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Abstract

This article considera posteriorierror estimation and anisotropic mesh refinement for tkisensional laminar
aerodynamic flow simulations. The optimal order symmetrterior penalty discontinuous Galerkin discretization
which has previously been developed for the compressiblge&tokes equations in two dimensions is extended to
three dimensions. Symmetry boundary conditions are giveamwallow to discretize and compute symmetric flows on
the half model resulting in exactly the same flow solution$ esmputed on the full model. Using duality arguments,
an error estimation is derived for estimating the discediim error with respect to the aerodynamic forcefioents.
Furthermore, residual-based indicators as well as adpzised indicators for goal-oriented refinement are derived
These refinement indicators are combined with anisotroglig&tors which are particularly suited to the discontinsiou
Galerkin (DG) discretization. Two fierent approaches based on either a heuristic criterionamigntropic extension

of the adjoint-based error estimation are presented. THerp@ance of the proposed discretization, error estinmatio
and adaptive mesh refinement algorithms is demonstrat&tifaerodynamic flows.

Key words: Discontinuous Galerkin discretization, 3d compressitd@ibir-Stokes equations, error estimation,
anisotropic mesh refinement, symmetry boundary condition

1. Introduction

In this article, we extend a symmetric interior penalty distinuous Galerkin (SIPG) method previously developed
for the 2d compressible Navier-Stokes equations in [18]ddaBninar flows, see Sections 2 and 3 for the governing
equations and the discretization. This discretizatioroissistent, adjoint consistent [1, 12, 13] and of optimalkord
[18]. In particular, it uses an adjoint consistent disaagibn of boundary conditions, an optimal order interiongléy
term and is combined with an adjoint consistent discratinatf the aerodynamic force cfiients.

The discretization is augmented with an accurate symmetythary condition. Here, by “accurate” we mean
that the symmetry boundary condition allows to discretizé e@ompute symmetric flows on the half (computational)
model resulting in exactly the same flow solutions as if cora@gwon the full model. To this end, mirrored state
variables and gradients of the state variables are giveahndliow to devise an accurate symmetry boundary for the
considered DG discretization of arbitrary high order.

Important quantities in aerodynamic flow simulations are dlerodynamic force céicients like the drag, lift
and moment cdécients. In addition to the exact approximation of these tjtias it is of increasing importance, in
particular in the field of uncertainty quantification, toiestte the error in the computed quantities. By employing
a duality argument error estimates can be derived for estiméhe error measured in terms of the 3d aerodynamic
force codficients, see Section 5. The error estimate (Type | error bpimetlides local residuals multiplied by the
solution to an adjoint problem related to the forcefticeent. The error estimate can be decomposed into a sum of
local adjoint-based indicators, see Section 7, which camniy@oyed to drive a goal-oriented adaptive mesh refinement
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algorithm specifically tailored to the accurate ariliceent approximation of the aerodynamic force fméent. We
note that the error estimates and adjoint-based indica@riged in this work represent an extension of the error
estimates developed for the SIPG discretization of the Pagpressible Navier-Stokes equations in [17] to the optimal
order SIPG discretization of the 3d compressible Naviek& equations considered here.

Provided the adjoint solution related to an arbitrary tafgactional is siiiciently smooth the corresponding
error representation can be bounded from above by an etiorats (Type Il error bound) which includes the primal
residuals introduced in Section 4 but is independent of thart solution. By localizing this error estimate so-eall
residual-based indicators can be derived, see Section 6h k&dinement based on these indicators leads to meshes
which resolveall flow features irrespective of any specific target quantitg Mite that in [17, 14] these indicators
have been derived for SIPG discretizations of the 2d comsfiriesNavier-Stokes equations. In the current work we
derive the residual-based indicators associated with tR& Sliscretization of the 3d compressible Navier-Stokes
equations, including symmetry boundary conditions.

Flow phenomena may exhibit a strong directional behaviopdrticular, in boundary layers or interior layers like
shocks the flow variables change rapidly in the directiohagbnal to the layer, whereas the change parallel to the
layer is much smaller. Highly stretched elements shoulddeel dior an optimal resolution of these features.

Considerable work has been devoted to anisotropic refinefmelmear finite elements on simplex meshes where
the information of an approximated Hessian-based mesharfitid is used within remeshing algorithms, see for
example the work by Formaggia et al. [9], Frey and Alauze},[Hhiang [20] or Sahni et al. [29]. Here, the metric
field approximates the interpolation error of the solutiod & used to determine the local mesh density as well as the
local element rotation and stretching in a remeshing atlgiori

Whereas the use of an interpolation based error estimadsily epplied to any kind of equation it might yield non-
optimal refined meshes w.r.t. thfieient approximation of a given target functional. Venditiid Darmofal [32] have
combined the directional information of the metric apptoadth a scaling based on adjoint-based error indicators,
resulting in dual weighted metrics. Similar techniquesehaeen applied frequently, e. g. by Jones et al. [21]. Relying
on the Hessian to determine the basic metric field this teglais not readily extendible to discretizations of higher
than second order. Furthermore, the metric-based appoaacbasily be combined withfeierent error estimates, see
the work of Bourgault et al. [5] based @posteriorierror estimates or the work of Loseille et al. [27] based on a
combination of the metric approach with ampriori goal-oriented error estimate. The latter three referepoesent
results for shock-dominated flows governed by the Euler #ops However, as the metric-based approach provides
information for a remeshing process it cannot be appliedtallelement subdivision algorithms, thus most of the
work in this field is of little practical use for our specific@jration.

One common approach to anisotropy detection in the confetement subdivision is to use several trial refine-
ments which include anisotropic cases that split only pathe edges of an element to form child elements with
modified aspect ratio. From these discrete choices the clash weduces the error mosfectively can be selected,
this has been proposed by Sun and Wheeler [30] as well as KndtDemkowicz [25], for example. However, such
approaches seem unreasonably expensive, especiallyyifehjaire solutions on globally refined meshes. Solving
only local problems and including goal-oriented refinenteas been considered by Houston et al. [19].

In this work we concentrate on anisotropy indicators whiome computationally almost for free, i.e. no ad-
ditional auxiliary problems shall be solved for obtainingisotropic refinement information. Furthermore, these
indicators shall be applicable to higher order DG discedtims. In [26] anisotropic indicators have been developed
for the anisotropic mesh refinement of 2d quadrilateral mmgsBeing based on inter-element jumps these indicators
are particularly suited for discontinuous Galerkin flomgimns. In Section 8, we extend the anisotropic indicators t
be used in an anisotropic three-dimensional mesh refinealgotithm. In particular, the anisotropic indicators are
combined with the residual-based as well as the adjointdbaxlicators. Furthermore, in addition to this heuristic
technigque an anisotropic adjoint-based error estimatedban the recent work of Richter [28] is presented. This
estimate decomposes the element-wise isotropic adjeistdberror estimator into directional contributions which
accumulate to the isotropic one.

The main goal of this work is to extend the discretization hoés, error estimates and adaptive isotropic and
anisotropic mesh refinement algorithms, which have beealdped for 2d laminar flows over the last several years
[13, 14, 17, 26] to three dimensions and to demonstrate hlegtdan be successfully applied to 3d aerodynamic flow
simulations. To this end, in Section 9 we apply the proposgorzthms to aerodynamic test cases which have also
been considered in the European project ADIGMA [24]. In joatar, we consider two laminar three-dimensional
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aerodynamic flows of dierent complexity: a) a laminar flow around a curved and stlieachbody ; and b) a laminar
flow around a delta wing.

The authors are aware of only one work on goal-oriented {laidizased) mesh refinement applied to discontinuous
Galerkin discretizations of 3d aerodynamic flows. In theljmations [7, 8] which both are based on Fidkowski [6]
the adjoint-based mesh refinement uses a cut-cell approddk applied to the 3d compressible Euler equations with
isotropic refinement. In contrast to that the current wokdsed on boundary-aligned meshes, provapesteriori
error estimates in the computed force fméents, derives residual-based and adjoint-based mesbment indicators
and combines them with anisotropic mesh refinement for theoBtpressible Navier-Stokes equations.

2. The 3d compressible Navier-Stokes equations
We consider the three-dimensional steady-state compteds¢avier-Stokes equations
V- (Fu) - FY(u,vVu)) =0 inQ, (1)

subject to various boundary conditions including no-sliplliwboundary conditions with vanishing velocity =
(v1,V2,v3)T = 0 at isothermal wall§’,, whereT = T,,, or at adiabatic wall§ ., wheren - VT = 0. The vector of

conservative variablasis given byu = (p, pv1, pV2, pV3, pE)" and the convective fluxeg®©(u) = (ff(u), f5(u), fg(u))T
by

pV1 pV2 pPV3
pVi+ P pV2VL pVav1
fSuy=| pviva |, fSu)=| pva+p [, andfSu)=| pvavo |,
pV1V3 pV2V3 PV§ +p
pHVl pHV2 pHVg

wherep, p and E denote the density, pressure and specific total energyectgply. Additionally,H is the total

enthalpy given by

H=E+E=e+%v2+9, (2)
P p

wheree s the specific static internal energy, and the pressuraémeed by the equation of state of an ideal gas
p=(y-1)pe (3)
wherey = ¢,/c, is the ratio of specific heat capacities at constant pressyrand constant volume,. Furthermore,
the viscous fluxeg™(u, Vu) = (f}(u, Vu), f3(u, Vu), f(u, Vu))T are defined by
0
f'(u, Vu) = T , i=1,23
TijVj + KTy

HereT denotes the temperature givendoy ¢, T, K is the thermal conductivity céicient andr is the viscous stress
tensor defined by
T=pu(W+ (W) - 4(V-V)l) (4)

whereyu is the dynamic viscosity cdiécient. For the purposes of discretization, we rewrite thmp@ssible Navier-
Stokes equations (1) in the following (equivalent) form:

0 ou .
I (fic(u) - Gij(u)a—xj) =0 inQ, (5)
whereG;j(u) = df’(u,Vu)/duy, fori,j = 1,2,3, are the homogeneity matrices with(u, Vu) = G;;(u)ou/dx;,
i=123.
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3. The SIPG discretization of the 3d compressible Navier-8kes equations

In this section we extend the consistent and adjoint-ctardisnterior penalty discontinuous Galerkin discretiza-
tion as derived for the two-dimensional compressible Na8i®kes equations in [13, 18] to three dimensions.

First, we begin by introducing some notation. We assumehean be subdivided into shape-regular meshes
Th = {«} consisting of hexahedral elements Here,h denotes the piecewise constant mesh function defined by
h|, = h, = diam() for all xk € 7. Let us assume that eaghe 7}, is an image of a fixed reference elementHat
is, k = o(k) for all k € Th, where<'is the open unit cube iiR3. Furthermore the mapping, of the reference
elementto the element in real space is assumed to be bijective and smooth, withigfemealues of its Jacobian
matrix being bounded from below and above. In the simples¢ ¢this mapping is tri-linear. In order to achieve a
good approximation of strongly curved geometries on coassghes mappings can be based on polynomials of higher
degree instead of linear functions, see [23] for more de&blout curved elements. On the reference elemerd ~
define spaces of tensor product polynomials of degreé as follows:

Qp(k) =spanX* :0< @ < p,i =123}, (6)

wherea denotes a multi-index ant?” = ]2, X"". Finally, we introduce the finite element spatﬁ consisting of
discontinuous vector—valued tensor product polynomiatfions of degre@ > 0, defined by

VP = (v € [La(@)]° : Vil 0 0 € [ @] € Th. ()

Suppose that|, € [Hl(K)]m, m > 1, for eachk € 7. We now define average and jump operators for vector- and
matrix-valued functions. To this end, let and«~ be two adjacent elements df, andx be an arbitrary point on
the interior facef = dx* N 9k~ c T'y. Moreover, letv andz be vector- and matrix-valued functions, respectively,
that are smooth inside each elemeht By v* := vls= andt* := 7|5 we denote the traces of, respectivelygndr
on f taken from within the interior ok*, respectively. Then, we define the averages atf by {v} = (v" +v7)/2
and{r} = (z* + t7)/2. Similarly, the jump ak € f is given by V] = vt ® n, + v~ ® n,-. On a boundary face
f c T, wesetiv} = v, {r} = rand [v] = ve® n. For matricess,7 € R™", mn > 1, we use the standard
notationo : 7 = Y, S, oww; additionally, for vectors € R™ w € R, the matrixv ® w € R™" is defined by
(VW) = VkWi.

The discontinuous Galerkin discretization of the 3d corapitde Navier-Stokes equations (1) is given by: Find
Un € V| such that

N(up,v) = —LTc(uh):thdx+Z

KETh

H(ui, up,n*)-vhds+ f FV(Un, Valp) : Vivdx
ok\I' Q

—f{?"’(uh,thh)}:Mds—f{GT(uh)th}:Mds+f d(un) : [v] ds (8)

I'r I'r I'r

+Nr(Un, V) + Nr, (Un,v) = 0

forall vin V,ﬂ’. Here, the numerical flug{(., -, ) may be chosen to be any two—point monotone Lipschitz foncti
which is consistent, i. €H(v, v, n) = ¥¢(v) - n, and conservative, i. ¢4(v,w, n) = —H(w, v, —n). The penalization
term is given by

. 2
6(un) = §®(un) = Cpp -(G(un)i[unl, 9)
whereh; represents the element dimension orthogonal to theffaféhe elementg* and«~ adjacent tof. Further-

more,C;; is a positive constant, which, for reasons of stability, hineschosen dficiently large. Finally, the boundary
terms included inVr(up, v) are given by

Nr(uh,v)=f7{r(u;,ur(u;),n+)-v+ ds+f§r(u;;):v®nds
r r (10)

- fn - Fr (U, Vaup) v ds— f(GF(u;)th;) : (u; - ur(u;)) ®nds
r r
4



where the penalization term at the boundary is given by
8-(Un) = 87(U) = C E-Gr(un) (Un — ur(un)) @ n. (12)
Here, the viscous boundary flgx! and the corresponding homogeneity terSpiare defined by
Fr (Un, Vun) = F(ur(Un), Vun) = Gr(un)Vun = G(Ur(Un)) V. (12)
Furthermore, on adiabatic boundarigs, c T'w, # andGr are modified such that- VT = 0. Finally, we define
Hr(up, ur(ug), n) = n- FE(up) = n- F(ur(up)), (13)

where the boundary functian-(-) is given byur(w) = (wy, 0, 0,0, ws) ™ onI .., and byur(w) = (wy, 0, 0, 0, W1y Tyar) "
onT,, see [18] for the treatment of other boundary conditionsally, we note that the boundary functiop(-) is
consistent, i. e. on all boundary partgy(-) is chosen such that the exact solutioto (1) satisfieuur(u) = u. As a
consequence alsip(-) as defined in (11) is consistent. In fact, the exact solutitm (1) satisfieg.(u) = 0.

A substantial number of 3d aerodynamic flows can be treategrametric if the side slip angle vanishes. Symme-
try boundary conditions should be defined such that the eligation on the half domain resembles the discretization
on the full domain. This can be achieved if the boundary cims are derived considering the discrete problem, not
the continuous one.

To this end, we replace, on the symmetry boundatfy,,, by the boundary functioor(u;;) defined by

1 0 0 0 0
0 1-2nF -2mn, -2mng O
ur(uy=| 0 —2mn; 1-2n2 -2mnz O |u on T, (14)
0 -2mnz -2mnz 1-2n3 0
0 0 0 0 1

Here,ur(u) is chosen in a way to ensure that scalar physical quangiteesymmetric in a classical sense, pe= p*
and pE)r = (oE)*, whereas vector—valued physical quantities like the vgl@e symmetrical in a vectorial sense,
i.e.vp-t=v*-tfort-n=0,andvr-n=-v*-n, wheren = (n, Nz, n3)" is the unit outward normal vector dn,,
i. e. the normal component of vector—valued quantities isgmmetric if measured with the same normal vector

In order to obtain the gradieMu, we have to take into account the linear transformation ofstaée variables
(14) as well as the fact that the gradient of a scalar quaistiay vector—valued quantity that has to be treated just
like the velocity vector. Combining these two ingredients avrive at the following expression f()‘f?'u)r(u;) which
replacesvuy,:

(VU ji (Un) = By, U (UR)Ox, UT (6t — 2n011) . (15)

This gradient could also be computed by evaluating the Idedlative on a ghost cell with state variables created
through the symmetry condition above. However, using (18)oltain the same result without the necessity to
actually construct a ghost cell.

The discretization on the symmetry boundary is given by

1

Neon(UnV) = | HU; up(us).n") - v* ds— f ’

Fsym

(T"(u;, Vi) + FV (ur(u;), (Vu)r(u;))) :vt®nds

Fsym

- f }(GT(u;)th’f) : (u;; - ur(u;)) ®nds+ f Or. (up) s v ®nds
Teym 2 sym

sym

where the penalization term is given by

. 2
b, (1) = 88 () = Co -3 (6(U7) + G(Ur(U})) (un - Ur (@) @ . (16)



4. The primal residual form
Using integration by parts in (8) we obtain the primal residorm [18] given by: finduy, € VE such that

R(up, V) = f R(up) -vdx + Z f r(up) - v +p(up) : Vv ds+ frr(uh)-v+ +p (up) : Vvtds
Q 3\ - r -T

keTh ¥ 9K

+ f Mrym(Un) -V +p. (Un): V' ds=0 Vve VP, (17)
Teym —lsym

where the primal element, interior face and boundary redsdare given by
R(un) = -V - F°un) + V- F"(Un, Vrtn) in &, & € Th,

1
r(un) =n-F°(ug) — H(ug, u,,n*) - él[fv(uh,vhuh)]l —n-6(un),
1

p(un) =3 (G(ur)[unl )’ ondk \ T,k € Th,
rr(un) =n - (FE(UR) - FE(UR) - 7Y Vug) + FYU, Vug)) = n - 8(un),
po(un) = (Gr(up) : (uf - ur(up) @n)’ onr,

Frgm(Un) =N - F°(up) = H(ug, ur(uy). n*) - %” (FU(uy, Vug) = FUUR, (TU)r (UR) = 0 - 8 (un),

oy, (Un) =% (GT : (uf —ur(up) @n)’ on Ty (18)

As shown in [18] the exact solutiamto (1) satisfies
R(u) =0, r(u) =0, p(u) =0, rr(u) =0, Br(u) =0.
Furthermore, the exact solutiorto (1) satisfies

rrsym(u) = O’ '(—)l"

(u)=0.
sym
Thereby, the discretization (8) is consistent, i. e. thecegalutionu € V satisfies the following equation:
N(@u,v)=0 VveV, (29)
whereV is some suitably chosen function space including the exaatisnu € V to the primal problem (1) and
satisfyingVy, c V, see [1, 13] for the choice &f in the case of discontinuous Galerkin methods.
5. A posteriori error estimation

We are interested in estimating the error in following agramic force cofficients: the total drag and lift cée
cients which are given by

inT A (pn—zn)-yds (20)

Here,go = 1ypM2 = %y"’c%‘z P = 3PwlVeol?, WhereM denotes the Mach numberthe speed of sound defined

by ¢ = yp/p andA denotes a reference area. The subscripiisdicate free-stream quantities. Finally, in case of
vanishing sideslip and roll anglgsandy, ¥ is given by

Yq = (cosg), 0, sinf@))” or ) = (-sin(),0,cos@))’



for the drag and lift coicient, respectively, where is the angle of attack. The side force €@ent vanishes for
symmetric bodies with zero sideslip angle. According to d@nalysis in [13], see also [18], we modify the force
codficients in (20) as follows

J(uh)=i_f (prn—zrn)-z,bds+f 5.(Un) s zr®nds, (21)
OA I'w T'w
(21) is a consistent modification of the force io®ent in (20) ag.(u) = 0 holds for the analytical solutiom
Moreover, this modification ensures that the discretizeitio(8) in combination with the target functional (21) is
adjoint consistent [13, 18].
Given the discretization (8) and the target functional (& derivation of error estimates fd(-) follows the
general approach of duality-basggosteriorierror estimates for target functionals, see e. g. [4, 11at&ng many
others. Following this approach but omitting details foe\ity we arrive at following error representation

J(u) = I(un) = =N(un, 2) = R(un, 2), (22)

wherez is the exact but in general unknown solution to an adjoinbfem connected to the target functiordg).
Replacingz by an approximate solutiog, to a linearized adjoint problem gives rise to following amgmate error
representation

J(u) = I(un) » —R(un, Zn), (23)

wherez, € Vy, is the solution to following discrete adjoint problem, seg.d17] for more details: Find, € V}, such
that
N'[Un](Wh, Zn) = J'[un](Wn)  Ywp € Vi, (24)

which is usually computed on the same m&ghused forup, but with a higher degree polynomial. We note, that due to
replacing the exact adjoint solutiarin (22) by the numerical approximatidq the resulting formula (23) represents
an approximation only of the true error. However, in a seofegublications, e.g. [16, 17, 32] among others, it has
been demonstrated that this approximation is close to theedrror in the target functional. We will demonstrate in
Section 9 that this holds true also for the 3d aerodynamicsfloonsidered in this work.

6. Residual-based indicators

Let u anduy, denote the solutions to (1) and (8), respectively. Reaafiiom (8) thatN(up, vi) = 0 holds for any
discrete functiomvy, € VE the error representation in (22) can be rewritten as foliows

J(u) — I(un) = =N(Un, Z— Vn) = R(Un, Z — Vp), (25)
for anyv, € VF. In particular, we can choosg := Pyz € V! in (25), i. e.
J(u) = I(un) = R(Un, Z - Pn2), (26)

wherePnz denotes an appropriate interpolafipojection ofz into the discrete function spa(xeﬁ with following
properties, see e. g. [2]: Suppagein [H51(«)]°, s, > 0, fork € 7. Then

1z = Pnzllnngy < Che Mzl (27)
wheret, = min(s,, p), k € 7Th. Then, by the trace theorem, we have

iz - PnzliLz@g < CHE Y21zl ey, 28)
|Z = Phzlniag < CHE 2zl



Using (17) we rewrite (26) as follows
Ju) - J(up) = LR(uh) -(z-Pnz) dx + ;T:h J;K\F r(un) - (Z=Pn2)" +p(un) : V(z-Pn2)" ds

+ frrr(uh) (2=Pn2)" +p (Un) : V(z- Ph2)" ds (29)
+fr Mym(Un) - (Z - Pnz)* +,(_>rsym(uh) :V(z-Pr2)* ds.

where the primal element residudt$uy,), the interior face residualquy) andp(up), the boundary residuats(up)
andpr(uh), and the symmetry boundary residualg, (un) and,or (un) are as given in (18).
—] —l sym

Assumingzl, € [H>*1(x)]°, k € Th, and applying Cauchy-Schwarz inequality and the approti@nastimates
(27) and (28) in (29) we obtain

1/2
2
19(u) = I(un)l < {Z (Tlﬁres)) ] ; (30)
KETh
wheren® are given by
7 = hHIRURIL + h 2l g (unlla + b2l (unllaes (31)

with t, = min(s,, p), « € 7n. Here, we use the short notatiog = r ondk \ I, ry = rr onT, andry, = rr,,, oNlyy,
i.e.

IF o (URIZ, = I UG + 1IFE(URIIE + Py (UnIIE,
and analogously fqm)a :

—0K
2 _ 2 2 2

12y, (Un)IE, = lo@Un)lFr + llo, (UnIEE +1lp,. (U,

We note thast,, « € 7h, depends on the smoothness of the adjoint soluidfiowever, in practice we cannot expect

z to be better thaz € [H1(Q)]®. We chooses, = 0, and thug, = 0, x € 73, in (31) and obtain the following
residual-based indicators:

7S = hlR(UR)l + he2lrae(un)llax + 0 lo, (Un)llac- (32)
Note, that (30) and (32) is the extension of Corollary 4.5if][for the adjoint inconsistent discretization of the
2d compressible Navier-Stokes equations given in [17] &atjoint consistent discretization, see [18], of the 3d
compressible Navier-Stokes considered in this article.

7. Adjoint-based indicators

The approximate error representation (23) can be rewrétsdfiollows

3(U) = I(un) = R(Un,Z0) = ) i (33)

KETh

Here, the indicators,; x € 7, are the so-called adjoint-based indicators given by

i = fR(Uh) ~Zndx +f r(un) - Zy +p(un) : VaZ; ds+ f re(Un) - Z; +p,(Un) : VZ; ds
K o\I" - ras -
+f Mym(Un) - Z +p. (up) : VZt ds, (34)
kML sym —sym
where the primal element residudt$uy), the interior face residualquy) andp(uy), the boundary residuats(up)

and,(_)r(uh) and the symmetry boundary residugtg, (un) andersym(uh) are as given in (18).
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These local error indicators include the local primal raald weighted with the discrete adjoint solution and
are also denoted as dual-weighted-residual indicatorsRDWdicators), see e. g. [4]. These local indicators can be
used to drive an adaptive refinement (and coarsening) #igospecifically tailored to the accurate anticent
approximation of the target quantiifu). For example, suppose that the aim of the computation istapeiteJ(-)
such that the errod(u) — J(up)| is less than some user—defined toleram@k, i.e. |J(u) — J(uy)| < TOL, then in
practice we may enforce the stopping criterigf).7, 7| < TOL. If this condition is not satisfied on the current finite
element meslTy, then the local indicatorg, "are employed as local error indicators to guide mesh refineared
coarsening. Based on the absolute values of the local iwd&ig,| we select a fixed fraction of all elements for
refinement and coarsening: typically 20 percent of the Krgalues for refinement and 10 percent of the smallest
values for coarsening.

8. Anisotropic mesh refinement

The mesh refinement indicators presented in Sections 6 aravidp only the information which elements should
be refined in order to improve the accuracy of the resultidgtsm. They do not include any directional information,
thus an extension is required for anisotropic mesh refinén@un first approach is based on an additional anisotropic
indicator used to decide whether splitting just a subsehaflament’s edges and thus modifying the child elements’
aspect ratios is preferable over splitting all edges. Indkter case the refinement is isotropic in the sense thal chil
elements inherit the aspect ratio of the mother element.hEleistic jump indicator considered here was introduced
in [26] for two-dimensional flows. For completeness, we leitee most relevant details and extend them to three-
dimensional problems. The heuristic anisotropy detedcifdhis first approach can be combined with an adjoint-based
error estimator for goal-oriented refinement. Instead ofgisvo separate indicators our second approach is based on
an anisotropic extension of ttaeposteriorierror estimate itself.

8.1. Jump indicator

One of the most characteristic features of DG methods isdbsible discontinuity of its discrete solutions. In fact,
a discrete solution may have jumps across the faces betvegginboring elements, whereas it is smooth inside each
element. These jumps allow some flexibility in approximgtihe local properties of the solution. In smooth parts
of the solution these jumps tend to zero with successive mefsfement as the solution is approximated with less
error. Based on this observation it seems justified to assbat@ large jump indicates a larger error as compared to a
smaller jump. In view of an anisotropic evaluation a largajuover a face indicates that the mesh size perpendicular
to this face is too coarse toffigciently resolve the solution. In this sense inter—elememigs can be used to derive
an anisotropic indicator that uses information which isc#peto the numerical method used to solve the problem.
Near discontinuities of the solution, like shocks, the jemught not tend to zero under mesh refinement. However,
in this case a large jump detects this discontinuity and esigga refinement improving the resolution orthogonal to
this feature, which is the correct behavior. Thus, the #istement jumps can be used as an indicator in both smooth
and non-smooth regions of the solution. _

In order to obtain directional information, the average juki of a functiong over the two opposite face@,
j = 1,2, perpendicular to one coordinate directiam the reference element can be evaluated as

RGeS

=—1  i=123, (35)
¥ mease)

where p] = ¢* — ¢~ denotes the jump of a scalar functignthe summations run ovér= 1,2, andf-ds indicates
a surface integral in three dimensions. Equation (35) plewihree distinct values for each element. Kgtdenote
the maximum value oK, i = 1,2,3. We want to refine along each directibm which the average jump is not
considerably smaller thal,,. In order to quantifyconsiderably we introduce a threshold factér> 1. Thus we
refine along each directidrfor which

0K >Kn 1=1,23. (36)

Depending on the relative sizes of the average jumps in ttigidtual directions, several cases may occur, see
Figure 1. If the jump is particularly large in one directiodine element will be refined only along that direction. If the
9
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Figure 1: Possible anisotropic and isotropic refinement<as the 3d reference element.

jump in one direction is particularly small, whereas thesotiwo values are of similar size, the element will be refined
along the other two directions. If all the three average jsimave similar size we fall back to isotropic refinement.

If the solution function is vector—valued, as is the casdlierflow equations, the jump of a scalar functidm
Equation (35) has to be replaced by an appropriate norm ofgti®r of jumps, for example tHg-norm.

The empirical threshold fact@rhas to be chosen large enough to ensure that only those dtearerflagged for
anisotropic refinement which are located near strong awisict features, otherwise the error would not be reduced
suficiently. On the other hand, however, a smaller valu@ aflows more elements to be treated anisotropically,
thereby leading to a reduced number of total elements. Nieal@xperiments showed thét= 5.0 is a good choice
for a range of test problems.

8.2. Anisotropic adjoint-based error indicator

In the context of mesh adaptation via local element subidwiRichter [28] recently presented an anisotropic
adjoint-based posteriorierror estimate. The basic idea is to replace the isotromly@mial) enrichment of the
space in which the adjoint solutidj is computed by a space which is only enriched in one direcfidris provides
one error estimate for each of the coordinate directionshenréference hexahedron. This estimate indicates the
part of the local error which can be reduced by refining thenelet along the same direction (or by increasing
the polynomial degree of the discrete ansatz space in thedttin). Repeating this error estimation withtdient
enrichment directions yields three distinct indicatonsdach element. The selection of refinement is then applied
directly to all those indicators at once, selecting from tefinement choices given by each uni-axial anisotropic
refinement of each element. Isotropic refinement is onlyteted the three directions on a given element have
independently been selected for refinement.

In analogy to (6) and (7) let us denote the spaces of anidottepsor product polynomials of degregsy,r > 0
on the reference element by

Qpar() =spanX*:0<a1<p,0<a2,<q0<az<r}, (37)
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and the finite element space of vector-valued anisotropioteproduct polynomial functions of degregs),r > 0
by
.15
VR = vh € [La(Q)]® : Vil © o € [Qpar(B)] & € T, (38)

Note thatQp,  p(R) = Qp(¥) andV{"™P = V. [28] considers continuous finite elements on patchwiseedfmeshes,
where the adjoint solution is computed in the continuouswdent of VP and then reconstructedw™"?, VP?*P and

Vﬁ’p’z” in turn. Due to the continuous nature this reconstructidittis more than a reinterpretation of existing degrees
of freedom on a super-element. In the discontinuous anduetsted context considered here we prefer to obtain an
isotropically enriched solution ih’,ﬂ’*l, either through direct computation or some reconstrudgahnique. This
solution could then be,-projected to/[™?P, VPP*-P andVvPPP* in turn to simulate the directional reconstruction.
However, the three anisotropic error indicators obtaired tvay for a given element do in general not sum up to
the isotropic one. If a certain component of the error dodg simow up in a combined enrichment of the space and
thus this error component can only be reduced by isotrofiicerment this information will be lost using a simple
projection technique. We believe that the reproductiorhefisotropic estimate for isotropic cases is an important
property and thus suggest to include thoffeas through the following reasoning.

The adjoint-based error estimate obtainedd5? in VP** can also be obtained by considerizfg'- z with any

ZE in VE due to Galerkin orthogonality. Furthermozﬁfl— ZE can be represented in a space spanned by hierarchic and
orthogonal polynomials, e. g. the tensor product space géhdre polynomials. If we chooz§ as thel, projection

of 22" to V] we can reinterpret the, projection fromVP™ to VPP as a modification of the cdiécients in an

unchanged space, in particular the projection corresptindstting all coéficients ofzﬁ’rl to zero except those for

which the basis function is of degrger 1 in theXj direction and of smaller degree in the other two directiamslo-
gous observations are true for the remaining directionsirBimg those three projections up and comparing to the full
function we lost those cdigcients for which the basis function is of degmeel in more than one coordinate direction.
We suggest to split those déieients and add them in equal parts to the projections in thahviad directions such
that the three modified projections sum up to the initial fioxcand isotropic fects are included in the anisotropic
indicators. Denoting the selection-based analogy to ptioje in thex; direction by the element-wise operatsf*

we obtain the anisotropic error indicatgf by

= R (un, SHZE- 7). (39)

K

2 andn® are obtained correspondingly. Note thglt + 72 + n® = 7, as defined in (34) due to the fact that
SHP-2) + S22 + ST 2) = (- 2D).

From an implementational point of view the transfer of theneéntal adjoint solution vector to a hierarchic basis,
the selection operation and the transfer back to whates sused in the remaining computation can be performed
by a single matrix—vector product with a matrix that does depend on the element under consideration as all
operations are done on the reference element. Thus thefastloating these indicators is negligible. Furthermore,
the selection operatoiSy,i = 1,2,3, can easily be extended to spaces of complete polynomidksitof tensor
product polynomials. In contrast to that a projection orretiee direct anisotropic reconstruction technique is not
readily available as it is alreadyfficult to define anisotropic versions of such spaces.

A general advantage of this direct anisotropic error edtomaapproach is the fact that no threshold is required
to distinguish strong and weak anisotropies, each sindileeraent direction is simply treated independently. Addi-
tionally, as the adjoint solution provides a suitable wéigd of the components no special treatment is required for
vector—valued solution functions.

To obtain optimal ficiency of the adaptive algorithm the fraction of refineméeatse performed in one adaptation
cycle w.r.t. the total number of possible refinements shdn@deduced compared to the value used for isotropic
refinement. Depending on the strength of anisotropic featualues between 10 and 15 percent provide good results
in our experience.

9. Numerical examples

In this section we demonstrate the performance of the pexpesor estimation and adaptation algorithms for two
laminar three-dimensional test cases. In all subsequemputations the flow solutions are computed witk 1, the
11



adjoint solutions are computed wifh= 2, the penalty constant is choserGs= 30, cf. (9), and the Vijayasundaram
numerical flux function, see [31], is used. The flow problemes solved with the fully implicit Newton algorithm.
The linear problems arising in each Newton step as well aditiear adjoint problems are solved with an ILU
preconditioned GMRES algorithm. We note that the numberdehents in a mesh growths significantly with the
dimension and the number of unknowns per element increapédly with both dimension and polynomial degree.
Thus, this approach is not applicable to large-scale coatiomis due to its memory requirements. Current and future
research which is beyond the scope of this work is dedicatettimory-lean flow and adjoint solvers.

9.1. Some remarks on local element subdivision

The local element subdivision approach used in our work buslin the presented numerical examples is substan-
tially different from the remeshing approach presented elsewheexiakbpin the area of anisotropic mesh refine-
ment. Although the focus of this work is not a thorough congmar of those approaches some remarks are in order to
interpret the following results. Using a solution—adapti#meshing the new mesh has only little in common with the
initial one: aspect ratios, orientations and local nodesdiexs can be completelyfiierent without even modifying the
total number of elements. This is substantiallffetient for element subdivision: only a global change in thaiper
of elements can produce a locally modified node density. Efgrarientation stays the same on refined meshes and
so does the aspect ratio, except in the anisotropic caseevitheain be increased or decreased by a factor of two in
each adaptation cycle. The latter approach guarantees tieat mesh can be generated, whereas a remeshing process
might fail. However, recent improvements in mesh genenasioftware as well as the consideration of local node
insertion and mesh optimization instead of global remagshisve made the remeshing process quite robust. Thus,
both approaches are quite reliable in practice.

Due to this diference our initial meshes are not isotropic and homogerrdis®mehow “appropriate” to the case
at hand. We believe that there is substantial experiencesating such meshes for compressible flows and that this
should be exploited. Thus, simply increasing the node tiegfibally on these meshes is already quifiécent to
reduce the error. We target providing still some improvem&he examples below show that the isotropic algorithm
—which still features anisotropic elements — does a goodjdbat. In addition to that, the anisotropic refinement can
further reduce the requiredfert. The resulting reduction might not seem huge, but it li@e=d in comparison with
realistic alternatives. Comparing to intentionally badicles might yield larger improvements but is not particlylar
meaningful.

9.2. Laminar flow around a streamlined body

First, we consider a streamlined three-dimensional bogdgdan a 10 percent thick airfoil with boundaries con-
structed by a surface of revolution, see Figure 2. It cossiban elliptical leading edge and straight lines. The flow

Figure 2: Streamlined body: Initial coarse mesh on the banifase and the symmetry plane. The symmetry plane colositsed on the Mach
number distribution computed on a fine mesh.
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is considered at laminar conditions with inflow Mach numtmgrad to 05, at an angle of attack = 1°, and Reynolds
number Re= 5000 with adiabatic no-slip wall boundary condition impds&he geometry and the flow is relatively
simple. In fact, this test case has been defined in the EU gir8lelGMA [24] to enable convergence studies. A
reference drag cdkcient value ofC{,Ef = 0.06317 has been obtained by extrapolation of results frompcoations
with higher order schemes on a series of finer meshes.

We note that in all subsequent computations the boundaheafurved body is approximated using piecewise bi-
guadratic polynomials where the additional points reqlfoe defining these polynomials are obtained from a CAD
representation of the geometry. Similarly, also the nevafsadn the boundary required during local mesh refinement
near the body are taken from the CAD representation.

The target of following computations will be tdfeiently approximate the drag ciheient on a sequence of
locally refined meshes. To this end, we perform the erromedion algorithm described in Section 5 on locally
refined meshes adapted using the adjoint-based indic&éysvhere the adjoint problem (24) is connected to the
drag codicient (20). The first sequence of locally refined meshes isas isotropic mesh refinement, i. e. upon
refinement each hexahedral element is isotropically sidhetivinto eight hexahedral subelements. In Table 1 we
collect the number of elements, the number of degrees addmagDoFs) ofuy, € Vi, the “true” errorJ(u) — J(up) =
C{ff — Cq in the drag cofficient, the estimated errér = 3, .7, 7., (33), and the quotierst = &/ (J(u) — J(up)) of the
estimated and the true error which is also called thecévity index. First of all, we see that on all meshes tha sify
the error is predicted correctly. On the coarsest three atette error estimates are not particular accurate indicate

by an dfectivity indexé in the range of [(5, 2.7]. However, as the mesh is refined thEeetivity indexé converges to
one corresponding to error estimates being very close ttrulesrrors.

#el.

#DoFs CFf - Cq & 0
768 30720 -9.877e-04 -6.548e-04 0.66
1853 74120 1.731e-03 4.690e-03 2.71
4744 189760 -8.159e-04 -5.146e-04 0.63
12304 492160 -5.067e-04 -4.732e-04 0.93
32282 1291280 -2.885e-04 -2.743e-04 0.95
81688 3267520 -1.123e-04 -1.062e-04 0.95

Table 1: Streamlined body: Adaptive algorithm for the aateiapproximation of the drag d&ieient on a sequence of isotropically refined meshes.

Table 2 collects the corresponding data on a sequenagisftropically refined meshes. Here, on each element
depicted for local refinement by the adjoint-based indicatioe anisotropic jump indicator (35) is used to determine
which of the seven dierent refinement cases shown in Figure 1 are applied. Hereewé¢hat the error estimation
behaves very similar to the one described for the sequentteedotropically refined meshes in Table 1, i.e. the
effectivity of the error estimation does not deteriorate orsaimopically refined meshes.

#el.

#DoFs CFff - Cq & 6
768 30720 -9.877e-04 -6.548e-04 0.66
1366 54640 1.075e-03 4.096e-03 3.81
2700 108000 -8.771e-04 -5.759e-04 0.66
5518 220720 -5.446e-04 -5.067e-04 0.93
11483 459320 -3.434e-04 -3.261e-04 0.95
23773 950920 -1.946e-04 -1.868e-04 0.96

Table 2: Streamlined body: Adaptive algorithm for the aaeteirapproximation of the drag dfieient on a sequence of anisotropically refined

meshes based on the jump indicator.

Finally, Table 3 collects the data obtained through appiiceof the anisotropic adjoint-based error estimate (39).
The results are again quite similar, also on this sequenogeshes theftectivity index is close to one after some
13



refinement cycles, where a value larger than 0.9 indicateglitie remaining part of the error which is not estimated
is more than an order of magnitude smaller than the origimat.e

#el. #DoFs CP'-Cy & 0

768 30720 -9.877e-04 -6.548e-04 0.66
1517 60680 1.719e-03 4.681le-03 2.72
2768 110720 -7.745e-04 -4.724e-04 0.61
5073 202920 -4.742e-04 -4.364e-04 0.92
9444 377760 -2.479e-04 -2.310e-04 0.93

17329 693160 -1.362e-04 -1.284e-04 0.94

Table 3: Streamlined body: Adaptive algorithm for the aateirapproximation of the drag dtieient on a sequence of anisotropically refined
meshes based on the anisotropic adjoint-based error éstima

Figure 3a) plots the error in the drag tfﬁ)e'enﬂcgef — Cy4| against the number of elements for a sequence of
globally refined meshes, the sequence of adjoint-basemBotrefined meshes, see Table 1, and the sequences of
adjoint-based anisotropic refined meshes, see Tables 2.a@dr@paring the histories of global and adjoint-based
isotropic refinement we see in Figure 3 that for this test ¢heeadjoint-based refinement leads to meshes with
a factor of about 5 less elements for a specific accuracy irdtag codficient as compared to global refinement.
Moreover, we see that compared to the isotropic adjoineéthasesh refinement there is another factor of about 2 in
the mesh sizes required for a specific accuracy for the anjsotrefinement based on the jump indicator and a factor
of approximately 4 for the anisotropic refinement basedctliyen the anisotropic error estimate.
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Figure 3: Streamlined body: Convergence of the error in thg dodficientsJ(up) for global in comparison to adjoint-based isotropic angiad

based anisotropic mesh refinement algorithms. Additignal shows the errors of the enhanced dragffiients J(up) = J(up) + & for the
adjoint-based isotropic and anisotropic mesh refinement.

A comparison of the resulting adapted meshes is given inr€igu As anisotropic features are not particularly
strong and the initial mesh already shows some anisotrapyvkrall éfect of anisotropic refinement seems rather
weak. However, we note that in some places the initial agjp#iotis further increased in the anisotropic case, mainly
in the boundary layer mesh which can be seen in the symmetneplOn the other hand, the stretching of some cells
along the body with small edge length orthogonal to the floteéspronounced in the initial mesh. During isotropic
refinement this aspect ratio is inherited to all child eletaefhe anisotropic refinement algorithm can modify aspect
ratios, however, and it does so. For some elements thissysgkelucedaspect ratio in order to create the mesh best
fitted to the (quite isotropic) problem at hand.

The error estimates in Tables 1, 2, and 3 can be used to enttencemputed drag cfiicientsJ(uy) = Cq4 as
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Figure 4: Streamlined body: Adapted surface meshes afteatiaptation cycles: top: isotropic refinement, bottoms@mnopic refinement.

follows: J(un) := J(up) + &. If the error estimation is reliable such enhanced targantities can be expected to be
significantly more accurate than the original valdés,). This is confirmed in Figure 3b) which repeats Figure 3a)
in a different scale and additionally shows the histories of thergwbthe enhanced drag dieientsJ(uy). In fact,
from the third mesh onwards the enhanced dragfmdents are much closer to the reference value. The largeakrt
distance in the convergence plot is a graphical interpogtaif an dfectivity index close to one.

9.3. Laminar flow around a delta wing

As a second test case we consider a laminar flow around a digita Wihe delta wing has a sloped and sharp
leading edge and a blunt trailing edge. A similar case hagqusly been considered in [22]. The geometry of the
delta wing can be seen from the initial surface mesh in Fi§a)e The delta wing is considered at laminar conditions
with inflow Mach number equal t0.8, at an angle of attack = 125°, and Reynolds number Re 4000 with
isothermal no-slip wall boundary condition imposed on thiegiggeometry. This test case has been defined in the EU
project ADIGMA [24]. As the flow passes the leading edge itsolp, creates a vortex and a secondary vortex. The
resulting vortex system remains over long distances behimeving, see Figure 5b).

By performing higher order computations on a series of finesmes and extrapolating the results the following
reference values of the force d¢heients have been obtaine(ﬂ;‘,Ef =0.1658 and:,’ef =0.347.

In the following we will compare the performance in accukatgproximating the drag and lift cfiecients when
using adjoint-based mesh refinement in comparison to raklthsed and to global mesh refinement. Additionally,
for the local mesh refinement strategies we will compareapit against anisotropic mesh refinement.

Let us first consider the drag dbieient. Performing the error estimation and adjoint-baseghrefinement
algorithm with the adjoint problem connected to the dragitcient we collect the data of the sequence of isotropically
refined meshes in Table 4. Here we see that already on theeanashes the error estimation is quite accurate and it
improves as the mesh is refined. A similar behavior we seeliteTafor anisotropic mesh refinement based on the
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(a) (b)
Figure 5: Laminar delta wing: a) initial surface mesh: Topitbm and side view of the half delta wing with straight leggdedges, b) solution plot

showing streamlines and a Mach number isosurface overfthealé of the wing as well as Mach number slices over the riugdf.

jump indicator and also for anisotropic refinement basecderahisotropic error estimate. Théeency of the error
estimation does not notable degrade on anisotropicallyadfineshes.

adaptive algorithm #el. #DoFs CF' - Cq IS 0
3264 130560 -1.202e-02 -8.808e-03 0.73
isotropic 8549 341960 -6.772e-03 -5.352e-03 0.79
22885 915400 -3.968e-03 -3.163e-03 0.80
61868 2474720 -2.221e-03 -1.925e-03 0.87
3264 130560 -1.202e-02 -8.808e-03 0.73
anisotropic jump indicator 6600 264000 -7.398e-03 -5.931e-03 0.80
14215 568600 -3.895e-03 -3.160e-03 0.81
32621 1304840 -2.247e-03 -1.909e-03 0.85
3264 130560 -1.202e-02 -8.808e-03 0.73
4866 194640 -7.366e-03 -5.409e-03 0.73
anisotropic error estimate 7622 304880 -4.199e-03 -3.271e-03 0.78
12347 493880 -2.381e-03 -2.039e-03 0.86
20005 800200 -1.425e-03 -1.309e-03 0.92

Table 4: Laminar delta wing: Adaptive algorithms for thewarete approximation of the drag dfieient on sequences of isotropically and anisotrop-
ically refined meshes.

Figure 6a) plots the error in the drag tfﬁm'entlcgef — C4| against the number of elements for various refinement
strategies: global mesh refinement, residual-based [Eotamd anisotropic mesh refinement as well as adjoint-based
isotropic mesh refinement and the two anisotropic variaifesnotice that drag cdicients of a specific accuracy are
obtained with less elements for residual-based mesh reéinttiman for global mesh refinement where this advantage
increases for increasing accuracy requirements. Furttresrthere is a significant decrease of the number of elements
required for a specific accuracy when comparing adjoinedagainst residual-based refinement. Additionally, in
case of adjoint-based mesh refinement Figure 6a) plots tbesef the enhanced drag dbeients(up) := J(up) +&.

We note that already on the coarsest mesh the enhanced éffigient is almost as accurate as the draditcients on

the finest adjoint-based refined mesh. Furthermore, we s¢anisotropic mesh refinement always performs better

than isotropic mesh refinement. In fact, anisotropic adjbased refinement based on the jump indicator requires
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Figure 6: Laminar delta wing: Convergence of the error indhelrag and b) lift co@cients J(up) for global in comparison to residual-based
(isotropic and anisotropic) and to adjoint-based (isdtr@md anisotropic) mesh refinement. Additionally, the esaf the enhanced force diie
cientsJ(un) = J(un) + € on the sequences of adjoint-based mesh refinement are given.

about half the number of elements for almost the same acgthian the corresponding isotropic refinement. For the
anisotropic adjoint-based error estimate this gain irswedurther and the number of elements can be reduced by a
factor of approximately five compared to the isotropic c&»eerall, compared to a global mesh refinement approach
the number of elements and thus degrees of freedom requirettain the accuracy of the final globally refined
mesh can be reduced by two orders of magnitude using the\mktlde adaptive strategy. Using the enhanced drag
codficient improves the accuracy by another order of magnitutliess dccumulates to an impressive gain.

Finally, we consider the lift caicient. Table 5 collects the data of the sequences of isaatipiand anisotrop-
ically adjoint-based refined meshes. For all three algoritive see a behavior similar to that described for the drag
codficient, although thef@iciency of the error estimation is slightly reduced in this&aNevertheless, the adaptive
algorithm based on those estimates still performs very.weljure 6b) plots the errors for global, residual-based,
adjoint-based, isotropic and anisotropic refinement aacetthors of the enhanced lift céieients. Here, again we see
a behavior very similar to that described for the dragféoient above.

adaptive algorithm #el. #DoFs C{Ef -C & 0
3264 130560 -2.851e-02 -1.939e-02 0.68
isotropic 8346 333840 -1.804e-02 -1.196e-02 0.66
22647 905880 -1.067e-02 -7.759e-03 0.73
60524 2420960 -6.187e-03 -4.715e-03 0.76
3264 130560 -2.851e-02 -1.939e-02 0.68
anisotropic jump indicator 6339 253560 -1.931e-02 -1.328e-02 0.69
14073 562920 -1.051e-02 -7.169e-03 0.68
32274 1290960 -6.191e-03 -4.516e-03 0.73
3264 130560 -2.851e-02 -1.939e-02 0.68
4948 197920 -1.809e-02 -1.203e-02 0.66
anisotropic error estimate 7877 315080 -1.090e-02 -6.952e-03 0.64
12917 516680 -6.531e-03 -4.763e-03 0.73
21141 845640 -3.785e-03 -2.701e-03 0.71

Table 5: Laminar delta wing: Adaptive algorithms for thewarete approximation of the lift cdiécient on sequences of isotropically and anisotrop-
ically refined meshes.
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Adapted meshes for six of theffirent combinations of error indicators and isotropic osatmbpic refinement are
presented in Figure 7. In order to present meshes for whechtburacy of the relevant target functional is comparable

(b)

(f)

7771

@

(e)

plane behind the wing for the resichased refinement indicator and the corresponding lack

all plots are given for the last data point in the errors piot§igure 6, except in the case of the anisotropic error
estimate for which the mesh is shown for the point prior tdéiseone. The outstandindfect is clearly the resolution
of the vortex in the cut

of resolution in this area in the case of goal-oriented refieet. It is quite obvious that the global flow field is better
resolved using the first type of indicator whereas the remwiwf this prominent vortex is not of much influence on
the target functional values, as both the pressure at thHeawdlthe skin friction are only weakly dependent on the

the anisotropic error estimate, e) and f): three adaptatieps with the adjoint-based indicator for the lift fis@ent C;, isotropic and anisotropic

jump indicator, c) and d): three adaptation steps with theimigbased indicator for the drag dfieient Cq, isotropic and anisotropic based on
based on the anisotropic error estimate.

Figure 7: Laminar delta wing: Adapted meshes, a) and b): ddaptation steps with the residual indicator, isotropitt anisotropic based on the
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downstream vortex evolution. Thus, investing more in ther+veall refinement the adjoint-based refinement indicators
are capable of creating moréieient meshes for the approximation of the given target fonei. We note, that the
resulting refinement for the lift and drag d¢beients has clear similarities, but that there aféedénces in the details
of the created meshes. Furthermore, tlieat of the anisotropic indicator can also be seen in the adapeshes, not
only in the plots and tables. Finally, we note that the refiaetof the vortex footprint on the wing is particularly
pronounced in the anisotropic residual-based case.

10. Conclusion and Outlook

The numerical examples demonstrate that the SIPG disatietizis capable of producing accurate results for 3d
laminar flows. Furthermore, the applicability of the propd$ocal mesh refinement algorithm has been demonstrated.
Starting from very coarse meshes the relevant featuresedidtv field are resolved on subsequent refined meshes,
resulting in an accurate antfieient prediction of target functionals like aerodynamictcodficients.

Both residual-based and adjoint-based adaptation ardibi@h&or improving the &iciency upon global mesh
refinement. For the mostfcient approximation of a specific target functional the gu@énted strategy is the most
effective one, especially as the availability of a global eestimate is a valuable additional feature and can be
exploited to improve the computed target functional valife however, the goal of the computation is the global
field solution of the flow under consideration, it is advigatd use a residual-based error estimation and refinement
algorithm, instead.

The proposed anisotropic jump indicator is computatignediry cheap, but is nevertheless able to achieve a
perceptible additional reduction in the number of elemeatpiired to obtain a given accuracy. The “partitioned
approach” of separating the local error estimation fromabal anisotropy detection makes this indicatorimmedijate
available in both residual-based and goal-oriented refamérstrategies. In the case of goal-oriented refinement the
anisotropic error estimation provides even better resuiltértually no cost overhead. Both versions are immedyatel
applicable to higher order and variable ortigrdiscretizations. Our current focus is on boundary layenshich
anisotropic features are aligned with the mesh. For shockitated flows those features might be oblique to the
mesh and anf@cient anisotropic mesh resolution cannot be achieved lectetly refining edges. In that case local
node movement might be considered to create a properlyealigresh.

A remaining problem of the current implementation is thdrietion to purely hexahedral meshes. In practice,
only (block-)structured meshes can fulfill this requiremeh is complicated to create such meshes for complex
geometries and in particular coarse meshes oftfersitom distorted elements. Thus it would be advisable terekt
the discretization to hybrid meshes consisting of tetredagutisms, pyramids and hexahedra.

The current flow and adjoint solvers rely on the assembly amcge of the full Jacobian matrix which is pro-
hibitive for large-scale applications. Future researofieidicated to replace these solvers by memory-lean versions
In particular, we will consider a concurrent iteration oé thrimal and adjoint solutions within gmultigrid method
with line-implicit smoothing.

Most aerodynamic flows of practical interest are turbulerd &ransonic, thus the physical modeling should be
extended to both turbulence modeling via additional transpquations and a reliable shock capturing technique. A
reliable and robust extension of the discretization todlaspects will require a significant amount of future redearc
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