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Abstract

The friction forces generated during braking between
brake pads and discs produce high thermal gradients
on the rubbing surfaces. These thermal gradients may
cause braking problems such as brake fade, premature
wear or hot spotting and the associated hot judder phe-
nomenon in the frequency range below 100 Hz.

Further consequences are comfort reductions, a
defective braking process, inhomogeneous wear, cut-
backs of the brake performance and even damage of
brake components.

The present paper proposes a modeling concept
that is targeted on this field of application and in-
troduces the new Modelica class ThermoelasticPlate,
which is implemented in the DLR FlexibleBodies li-
brary.

Keywords: Disc brake, Modal multifield ap-
proach, Thermoelasticity

1 Introduction

Friction braking is necessarily related to high thermal
loads which lead to high temperatures at the surface of
brake discs and to large thermal gradients as well. The
friction forces in turn depend on temperature, on load
and sliding speed [1] so that the braking performance
and the related wear phenomena are known to be ruled
by a complex interrelationship.

In addition, the thermal loads can initiate the on-
set of unevenly distributed hot spots or bands and ther-
mally deformed brake discs [2], [3]. Since the brake
pads then slide upon a non-smooth surface while the
brake disc rotates, the brake system vibrates, noise is
generated and undesirable wear occurs.

Due to the conduction of heat to other components
such as the caliper, the bearing or the brake fluid fur-

∗Updated and revised version of the paper published at the 8th
International Modelica Conference, March 20-22, 2011, Dresden.

ther performance reducing or even dangerous effects
such as brake fluid boiling and vaporization have been
reported by several authors, see e.g. [4].

Besides experimental studies the finite element
method (FEM) [5], [6], [7] [8] or analytical techniques
[9] [10] are utilized to analyze the thermal and thermo-
elastic behavior of brakes in literature.

Both methods have advantages and provide valu-
able results, but both methods are not well suited, if
complex scenarios such as the interaction of brakes
with suspensions or vehicle control systems are in-
vestigated and a system dynamical point of view is
adopted.

To this purpose the present paper proposes a novel
model of a moderately simplified brake disc. Depend-
ing on the user input the thermo-elastic behavior of
brake discs is described with approximately 100 up to
1000 degrees of freedom.

The thermal field of the disc is discretized in
three dimensions and the associated states are speci-
fied likewise in Lagrangian or in Eulerian representa-
tion. An annular Kirchhoff plate is adapted to evaluate
the deformations according to the uncoupled thermo-
elastic theory [11, Ch. 2] presuming that the mechani-
cal terms in the heat conduction equations are negligi-
ble.

In circumferential direction the disc is assumed
to be rotational symmetric, in axial direction differ-
ent layers with different heat capacity and conduc-
tion properties and multiple surfaces, where cooling
by convection occurs, may be defined.

In order to implement this concept the Modelica
class ThermoelasticPlate has been introduced into the
commercial DLR FlexibleBodies library. This paper
presents the underlying theory on thermal and thermo-
elastic fields, explains the user interface of the Ther-
moelasticPlate class and gives a simulation example.
The final section gives an outlook to further efforts in
research and modeling of friction brakes and its vali-
dation, which is supposed to be initiated by the novel
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modeling approach.

2 Thermal Field

2.1 Weak Field Equations

In order to describe the thermal behaviour of the
brake disc the weak equations for the temperature field
ϑ(c, t) as functions of the spatial position in cylindri-
cal coordinates c = (r, φ, z)T and time t are deduced
from the principle of virtual temperature, see e.g. [12,
(7.7)] or [13, (1.3.33)]:

∫
V

[−(∇δϑ)Tq+ρc ϑ̇δϑ] dV + . . .

. . .+
∫
B

qT
BnBδϑ dB = 0 ,

(1)

where ρ denotes the density, c the specific heat capac-
ity, dB the boundary element and nB the outer unit
normal vector. q symbolizes the heat flux according
to Fourier’s law of heat conduction depending on the
temperature gradient ∇ϑ and the thermal conductivity
matrix � [11, (1.12.16)]:

q =−�∇ϑ (2)

The boundary heat flux qB may be given explicitly
or, if convection occurs, may be specified by the film
coefficient h f and the bulk temperature ϑ∞ of the fluid
[11, Sec. 5.6]:

qT
BnB =−qB−h f (ϑB−ϑ∞) . (3)

2.2 Modal Approach

The discretization of the scalar temperature is per-
formed using the Ritz approximation that allows to
separate the thermal field description by a finite-
dimensional linear combination of two parts, the first
one considers thermal modes and is spatial depen-
dent, i.e. ΦΦΦϑ = ΦΦΦϑ(c) and the second one repre-
sent the modal amplitudes and is time dependent, i.e.
zϑ = zϑ(t):

ϑ(c, t) =ΦΦΦϑ(c)zϑ(t) (4)

The spatial mode functions are formulated using
the separation approach of Bernoulli for the spatial co-
ordinates as well, so that (4) may be rewritten as fol-

Figure 1: Example set of B-splines to discretize the
thermal field in radial and axial direction.

lows:

n

∑
i=1

Φϑi(c)zϑi(t) =
n

∑
i=1

Ri(r) Ψi(φ) Zi(z) zϑi(t) =

=
lm

∑
l=1

km

∑
k=0

mm

∑
m=1

Rl(r) ⋅ cos(kφ) ⋅Zm(z) ⋅ zϑi(t)+

+
lm

∑
l=1

km

∑
k=1

mm

∑
m=1

Rl(r) ⋅ sin(kφ) ⋅Zm(z) ⋅ zϑi(t) ,

with i = 1,2, . . . ,n , n = (lmmm)(2km +1) .

(5)

According to Walter Ritz [14], the trial functions
have to be linearly independent and components of a
complete system, so that the number of i may be in-
creased as needed in order to improve the approxima-
tion. For Rl(r) and Zm(z) B-splines [15] as shown in
Fig. 1 have been chosen as trial functions in radial and
axial direction, respectively.

The harmonic waves (or Fourier series expan-
sion) Ψi(φ) are appropriate in circumferential direc-
tion, since

∙ they allow to represent cyclic properties, i.e.
Ψi(φ) = Ψi(φ+2π),

∙ they are simple to integrate from 0 to 2π,

∙ their orthogonality leads to block-diagonal sys-
tem matrices, i.e. the entire system of equations
is split up into decoupled sub-systems,

∙ they will later on be exploited to provide a Eule-
rian description of the thermo-elastic plate.

2.3 Discretized Field Equations

If (5) is inserted into (1), the volume integrals can be
separated from the terms that dependent on time. As a



result, the linear thermal field equation is obtained:

Cϑϑżϑ +(Kϑϑ +KϑR)zϑ =QϑN qB +QϑR ϑ∞ , (6)

where the volume integrals are defined, inter alia using
the abbreviationBϑ :=∇ΦΦΦϑ, as follows [16, Tab. 2.5]:

the heat capacity matrix: Cϑϑ :=
∫

V
ρc ΦΦΦT

ϑ
ΦΦΦϑ dV

the conductivity matrix: Kϑϑ :=
∫

V
BT

ϑ
�Bϑ dV

the Robin load matrix: KϑR :=
∫

B
h f ΦΦΦT

ϑ
ΦΦΦϑ dB

the Robin load vector: QϑR :=
∫

B
h f ΦΦΦT

ϑ
dB

the Neumann load vector: QϑN :=
∫

B
ΦΦΦT

ϑ
dB

These volume integrals may therefore be evalu-
ated in advance to the simulation or time integration,
respectively.

Note, that neither (6) nor (1) comprehend terms
that express the thermodynamics of deformations, so
the so-called thermo-elastic damping phenomenon is
disregarded [11, Ch. 2]. This approach is commonly
known as uncoupled thermo-elastic theory, which nev-
ertheless covers heat energy dissipation of mechanical
processes. Indeed, e.g. friction initiates an associated
heat flux qB and therefore enters (6) as external load
QϑNqB which corresponds to Neumann boundary con-
ditions in the partial differential equation related to (6).

2.4 The Eulerian Description

Figure 2: Coordinate transformation with angle χ, that
leads from the Lagrangian to the Eulerian description.

It is now considered that the brake disc performs
a rotation around its central axis specified by the angle
χ(t). So far the temperature field is described in the
so-called Lagrangian point of view [17, Sec. I.3], i.e.
the reference frame follows the rotation as it is shown
for the coordinate system named B in Fig. 2.

However for the specific use case treated here it
may make sense to resolve the temperature field of the

disc in frame A in Fig. 2. In other words, the observer
does not rotate with the disc but looks on the plate from
the outside, from a point in rest concerning the rotation
with angle χ(t).

This concept is the so-called Eulerian description
[17, Sec. I.4] and is widely used in fluid dynamics,
where the motion state of the fluid at a fixed point in
space is presented. Due to the rotational symmetry
properties of the brake disc the Eulerian description
can here be formulated in an elegant and convenient
way.

For theoretical derivation the coordinate transfor-
mation

φ = θ−χ (7)

is defined, where θ specifies the angular position of an
observed point on the brake disc resolved with respect
to the Eulerian reference system A in Fig. 2.

Furthermore it is assumed that for every trial func-
tion in (5) that employs a sin(kφ)-term an associated
trial function is present where the sinus- is replaced by
the cosinus-function only, but Rl(r), Zm(z) and k are
identical, so that mode shape couples c1 and c2 exist:

c1(r,φ,z) = Rl(r) ⋅Zm(z) ⋅ sin(kφ) ,

c2(r,φ,z) = Rl(r) ⋅Zm(z) ⋅ cos(kφ) .
(8)

If the following identities

sin(kφ) = sin(kθ)cos(kχ)− cos(kθ)sin(kχ) ,

cos(kφ) = cos(kθ)cos(kχ)+ sin(kθ)sin(kχ)
(9)

are inserted into (8), an associated mode couple
c̄1(r,θ,z) and c̄2(r,θ,z) defined with respect to frame
A appears:

c1 = RlZm sin(kθ)︸ ︷︷ ︸
:=c̄1(r,θ,z)

cos(kχ)−

−RlZm cos(kθ)︸ ︷︷ ︸
:=c̄2(r,θ,z)

sin(kχ) ,

c2 = c̄1(r,θ,z)sin(kχ)+ c̄2(r,θ,z)cos(kχ) .

(10)

As a result of suitable transformations it may also be
written:

c̄1(r,θ,z) = c2 sin(kχ)+ c1 cos(kχ) ,

c̄2(r,θ,z) = c2 cos(kχ)− c1 sin(kχ) .
(11)

The mode functions c̄1(r,θ,z) and c̄2(r,θ,z) are
defined in the Eulerian reference system A and are
linear combinations of the mode functions c1(r,φ,z)
and c2(r,φ,z) described in the Lagrangian frame B ,
whereas the combination depends on χ(t).



This information can be exploited in order to de-
fine a transformation: a thermal field resolved in the
Lagrangian frame can be transformed to be resolved in
the Eulerian frame and vice versa. Of course the phys-
ical temperature field itself does not change, but its
resolution does so that the numerical values describing
the field will be different in frame A or B , respectively.

In practice the transformation is formulated in
terms of the modal amplitudes zϑi(t) which are the
thermal states in (6):

z̄ϑi1(t) = sin(kχ(t))zϑi2(t)+ cos(kχ(t))zϑi1(t) ,

z̄ϑi2(t) = cos(kχ(t))zϑi2(t)− sin(kχ(t))zϑi1(t) .
(12)

Again, the new modal amplitudes in the Eulerian
frame z̄ϑi(t) are expressed as a linear combination of
modal amplitudes in the Lagrangian frame zϑi(t) and
it is just a matter of convenience and practicability in
which coordinates the thermal field equations are ac-
tually evaluated.

One particularity has been ignored so far. For
trial functions with k = 0 no mode couple with c1 and
c2 according to (8) exists, since no associated sinus-
function is introduced in (5). As a consequence the
transformation (12) is not defined for such modes.
However, trial functions with k = 0 represent rota-
tional symmetric fields since the dependency on φ is
eliminated in (5) due to the term cos(kφ). As a conse-
quence mode shapes with k = 0 are invariant with re-
spect to rotations with angle χ or in other words: The
modal coordinates zϑi(t) related to k = 0 are identical
in the Eulerian and the Lagrangian description and no
transformation is needed.

3 Mechanical Field

The present paper is focused on the thermo-elastic in-
terrelation that rules the behavior of brake discs in the
low frequency range. Note that there is a complemen-
tary paper presented on this Modelica User Confer-
ence which is dedicated to higher frequencies in order
to cope e.g. with brake squeal phenomena [18]. How-
ever here, it is supposed that the excitation is much
lower than the lowest natural frequency of the brake
disc. In particular the following assumption are made:

∙ The structural deformations of the brake disc are
dominated by its elasticity or thermo-elasticity,
respectively. Inertia effects are out of focus and
in particular the influence of the brake disc ro-
tation on the deformations are negligible. This
statement is related to the so-called Duhamel’s

assumption which argues on the different time-
scales with which changes in the temperature or
deformation field usually proceed, cp. [11, Sec.
2.5].

∙ A literature review on the characteristics of
thermo-elastic brake disc deformation give rea-
son to the assumption that plate bending in some
cases even plate buckling is the governing defor-
mation mechanism, see [9], [2], [6]. For example:
all experimental studies describe e.g. hot spots to
be located alternatively on the two disc surfaces
in anti-symmetrical configuration, so that the cir-
cumference is deformed similar to a sinuous line.
Therefore the deformation field of the brake disc
here is represented as an annular Kirchhoff plate.

Note that the description of the annular plate is lim-
ited to be linear in this initial implementation, so that
plate buckling phenomena are not covered, see [19],
[20, Ch. 1]. An extended formulation to consider ther-
mal buckling is a field of active research at the DLR.

3.1 Thermo-elastic Coupling

In [16, Sec. 2.2] the material constitution based on
a thermodynamical potential is harnessed to formu-
late the interrelation of the thermal and the mechanical
field. This approach is not suited here, since the influ-
ence of a 3-dimensional thermal on a 2-dimensional
displacement field is to describe.

Instead the so-called body-force analogy is em-
ployed, i.e. the thermo-elastic problem is transfered
into an isothermal problem with equivalent distributed
body forces �ϑ [11, §3.3], whose non-zeros compo-
nents in radial and tangential direction read:

�ϑr = �ϑφ =−
1+ν

1−ν2 Eα ϑ , (13)

where α denotes the thermal expansion coefficient, E
Young’s modulus and ν the Poisson number. Together
with the relevant strain components in radial and tan-
gential direction εr and εφ expressed as functions of
the transversal plate deformation w

εr =−z w,rr , εφ =−z
(w,r

r
+

w,φφ

r2

)
, (14)

the associated virtual work δWϑ reads:

δWϑ =
∫
V

δ"T�ϑ dV =

=
∫
V

Eα
1+ν

1−ν2 δ

(
w,rr

w,r
r +

w,φφ

r2

)T( z ϑ

z ϑ

)
dV

(15)



3.2 Weak Field Equations

The structural displacements u are evaluated on the
basis of the principle of virtual displacements [12,
(4.7)], which states that the virtual work of the internal
forces equals the virtual work of the interia and exter-
nal forces:∫

V

δ"T� dV +
∫
V

δ"T�ϑ dV+

+
∫
V

δuT ü ρdV = ∑
i

δuTfi ,
(16)

where " denotes the strain and � the stress field. fi

represent the applied external forces.

3.3 Modal Approach

Again a Ritz approximation is used to discretize the
deformation field u:

u(c, t) =ΦΦΦu(c)zu(t) (17)

The spatial shape functions in (17) are formulated
as function of cylindrical coordinates, i.e. ΦΦΦu =
ΦΦΦu(r,φ,z), w,r and w,φ are partial derivatives with re-
spect to r or φ:

n

∑
i=1

ΦΦΦuizui =

⎡⎢⎣ −z(cos(φ)w,r− sin(φ)
r w,φ)

−z(sin(φ)w,r +
cos(φ)

r w,φ)
w

⎤⎥⎦ ,
w =

lm

∑
l=0

km

∑
k=0

Rl(r) ⋅ cos(kφ) ⋅ zui(t)+ . . .

. . .+
lm

∑
l=0

km

∑
k=1

Rl(r) ⋅ sin(kφ) ⋅ zui(t) ,

with i = 1,2, . . . ,n , n = (lm +1)(2km +1) .

(18)

The trial functions in (18) correspond to the trial
functions in (5) except of the fact, that a 2-dimensional
field is discretized here, while the temperatures depend
on all three coordinates.

3.4 Discretized Field Equations

If (18) is inserted into (16) the linear field equation for
the displacements is yielded:

Muuz̈u+Cuużu+Kuuzu+Kuϑz̄ϑ =∑
i

ΦΦΦ
T
uifi . (19)

The mass matrix Muu in (19) denotes the volume in-
tegral

Muu :=
∫

V
�T

u�u ρdV , (20)

the stiffness matrix Kuu is defined using the lin-
ear displacement-strain operator ∇u, the abbreviation
Bu := ∇uΦΦΦu and the elasticity tensorH:

Kuu :=
∫

V
BT

uHBu dV . (21)

As usual, the introduction of the damping matrix
Cuu as an assembly of mass and stiffness terms is jus-
tified by empirical considerations [12, Sec. 4.2]. The
thermo-elastic coupling matrix follows from (15):

Kuϑ :=
∫
V

Eα
1+ν

1−ν2 ⋅

⋅
(

ΦΦΦu,rr +
ΦΦΦu,r

r
+

ΦΦΦu,φφ

r2

)T

z ΦΦΦϑ dV

(22)

In addition to the deformations, the motion of the
disc’s reference frame located at the center of grav-
ity is considered by the Newton-Euler equations [21,
(8.6),(8.21)]:

m ⋅a= ∑fi ,

I!̇+!×I! = ∑ci×fi +∑pi .
(23)

a denotes the translational acceleration of the refer-
ence frame, ! its rotational velocity. I symbolizes the
interia tensor, m its mass. fi presents the discrete ex-
ternal forces, pi discrete external torques.

4 User Interface

4.1 The Icon Layer

Figure 3: Icon layer of the ThermoelasticPlate class.

The icon layer of ThermoelasticPlate class is
shown in Fig. 3. The connector arrays frames top and
frames bottom both represent points that slide on the



upper or the lower surface of the plate, respectively
and therefore are potential connectors to apply brake
forces. The associated heat fluxes generated by fric-
tion may be applied to the companion heat port arrays
portes top and portes bottom. Each of these arrays
contains as much connectors as are specified by the
first dimension of the input parameter xsi in the fol-
lowing table:

geometrical parameters
r i [m] inner radius of the plate
r a [m] outer radius of the plate
th[:] [m] thickness of the plate
xsi[:,2] [−] points on the disc

Each row of xsi specifies the radial and the angular po-
sition of two surface points with respect to the frame
A in Fig. 2 parametrized in the interval [0,1]. E.g.
xsi[1, :] = {0.5,0.125} defines two surface points in
the middle between the inner and outer radius at 45∘

angular position.
In addition to the 3-dimensional multibody frame

connectors, two 1-dimensional rotational flanges are
shown in Fig. 3. These two flanges are connected to
both sides of the 3-dimensional rotational joint which
is introduced into the ThermoelasticPlate class at the
plate axis by default. The two flanges are conditionally
instantiated controlled via user parameter and can be
utilized to e.g. define constant rotation velocity.

4.2 The Physical Parameters

The thermal field equations (6) are formulated with re-
spect to a reference temperature t ref, which may be
interpreted as linearisation point at which all physi-
cal material parameters are specified. t ref is as well
defined by user input and displayed in the icon layer
as shown in Fig. 3. Since the model also considers
cooling by air convection, another input is necessary
to provide information on the bulk temperature t bulk,
which is interpreted relative to the reference tempera-
ture t ref.

The table below shows the thermal parameters the
user has to provide in order to employ a Thermoelas-
ticPlate instance:

thermal parameters
rho[:] [kg/m3] mass density
lamdba[:,3] [W/mK] thermal conductivity
c [K/kgK] specific heat capacity
h fouter [W/m2K] convective heat coeff.
h finner [W/m2K] convective heat coeff.
al pha [1/K] thermal expansion coeff.

The physical properties are assumed to be homo-
geneous in radial and tangential direction, while dif-
ferent sections may be defined in axial direction. This
is why the geometrical input parameter th is defined
as a vector. E.g. the values th = {0.003,0.007,0.01}
specify three thickness sections from 0 to 3 mm, from
3mm to 7 mm and from 7 to 10mm.

As a consequence, the input dimensions of th, rho,
lambda and the Young’s modulus E to be introduced
below are related, since e.g. the density rho[1] is sup-
posed to specify the mass density in the first section,
i.e. is assigned to the thickness region from 0 to 3 mm
for the given example of th. Each column of the pa-
rameter lambda, i.e. lambda[:,i] is also related to the
section from th[i-1] to th[i], while the first element
lambda[1,i] specifies the thermal conductivity in ra-
dial, the second element lambda[2,i] in axial and the
third element lambda[3,i] in tangential direction.

By this set-up it is intended to approximately ac-
count for a brake disc design as it is shown in Fig. 4.
The reduced heat capacity of the center region with the
cooling channels may be considered by a reduced mass
density. An appropriate definition of lambda speci-
fies heat conduction in the center region only to oc-
cur in axial but not in radial or tangential direction.
The coefficient h finner quantifies the heat transfer from
the brake disc to the circulating air at the areas with
th[i]=0.003 and th[i]=0.007 in the given example of
th. The input parameter h fouter refers to the convective
heat transfer at both outer surfaces of the brake disc.

Figure 4: Cooling channels in a brake disc.

The mechanical parameters have to be given as
follows:

mechanical parameters
E[:] [N/m2] Youngs’s modulus
ny [−] Poisson number
damping [−] natural damping coefficient

The Young’s modulus E as a function of the thick-
ness coordinate th is used to evaluate the flexural rigid-



ity of the Kirchhoff plate according to the theory of
multi-layered plates [22, 3.7] in order to reflect the in-
fluence of the cooling channels on the bending behav-
ior.

If (19) is given in normal or principal coordinates,
see e.g. [23, 6.5], the homogeneous equations of mo-
tion will be separated in independent equations of the
following typ:

z̈u,i +2δiωi żu,i +ω
2
i zu,i = 0 (24)

with the eigenvalue ωi and the natural damping coef-
ficient δi. The input parameter damping controls the
assembly of the damping matrix Cuu in such a way
that δi equals damping for all normal coordinates. As
a default value damping=1 is specified which corre-
sponds to critical damping. This set-up follows the as-
sumption that thermoelastic deformations and external
excitations act in a frequency range much lower than
the first natural frequency of the plate and inertia ef-
fects may be neglected. However, it is up to the user
to define alternative damping regimes by giving other
values for damping.

4.3 The Discretization Set-up

The input parameter vector th implicitly also rules the
discretization of the thermal field in axial direction,
which is done by B-spline functions, see Fig. 1. In
this context, the parameter values of th are interpreted
as elements of the so-called knot vector [15]. Depend-
ing on the dimension of th, constant, linear, quadratic
or cubic B-splines are applied.

The discretization of the thermal field in radial di-
rection is specified by the input parameter radialD-
iscretization, which directly defines the number of
degrees of freedom in radial direction. Due to the
B-spline concept the order of the trial-functions is as-
sociated to the number of degress of freedom, so that
the following relations hold:

radialDiscretization B-spline type
1 constant
2 linear
3 linear
4 linear
5 quadratic
6 quadratic
≥7 cubic

In principle the parameter radialDiscretization
also counts for the mechanical field with one excep-
tion: exclusively cubic B-spline functions are used to

describe the bending deformations with respect to the
radius. If necessary to satisfy this basic demand ad-
ditional number of degrees of freedom are introduced
for the mechanical field in addition to the input speci-
fication of radialDiscretization.

The integer parameter vector angularDiscretiza-
tion contains the ordinal numbers of the Fourier terms
k from (5) which are to be considered in order to de-
scribe the thermal and the mechanical field in circum-
ferential direction.

Finally, the user has to choose the boundary con-
dition for the displacement field at the inner radius out
of two options, namely supported or clamped.

5 Simulation Example

Figure 5: Diagram layer of the brake model.

The example shown in Fig. 5 is a representation
of a braking system which illustrates an application of
the thermo-elastic plate model. The model contains
a floating caliper with brake pads sliding along both
sides of the brake disc. A constant rotation velocity of
6π rad/s and a constant hydraulic force are specified.
An axial run-out of the brake disc is simulated since
the disc is tilted around its y-axis with 0.005 rad am-
plitude and 6 Hz, see the revolute joint in Fig. 5. A
constant friction coefficient of ν = 0.9 assumed. The
brake disc is 10 mm thick, 70 mm and 120 mm are
specified as inner radius and outer radius, and its phys-
ical parameters correspond to cast iron material.

A second order Fourier expansion is applied to
discretize both fields in circumferential direction, four
linear B-splines are used for the axial discretization,
three linear B-splines for the radial discretization of
the thermal field.

The disc-pad contact is defined at 9 points at each
side of disc, which are located at −28.8∘ ≤ θ≤ 28.8∘



Figure 6: Diagram layer of the contact submodel.

angular position. The contact is formulated with one
prismatic joint in axial direction for each contact point.
frame a in Fig. 6 is supposed to provide the connection
to the brake caliper, frame b is to be connected to one
frame at the surface of the thermoelasticPlate, port b
is the associated heat port to define the heat flow into
the brake disc.

In addition the variable port b.T represents the
temperature at the contact point and might be used to
formulate e.g. temperature-dependent friction behav-
ior in future scenarios. Secondary heat flows e.g. to
the caliper body or thermal contact resistances may be
included into this configuration as well. Even phenom-
ena such as brake fluid boiling [4] may be investigated
by appropriate straight-forward model extensions.

The non-linear spring-damper element attached to
the prismatic joint represents the contact stiffness and
is capable to consider the loss of contact or the lift-off
of the brake pads, respectively. However this effect
is not part of the presented simulation scenario. The
simplicity of the contact modeling here again demon-
strates the advantages of the Eulerian description.

Fig. 7 presents an animation of the simulation sce-
nario. The green arrows visualize the friction forces,
the color of the plate surface indicates the temperature
distribution, which in general exposes a maximum at
the trailing edge of the brake pads.

Figure 7: Animation of the brake model.

The exciation by the axial run-out leads to oscil-
lations of the normal and tangential forces inversely
phased on the top and the bottom surface of the brake
disc. The influence of this excitation on the thermal
field is presented by the curves in Fig. 8. The de-
tailed plot below reveals a antisymmetric pattern of the
temperature distribution at both surfaces of the brake
disc, although the actual temperature differences are
indeed small. In addition the general temperature rise
is stepped by the rotation frequency of the brake disc.

Another result of the axial run-out is shown in
Fig. 9, where the bending deformations at the outer
radius at θ = 0∘ angular position are plotted as a func-
tion of time.

Figure 8: Exemplary temperature results at the top and
the bottom surface, r = 0.102 m, θ = 0∘.



Figure 9: Plot of the plate deformation at the outer
radius at θ = 0∘ angular position.

It should be mentioned that these preliminary re-
sults still must be validated. Nevertheless the results
can be interpreted in a physical way and are plausible.

The brake disc model considers 60 thermal and
30 mechanical degrees of freedom and 106 cpu-s on a
common laptop are spent to simulate the scenario with
40 s simulation time.

6 Conclusions and Outlook

The present paper introduces a new Modelica class
called ThermoelasticPlate. This model is tailored to
represent the thermal and thermo-elastic behavior of
brake discs in the lower frequency range. The advan-
tages of the Eulerian approach are exploited, so that
the non-rotating normal and friction forces and the as-
sociated heat fluxes may easily be applied.

An example study demonstrates the application of
the new Modelica class. Although validation of the
presented analysis is still a pendent task, the results
however have shown a good agreement with the physi-
cal description of this phenomenon giving a solid basis
to cope with some of the most common braking prob-
lems such as hot spotting. It has been demonstrated
that the approach is open for a wide range of applica-
tion scenarios such as temperature-dependent friction
and brake-fluid boiling.

Moreover, the purpose of this project is to in-
tegrate the thermo-elastic model into more complex
scenarios, such as a complete braking system of a
train (Figure 10 ) which includes brake disc (thermo-
elastic model), brake pads, rockers, brake pad hold-
ers, calipers, housing, brake piston, etc., in order to
analyze the induced vibrations, due to the thermo-
mechanical deformations, into the complete dynamics

Figure 10: Braking mechanism of a train.

of the entire system.
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