NS

CS

Slide '

14.04.2011

adata

MOBILITY CHALLENGES AND POSSIBLE SOLUT FOR LOW-GRAVITY PLANETARY BODY EXPLOR ION

F. Herrmann⁽¹⁾, S. Kuß⁽¹⁾, B. Schäfer⁽¹⁾

¹ German Aerospace Center (DLR), Institute of Robotics and Mechat

Oberpfaffenhofen, D-82234 Wessling, Germany

ASTRA 2011, April 12 - 14, Nordwijk

Et.

Motivation

- Exploration of small bodies is challenging
 - Microgravity
 - Environmental conditions
 - Deep space missions
- ✓ Testing of microgravity mobility systems is impossible on earth
 - Simulation (not valid without any tests)
 - Alternative tests (mock-up)
 - Microgravity tests
- → Hardware development
 - ✓ Test-rigs
 - ✓ Breadboard
 - Flight model
- Electronics and controller development for
 - Deep space mission requirements
 - High miniaturization
 - Simulation support

Small bodies environment

Microgravity

Gravitational force depends on

- mass distribution/density
- distance of body centre
- position on target body

Undefined soil conditions

Ground shape Material

Behaviour while interacting

Mobility system requirements

Finding a solution

- Multi body system (MBS) simulation model
 - Small body (or representative) environment
 - Mobile system
- Gravitation model of the target body
 - Simple (mostly sufficient)
 - Sophisticated (if needed)
- Contact models
 - Polygonal contact model PCM
 - Soil contact model SCM (DLR developed)
- Parameter variations
 - Test out suitable model parameters
 - Sensitivity analysis to environment parameters

Parameter	Unit	Value
Young's modulus	$[N/m^2]$	4.72e5
Poisson ratio	[-]	0.4
Layer depth	[m]	0.02
Areal damping	[Ns/m ³]	1.0e8
Damping depth	[m]	0.02
Friction coefficient µ	[-]	0.45

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

MOBILITY CHALLENGES AND POSSIBLE SOLUTIONS FOR LOW-GRAVITY PLANETARY BODY EXPLORATION> Florian Herrmann > 14.04.2011

Simulation: Wheeled rover in microgravity (1)

- → Example model
 - ✓ 6-wheeled rover
 - ExoMars (breadboard) kinematics
 - Mass of 102 kg reproduce ground loads of a 300 kg rover on Mars
 - Rover behaviour covered by hardware test experience
- Scenario 1
 - Earth gravity
 - Ascending slope of 11 deg
 - Crossing an obstacle

Simulation: Wheeled rover in microgravity (2)

- → Test: Reducing gravity step by step
 - Scenario 2: 10 % of earth gravity
 - Scenario 3: 2.5 % of earth gravity

- Not considered
 - Possible change of soil behaviour due to microgravity
 - Microgravity-specific modification possibilities

2.5 % of g

Simulation: Wheeled rover in microgravity (3)

1.0 % of g

- Scenario 4: 1.0 % of earth gravity
 - Still 1000 x higher gravity than usually on small bodies!
- Results
 - Great impact of microgravity on traction performance
 - Conventional kinematics do not work in this environment
 - Less wheel loads mean less applicable torque
 - Disturbances can lead to uncontrollable dynamics, e.g. wheel lift-off
 - Very slow reaction due to microgravity

Hopping mechanisms

- Previous missions
 - Phobos hopper (43 kg)
 - spring-driven brackets
 - 10 hops
 - ✓ 20 meters each
 - ✓ MINERVA I & II (0.6 kg)
 - Flywheel driven
 - ✓ Lifetime: 36 hrs
- Both were lost before operating on the target's surface

Trade off: Definition of a hopper concept (1)

- ➤ Requirements: MASCOT (DLR-RY)
 - 10 kg lander package
 - Target body 1999 JU3
 - ✓ surface gravity: 1.7e-5 g
- → Example: Only two concepts
 - Arm concept
 - Excenter driven concept
- ✓ Other tested concepts
 - Spring driven concepts
 - ✓ Flywheel
- ✓ Important parameters
 - Robustness of motion
 - Estimated power consumption
 - Mechanical issues
 - bearing & mounting design
 - complexity

Trade off: Definition of a hopper concept (2)

- → Example scenario
 - → Gravity: 1.7 * 10⁻⁵ g
 - Different soil characteristics left/right
 - ✓ PCM

$$v_0 = 0.5 * v_{esc} = 0.16 \text{ m/s}$$

 → Lever arm concept

Trade off: Definition of a hopper concept (3)

- → Example scenario
 - → Gravity: 1.7 * 10⁻⁵ g
 - Different soil characteristics left/right
 - ✓ PCM

$$r v_0 = 0.5 * v_{esc} = 0.16 \text{ m/s}$$

 → Excenter driven concept

Trade off: Definition of a hopper concept (4)

- ✓ Reasons for simulation-supported trade-off
 - Concept decision in early phase (A)
 - Not yet all information available
 - target properties
 - ✓ final system parameters (mass..)
 - Many open questions
 - It is easy with parameter variation to compare concepts
- Results of the trade-off
 - Excenter tappet concept is the most promising for given mission requirements

Parameter Variation: Deviation of mass moment inertia (1)

- ✓ When concept is fixed
 - Get information about system behaviour
 - Improve dynamics
 - Support design process
 - Component selection
- Parameter variation example
 - Hopping scenario
 - Variation of the inertia tensor (4x)
 - Observe impact on dynamic behaviour
- Desired results
 - Specification of acceptable inertia deviation
- ✓ Other possible variations
 - Position of CoM
 - Drive control strategies

Parameter Variation: Deviation of mass moment inertia (2)

- ➤ Note: Slow motions due to microgravity
 - Realtime duration of this action: 400 s / 6:40 min
 dev02

dev01

	х	У	Z
х	0,0784	0	0
у	0	0,1152	0
z	0	0	0,1505

	х	Y	Z
x	0,0784	0,015	0
у	0,015	0,1152	0
z	0	0	0,1505

Parameter Variation: Deviation of mass moment inertia (3)

dev03

	x	у	Z
х	0,0784	0	0
У	0	0,1152	0,015
z	0	0,015	0,1505

dev04

	x	у	Z
x	0,0784	0	0,015
у	0	0,1152	0
Z	0,015	0	0,1505

in der Helmholtz-Gemeinschaft

MOBILITY CHALLENGES AND POSSIBLE SOLUTIONS FOR LOW-GRAVITY PLANETARY BODY EXPLORATION> Florian Herrmann > 14.04.2011

Component development (1)

- → Goal of the ParVar: identify required drive speed for small hop
- Parameter variation
 - ✓ 4 x K_L (proportional gain for position control): 5...20
 - ✓ 45 x T (time constant for drive action): 0.1 ... 1sec
 - 180 variations

Component development (2)

→ Results

in der Helmholtz-Gemeinschaft

- Height (z-position)
- Required motor torque 7

Slide 18

MOBILITY CHALLENGES AND POSSIBLE SOLUTIONS FOR LOW-GRAVITY PLANETARY BODY EXPLORATION> Florian Herrmann > 14.04.2011

Component development (3)

- → Best result
 - ✓ K_L = 5
- ✓ Motor
 - Less than 5 mNm without margins and security
 - ✓ Runs less than 0.5 s
 - Maximum drive speed: 820 rad/s or 7830 rpm
 - Relocation distance: 0.79 m
 - ✓ Estimated motor current: 0.55 A

Component development (4)

- ✓ Results are used for calculating
 - Input & output speed of the gear
 - Required current
- ➤ This leads to suitable components
 - ✓ Motor
 - ✓ Gear
 - Controller / power electronics
- → Resulting action
 - Small hop
 - ✓ Duration: 130 s (low gravity!)

DLR RM activities overview

in der Helmholtz-Gemeinschaft

Slide 22

DLR-RM test facility: Mock-up (1)

- - Impossible without modifications
- Mock-up: Highly scaled test model
 - Off-the-shelve components
 - Less mass
 - More power
 - Increased excenter masses
 - Different mass distribution
 - Gravity compensation: pendulum
 - Simulation verification

DLR-RM test facility: Mock-up (2)

- ✓ First test results
 - Pendulum: 2 m
- → Comparison
 - ✓ Test
 - Simulation

Slide 23

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

MOBILITY CHALLENGES AND POSSIBLE SOLUTIONS FOR LOW-GRAVITY PLANETARY BODY EXPLORATION> Florian Herrmann > 14.04.2011

Outlook

- ➤ More mock-up tests
 - Improved test modes
 - pendulum length: up to 10 m
 - Control strategies
 - start & stop position
 - drive speed
 - Different ground conditions
- ✓ Breadboard microgravity tests
 - Drop tower
 - Parabolic flight
- - Mock-up tests
 - Microgravity tests
 - ✓ Flight model

MASCOT is under the lead of DLR-RY (Bremen) and proposed for the Hayabusa-2 mission of JAXA

