5.0 2.0 130.0
7 5.0 5.0 120.0
8 5.0 5.0 130.0
9 6.0 2.0 120.0

10 6.0 2.0 130.0
11 6.0 5.0 120.0
12 6.0 5.0 130.0
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(b) Axial density distributions of nitrogen injection exper-
iments from Mayer.8

Figure 1. Cryogenic nitrogen density at supercritical pressures.

energy qV per unit mass and the massflux ṁ.

PV = ṁ · qV = ṁ ·
Tpb∫

Tin

cp(T ) dT = ρ · u · A ·
Tpb∫

Tin

cp(T ) dT (1)

II.C. Clapeyron Equation

Determination of a phase equilibrium is discussed in many textbook, see e.g. Weigand et al.13 With only one
substance present, at thermal and mechanical equilibrium, equilibrium can be expressed as specific Gibbs
free enthalpy equilibrium between states ′ (liquid) and ′′ (vapor)

dg′ = v′dp − s′dT = dg′′ = v′′dp − s′′dT (2)

where p, T , s, and v are pressure, temperature, specific entropy, and specific volume, respectively. This can
be rearranged to find

dp

dT
=

s′′ − s′

v′′ − v′ (3)
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Figure 2. Behavior of nitrogen at the critical point.

Using ∆s = s′′ − s′, ∆v = v′′ − v′ and ∆s = ∆h/T , where h is specific enthalpy, yields the Clapeyron
equation

dp

dT
=

∆s

∆v
=

1
T

∆h

∆v
(4)

When applying Eq. (4) at the saturation curve

dps

dT
=

1
T

∆hV

∆v
(5)

∆hV can now be interpreted as the heat of vaporization, ∆v is the increase in volume due to vaporization.
Figure 3 shows how s and v change over a phase change for nitrogen at 3.2 and 3.35 MPa. Data are again
taken from the NIST database, based on Span et al.12 On the left side, liquid values can be read off, on the
right side are vapor data. It can be seen, how the difference decreases with growing pressure and vanishes
as the supercritical pressure of 3.50 MPa is reached.
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Figure 3. Change of specific entropy and volume at saturation curve.
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III. Results

III.A. Supercritical Interpretation and Extension

Figure 3 shows how ∆s, i.e. ∆hV/T , and ∆v decrease when the pressure is increased from 3.2 MPa to
3.35 MPa. Approaching and exceeding the critical point, the process changes from discontinuous to con-
tinuous. The heat of vaporization ∆hV vanishes. No discontinuous increase in volume occurs anymore,
i.e. ∆v also vanishes. In summary: the discontinuous phase change seizes to exist and is replaced by a
continuous, gradual change in properties for isobaric heating at supercritical pressures. Yet, the concept of
pseudo-boiling is plausible, Fig. 2(b) shows that the pseudo-boiling line is indeed a valid extension of the
saturation curve. How can this be interpreted thermodynamically? How can the Clapeyron equation be
evaluated when the heat of vaporization has vanished?
Watching ∆s and ∆v as the critical point is approached and passed, both approach zero, i.e. ∆s → 0 and
∆v → 0. While evaluating a zero ∆hV or ∆v alone does not make sense, evaluating the ratio of the two does.
In fact, letting both differences approach zero is this is the mathematical process of obtaining a differential.
Thus, approaching critical conditions(

dp

dT

)
s

=
(

∆s

∆v

)
s

p,T→pcr,Tcr−−−−−−−−→
(

∂s

∂v

)
cr

(6)

In the supercritical regime (
dp

dT

)
pb

=
(

∂s

∂v

)
pb

(7)

This can be readily applied in Fig. 3. It can be seen how ∆s and ∆v decrease towards the critical pressure
of 3.39 MPa, the two curves for liquid and vapor merge into one upon exceeding the critical pressure as can
be seen for 3.5 MPa. Figure 2(b) shows that the line of maximal heat capacities attaches smoothly to the
saturation curve. Thus now everything is at hand to interpret the 3.5 MPa curve in Fig. 3. The tangent
at the curve in the point of maximum cp is the appropriate slope to extract from this data to describe the
pseudo-boiling curve, Eq. (7).
Going back to Fig. 2(b) one more thing can be found: while the slope (d log p/dT )s is gradually decreasing in
the subcritical region, it is constant upon entering a supercritical state and equal to the slope at the critical
point. (

d log p

dT

)
s

T→Tcr−−−−→
(

d log p

dT

)
cr

=
(

d log p

dT

)
pb

= Ĉ (8)

The equality is still valid for a logarithm of a different base, such as the natural logarithm, only the constant
needs to be adapted. (

d ln p

dT

)
pb

=
(

d ln p

dT

)
cr

= C (9)

Rearranged
ppb∫

pcr

d ln p =

Tpb∫
Tcr

CdT (10)

this can be readily integrated
ppb = pcr exp [C(Tpb − Tcr)] (11)

For nitrogen, as shown in Fig. 2(b), the constant is estimated to C = 0.044, critical pressure and temperature
are 3.39 MPa and 126.2 K, respectively.

III.B. Axial Density Distributions

III.B.1. Analysis

Results of the cryogenic nitrogen injection experiments by Mayer et al.8 and Branam et al.2 have been
shown in Fig. 1(b). In order to compare the density distributions, they have been nondimensionalized using
the injection density ρin and the farfield density ρ∞.

ρ+ =
ρ − ρ∞

ρin − ρ∞
(12)
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Nondimensionalized axial density distributions are then plotted, grouped by temperature and injection ve-
locity in Fig. 4. Unfortunately, no density distribution data have been published for cases 1, 2, 11, 12.
Now, two curves are plotted in each figure, for identical conditions except for the pressure. It can be seen
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Figure 4. Nondimensional axial density distributions from Mayer.8

that the curves in each figure clearly resemble each other. Furthermore, a categorization can be carried out
depending on the density distribution characteristics. Figure 4(a) shows a constant density core and will be
dubbed type ‘c’. The distributions in Fig. 4(b) exhibit a strictly monotonous slope, hence type ‘s’. Finally,
Figs. 4(c) and 4(d) show distributions that decline right away, before reaching an intermediate plateau and
will be dubbed type ‘p’.
Carrying out an analysis using traditional multiphase methodology, one would expect a liquid core of con-
stant density in each case. However, this is clearly not the case. How can this be explained? First, available
data needs to be sighted. Data obtained in the experiments is compiled in Tab. 2, following Mayer’s nomen-
clature, left of the vertical line. These are chamber pressure pc, inflow velocity v1, temperature upstream in
the injector T1, temperature in injector exit measured normal to the flow, Tainj, and parallel to the flow,
Tbinj. Derived data are added to the right of Tab. 2. These are the injection density, taken from the NIST
database corresponding to pc and T1, pseudo-boiling temperature Tpb for the target pressure (see Tab. 1),
pseudo-vaporization power PV,Ta according to Eq. (1) from Tainj to Tpb, and momentum flux İ = v1ṁ and
density distribution type.

Given the lack of liquid properties at supercritical pressures, as discussed before in,1 the data will be
interpreted in terms of mechanical interaction and thermodynamic state. If this is true, similarities between
the axial density distributions should show up when they are grouped by temperature and injector residence
timea, i.e. velocity.
Momentum flux is plotted in Fig. 5 to compare the mechanical attributes of the different cases. And indeed,
cases 5, 6, 9, 10, which exhibit the same plateau behavior, appear with a comparable momentum flux.

aThis needs to be taken into account to allow for injector wall heat flux.
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Table 2. Measured values from Mayer et al.,8 T1 from Branam et al.2 and derived data

Case pc v1 T1 Tainj Tbinj ρ(pc, T1) ṁ PV,Ta İ Tpb Type
in MPa in m/s in K in K in K in kg/m3 in kg/s in J/s in kg m/s2 in K

1 3.96 1.8 120.4 130.0 122.2 560.6 3.84e-3 -29.2 6.90E-03 129.8 -
2 3.95 2.7 129.4 140.0 131.9 349.1 3.58e-3 -219.2 9.67E-03 129.8 -
3 3.97 4.9 120.9 126.9 122.2 555.1 1.03e-2 321.8 5.07E-02 129.8 c
4 3.98 5.4 130.7 137.0 133.3 258.9 5.31e-3 -279.5 2.87E-02 129.8 s
5 4.90 2.0 120.7 131.0 122.6 575.5 4.37e-3 114.4 8.75E-03 134.9 p
6 4.90 1.9 129.8 140.0 131.5 464.0 3.35e-3 -106.4 6.37E-03 134.9 p
7 5.01 4.5 120.7 126.2 122.5 575.5 9.84e-3 454.5 4.43E-02 134.9 c
8 5.00 4.9 130.2 135.7 131.7 456.6 8.50e-3 -57.4 4.17E-02 134.9 s
9 5.85 2.0 120.7 135.0 122.8 589.7 4.48e-3 91.4 8.97E-03 139.2 p

10 5.88 1.9 129.9 140.5 131.9 501.8 3.62e-3 -20.3 6.89E-03 139.2 p
11 5.98 4.9 121.7 128.7 123.3 581.7 1.08e-2 652.6 5.31E-02 139.2 -
12 5.96 4.9 130.8 135.4 132.3 490.8 9.14e-3 287.9 4.48E-02 139.2 -

However, no distinct difference can be seen between cases 7 and 8 whereas their density distributions are
very different. Evaluating Eq. (1) for each of the cases shown in Table 2 yields the required power to reach

Figure 5. Momentum of jet emanating into chamber.

the pseudo-boiling state. The results are shown in Fig. 6. Here, cases 3 and 7, which are the only ones
exhibiting a dense core distribution, clearly stand out from the rest. Apparently, the dense core cases are
also the cases which require the highest amount of pseudo-vaporization power.

III.B.2. Interpretation

Figure 4 reveals that the suggested grouping is indeed reasonable. In each figure, the axial distributions
clearly show similarities to each other. Fig. 4(a) is the only group that exhibits a constant density core.
Fig. 4(b) on the other hand shows a rapid decline of density from the injector exit. Figs. 4(c) and 4(d)
actually resemble each other in that they show a density drop from the injector but reach a plateau before
dropping further.
This can be interpreted using Fig. 6. Cases 3 and 7 in Fig. 4(a) are the ones with the by far highest required
power to reach the pseudo-boiling state. Thus, it takes significant time until enough heat is transferred to
the fluid to significantly reduce its density. Cases 5, 6, 9, 10 are already close to the pseudo-boiling point.
Cases 5 and 6 have the highest power need which reflects on the higher density plateau.
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Figure 6. Power required to reach the pseudo-boiling state in steady flow.

Cases 5, 6, 9 , and 10 show a distinct similarity in the momentum flux plot Fig. 5 and in the density
distribution Figs. 4(c) and 4(d). This suggests that a mechanical mechanism is dominant is these cases.
The power approach is not capable of differentiating between cases of low required power (e.g. slope case
8 is grouped between the plateau types 5 and 6), but clearly points out dense core types. The momentum
approach is not capable of differentiating between high momentum cases (core type 7 and slope type 8 almost
have the same value) but reflects similarity between the plateau cases 5, 6, 9, and 10.

IV. Conclusion

This paper has suggested a thermodynamic interpretation approach to supercritical fluid behavior, in
particular cryogenic injection.
The concept of the Clapeyron equation could be generalized and applied to supercritical states. It could
thus be shown that pseudo-boiling can be understood as a valid thermodynamic concept. The state can be
described using the extended Clapeyron ansatz. It is characterized by a maximum heat capacity of the fluid,
along a large dependency of volume to temperature. It thus really resembles boiling, albeit in a continuous
form. An equation has been introduced that encompasses all supercritical states of maximum specific heat
capacity to a pseudo boiling line.
Injection experiments have been analyzed with regard to the occurrence of a high density core, as typically
witnessed in subcritical injection. Three distinct density distributions have been identified, a dense core, a
monotonous slope, and a plateau. Thus, the dense core is merely a special case in supercritical injection. A
thermodynamic approach, regarding the power needed to reach the pseudo-boiling state, has been able to
point out the dense core cases. This indicates a correlation between supercritical cryogenic jet evolution and
their thermodynamic state. The plateau cases could best be characterized using the mechanical approach
employing the momentum flux. Hence, for some cases, cryogenic jet disintegration resembles a pseudo-
vaporization process more than a mechanical atomization.

References

1D.T. Banuti and K. Hannemann. Effect of injector wall heat flux on cryogenic injection. In Proceedings of the 46th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, number AIAA-2010-7139, Nashville, USA, 2010. AIAA.

2R. Branam and W. Mayer. Characterization of cryogenic injection at supercritical pressure. Journal of Propulsion and
Power, 19(3):342–355, 2003.

3J. Bartolome Calvo and K. Hannemann. Numerical simulation of liquid rocket engine cooling channels. In Proceedings
of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, 2009.

4T. Gerhold, M. Galle, O. Friedrich, and J. Evans. Calculation of complex three-dimensional configurations employing
the DLR-TAU-code. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, number AIAA-1997-167, Reno, USA,
1997. AIAA.

5Oskar J Haidn. Proceedings of the second international workshop rocket combustion modeling - atomization, combustion
and heat transfer. Lampoldshausen, 2001.

6T. Kim, Y. Kim, and S.-K. Kim. Numerical study of cryogenic liquid nitrogen jets at supercritical pressures. The Journal

8 of 9

American Institute of Aeronautics and Astronautics

Page 8 of 9

http://mc.manuscriptcentral.com/aiaa-mjpc11

47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9th Annual International Energy Conversion Engineering Conference



of Supercritical Fluids, 56:152–163, 2011.
7A. Mack and V. Hannemann. Validation of the unstructured DLR-TAU-code for hypersonic flows. In Proceedings of the

32nd AIAA Fluid Dynamics Conference and Exhibit, number AIAA-2002-3111, 2002.
8W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong. Raman measurements of cryogenic injection at super-

critical pressure. Heat and Mass Transfer, 39, 2003.
9J.C. Oefelein and V. Yang. Modeling high-pressure mixing and combustion processes in liquid rocket engines. Journal

of Propulsion and Power, 14(5):843–857, 1998.
10M. Oschwald, J.J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley. Injection of fluids into

supercritical environments. Combustion Science and Technology, 178:49–100, 2006.
11T. Schmitt, L. Selle, B. Cuenot, and T. Poinsot. Large-eddie simulation of transcritical flows. Comptes Rendus Mecanique,

337:528–538, 2009.
12R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, and A. Yokozeki. NIST Chemistry WebBook, NIST Standard

Reference Database Number 69, chapter A Reference Equation of State for the Thermodynamic Properties of Nitrogen for
Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. National Institute of Standards and Technology, Gaithersburg
MD, 20899, http://webbook.nist.gov, (retrieved November 12, 2010)., 2010.
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