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Abstract

This article considersa posteriorierror estimation and anisotropic mesh refinement for three-dimensional laminar
aerodynamic flow simulations. The optimal order symmetric interior penalty discontinuous Galerkin discretization
which has previously been developed for the compressible Navier-Stokes equations in two dimensions is extended to
three dimensions. Symmetry boundary conditions are given which allow to discretize and compute symmetric flows on
the half model resulting in exactly the same flow solutions asif computed on the full model. Using duality arguments,
an error estimation is derived for estimating the discretization error with respect to the aerodynamic force coefficients.
Furthermore, residual-based indicators as well as adjoint-based indicators for goal-oriented refinement are derived.
These refinement indicators are combined with anisotropy indicators which are particularly suited to the discontinuous
Galerkin (DG) discretization. Two different approaches based on either a heuristic criterion or ananisotropic extension
of the adjoint-based error estimation are presented. The performance of the proposed discretization, error estimation
and adaptive mesh refinement algorithms is demonstrated for3d aerodynamic flows.

Key words: Discontinuous Galerkin discretization, 3d compressible Navier-Stokes equations, error estimation,
anisotropic mesh refinement, symmetry boundary condition

1. Introduction

In this article, we extend a symmetric interior penalty discontinuous Galerkin (SIPG) method previously developed
for the 2d compressible Navier-Stokes equations in [18] to 3d laminar flows, see Sections 2 and 3 for the governing
equations and the discretization. This discretization is consistent, adjoint consistent [1, 12, 13] and of optimal order
[18]. In particular, it uses an adjoint consistent discretization of boundary conditions, an optimal order interior penalty
term and is combined with an adjoint consistent discretization of the aerodynamic force coefficients.

The discretization is augmented with an accurate symmetry boundary condition. Here, by “accurate” we mean
that the symmetry boundary condition allows to discretize and compute symmetric flows on the half (computational)
model resulting in exactly the same flow solutions as if computed on the full model. To this end, mirrored state
variables and gradients of the state variables are given which allow to devise an accurate symmetry boundary for the
considered DG discretization of arbitrary high order.

Important quantities in aerodynamic flow simulations are the aerodynamic force coefficients like the drag, lift
and moment coefficients. In addition to the exact approximation of these quantities it is of increasing importance, in
particular in the field of uncertainty quantification, to estimate the error in the computed quantities. By employing
a duality argument error estimates can be derived for estimating the error measured in terms of the 3d aerodynamic
force coefficients, see Section 5. The error estimate (Type I error bound) includes local residuals multiplied by the
solution to an adjoint problem related to the force coefficient. The error estimate can be decomposed into a sum of
local adjoint-based indicators, see Section 7, which can beemployed to drive a goal-oriented adaptive mesh refinement

∗Corresponding author
Email addresses:Tobias.Leicht@dlr.de (Tobias Leicht),Ralf.Hartmann@dlr.de (Ralf Hartmann)

Preprint submitted to Journal of Computational Physics June 8, 2010



algorithm specifically tailored to the accurate and efficient approximation of the aerodynamic force coefficient. We
note that the error estimates and adjoint-based indicatorsderived in this work represent an extension of the error
estimates developed for the SIPG discretization of the 2d compressible Navier-Stokes equations in [17] to the optimal
order SIPG discretization of the 3d compressible Navier-Stokes equations considered here.

Provided the adjoint solution related to an arbitrary target functional is sufficiently smooth the corresponding
error representation can be bounded from above by an error estimate (Type II error bound) which includes the primal
residuals introduced in Section 4 but is independent of the adjoint solution. By localizing this error estimate so-called
residual-based indicators can be derived, see Section 6. Mesh refinement based on these indicators leads to meshes
which resolveall flow features irrespective of any specific target quantity. We note that in [17, 14] these indicators
have been derived for SIPG discretizations of the 2d compressible Navier-Stokes equations. In the current work we
derive the residual-based indicators associated with the SIPG discretization of the 3d compressible Navier-Stokes
equations, including symmetry boundary conditions.

Flow phenomena may exhibit a strong directional behavior. In particular, in boundary layers or interior layers like
shocks the flow variables change rapidly in the direction orthogonal to the layer, whereas the change parallel to the
layer is much smaller. Highly stretched elements should be used for an optimal resolution of these features.

Considerable work has been devoted to anisotropic refinement for linear finite elements on simplex meshes where
the information of an approximated Hessian-based mesh metric field is used within remeshing algorithms, see for
example the work by Formaggia et al. [9], Frey and Alauzet [10], Huang [20] or Sahni et al. [29]. Here, the metric
field approximates the interpolation error of the solution and is used to determine the local mesh density as well as the
local element rotation and stretching in a remeshing algorithm.

Whereas the use of an interpolation based error estimate is easily applied to any kind of equation it might yield non-
optimal refined meshes w.r.t. the efficient approximation of a given target functional. Vendittiand Darmofal [32] have
combined the directional information of the metric approach with a scaling based on adjoint-based error indicators,
resulting in dual weighted metrics. Similar techniques have been applied frequently, e. g. by Jones et al. [21]. Relying
on the Hessian to determine the basic metric field this technique is not readily extendible to discretizations of higher
than second order. Furthermore, the metric-based approachcan easily be combined with different error estimates, see
the work of Bourgault et al. [5] based ona posteriorierror estimates or the work of Loseille et al. [27] based on a
combination of the metric approach with ana priori goal-oriented error estimate. The latter three referencespresent
results for shock-dominated flows governed by the Euler equations. However, as the metric-based approach provides
information for a remeshing process it cannot be applied to local element subdivision algorithms, thus most of the
work in this field is of little practical use for our specific application.

One common approach to anisotropy detection in the context of element subdivision is to use several trial refine-
ments which include anisotropic cases that split only part of the edges of an element to form child elements with
modified aspect ratio. From these discrete choices the case which reduces the error most effectively can be selected,
this has been proposed by Sun and Wheeler [30] as well as Kurtzand Demkowicz [25], for example. However, such
approaches seem unreasonably expensive, especially if they require solutions on globally refined meshes. Solving
only local problems and including goal-oriented refinementhas been considered by Houston et al. [19].

In this work we concentrate on anisotropy indicators which come computationally almost for free, i. e. no ad-
ditional auxiliary problems shall be solved for obtaining anisotropic refinement information. Furthermore, these
indicators shall be applicable to higher order DG discretizations. In [26] anisotropic indicators have been developed
for the anisotropic mesh refinement of 2d quadrilateral meshes. Being based on inter-element jumps these indicators
are particularly suited for discontinuous Galerkin flow solutions. In Section 8, we extend the anisotropic indicators to
be used in an anisotropic three-dimensional mesh refinementalgorithm. In particular, the anisotropic indicators are
combined with the residual-based as well as the adjoint-based indicators. Furthermore, in addition to this heuristic
technique an anisotropic adjoint-based error estimate based on the recent work of Richter [28] is presented. This
estimate decomposes the element-wise isotropic adjoint-based error estimator into directional contributions which
accumulate to the isotropic one.

The main goal of this work is to extend the discretization methods, error estimates and adaptive isotropic and
anisotropic mesh refinement algorithms, which have been developed for 2d laminar flows over the last several years
[13, 14, 17, 26] to three dimensions and to demonstrate that they can be successfully applied to 3d aerodynamic flow
simulations. To this end, in Section 9 we apply the proposed algorithms to aerodynamic test cases which have also
been considered in the European project ADIGMA [24]. In particular, we consider two laminar three-dimensional

2



aerodynamic flows of different complexity: a) a laminar flow around a curved and streamlined body ; and b) a laminar
flow around a delta wing.

The authors are aware of only one work on goal-oriented (adjoint-based) mesh refinement applied to discontinuous
Galerkin discretizations of 3d aerodynamic flows. In the publications [7, 8] which both are based on Fidkowski [6]
the adjoint-based mesh refinement uses a cut-cell approach and is applied to the 3d compressible Euler equations with
isotropic refinement. In contrast to that the current work isbased on boundary-aligned meshes, providesa posteriori
error estimates in the computed force coefficients, derives residual-based and adjoint-based mesh refinement indicators
and combines them with anisotropic mesh refinement for the 3dcompressible Navier-Stokes equations.

2. The 3d compressible Navier-Stokes equations

We consider the three-dimensional steady-state compressible Navier-Stokes equations

∇ · (F c(u) − F v(u,∇u)) = 0 inΩ, (1)

subject to various boundary conditions including no-slip wall boundary conditions with vanishing velocityv =
(v1, v2, v3)⊤ = 0 at isothermal wallsΓiso whereT = Twall, or at adiabatic wallsΓadia wheren · ∇T = 0. The vector of
conservative variablesu is given byu = (ρ, ρv1, ρv2, ρv3, ρE)⊤ and the convective fluxesF c(u) =

(
f c
1(u), f c

2(u), f c
3(u)

)⊤

by

f c
1(u) =



ρv1

ρv2
1 + p
ρv1v2

ρv1v3

ρHv1


, f c

2(u) =



ρv2

ρv2v1

ρv2
2 + p
ρv2v3

ρHv2


, and f c

3(u) =



ρv3

ρv3v1

ρv3v2

ρv2
3 + p
ρHv3


,

whereρ, p and E denote the density, pressure and specific total energy, respectively. Additionally,H is the total
enthalpy given by

H = E +
p
ρ
= e+ 1

2v2 +
p
ρ
, (2)

wheree is the specific static internal energy, and the pressure is determined by the equation of state of an ideal gas

p = (γ − 1)ρe, (3)

whereγ = cp/cv is the ratio of specific heat capacities at constant pressure, cp, and constant volume,cv. Furthermore,

the viscous fluxesF v(u,∇u) =
(
f v
1(u,∇u), f v

2(u,∇u), f v
3(u,∇u)

)⊤
are defined by

f v
i (u,∇u) =



0
τ1i

τ2i

τ3i

τi j v j +KTxi


, i = 1, 2, 3.

HereT denotes the temperature given bye= cvT,K is the thermal conductivity coefficient andτ is the viscous stress
tensor defined by

τ = µ
(
∇v + (∇v)⊤ − 2

3(∇ · v)I
)

(4)

whereµ is the dynamic viscosity coefficient. For the purposes of discretization, we rewrite the compressible Navier-
Stokes equations (1) in the following (equivalent) form:

∂

∂xi

(
f c
i (u) −Gi j (u)

∂u
∂x j

)
= 0 inΩ, (5)

whereGi j (u) = ∂f v
i (u,∇u)/∂ux j , for i, j = 1, 2, 3, are the homogeneity matrices withf v

i (u,∇u) = Gi j (u)∂u/∂x j,
i = 1, 2, 3.
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3. The SIPG discretization of the 3d compressible Navier-Stokes equations

In this section we extend the consistent and adjoint-consistent interior penalty discontinuous Galerkin discretiza-
tion as derived for the two-dimensional compressible Navier-Stokes equations in [13, 18] to three dimensions.

First, we begin by introducing some notation. We assume thatΩ can be subdivided into shape-regular meshes
Th = {κ} consisting of hexahedral elementsκ. Here,h denotes the piecewise constant mesh function defined by
h|κ ≡ hκ = diam(κ) for all κ ∈ Th. Let us assume that eachκ ∈ Th is an image of a fixed reference element ˆκ, that
is, κ = σκ(κ̂) for all κ ∈ Th, whereκ̂ is the open unit cube inR3. Furthermore the mappingσκ of the reference
element ˆκ to the elementκ in real space is assumed to be bijective and smooth, with the eigenvalues of its Jacobian
matrix being bounded from below and above. In the simplest case this mapping is tri-linear. In order to achieve a
good approximation of strongly curved geometries on coarsemeshes mappings can be based on polynomials of higher
degree instead of linear functions, see [23] for more details about curved elements. On the reference element ˆκ we
define spaces of tensor product polynomials of degreep ≥ 0 as follows:

Qp(κ̂) = span
{
x̂α : 0 ≤ αi ≤ p, i = 1, 2, 3

}
, (6)

whereα denotes a multi-index and̂xα =
∏3

i=1 x̂αi
i . Finally, we introduce the finite element spaceVp

h consisting of
discontinuous vector–valued tensor product polynomial functions of degreep ≥ 0, defined by

Vp
h = {vh ∈ [L2(Ω)]5 : vh|κ ◦ σκ ∈

[
Qp(κ̂)

]5
, κ ∈ Th}. (7)

Suppose thatv|κ ∈
[
H1(κ)

]m
, m ≥ 1, for eachκ ∈ Th. We now define average and jump operators for vector- and

matrix-valued functions. To this end, letκ+ andκ− be two adjacent elements ofTh andx be an arbitrary point on
the interior facef = ∂κ+ ∩ ∂κ− ⊂ ΓI. Moreover, letv andτ be vector- and matrix-valued functions, respectively,
that are smooth inside each elementκ±. By v± := v|∂κ± andτ± := τ|∂κ± we denote the traces of, respectively,v andτ
on f taken from within the interior ofκ±, respectively. Then, we define the averages atx ∈ f by {v} = (v+ + v−)/2
and{τ} = (τ+ + τ−)/2. Similarly, the jump atx ∈ f is given by [[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− . On a boundary face
f ⊂ Γ, we set{v} = v, {τ} = τ and [[v]] = v ⊗ n. For matricesσ, τ ∈ R

m×n, m, n ≥ 1, we use the standard
notationσ : τ =

∑m
k=1

∑n
l=1 σklτkl; additionally, for vectorsv ∈ R

m,w ∈ R
n, the matrixv ⊗ w ∈ R

m×n is defined by
(v ⊗ w)kl = vk wl .

The discontinuous Galerkin discretization of the 3d compressible Navier-Stokes equations (1) is given by: Find
uh ∈ Vp

h such that

N(uh, v) ≡ −

∫

Ω

F c(uh) : ∇hv dx +
∑

κ∈Th

∫

∂κ\Γ

H(u+h , u
−
h , n

+) · v+ ds+
∫

Ω

F v(uh,∇huh) : ∇hv dx

−

∫

ΓI

{F v(uh,∇huh)} : [[v]] ds−
∫

ΓI

{G⊤(uh)∇hv} : [[uh]] ds+
∫

ΓI

δ(uh) : [[v]] ds (8)

+NΓ(uh, v) +NΓsym(uh, v) = 0

for all v in Vp
h. Here, the numerical fluxH(·, ·, ·) may be chosen to be any two–point monotone Lipschitz function

which is consistent, i. e.H(v, v, n) = F c(v) · n, and conservative, i. e.H(v,w, n) = −H(w, v,−n). The penalization
term is given by

δ(uh) = δip(uh) = CIP
p2

hf
{G(uh)}[[uh]] , (9)

wherehf represents the element dimension orthogonal to the facef of the elementsκ+ andκ− adjacent tof . Further-
more,CIP is a positive constant, which, for reasons of stability, must be chosen sufficiently large. Finally, the boundary
terms included inNΓ(uh, v) are given by

NΓ(uh, v) =
∫

Γ

HΓ(u+h , uΓ(u
+
h ), n+) · v+ ds+

∫

Γ

δ
Γ
(u+h) : v ⊗ n ds,

−

∫

Γ

n · F v
Γ
(u+h ,∇hu+h ) v+ ds−

∫

Γ

(
G⊤Γ (u+h )∇hv+h

)
:
(
u+h − uΓ(u+h )

)
⊗ n ds.

(10)
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where the penalization term at the boundary is given by

δ
Γ
(uh) = δip

Γ
(uh) = CIP

p2

hf
GΓ(uh) (uh − uΓ(uh)) ⊗ n. (11)

Here, the viscous boundary fluxF v
Γ

and the corresponding homogeneity tensorGΓ are defined by

F v
Γ (uh,∇uh) = F v(uΓ(uh),∇uh) = GΓ(uh)∇uh = G(uΓ(uh))∇uh. (12)

Furthermore, on adiabatic boundariesΓadia ⊂ ΓW, F v
Γ

andGΓ are modified such thatn · ∇T = 0. Finally, we define

HΓ(u+h , uΓ(u
+
h ), n) = n · F c

Γ (u+h) = n · F c(uΓ(u+h )), (13)

where the boundary functionuΓ(·) is given byuΓ(w) = (w1, 0, 0, 0,w5)⊤ onΓadia, and byuΓ(w) = (w1, 0, 0, 0,w1cvTwall)⊤

on Γiso, see [18] for the treatment of other boundary conditions. Finally, we note that the boundary functionuΓ(·) is
consistent, i. e. on all boundary parts,uΓ(·) is chosen such that the exact solutionu to (1) satisfiesuΓ(u) = u. As a
consequence alsoδ

Γ
(·) as defined in (11) is consistent. In fact, the exact solutionu to (1) satisfiesδ

Γ
(u) = 0.

A substantial number of 3d aerodynamic flows can be treated assymmetric if the side slip angle vanishes. Symme-
try boundary conditions should be defined such that the discretization on the half domain resembles the discretization
on the full domain. This can be achieved if the boundary conditions are derived considering the discrete problem, not
the continuous one.

To this end, we replaceu−h on the symmetry boundaryΓsym by the boundary functionuΓ(u+h ) defined by

uΓ(u) =



1 0 0 0 0
0 1− 2n2

1 −2n1n2 −2n1n3 0
0 −2n1n2 1− 2n2

2 −2n2n3 0
0 −2n1n3 −2n2n3 1− 2n2

3 0
0 0 0 0 1


u on Γsym. (14)

Here,uΓ(u) is chosen in a way to ensure that scalar physical quantitiesare symmetric in a classical sense, i. e.ρΓ = ρ
+

and (ρE)Γ = (ρE)+, whereas vector–valued physical quantities like the velocity are symmetrical in a vectorial sense,
i. e. vΓ · t = v+ · t for t · n = 0, andvΓ · n = −v+ · n, wheren = (n1, n2, n3)⊤ is the unit outward normal vector onΓsym,
i. e. the normal component of vector–valued quantities is antisymmetric if measured with the same normal vectorn.

In order to obtain the gradient∇u−h we have to take into account the linear transformation of thestate variables
(14) as well as the fact that the gradient of a scalar quantityis a vector–valued quantity that has to be treated just
like the velocity vector. Combining these two ingredients we arrive at the following expression for(∇u)Γ

(
u+h

)
which

replaces∇u−h :
(∇u)Γ, jl (uh) = ∂umu j

Γ
(uh)∂xnu

m
h (δnl − 2nnnl) . (15)

This gradient could also be computed by evaluating the localderivative on a ghost cell with state variables created
through the symmetry condition above. However, using (15) we obtain the same result without the necessity to
actually construct a ghost cell.

The discretization on the symmetry boundary is given by

NΓsym(uh, v) =
∫

Γsym

H(u+h , uΓ(u
+
h), n+) · v+ ds−

∫

Γsym

1
2

(
F v(u+h ,∇hu+h ) + F v

(
uΓ(u+h ), (∇u)Γ(u

+
h )

))
: v+ ⊗ n ds

−

∫

Γsym

1
2

(
G⊤(u+h )∇hv+

)
:
(
u+h − uΓ(u+h )

)
⊗ n ds+

∫

Γsym

δ
Γsym

(uh) : v+ ⊗ n ds,

where the penalization term is given by

δ
Γsym

(uh) = δip
Γsym

(uh) = CIP

p2

hf

1
2

(
G(u+h ) +G(uΓ(u+h ))

)
(uh − uΓ(uh)) ⊗ n. (16)
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4. The primal residual form

Using integration by parts in (8) we obtain the primal residual form [18] given by: finduh ∈ Vp
h such that

R(uh, v) ≡
∫

Ω

R(uh) · v dx +
∑

κ∈Th

∫

∂κ\Γ

r (uh) · v+ + ρ(uh) : ∇v+ ds+
∫

Γ

rΓ(uh) · v+ + ρ
Γ
(uh) : ∇v+ ds

+

∫

Γsym

rΓsym(uh) · v+ + ρ
Γsym

(uh) : ∇v+ ds= 0 ∀v ∈ Vp
h, (17)

where the primal element, interior face and boundary residuals are given by

R(uh) = − ∇ · F c(uh) + ∇ · F v(uh,∇huh) in κ, κ ∈ Th,

r (uh) =n · F c(u+h ) −H(u+h , u
−
h , n

+) −
1
2

[[F v(uh,∇huh)]] − n · δ(uh),

ρ(uh) =
1
2

(
G(uh)[[uh]]

)⊤
on∂κ \ Γ, κ ∈ Th,

rΓ(uh) =n ·
(
F c(u+h) − F c

Γ (u+h) − F v(u+h ,∇u+h ) + F v
Γ (u+h ,∇u+h )

)
− n · δ

Γ
(uh),

ρ
Γ
(uh) =

(
G⊤Γ (u+h ) :

(
u+h − uΓ(u+h )

)
⊗ n

)⊤
onΓ,

rΓsym(uh) =n · F c(u+h ) −H(u+h , uΓ(u
+
h ), n+) −

1
2

n ·
(
F v(u+h ,∇u+h ) − F v(u+h , (∇u)Γ (u+h ))

)
− n · δ

Γsym
(uh),

ρ
Γsym

(uh) =
1
2

(
G⊤(u+h ) :

(
u+h − uΓ(u+h )

)
⊗ n

)⊤
onΓsym. (18)

As shown in [18] the exact solutionu to (1) satisfies

R(u) = 0, r (u) = 0, ρ(u) = 0, rΓ(u) = 0, ρ
Γ
(u) = 0.

Furthermore, the exact solutionu to (1) satisfies

rΓsym(u) = 0, ρ
Γsym

(u) = 0.

Thereby, the discretization (8) is consistent, i. e. the exact solutionu ∈ V satisfies the following equation:

N(u, v) = 0 ∀v ∈ V, (19)

whereV is some suitably chosen function space including the exact solution u ∈ V to the primal problem (1) and
satisfyingVh ⊂ V, see [1, 13] for the choice ofV in the case of discontinuous Galerkin methods.

5. A posteriori error estimation

We are interested in estimating the error in following aerodynamic force coefficients: the total drag and lift coeffi-
cients which are given by

1

q∞Ā

∫

ΓW

(
pn − τn

)
· ψds. (20)

Here,q∞ = 1
2γp∞M2

∞ =
1
2γ
|v∞ |2

c2
∞

p∞ = 1
2ρ∞|v∞|

2, whereM denotes the Mach number,c the speed of sound defined

by c2 = γp/ρ and Ā denotes a reference area. The subscripts∞ indicate free-stream quantities. Finally, in case of
vanishing sideslip and roll anglesβ andγ, ψ is given by

ψd = (cos(α), 0, sin(α))⊤ or ψl = (− sin(α), 0, cos(α))⊤

6



for the drag and lift coefficient, respectively, whereα is the angle of attack. The side force coefficient vanishes for
symmetric bodies with zero sideslip angle. According to theanalysis in [13], see also [18], we modify the force
coefficients in (20) as follows

J(uh) =
1

q∞Ā

∫

ΓW

(
pΓ n − τ

Γ
n
)
· ψds+

∫

ΓW

δ
Γ
(uh) : zΓ ⊗ n ds, (21)

(21) is a consistent modification of the force coefficient in (20) asδ
Γ
(u) = 0 holds for the analytical solutionu.

Moreover, this modification ensures that the discretization in (8) in combination with the target functional (21) is
adjoint consistent [13, 18].

Given the discretization (8) and the target functional (21)the derivation of error estimates forJ(·) follows the
general approach of duality-baseda posteriorierror estimates for target functionals, see e. g. [4, 11, 16]among many
others. Following this approach but omitting details for brevity we arrive at following error representation

J(u) − J(uh) = −N(uh, z) = R(uh, z), (22)

wherez is the exact but in general unknown solution to an adjoint problem connected to the target functionalJ(·).
Replacingz by an approximate solutioñzh to a linearized adjoint problem gives rise to following approximate error
representation

J(u) − J(uh) ≈ −R(uh, z̃h), (23)

wherez̃h ∈ Ṽh is the solution to following discrete adjoint problem, see e. g. [17] for more details: Find̃zh ∈ Ṽh such
that

N ′[uh](wh, z̃h) = J′[uh](wh) ∀wh ∈ Ṽh, (24)

which is usually computed on the same meshTh used foruh, but with a higher degree polynomial. We note, that due to
replacing the exact adjoint solutionz in (22) by the numerical approximationz̃h the resulting formula (23) represents
an approximation only of the true error. However, in a seriesof publications, e. g. [16, 17, 32] among others, it has
been demonstrated that this approximation is close to the true error in the target functional. We will demonstrate in
Section 9 that this holds true also for the 3d aerodynamic flows considered in this work.

6. Residual-based indicators

Let u anduh denote the solutions to (1) and (8), respectively. Recalling from (8) thatN(uh, vh) = 0 holds for any
discrete functionvh ∈ Vp

h the error representation in (22) can be rewritten as follows:

J(u) − J(uh) = −N(uh, z− vh) = R(uh, z− vh), (25)

for anyvh ∈ Vp
h. In particular, we can choosevh := Phz ∈ Vp

h in (25), i. e.

J(u) − J(uh) = R(uh, z− Phz), (26)

wherePhz denotes an appropriate interpolation/projection ofz into the discrete function spaceVp
h with following

properties, see e. g. [2]: Supposez|κ in [Hsκ+1(κ)]5, sκ ≥ 0, for κ ∈ Th. Then

‖z− Phz‖Hm(κ) ≤ Chtκ+1−m
κ |z|Htκ+1(κ), (27)

wheretκ = min(sκ, p), κ ∈ Th. Then, by the trace theorem, we have

‖z− Phz‖L2(∂κ) ≤ Chtκ+1/2
κ |z|Htκ+1(κ),

|z− Phz|H1(∂κ) ≤ Chtκ−1/2
κ |z|Htκ+1(κ).

(28)
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Using (17) we rewrite (26) as follows

J(u) − J(uh) =

∫

Ω

R(uh) · (z− Phz) dx +
∑

κ∈Th

∫

∂κ\Γ

r (uh) · (z− Phz)+ + ρ(uh) : ∇ (z− Phz)+ ds

+

∫

Γ

rΓ(uh) · (z− Phz)+ + ρ
Γ
(uh) : ∇ (z− Phz)+ ds (29)

+

∫

Γsym

rΓsym(uh) · (z− Phz)+ + ρ
Γsym

(uh) : ∇ (z− Phz)+ ds.

where the primal element residualsR(uh), the interior face residualsr (uh) andρ(uh), the boundary residualsrΓ(uh)
andρ

Γ
(uh), and the symmetry boundary residualsrΓsym(uh) andρ

Γsym
(uh) are as given in (18).

Assumingz|κ ∈ [Hsκ+1(κ)]5, κ ∈ Th, and applying Cauchy-Schwarz inequality and the approximation estimates
(27) and (28) in (29) we obtain

|J(u) − J(uh)| ≤


∑

κ∈Th

(
η(res)
κ

)2


1/2

, (30)

whereη(res)
κ are given by

η(res)
κ = htκ+1

κ ‖R(uh)‖κ + htκ+1/2
κ ‖r ∂κ(uh)‖∂κ + htκ−1/2

κ ‖ρ
∂κ

(uh)‖∂κ, (31)

with tκ = min(sκ, p), κ ∈ Th. Here, we use the short notationr ∂κ = r on∂κ \ Γ, r ∂κ = rΓ onΓ, andr ∂κ = rΓsym onΓsym,
i. e.

‖r ∂κ(uh)‖2∂κ = ‖r (uh)‖2∂κ\Γ + ‖rΓ(uh)‖2Γ + ‖rΓsym(uh)‖2Γsym
,

and analogously forρ
∂κ

:

‖ρ
∂κ

(uh)‖2∂κ = ‖ρ(uh)‖2∂κ\Γ + ‖ρΓ(uh)‖2Γ + ‖ρΓsym
(uh)‖2Γsym

.

We note thatsκ, κ ∈ Th, depends on the smoothness of the adjoint solutionz. However, in practice we cannot expect
z to be better thanz ∈ [H1(Ω)]5. We choosesκ = 0, and thustκ = 0, κ ∈ Th, in (31) and obtain the following
residual-based indicators:

ηres
κ = hκ‖R(uh)‖κ + h1/2

κ ‖r ∂κ(uh)‖∂κ + h−1/2
κ ‖ρ

∂κ
(uh)‖∂κ. (32)

Note, that (30) and (32) is the extension of Corollary 4.5 in [17] for the adjoint inconsistent discretization of the
2d compressible Navier-Stokes equations given in [17] to the adjoint consistent discretization, see [18], of the 3d
compressible Navier-Stokes considered in this article.

7. Adjoint-based indicators

The approximate error representation (23) can be rewrittenas follows

J(u) − J(uh) ≈ R(uh, z̃h) =
∑

κ∈Th

η̃κ. (33)

Here, the indicators ˜ηκ, κ ∈ Th, are the so-called adjoint-based indicators given by

η̃κ =

∫

κ

R(uh) · z̃h dx +
∫

∂κ\Γ

r (uh) · z̃+h + ρ(uh) : ∇hz̃+h ds+
∫

κ∩Γ

rΓ(uh) · z̃+h + ρΓ(uh) : ∇z̃+h ds

+

∫

κ∩Γsym

rΓsym(uh) · z̃+h + ρΓsym
(uh) : ∇z̃+h ds, (34)

where the primal element residualsR(uh), the interior face residualsr (uh) andρ(uh), the boundary residualsrΓ(uh)
andρ

Γ
(uh) and the symmetry boundary residualsrΓsym(uh) andρ

Γsym
(uh) are as given in (18).
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These local error indicators include the local primal residuals weighted with the discrete adjoint solution and
are also denoted as dual-weighted-residual indicators (DWR indicators), see e. g. [4]. These local indicators can be
used to drive an adaptive refinement (and coarsening) algorithm specifically tailored to the accurate and efficient
approximation of the target quantityJ(u). For example, suppose that the aim of the computation is to computeJ(·)
such that the error|J(u) − J(uh)| is less than some user–defined toleranceTOL, i. e. |J(u) − J(uh)| ≤ TOL, then in
practice we may enforce the stopping criterion|

∑
κ∈Th

η̃κ| ≤ TOL. If this condition is not satisfied on the current finite
element meshTh, then the local indicators ˜ηκ are employed as local error indicators to guide mesh refinement and
coarsening. Based on the absolute values of the local indicators |η̃κ| we select a fixed fraction of all elements for
refinement and coarsening: typically 20 percent of the largest values for refinement and 10 percent of the smallest
values for coarsening.

8. Anisotropic mesh refinement

The mesh refinement indicators presented in Sections 6 and 7 provide only the information which elements should
be refined in order to improve the accuracy of the resulting solution. They do not include any directional information,
thus an extension is required for anisotropic mesh refinement. Our first approach is based on an additional anisotropic
indicator used to decide whether splitting just a subset of an element’s edges and thus modifying the child elements’
aspect ratios is preferable over splitting all edges. In thelatter case the refinement is isotropic in the sense that child
elements inherit the aspect ratio of the mother element. Theheuristic jump indicator considered here was introduced
in [26] for two-dimensional flows. For completeness, we recall the most relevant details and extend them to three-
dimensional problems. The heuristic anisotropy detectionof this first approach can be combined with an adjoint-based
error estimator for goal-oriented refinement. Instead of using two separate indicators our second approach is based on
an anisotropic extension of thea posteriorierror estimate itself.

8.1. Jump indicator

One of the most characteristic features of DG methods is the possible discontinuity of its discrete solutions. In fact,
a discrete solution may have jumps across the faces between neighboring elements, whereas it is smooth inside each
element. These jumps allow some flexibility in approximating the local properties of the solution. In smooth parts
of the solution these jumps tend to zero with successive meshrefinement as the solution is approximated with less
error. Based on this observation it seems justified to assumethat a large jump indicates a larger error as compared to a
smaller jump. In view of an anisotropic evaluation a large jump over a face indicates that the mesh size perpendicular
to this face is too coarse to sufficiently resolve the solution. In this sense inter–element jumps can be used to derive
an anisotropic indicator that uses information which is specific to the numerical method used to solve the problem.
Near discontinuities of the solution, like shocks, the jumps might not tend to zero under mesh refinement. However,
in this case a large jump detects this discontinuity and suggests a refinement improving the resolution orthogonal to
this feature, which is the correct behavior. Thus, the inter-element jumps can be used as an indicator in both smooth
and non-smooth regions of the solution.

In order to obtain directional information, the average jump Ki of a functionφ over the two opposite facesf j
i ,

j = 1, 2, perpendicular to one coordinate directioni on the reference element can be evaluated as

Ki =

∑
j

∣∣∣∣
∫

f j
i
[φ] ds

∣∣∣∣
∑

j meas(f j
i )
, i = 1, 2, 3, (35)

where [φ] = φ+ − φ− denotes the jump of a scalar functionφ, the summations run overj = 1, 2, and
∫
·ds indicates

a surface integral in three dimensions. Equation (35) provides three distinct values for each element. LetKm denote
the maximum value ofKi , i = 1, 2, 3. We want to refine along each directionl in which the average jump is not
considerably smaller thanKm. In order to quantifyconsiderably, we introduce a threshold factorθ > 1. Thus we
refine along each directionl for which

θ Kl > Km, l = 1, 2, 3. (36)

Depending on the relative sizes of the average jumps in the individual directions, several cases may occur, see
Figure 1. If the jump is particularly large in one direction,the element will be refined only along that direction. If the
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Figure 1: Possible anisotropic and isotropic refinement cases on the 3d reference element.

jump in one direction is particularly small, whereas the other two values are of similar size, the element will be refined
along the other two directions. If all the three average jumps have similar size we fall back to isotropic refinement.

If the solution function is vector–valued, as is the case forthe flow equations, the jump of a scalar functionφ in
Equation (35) has to be replaced by an appropriate norm of thevector of jumps, for example thel2-norm.

The empirical threshold factorθ has to be chosen large enough to ensure that only those elements are flagged for
anisotropic refinement which are located near strong anisotropic features, otherwise the error would not be reduced
sufficiently. On the other hand, however, a smaller value ofθ allows more elements to be treated anisotropically,
thereby leading to a reduced number of total elements. Numerical experiments showed thatθ = 5.0 is a good choice
for a range of test problems.

8.2. Anisotropic adjoint-based error indicator

In the context of mesh adaptation via local element subdivision Richter [28] recently presented an anisotropic
adjoint-baseda posteriorierror estimate. The basic idea is to replace the isotropic (polynomial) enrichment of the
space in which the adjoint solutionz̃h is computed by a space which is only enriched in one direction. This provides
one error estimate for each of the coordinate directions on the reference hexahedron. This estimate indicates the
part of the local error which can be reduced by refining the element along the same direction (or by increasing
the polynomial degree of the discrete ansatz space in that direction). Repeating this error estimation with different
enrichment directions yields three distinct indicators for each element. The selection of refinement is then applied
directly to all those indicators at once, selecting from therefinement choices given by each uni-axial anisotropic
refinement of each element. Isotropic refinement is only created if the three directions on a given element have
independently been selected for refinement.

In analogy to (6) and (7) let us denote the spaces of anisotropic tensor product polynomials of degreesp, q, r ≥ 0
on the reference element by

Qp,q,r (κ̂) = span
{
x̂α : 0 ≤ α1 ≤ p, 0 ≤ α2 ≤ q, 0 ≤ α3 ≤ r

}
, (37)
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and the finite element space of vector–valued anisotropic tensor product polynomial functions of degreesp, q, r ≥ 0
by

Vp,q,r
h = {vh ∈ [L2(Ω)]5 : vh|κ ◦ σκ ∈

[
Qp,q,r (κ̂)

]5
, κ ∈ Th}. (38)

Note thatQp,p,p(κ̂) = Qp(κ̂) andVp,p,p
h = Vp

h. [28] considers continuous finite elements on patchwise refined meshes,

where the adjoint solution is computed in the continuous equivalent ofVp
h and then reconstructed toV2p,p,p

h , Vp,2p,p
h and

Vp,p,2p
h in turn. Due to the continuous nature this reconstruction islittle more than a reinterpretation of existing degrees

of freedom on a super-element. In the discontinuous and unstructured context considered here we prefer to obtain an
isotropically enriched solution inVp+1

h , either through direct computation or some reconstructiontechnique. This

solution could then beL2-projected toVp+1,p,p
h , Vp,p+1,p

h andVp,p,p+1
h in turn to simulate the directional reconstruction.

However, the three anisotropic error indicators obtained that way for a given element do in general not sum up to
the isotropic one. If a certain component of the error does only show up in a combined enrichment of the space and
thus this error component can only be reduced by isotropic refinement this information will be lost using a simple
projection technique. We believe that the reproduction of the isotropic estimate for isotropic cases is an important
property and thus suggest to include those effects through the following reasoning.

The adjoint-based error estimate obtained forzp+1
h in Vp+1

h can also be obtained by consideringzp+1
h − zp

h with any

zp
h in Vp

h due to Galerkin orthogonality. Furthermore,zp+1
h −zp

h can be represented in a space spanned by hierarchic and
orthogonal polynomials, e. g. the tensor product space of Legendre polynomials. If we choosezp

h as theL2 projection

of zp+1
h to Vp

h we can reinterpret theL2 projection fromVp+1
h to Vp+1,p,p

h as a modification of the coefficients in an

unchanged space, in particular the projection correspondsto setting all coefficients ofzp+1
h to zero except those for

which the basis function is of degreep+ 1 in thex̂1 direction and of smaller degree in the other two directions;analo-
gous observations are true for the remaining directions. Summing those three projections up and comparing to the full
function we lost those coefficients for which the basis function is of degreep+1 in more than one coordinate direction.
We suggest to split those coefficients and add them in equal parts to the projections in the involved directions such
that the three modified projections sum up to the initial function and isotropic effects are included in the anisotropic
indicators. Denoting the selection-based analogy to projection in thex̂1 direction by the element-wise operatorSx1

κ

we obtain the anisotropic error indicatorηx1
κ by

ηx1
κ = R

(
uh,S

x1
κ (zp+1

h − zp
h)

)
. (39)

η
x2
κ and ηx3

κ are obtained correspondingly. Note thatη
x1
κ + η

x2
κ + η

x3
κ = η̃κ as defined in (34) due to the fact that

S
x1
κ (zp+1

h − zp
h) + Sx2

κ (zp+1
h − zp

h) + Sx3
κ (zp+1

h − zp
h) = (zp+1

h − zp
h).

From an implementational point of view the transfer of the elemental adjoint solution vector to a hierarchic basis,
the selection operation and the transfer back to whatever basis is used in the remaining computation can be performed
by a single matrix–vector product with a matrix that does notdepend on the element under consideration as all
operations are done on the reference element. Thus the cost of evaluating these indicators is negligible. Furthermore,
the selection operatorsSxi

κ , i = 1, 2, 3, can easily be extended to spaces of complete polynomials instead of tensor
product polynomials. In contrast to that a projection or even the direct anisotropic reconstruction technique is not
readily available as it is already difficult to define anisotropic versions of such spaces.

A general advantage of this direct anisotropic error estimation approach is the fact that no threshold is required
to distinguish strong and weak anisotropies, each single refinement direction is simply treated independently. Addi-
tionally, as the adjoint solution provides a suitable weighting of the components no special treatment is required for
vector–valued solution functions.

To obtain optimal efficiency of the adaptive algorithm the fraction of refinementsto be performed in one adaptation
cycle w.r.t. the total number of possible refinements shouldbe reduced compared to the value used for isotropic
refinement. Depending on the strength of anisotropic features values between 10 and 15 percent provide good results
in our experience.

9. Numerical examples

In this section we demonstrate the performance of the proposed error estimation and adaptation algorithms for two
laminar three-dimensional test cases. In all subsequent computations the flow solutions are computed withp = 1, the
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adjoint solutions are computed withp = 2, the penalty constant is chosen asCIP = 30, cf. (9), and the Vijayasundaram
numerical flux function, see [31], is used. The flow problems are solved with the fully implicit Newton algorithm.
The linear problems arising in each Newton step as well as thelinear adjoint problems are solved with an ILU
preconditioned GMRES algorithm. We note that the number of elements in a mesh growths significantly with the
dimension and the number of unknowns per element increases rapidly with both dimension and polynomial degree.
Thus, this approach is not applicable to large-scale computations due to its memory requirements. Current and future
research which is beyond the scope of this work is dedicated to memory-lean flow and adjoint solvers.

9.1. Some remarks on local element subdivision

The local element subdivision approach used in our work and thus in the presented numerical examples is substan-
tially different from the remeshing approach presented elsewhere, especially in the area of anisotropic mesh refine-
ment. Although the focus of this work is not a thorough comparison of those approaches some remarks are in order to
interpret the following results. Using a solution–adaptive remeshing the new mesh has only little in common with the
initial one: aspect ratios, orientations and local node densities can be completely different without even modifying the
total number of elements. This is substantially different for element subdivision: only a global change in the number
of elements can produce a locally modified node density. Element orientation stays the same on refined meshes and
so does the aspect ratio, except in the anisotropic case where it can be increased or decreased by a factor of two in
each adaptation cycle. The latter approach guarantees thata new mesh can be generated, whereas a remeshing process
might fail. However, recent improvements in mesh generation software as well as the consideration of local node
insertion and mesh optimization instead of global remeshing have made the remeshing process quite robust. Thus,
both approaches are quite reliable in practice.

Due to this difference our initial meshes are not isotropic and homogeneousbut somehow “appropriate” to the case
at hand. We believe that there is substantial experience in creating such meshes for compressible flows and that this
should be exploited. Thus, simply increasing the node density globally on these meshes is already quite efficient to
reduce the error. We target providing still some improvement. The examples below show that the isotropic algorithm
– which still features anisotropic elements – does a good jobat that. In addition to that, the anisotropic refinement can
further reduce the required effort. The resulting reduction might not seem huge, but it is achieved in comparison with
realistic alternatives. Comparing to intentionally bad choices might yield larger improvements but is not particularly
meaningful.

9.2. Laminar flow around a streamlined body

First, we consider a streamlined three-dimensional body based on a 10 percent thick airfoil with boundaries con-
structed by a surface of revolution, see Figure 2. It consists of an elliptical leading edge and straight lines. The flow

Figure 2: Streamlined body: Initial coarse mesh on the body surface and the symmetry plane. The symmetry plane coloring is based on the Mach
number distribution computed on a fine mesh.
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is considered at laminar conditions with inflow Mach number equal to 0.5, at an angle of attackα = 1◦, and Reynolds
number Re= 5000 with adiabatic no-slip wall boundary condition imposed. The geometry and the flow is relatively
simple. In fact, this test case has been defined in the EU project ADIGMA [24] to enable convergence studies. A
reference drag coefficient value ofCref

d = 0.06317 has been obtained by extrapolation of results from computations
with higher order schemes on a series of finer meshes.

We note that in all subsequent computations the boundary of the curved body is approximated using piecewise bi-
quadratic polynomials where the additional points required for defining these polynomials are obtained from a CAD
representation of the geometry. Similarly, also the new points on the boundary required during local mesh refinement
near the body are taken from the CAD representation.

The target of following computations will be to efficiently approximate the drag coefficient on a sequence of
locally refined meshes. To this end, we perform the error estimation algorithm described in Section 5 on locally
refined meshes adapted using the adjoint-based indicators (34) where the adjoint problem (24) is connected to the
drag coefficient (20). The first sequence of locally refined meshes is based on isotropic mesh refinement, i. e. upon
refinement each hexahedral element is isotropically subdivided into eight hexahedral subelements. In Table 1 we
collect the number of elements, the number of degrees of freedom (DoFs) ofuh ∈ V1

h, the “true” errorJ(u) − J(uh) =
Cref

d −Cd in the drag coefficient, the estimated errorE =
∑
κ∈Th

η̃κ, (33), and the quotientθ = E/ (J(u) − J(uh)) of the
estimated and the true error which is also called the effectivity index. First of all, we see that on all meshes the sign of
the error is predicted correctly. On the coarsest three meshes the error estimates are not particular accurate indicated
by an effectivity indexθ in the range of [0.6, 2.7]. However, as the mesh is refined the effectivity indexθ converges to
one corresponding to error estimates being very close to thetrue errors.

# el. # DoFs Cref
d −Cd E θ

768 30720 -9.877e-04 -6.548e-04 0.66
1853 74120 1.731e-03 4.690e-03 2.71
4744 189760 -8.159e-04 -5.146e-04 0.63

12304 492160 -5.067e-04 -4.732e-04 0.93
32282 1291280 -2.885e-04 -2.743e-04 0.95
81688 3267520 -1.123e-04 -1.062e-04 0.95

Table 1: Streamlined body: Adaptive algorithm for the accurate approximation of the drag coefficient on a sequence of isotropically refined meshes.

Table 2 collects the corresponding data on a sequence ofanisotropically refined meshes. Here, on each element
depicted for local refinement by the adjoint-based indicators the anisotropic jump indicator (35) is used to determine
which of the seven different refinement cases shown in Figure 1 are applied. Here, wesee that the error estimation
behaves very similar to the one described for the sequence ofthe isotropically refined meshes in Table 1, i. e. the
effectivity of the error estimation does not deteriorate on anisotropically refined meshes.

# el. # DoFs Cref
d −Cd E θ

768 30720 -9.877e-04 -6.548e-04 0.66
1366 54640 1.075e-03 4.096e-03 3.81
2700 108000 -8.771e-04 -5.759e-04 0.66
5518 220720 -5.446e-04 -5.067e-04 0.93

11483 459320 -3.434e-04 -3.261e-04 0.95
23773 950920 -1.946e-04 -1.868e-04 0.96

Table 2: Streamlined body: Adaptive algorithm for the accurate approximation of the drag coefficient on a sequence of anisotropically refined
meshes based on the jump indicator.

Finally, Table 3 collects the data obtained through application of the anisotropic adjoint-based error estimate (39).
The results are again quite similar, also on this sequence ofmeshes the effectivity index is close to one after some
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refinement cycles, where a value larger than 0.9 indicates that the remaining part of the error which is not estimated
is more than an order of magnitude smaller than the original error.

# el. # DoFs Cref
d −Cd E θ

768 30720 -9.877e-04 -6.548e-04 0.66
1517 60680 1.719e-03 4.681e-03 2.72
2768 110720 -7.745e-04 -4.724e-04 0.61
5073 202920 -4.742e-04 -4.364e-04 0.92
9444 377760 -2.479e-04 -2.310e-04 0.93

17329 693160 -1.362e-04 -1.284e-04 0.94

Table 3: Streamlined body: Adaptive algorithm for the accurate approximation of the drag coefficient on a sequence of anisotropically refined
meshes based on the anisotropic adjoint-based error estimate.

Figure 3a) plots the error in the drag coefficient |Cref
d − Cd| against the number of elements for a sequence of

globally refined meshes, the sequence of adjoint-based isotropic refined meshes, see Table 1, and the sequences of
adjoint-based anisotropic refined meshes, see Tables 2 and 3. Comparing the histories of global and adjoint-based
isotropic refinement we see in Figure 3 that for this test casethe adjoint-based refinement leads to meshes with
a factor of about 5 less elements for a specific accuracy in thedrag coefficient as compared to global refinement.
Moreover, we see that compared to the isotropic adjoint-based mesh refinement there is another factor of about 2 in
the mesh sizes required for a specific accuracy for the anisotropic refinement based on the jump indicator and a factor
of approximately 4 for the anisotropic refinement based directly on the anisotropic error estimate.
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Figure 3: Streamlined body: Convergence of the error in the drag coefficientsJ(uh) for global in comparison to adjoint-based isotropic and adjoint-
based anisotropic mesh refinement algorithms. Additionally, b) shows the errors of the enhanced drag coefficients J̃(uh) = J(uh) + E for the
adjoint-based isotropic and anisotropic mesh refinement.

A comparison of the resulting adapted meshes is given in Figure 4. As anisotropic features are not particularly
strong and the initial mesh already shows some anisotropy the overall effect of anisotropic refinement seems rather
weak. However, we note that in some places the initial aspectratio is further increased in the anisotropic case, mainly
in the boundary layer mesh which can be seen in the symmetry plane. On the other hand, the stretching of some cells
along the body with small edge length orthogonal to the flow istoo pronounced in the initial mesh. During isotropic
refinement this aspect ratio is inherited to all child elements. The anisotropic refinement algorithm can modify aspect
ratios, however, and it does so. For some elements this yields areducedaspect ratio in order to create the mesh best
fitted to the (quite isotropic) problem at hand.

The error estimates in Tables 1, 2, and 3 can be used to enhancethe computed drag coefficientsJ(uh) ≡ Cd as
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Figure 4: Streamlined body: Adapted surface meshes after five adaptation cycles: top: isotropic refinement, bottom: anisotropic refinement.

follows: J̃(uh) := J(uh) + E. If the error estimation is reliable such enhanced target quantities can be expected to be
significantly more accurate than the original valuesJ(uh). This is confirmed in Figure 3b) which repeats Figure 3a)
in a different scale and additionally shows the histories of the errors of the enhanced drag coefficientsJ̃(uh). In fact,
from the third mesh onwards the enhanced drag coefficients are much closer to the reference value. The large vertical
distance in the convergence plot is a graphical interpretation of an effectivity index close to one.

9.3. Laminar flow around a delta wing

As a second test case we consider a laminar flow around a delta wing. The delta wing has a sloped and sharp
leading edge and a blunt trailing edge. A similar case has previously been considered in [22]. The geometry of the
delta wing can be seen from the initial surface mesh in Figure5a). The delta wing is considered at laminar conditions
with inflow Mach number equal to 0.3, at an angle of attackα = 12.5◦, and Reynolds number Re= 4000 with
isothermal no-slip wall boundary condition imposed on the wing geometry. This test case has been defined in the EU
project ADIGMA [24]. As the flow passes the leading edge it rolls up, creates a vortex and a secondary vortex. The
resulting vortex system remains over long distances behindthe wing, see Figure 5b).

By performing higher order computations on a series of finer meshes and extrapolating the results the following
reference values of the force coefficients have been obtained:Cref

d = 0.1658 andCref
l = 0.347.

In the following we will compare the performance in accurately approximating the drag and lift coefficients when
using adjoint-based mesh refinement in comparison to residual-based and to global mesh refinement. Additionally,
for the local mesh refinement strategies we will compare isotropic against anisotropic mesh refinement.

Let us first consider the drag coefficient. Performing the error estimation and adjoint-based mesh refinement
algorithm with the adjoint problem connected to the drag coefficient we collect the data of the sequence of isotropically
refined meshes in Table 4. Here we see that already on the coarse meshes the error estimation is quite accurate and it
improves as the mesh is refined. A similar behavior we see in Table 4 for anisotropic mesh refinement based on the
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(a) (b)

Figure 5: Laminar delta wing: a) initial surface mesh: Top, bottom and side view of the half delta wing with straight leading edges, b) solution plot
showing streamlines and a Mach number isosurface over the left half of the wing as well as Mach number slices over the righthalf.

jump indicator and also for anisotropic refinement based on the anisotropic error estimate. The efficiency of the error
estimation does not notable degrade on anisotropically refined meshes.

adaptive algorithm # el. # DoFs Cref
d −Cd E θ

isotropic

3264 130560 -1.202e-02 -8.808e-03 0.73
8549 341960 -6.772e-03 -5.352e-03 0.79

22885 915400 -3.968e-03 -3.163e-03 0.80
61868 2474720 -2.221e-03 -1.925e-03 0.87

anisotropic jump indicator

3264 130560 -1.202e-02 -8.808e-03 0.73
6600 264000 -7.398e-03 -5.931e-03 0.80

14215 568600 -3.895e-03 -3.160e-03 0.81
32621 1304840 -2.247e-03 -1.909e-03 0.85

anisotropic error estimate

3264 130560 -1.202e-02 -8.808e-03 0.73
4866 194640 -7.366e-03 -5.409e-03 0.73
7622 304880 -4.199e-03 -3.271e-03 0.78

12347 493880 -2.381e-03 -2.039e-03 0.86
20005 800200 -1.425e-03 -1.309e-03 0.92

Table 4: Laminar delta wing: Adaptive algorithms for the accurate approximation of the drag coefficient on sequences of isotropically and anisotrop-
ically refined meshes.

Figure 6a) plots the error in the drag coefficient|Cref
d −Cd| against the number of elements for various refinement

strategies: global mesh refinement, residual-based isotropic and anisotropic mesh refinement as well as adjoint-based
isotropic mesh refinement and the two anisotropic variants.We notice that drag coefficients of a specific accuracy are
obtained with less elements for residual-based mesh refinement than for global mesh refinement where this advantage
increases for increasing accuracy requirements. Furthermore, there is a significant decrease of the number of elements
required for a specific accuracy when comparing adjoint-based against residual-based refinement. Additionally, in
case of adjoint-based mesh refinement Figure 6a) plots the errors of the enhanced drag coefficientsJ̃(uh) := J(uh)+E.
We note that already on the coarsest mesh the enhanced drag coefficient is almost as accurate as the drag coefficients on
the finest adjoint-based refined mesh. Furthermore, we see that anisotropic mesh refinement always performs better
than isotropic mesh refinement. In fact, anisotropic adjoint-based refinement based on the jump indicator requires
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Figure 6: Laminar delta wing: Convergence of the error in thea) drag and b) lift coefficients J(uh) for global in comparison to residual-based
(isotropic and anisotropic) and to adjoint-based (isotropic and anisotropic) mesh refinement. Additionally, the errors of the enhanced force coeffi-
cientsJ̃(uh) = J(uh) + E on the sequences of adjoint-based mesh refinement are given.

about half the number of elements for almost the same accuracy than the corresponding isotropic refinement. For the
anisotropic adjoint-based error estimate this gain increases further and the number of elements can be reduced by a
factor of approximately five compared to the isotropic case.Overall, compared to a global mesh refinement approach
the number of elements and thus degrees of freedom required to obtain the accuracy of the final globally refined
mesh can be reduced by two orders of magnitude using the best available adaptive strategy. Using the enhanced drag
coefficient improves the accuracy by another order of magnitude. This accumulates to an impressive gain.

Finally, we consider the lift coefficient. Table 5 collects the data of the sequences of isotropically and anisotrop-
ically adjoint-based refined meshes. For all three algorithms we see a behavior similar to that described for the drag
coefficient, although the efficiency of the error estimation is slightly reduced in this case. Nevertheless, the adaptive
algorithm based on those estimates still performs very well. Figure 6b) plots the errors for global, residual-based,
adjoint-based, isotropic and anisotropic refinement and the errors of the enhanced lift coefficients. Here, again we see
a behavior very similar to that described for the drag coefficient above.

adaptive algorithm # el. # DoFs Cref
l −Cl E θ

isotropic

3264 130560 -2.851e-02 -1.939e-02 0.68
8346 333840 -1.804e-02 -1.196e-02 0.66

22647 905880 -1.067e-02 -7.759e-03 0.73
60524 2420960 -6.187e-03 -4.715e-03 0.76

anisotropic jump indicator

3264 130560 -2.851e-02 -1.939e-02 0.68
6339 253560 -1.931e-02 -1.328e-02 0.69

14073 562920 -1.051e-02 -7.169e-03 0.68
32274 1290960 -6.191e-03 -4.516e-03 0.73

anisotropic error estimate

3264 130560 -2.851e-02 -1.939e-02 0.68
4948 197920 -1.809e-02 -1.203e-02 0.66
7877 315080 -1.090e-02 -6.952e-03 0.64

12917 516680 -6.531e-03 -4.763e-03 0.73
21141 845640 -3.785e-03 -2.701e-03 0.71

Table 5: Laminar delta wing: Adaptive algorithms for the accurate approximation of the lift coefficient on sequences of isotropically and anisotrop-
ically refined meshes.
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Adapted meshes for six of the different combinations of error indicators and isotropic or anisotropic refinement are
presented in Figure 7. In order to present meshes for which the accuracy of the relevant target functional is comparable

(a) (b)

(c) (d)

(e) (f)

Figure 7: Laminar delta wing: Adapted meshes, a) and b): fouradaptation steps with the residual indicator, isotropic and anisotropic based on the
jump indicator, c) and d): three adaptation steps with the adjoint-based indicator for the drag coefficient Cd, isotropic and anisotropic based on
the anisotropic error estimate, e) and f): three adaptationsteps with the adjoint-based indicator for the lift coefficientCl , isotropic and anisotropic
based on the anisotropic error estimate.

all plots are given for the last data point in the errors plotsin Figure 6, except in the case of the anisotropic error
estimate for which the mesh is shown for the point prior to thelast one. The outstanding effect is clearly the resolution
of the vortex in the cut-plane behind the wing for the residual-based refinement indicator and the corresponding lack
of resolution in this area in the case of goal-oriented refinement. It is quite obvious that the global flow field is better
resolved using the first type of indicator whereas the resolution of this prominent vortex is not of much influence on
the target functional values, as both the pressure at the wall and the skin friction are only weakly dependent on the
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downstream vortex evolution. Thus, investing more in the near-wall refinement the adjoint-based refinement indicators
are capable of creating more efficient meshes for the approximation of the given target functional. We note, that the
resulting refinement for the lift and drag coefficients has clear similarities, but that there are differences in the details
of the created meshes. Furthermore, the effect of the anisotropic indicator can also be seen in the adapted meshes, not
only in the plots and tables. Finally, we note that the refinement of the vortex footprint on the wing is particularly
pronounced in the anisotropic residual-based case.

10. Conclusion and Outlook

The numerical examples demonstrate that the SIPG discretization is capable of producing accurate results for 3d
laminar flows. Furthermore, the applicability of the proposed local mesh refinement algorithm has been demonstrated.
Starting from very coarse meshes the relevant features of the flow field are resolved on subsequent refined meshes,
resulting in an accurate and efficient prediction of target functionals like aerodynamic force coefficients.

Both residual-based and adjoint-based adaptation are beneficial for improving the efficiency upon global mesh
refinement. For the most efficient approximation of a specific target functional the goal-oriented strategy is the most
effective one, especially as the availability of a global errorestimate is a valuable additional feature and can be
exploited to improve the computed target functional value.If, however, the goal of the computation is the global
field solution of the flow under consideration, it is advisable to use a residual-based error estimation and refinement
algorithm, instead.

The proposed anisotropic jump indicator is computationally very cheap, but is nevertheless able to achieve a
perceptible additional reduction in the number of elementsrequired to obtain a given accuracy. The “partitioned
approach” of separating the local error estimation from thelocal anisotropy detection makes this indicator immediately
available in both residual-based and goal-oriented refinement strategies. In the case of goal-oriented refinement the
anisotropic error estimation provides even better resultsat virtually no cost overhead. Both versions are immediately
applicable to higher order and variable orderhp–discretizations. Our current focus is on boundary layers in which
anisotropic features are aligned with the mesh. For shock-dominated flows those features might be oblique to the
mesh and an efficient anisotropic mesh resolution cannot be achieved by selectively refining edges. In that case local
node movement might be considered to create a properly aligned mesh.

A remaining problem of the current implementation is the restriction to purely hexahedral meshes. In practice,
only (block-)structured meshes can fulfill this requirement. It is complicated to create such meshes for complex
geometries and in particular coarse meshes often suffer from distorted elements. Thus it would be advisable to extend
the discretization to hybrid meshes consisting of tetrahedra, prisms, pyramids and hexahedra.

The current flow and adjoint solvers rely on the assembly and storage of the full Jacobian matrix which is pro-
hibitive for large-scale applications. Future research isdedicated to replace these solvers by memory-lean versions.
In particular, we will consider a concurrent iteration of the primal and adjoint solutions within ap-multigrid method
with line-implicit smoothing.

Most aerodynamic flows of practical interest are turbulent and transonic, thus the physical modeling should be
extended to both turbulence modeling via additional transport equations and a reliable shock capturing technique. A
reliable and robust extension of the discretization to these aspects will require a significant amount of future research.
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