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Radiative heat transfer plays a major role in the thermal behavior of any space
application compared to a typical Earth-based system. Space systems are known to operate
in an environment characterized by a wide range of temperatures and heat loads, such as
planetary and solar fluxes or deep space, planet and sun temperature. All these factors will
critically impact upon the thermal design of spacecraft and special thermal coatings are
generally used in thermal control. Many of these coatings present temperature dependent
thermo-optical properties, which cannot be neglected in the design of space systems.
However, in most thermal models, the temperature dependence is often reduced to the
definition of two sets of properties, namely the IR and UV ranges.

In addition, space systems usually present complex 3D geometries like antennas, optical
devices or reflective baffles. For such components, the thermal behaviour is generally
strongly coupled to their geometry, for instance the amount of rejected environmental
radiation of a reflective baffle depends upon the shape of its reflective surfaces. It is
therefore essential to model their surfaces with high accuracy. Unfortunately, complex
shapes are often not fully implemented in thermal software.

The objective of this paper is to present a general method to implement temperature
dependant thermo-optical properties and to approximate complex 3D geometry using
ESATAN-TMS, the European standard thermal analysis package.

Practical applications for current space missions will be used to illustrate both methods
and a comparison between different models will be presented to show the high inaccuracy
that occurs when temperature dependencies are neglected.
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Nomenclature

A = area

a,b,c = geometrical parameters

a, B,y = geometrical parameters

a = absorptivity

c = speed of light

At = time interval

e = Euler’s number

€ = emissivity

f,F,® = generic functions

n = generic thermo-optical property
GMM = geometrical mathematical model
GR = radiative exchange factor

GUI = graphical user interface

GV = view factor

h = Planck constant

I = intensity of radiation

IR = infra red

0, q = heat flux

k = Boltzmann constant

1 = length

A = wavelength

P = point

QE = planetary IR flux

r = radius

REF = radiative exchange factor

c = Stefan-Boltzmann constant

S = error

Emax = max allowable error

t = time

T = temperature

Tsopy = temperature of the body

Teq = equivalent temperature

™M = thermal mathematical model

T = time period

uv = solar waveband (ultraviolet and visible)
y = generic function

v, ¥ = approximating functions

X; = position of the node i in x direction
X;’ = iterated position of the node 7 in x direction

I. Temperature dependant thermo-optical properties
HE thermo-optical properties of the surfaces of one thermal system influence two different aspects of the related
mathematical problem: the radiative heat exchange between elements of the system and the environmental
fluxes striking the components of system. The optical properties of any material, coating or surface are expressed in
terms of spectrum (Figure 1).
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Figure 1. Spectra of an optical filter.
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Figure 2. Conceptual subdivision of the radiation striking a surface.

For a give surface temperature, the monochromatic emissivity, absorptance, transmissivity or diffusivity (see
Figure 1) are a function of the wavelength only. Therefore, the amount of heat power which is exchanged or
received by the elements of the system can be calculated on the bases of the wavelength of the incoming/outcoming
radiation and of the surface temperature.

In most thermal software, including ESATAN-TMS, the wavelength dependency of the thermo-optical
properties is reduced to the definition of only two different sets: one for the solar-UV waveband and one other for
the IR waveband. No dependency upon the temperature of the surfaces is usually taken into account. In these
software, the set of thermo-optical properties in the solar waveband is used to calculate the environmental fluxes
coming from the Sun (direct solar flux and albedo); the latter set is used both for the calculation of the IR planetary
environmental fluxes and for the internal radiative coupling.

This paper presents a set of solutions to overcome these limitations using ESATAN-TMS, implementing
temperature dependant thermo-optical properties for the calculation of the radiative coupling and of the
environmental fluxes. The implementation of dynamic optical properties permits also the simulation of coating
whose properties vary on the base of different physical quantities or which are actively user-controlled, such as
smart coatings.
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Possible applications of these methods are missions in which the spacecraft is subjected to environmental
radiation from sources with a broad range of temperatures, missions in which some components experience a
significantly variable temperature and in general when coatings, for which the temperature dependency of the
thermo optical properties can not be neglected, are used. Typical examples consist in solar orbiters or mission
towards the inner planets of the solar system, radiators, filters and optical devices, cryogenic systems and smart
coatings.

A. Radiative coupling

The radiative heat exchange in the thermal model is implemented using the Radiative Exchange Factors (REFs
or GRs) or the view factor (GVs). The radiative heat flux between the element i and the element j may be expressed
by the formula':

4, =06 a;-4-GV,, '(7;4 _7}4): c-GR;, '(Ti4 _Tj4) (M
And therefore:
GRl.’jzgfaj-Ai-GVi,j 2)

Where o is the Stefan-Boltzmann constant, ¢; is the emissivity of element i, o is the absorptivity of element j, A4;
the radiating surface of element i, GV;; the view factor between the elements i and j. These elements are considered
one-dimensional; i.e., eq. 1 provides the integrated flux exchanged between the two elements and not for the spatial
distribution of the flux on the element’s surface. If the procedure used to calculate the REFs is adequate, both
diffusive and specular reflections may be modeled and simulated using eq. 1.

Eq. 3 and eq. 4 express the Kirchhoff’s Law, under the hypotheses of incident radiation with equal intensity from
all angles and with a spectral distribution proportional to that of a blackbody at the temperature of the surface”. Eq. 5
is an expression of the Reciprocity Theorem'.

g =aq, 3)
& =a; “4)
4;-GV,; =4;-GV}; ©)
It is therefore possible to demonstrate:
GR,;=GR,, = ¢q,,=-9,, (6)

In the thermal model, it is possible to implement the radiative conductances on the base of the view factors (eq.
2), of the current optical properties and of the radiative area, which is normally exported by the radiative solver. The
base idea is to perform only one radiative analysis to calculate the view factors, and to dynamically assign the
radiative exchange factors in the thermal code using eq. 2. Since the computational time of the radiative analysis is
usually significantly greater than the time required to execute the thermal model, in this way it is possible to
drastically reduce the computational time due to the use of variable optical properties. The thermo-optical properties
depend on the surface temperature, hence the GR values should be updated for each iteration of the thermal solver
and, for transient analyses, for each time step of the simulation. The emissivity (or absorptivity) value at each
iteration can be calculated interpolating the tabulated relation between temperature and thermo-optical properties
previously implemented.

It may be noted that, in the thermal network, the only real variable thermo-optical property is the IR emissivity
or equivalently the IR absorptivity (see eq. 3). A couple of important remarks should be done:

- It is not possible to modify the specular / diffuse reflectivity ratio. Indeed, modifying only the emissivity, it is
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possible to indirectly modify the total reflectivity parameter, but the ratio of energy reflected specularly vs.
the energy reflected diffusively is determined only by the view factor GV, which is usually stochastically
calculated using a ray tracing method. The ray tracing method produces different results if the specular /
diffuse reflectivity ratio is changed. For this reason, the GVs cannot be considered purely geometrical
parameters.

- In the same way, it is not possible to modify the transmissivity of any surface. This may be easily understood
considering the following example: a sequence of one body, modeled using only one node, a semi-
transparent body (a filter), and another single node body. Since the transmissivity of the semi-transparent
surface is greater than zero, the ray-tracing method will provide for an equivalent GV between the first and
the last node. Deciding to modify the thermo-optical properties of the filter so that to have a nonexistent
transmission, and keeping the same value of emissivity in order to change only the reflectivity, the software
will still provide for a radiative conductor, which will be based only upon the emissivity of the radiating
surface and of the absorbing surface, but not upon the transmissivity of the filter.

In order to avoid these problems, different radiative analyses varying the thermo-optical properties should be
performed. After each radiative calculation, the thermal network should be solved and the resulting temperatures
should be used to calculate the new set of thermo-optical properties. This process should be iterated till the desired
convergence, often requiring an extremely long computational time. Fortunately, for many space applications the
ratio of specular and diffuse reflectivity can be assumed constant over a wide range of temperatures, or even
irrelevant to the final solution. In the same way, transparent surfaces are not very common and often their
transmissivity may be considered constant over a wide range of temperatures.

B. Environmental fluxes
The direct solar flux and the albedo flux are originated from the Sun, which surface temperature can be
considered constant over time. Therefore, the wavelength dependency of the thermo-optical properties can be
neglected for these heat fluxes. In this section, only the planetary IR fluxes, which are originate by bodies which
surface temperature may vary over a wide range, are considered. Two different aspects should be taken into account:
- the different behavior of the optical surfaces with respect to different wavelengths of the environmental
radiation

- the modification of the thermo-optical properties with the variation of the surface temperature of the
receiving body

The first aspect implies that, even if the system is kept at a constant temperature, its optical properties and the
consequent heat load absorption may vary with the waveband of the environmental radiation (and then with the
temperature of its source).

The thermo-optical properties of any optical surface should then be “weighted” upon the spectrum of the
planetary radiation, which depends on the surface temperature. If the planetary radiation can be approximated as a
black body radiation, then the Planck’s law (eq. 7) can be used to calculate the intensity of radiation. If this
assumption is not valid, the intensity of the planetary radiation is calculated multiplying the black body radiation for
the emissivity spectrum of the planet.

3 h-A -l
2hA i’z’l et —11 dA (7

1(A,T)dA =

1(4,T) is the intensity of the radiation in the wavelength range between A and dA, 4 is the wavelength of radiation,
T the temperature of the black body, / the Planck constant, ¢ the speed of light in vacuum, e the Euler’s number, k&
the Boltzmann constant. A representation of this equation is depicted in Figure 3.
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Figure 3. Black body emission spectrum for different temperatures.

As can be noted from eq. 7, the intensity of the radiation at the desired wavelength depends only on the
temperature of the emitting source. But the surface temperature of a planet cannot usually be considered
homogeneous. Therefore, an equivalent temperature, used to generate the radiation spectrum, should be defined and
calculated. A possible solution consists in using the equivalent homogeneous temperature that the planet should
have to cause the same density of power of the actual environmental radiation. This last parameter can be
analytically calculated, or, for complex problems, it can be numerically determined performing a simulation with the
real geometry and every surface set as black body. Thus, it is possible to express the calculated radiation power as:

B 4
QF =0 &pnpr * Agopy * OVpraner-sovy * Tro ®

Where QF is the planetary heat power absorbed by the body, ¢p;4ver the hemispherical total IR emissivity of the
planet, azopy the total IR absorptivity of the body, GVp ner-sopy the view factor between the planet and the body,
and 7o the unknown equivalent temperature of the radiative source. Both the heat power and the view factor can be
calculated, analytically or numerically; the absorptivity of the body is 1, if a black body has been implemented, in
any case it is known; the emissivity of the planet is taken from the applied model: hence, it is possible to calculate
Tgo. This represents the equivalent temperature, for each orbital position and for each attitude of interest, which
should be used to calculate the emission spectrum of the planet using eq. 7. The emission spectrum characteristic of
each of these conditions is used to weight the thermo-optical properties spectrum of any desired surface, using the
formula:

f:l (1T ) 1A Ty ) d2
[ 1a1,p)dz

U(TEQaTBODY>: )

Where 7 represents any thermo-optical property: emissivity, transmissivity and so on. The equation above allows
the calculation of the optical parameters that should be used for the computation of the environmental fluxes, as a
function of the planet equivalent temperature (see eq. 8) and of the receiving body’s temperature.

The presence of the body’s temperature in eq. 9 requires the solution of the thermal network, which is not
necessary for the pure radiative analysis. Therefore, some iterations using the radiative solver and the thermal solver
are required. A long computational time is expected following this method. Furthermore, the variation of the
spectrum upon the body’s temperature is often unknown, compromising the possibility of using eq. 9.

Fortunately, for a large class of materials the variation of the spectrum upon the temperature is not very sharp.
The expected temperature range for a spacecraft is also much narrower than the temperature variation of most
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radiation sources (especially for the inner planets), reducing the influence of the Topy in comparison to the Ty in
eq. 9. Neglecting the influence of the surface temperature, that is considering the thermo-optical properties constant
upon the body’s temperature, it is possible to write:

“1(a,1,,)-n(1)dA
U(TEQ)zL EO EQ) ) (10)
[[1(a1,)az

Summarizing it is possible, for each orbital position and attitude of interest, to calculate the planet’s equivalent
temperature. If the optical spectrum of the body is known, this curve can be weighted on the planet’s radiation
spectrum (not necessarily a black body radiation) and integrated on the relevant waveband in order to calculate the
total hemispherical optical properties to be implemented for the calculation of the planetary heat radiation.

This procedure involves the use of the radiative solver only. If the dependency of the thermo-optical properties
on the body’s temperature is not negligible, some iterations using the thermal solver are unavoidable.

I1. Complex 3D geometries

Space systems make commonly use of complex 3D geometries: antennas, reflective baffles, optical devices are
all system that are difficult to integrate in a thermal geometrical model.

Often the shape cannot be approximated beyond a defined limit, and these elements must be represented using a
large number of shells, with an elevated modeling and computational time costs. Optical devices require particular
modeling care, since small shape variations may strongly affect their functioning and produce unrealistic simulation
results. For instance, the amount of environmental radiation rejected by reflective baffles depends upon the shape of
its optical surfaces.

This condition can be better understood considering that some optical surfaces are specifically designed to direct
the radiative flux towards a specific target. For instance, some antennas are used to focus the radiation on a small
component, which therefore experiences a high heat load. Small variations of the geometry or too coarse
approximations of the shape can modify the optical path and strongly reduce the heat load on the target surface.
Similarly, some reflective surfaces may be designed to reflect the striking radiation through a small aperture, in
order to minimize the heat absorption and the clear aperture of the system.

Currently ESATAN-TMS can model conical surfaces, paraboloids and spheroids: other complex geometries
commonly used in space applications, like ellipsoids,
hyperboloids and generic surfaces of revolution are not yet - Approximating curve
available. It is therefore necessary to approximate the S
desired shape using the three base shells mentioned above.
The goal of the optimal discretization is to identify the
minimal number and the type of shells to be used, together
with their mesh, in order to achieve the desired accuracy.

Different criteria can be used to assess the efficiency of
a discretization, which can be assigned to one of two
distinct categories:

- pure geometrical parameters Figure 4. Geometrical error.

- radiative parameters

The first class includes the area between the desired curve section and the approximated one (see Figure 4), and
the integral of the angle from a reference to the normal to the surface (compared between the ideal and approximated
curve).

The second category consists in comparing the environmental fluxes calculated analytically (on the ideal
geometry) and numerically (on the approximated geometry).

The geometrical parameters are used to define a first approximated geometry and its discretization. The radiative
parameters can be used to iteratively optimize the geometrical model.

Geometrical error
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Figure 5. Discretization flow chart.

In Figure 5 the logical path of the process is depicted. As a first attempt, it is possible to try to model the desired
surface using only one shell. The error parameter (in whatsoever way it has been defined) is calculated, and then this
value is compared with the maximal allowable error. If the calculated value is the greatest, the process should be
iterated trying with two shells, and so on till the achievement of the desired accuracy.

Considering only surfaces of revolution, it is possible to analyze the approximation problem in two dimensions,
analyzing the generatrix of the surface. We define F(x,y)=0 as the 2-dimensional function of the generatrix of the
reference surface (y = f{x) in explicit format) and @(x,y)= 0 as the function of the generatrix of the approximating
surface (y = ¥ (x) in explicit format).

The function ¥ depends on the type of the chosen approximating surface: Straight lines (eq. 11) for cones,
parabolas (eq. 12) for paraboloids and circumferences (eq. 13) for spheres:

®L1NE(xay):a'x_y+b:0 (11)
CDPAR(x,y)za-yz+b-y—x+c:O (12)
q)CIRC(x’y):(x_a)z+(y_b)2_r2:O (13)

The equations of the parabola and of the circumference can be further approximated. In order to represent
surfaces of revolution, which cross section is a circle, it is necessary to impose that the vertex of the parabola and the
center of the circumference lie on the axis of rotation. If this condition is not applied, the produced 3D results show
asymmetries in tangential direction. This constraint translates into a relation between the geometrical parameters of
the curve, which eliminates the parameter b from eq. 12 and eq. 13:
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Y LINE Z\PLINE('X): a-x+b (14)

a

1
—c\2
Ypar :lPPAR(x):(x C] (15)

1
Yere = LPCIRC(X): [rz _(x - a)2]2 (16)

The functions describing the three presented generatrixes depend upon two geometrical parameters. A unique
curve can be set constraining the approximating generatrix to cross the reference generatrix on two points
Defining the approximation error as the difference between the approximated and the reference generatrixes:

&(x)=¥(x)- f(x) (17)

/

&=[|%(x)- f(x)dx (18)

0

Where &£(x) is the local error, ¢ is the total error, f{x) the reference generatrix, ¥(x) the approximated curve and /
its length along the axis of rotation (assumed x without affecting generality). It is therefore possible to write:

X,

E= 20 [ o) F o (19

Xi

O=x,<x <x,<..<x,,<x,=1 (20)

where y; is the local approximation (arc of circumference or parabolic segment) of the real curve, and » is the
number of segments in which the real surface has been divided. The local approximation is function only of the axial
coordinate x. Eq. 19 is function of only n-/ parameters: the x-coordinates of the start and end points of the
discretization segments (x;, ..., X,.7).

The number of approximating surfaces # is usually constrained by computational limits.

To find the optimal approximation for a given 7, eq. 19 should be minimized with respect to the x; parameters
which allow achieving the optimal approximation.

A reasonable simplification consists in defining a maximal acceptable error & < &4y and proceeding iteratively
selecting different set of approximating segments until the required maximal error is met. Doing that, all the
approximating curves are univocally identified but no absolute minimization is guaranteed. The geometrical
parameters of the approximating curves can be independently determined for each single segment, requiring that the
approximating curve intersects the real curve at the beginning and at the end of its domain:

Vi (xi—l ) = f(xi—l)

vi(x)= £ (x,) ey

This allows calculating the two geometrical parameters that constrain the approximating curve (see eq. 14, eq. 15
and eq. 16).

The first simplest solution consists in adopting a homogeneous discretization along the x axis. Thickening the
mesh by the steepest parts of the curve, it is possible to reduce the approximation error. It is possible to iterate the
process: an initial mesh can be defined, the system of eq. 21 solved and the single errors for each segment of
discretization calculated. Then, the elements which show the largest errors may be corrected reducing their domain
in X, and increasing the width of the segments which instead present the lowest errors.
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I11. Standard thermal analysis procedure

The thermal analysis of a model design generally adheres to the following pattern: starting with the full
description of the model configuration, the engineer makes an idealized (simplified) geometric model expressed in
terms of the primitive types (i.e. building blocks). To this geometric model is added information about the thermo-
optical properties of the materials used in the construction of the model. This geometric model is then discretised in
some way to permit the formulation of a set of discrete (coupled) equations in place of the continuous differential
equations describing the transport of heat within the model. The coefficients of this set of equations will generally

involve heat capacities and
conductivities of the materials
of the model, heat sources and
sinks, external heat inputs and
losses, and radiative
exchanges inside and outside
the model. All of these
coefficients must be computed
to complete the thermal
mathematical description of
the model. Once the
coefficients are available, the
set of equations may be
solved, possibly with a time or
other dependence of some of
the terms, to enable a

simulation of the model and
its environment to be made.
The results from the

Figure 6. Thermal modeling cycle. simulation are examined and
compared with design criteria,

" o |
i

test results, other simulations, etc.; the model is modified as necessary to correct errors and to reflect changes in
design; and a further simulation is carried out. This cycle continues until satisfactory predictions are obtained for the
range of environmental conditions that the model will experience.

ESATAN-TMS Workbench is a widely used 3D surface-modeling environment, allowing the user to perform the
type of thermal analysis as described above.

The standard procedure to perform a complete thermal analysis using ESATAN-TMS is

Creation of the Geometrical Mathematical Model (GMM), based upon the use of complex geometries from
predefined primitive shapes (quadrilaterals, discs, cones, spheres, boxes, etc). These primitives will be
assembled using Boolean operations, including cutting. The user can associate them with material
properties (density, heat specific and conductivity) and thermo-optical properties (IR or UV properties).

A radiative mesh is applied to the geometry and an enhanced Monte-Carlo ray-tracing algorithm coupled
with automatic accuracy control is used to calculate radiative coupling between the mesh faces and to
derive environmental fluxes (solar, planet and albedo). In support of using different mesh densities for the
radiative solution and the thermal solution, a thermal mesh can be overlaid on the radiative mesh with
Workbench automatically performing the mapping operation.

Computation of the conductive couplings between adjacent nodes within Workbench using the “Far-Field”
Method”’.

Definition of all the boundary conditions applicable to the model. Workbench provides an interactive and
easy way to define efficiently time and temperature dependant boundary conditions.

Through the use of a case control facility, Workbench will automatically generate the Thermal
Mathematical Model (for ESATAN or SINDA/G solver) containing the calculated view factors, radiative
exchange factors, conductive couplings, environmental fluxes and boundary conditions.

The generated TMM will be automatically run using ESATAN-TMS Thermal module. The calculated
temperatures will be available for being post-processed, either inside Workbench by applying them onto the
geometrical model, or inside ThermNV, ESATAN-TMS post-processing tool.

A couple of remarks can be made.
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In the generation of the TMM, some information of the GMM is lost. In the lumped parameters model indeed, all
the data about the geometry of the surfaces are condensed in a list of areas and view factors (or radiative exchange
factors). In the same way, no information about the specular / diffuse reflectivity or about the transmissivity of the
surfaces are still available: only the emissivity / absorptivity is reported in the definitions of the nodes. Again, all the
parameters of the orbit are not available in the TMM, in which all these information are reduced to a list of
environmental fluxes. For all these reasons, it is not possible to perform another complete radiative analysis from the
thermal model, but it is necessary to modify the GMM.

It is important to remark that this is not a limitation of the software, but it is an intrinsic problem of the lumped
parameters method. This simple but useful instrument for the solution of the thermal problem compresses all the
information concerning a real element into a single node (and thus the “lumped parameters” name). Each node has
the following properties: temperature, thermal capacitance, radiative area, IR emissivity and UV absorptivity. It is
also possible to implement user defined parameters, but not to recover all the information about the geometry which
are necessary to perform a radiative analysis.

Summarizing, if the lumped parameters method is applied, the radiative problem is conceptually decoupled from
the thermal problem. The radiative problem is usually solved first to provide for the inputs for the thermal problem,
such as radiative exchange factors and environmental fluxes, when the results of the thermal problem (in particular
the temperatures) are not yet known. If the dependency of the radiative results from the temperatures is not
negligible, the only way to properly take into account for this relation is to iterate the solution of the GMM and of
the TMM. This necessity is due to the mathematical representation of the problem, and not to software limitations.

IV. Implementation of variable thermo-optical properties

A. Internal fluxes and radiation towards deep space

1. Description
The first and simplest case is the

implementation of temperature-dependant 10 Reflect
thermo-optical ~ properties  for  the 09 - —_relleciance
calculation of internal radiation (radiative 08 1 —Absorpt.ance
heat exchange between elements of the — Transmittance
system) or for the calculation of the 071
radiation towards the deep space (radiative . 06
heat exchange with a radiative sink). v 05 |

In this section, the dependency of the % '
thermo-optical ~ properties upon  the > 041
temperature is supposed to be explicitly 03 -
known: that is, the relation between 02 |
temperature and absorptivity, emissivity, '
reflectivity and transmissivity can be 0.1 1
tabulated. An example is shown in Figure 00 : ‘ - : . .
7. For a method to determine the explicit 200 -100 0 100 200 300 400 500
]r;f.lanon from the optical spectrum, see §I Temperature [°C]

It is necessary to perform the radiative
analysis just once, using any coating: the
desired output is the list of the view factors
(GVs). These are (theoretically) purely
geometrical parameter, which do not depend on the surfaces coatings or on their optical properties.

Figure 7. Explicit relation between temperature
and thermo-optical properties.

2. Procedure using ESATAN-TMS

The following procedure should be applied to the analysis file. It is not possible to perform the following
operations using only the ESATAN-TMS Graphical User Interface (GUI).

From the analysis case within Workbench, it is possible to automatically create the analysis file (input file for the
ESATAN solvers). In this analysis file, it is possible to output the calculated view factors (GVs) that will
automatically be reported in the SCONDUCTORS block as described below:
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$CONDUCTORS

GV (1001, 1002) = 0.07623;
GV (1001, 1003) = 0.02112;
GV (1001, 1004) = 0.10061;
GV (1002, 1003) = 0.05439;

(1002, 1004) = 0.06667;

The following step is to define in the SARRAY block the temperature dependency of the emissivity. This can
then be used in the interpolation routine INTERP which will be called at each time step. The VFAC routine is used
to update the GRs values on the base of the GVs and of the interpolated emissivities.

$CONSTANTS
$ARRAYS
$REAL
TI_TEMPERATURES (5) = -50.0, 0.0, 20.0, 50.0, 100.0;
TI EMISSIVITY(5) = 0.567884, 0.487767, 0.291115, 0.203785, 0.151202;
$VARTABLES1
WHILE (iNode .LE. NNodes)
EPS:1000 (iNode) = INTERP(T:1000 (iNode), TI TEMPERATURES, TI EMISSIVITY, 1)
iNode = iNode + 1
ENDWHILE
CALL VFAC
3. Example 1
The first example illustrated consists of a sphere 06
with a diameter of 100 mm, surrounded by a cubic
shroud which side length is 300 mm. The shroud 0.5 |

surfaces are assumed to be perfect black bodies,
whereas the sphere is made of titanium. In Figure 8 it is
possible to see the measured emissivity of a titanium
sample vs. temperature. The sample has been subjected
to mechanical and thermal finishing.

IR emissivity [-]
o
w

The black body shroud has been set as radiative 0.2 1
sink with a fixed temperature of -20 °C, which is also 01 -
the initial temperature of the sphere. A linearly variable
dissipation power has been applied to the sphere, 0.0 ‘ ‘ ‘
starting from 0 W at the beginning of the simulation till -300 -100 100 300 500

100 W after 100 s. The results in terms of sphere
temperature are reported in Figure 9.

As can be seen, the results obtained implementing
temperature-dependant ~ thermo-optical ~ properties
significantly differ from the results using constant
optical properties. In particular, implementing the emissivity corresponding to -20 °C, which is the initial
temperature, the difference after 100 s is more than 60 °C. Using an emissivity corresponding to an expected
average value, for instance the value corresponding to 30 °C, the difference is still high (57 °C). The blue curve in
Figure 9 instead represents the temperature evolution of the sphere implementing a constant emissivity
corresponding to 290 °C. This value has been numerically calculated so that the final temperature is equal to the
final temperature adopting the variable thermo-optical properties. Although the final temperatures coincide, the
temperature profile of the case with fixed emissivity is significantly higher than the profile of the case which makes
use of variable emissivity, especially in the central area of the chart. Therefore, even this last case can be considered
representative of only one single point. Most important, there is no way to calculate a priori the required emissivity
in order to match the real results at a specific time step. This value should be numerically calculated after a
simulation in which the temperature-dependency of emissivity has been taken into account.

The values of IR emissivity during the simulation are reported in Figure 10.

Temperature [°C]

Figure 8. IR emissivity/absorptivity of
a titanium sample vs. temperature.
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B.

increment of the complexity with respect to the previous case.
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Figure 9. Sphere temperature vs. time.
Environmental fluxes
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Figure 10. IR emissivity of the sphere vs. time.

The calculation of the environmental heat fluxes, and in particular of the planetary IR fluxes, represents an

— —
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Figure 11. The orbit of the example.
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A good example is represented by the | Parameter Value
planet Mercury, which is the case for which Mercury true anomaly 0.0 deg
this method has been developed. The night Sun-planet distance 4.60011-107 km
side of the planet experiences temperatures | Right ascension of ascending node (Q) 180.0 deg
down to 100 K*, whereas the subsolar point at | Orbit Inclination () 90.0 deg
perihelion reaches 680 K. This causes a Argument of Periherm (a) 16.0 deg
strong variation of the radiation intensity but [~ Ajtitude of Periherm 400.0 km
also a variation of the radiation waveband. A Altitude of Apoherm 1508.0 km

noon/midnight polar orbit when Mercury is at
the perihelion presents the extreme
temperature variations which have been introduced. An illustrative orbit of this type, used in the following
examples, is depicted in Figure 11; its main parameters are listed in Table 1.

Before implementing the temperature dependency of the thermo-optical properties, the equivalent planet’s
temperature (see eq. 8) should be calculated. The planet’s temperature must be modeled using the same temperature
map that will be used for the real model. Then, a simple dummy model can be used to calculate the planetary
radiation. A possible solution is the use of a black body disc, which size and attitude should be representative of the
real model. From the planetary heat flux, the equivalent planet’s temperature is calculated for each time step of the
simulation.

Table 1. Parameters of the example orbit.

2. Procedure using ESATAN-TMS

For each step of the radiative analysis, the thermo-optical properties can be calculated using the corresponding
equivalent planetary temperature (see eq. 8). The results can be stored in the ESATAN-TMS geometry file using an
array of opticals.

STRING PropEnV[42] = { ||avrg|| , "AA", "AB", "AC", "AD", "AE", "AF",

OPTICAL opt_ Coating;

opt_Coatinglavrg] = [0.262855, 0.737145, 0.0, 0.15, 0.0, 0.0, 0.0, 0.85];
Opt7COating[AA] = [0.524147, 0.475853, 0.0, 0.15, 0.0, 0.0, 0.0, 0.85];
opt_Coating[AB] = [0.479518, 0.520482, 0.0, 0.15, 0.0, 0.0, 0.0, 0.85];
opt_Coating[AC] = [0.375622, 0.624378, 0.0, 0.15, 0.0, 0.0, 0.0, 0.85];
Opt7COating[AD] = [0.293954, 0.706046, 0.0, 0.15, 0.0, 0.0, 0.0, 0.85];
opt_Coating[AE] = [0.242266, 0.757734, 0.0, 0.15, 0.0, 0.0, 0.0, 0.85];

| = [0.310253, 0.789747, 0.0, 0.15, 0.0, 0.0, 0.0, 0.85];

opt Coating [AF]

The optical arrays have been defined following the ESARAD convention: IR emissivity, IR diffusive
reflectivity, IR transmissivity, UV absorptivity, UV diffusive reflectivity, UV transmissivity, IR specular
reflectivity, UV specular reflectivity. It can be noted that only the thermo-optical properties in the IR waveband have
been changed: since the solar superficial temperature can be considered constant, there is no need to modify the
optical properties in the solar-UV waveband.

For each step of calculation, it is necessary to update the thermo-optical properties set. This can be done
modifying the normal kernel file, which contains all the instructions for the radiative calculation. This file can be
created using the Workbench, specifying all parameters of the radiative case, of the mission and of the accuracy.
Then, it can be exported, modified and re-loaded with the made modifications.

The following code shows an example of a kernel file modified to update the thermo-optical properties at each
time step. The variable CaseName should be replaced with the name of the actual radiative case. The FOR loop
repeats the radiative computation as many time as it has been specified in the radiative case definition. Before any
execution of the radiative calculation, the thermo-optical properties are updated, assigning to the PROP ENV
variable the proper value of the PropEnv array, which has been previously defined in the geometry file and that
returns the index of the optical array.

PROP_ENV = CaseName.PROP_ENV;

CALCULATE (radiative case = CaseName,
calc_types = "REF",
pos_index = 1,
eclipse check = TRUE) ;

FOR (orbit_index = 1;

orbit_index <= CaseName.NUM ORBIT POSITIONS;
orbit_index = orbit_index + 1)
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CaseName.PROP_ENV = PropEnv[orbit index + 1];
PROP_ENV = CaseName.PROP_ENV;

CALCULATE (radiative case = CaseName,
calc_types = "SAF, PAF, ALBEDO PAF",
pos_index = orbit_index,
eclipse check = TRUE) ;

END_FOR

PROP_ENV = CaseName.PROP_ENV;

Since the radiative exchange factors have no influence on the calculation of the environmental fluxes, they can
be calculated only once at the beginning of the radiative calculation. This is valid only for static geometries: for
kinematic models it is necessary to recalculate the REFs for each time step. The thermo-optical properties set used
for the calculation of the REFs is the first listed in the PropEnv variable, which corresponds to the average (avrg)
label. This set of optical properties is representative of the temperature at which the surfaces exchange heat inside
the system, which is in general different than the planet’s temperature.

When the previous code is executed, ESATAN-TMS provides for warning messages, which should be ignored.
Since these messages interrupts the simulation, if the kernel file is executed using the GUI, it is recommended to
perform this type of operation in batch line.

3. Example 1

The implementation of temperature-dependant thermo-optical properties for the calculation of the environmental
fluxes will be presented using the orbit around Mercury described in §IV-B-1 as example. This planet has been
chosen due to its proximity to the Sun and to its peculiar orbit, which causes extreme temperature variations on the
planet’s surface. The Mercury’s temperature is depicted in Figure 11. A simple disc has been used to assess the
planetary fluxes along the orbit. The thermo-optical properties of the Ti sample reported in Figure 8 have been used.
The orbit starts in the night side, 16° above the equator.

The simulation has been performed for three different set of thermo-optical properties. In the first one, the IR
absorptivity has been calculated weighting the spectrum of the sample on the planetary emission spectrum, and the
values have been dynamically updated during the simulation. The other two cases instead make use of single values
of IR absorptivity.

The first of these is simply the arithmetical average of the absorptivity along the whole measured spectrum.

Another method consists in trying to reproduce the equivalent temperature that would cause the same total
amount of environmental fluxes on the body, assuming a constant heat flux along the orbit. This condition is
expressed in eq. 22:

~ _i=l — ¢(avemge) V (average)

_ 4
=0 - Epryner “Xpopy * G PLANET-BODY * T, EQ (22)

Where 7 is the temporal length of the simulation (typically the orbit period), @ is the IR flux and # is the number
of steps of the simulation. Please note that the average view factor along the orbit should be used. The view factor
can be easily calculated for each position numerically using ESATAN-TMS or even analytically, and then averaged
upon time. Using the relation eq. 22, and implementing the orbit described above, it is possible to evaluate the
equivalent temperature of Mercury as

n
Z ¢1 ) Ati
T, = i=l =209.6°C (23)
0 (average)
70 Epaner * Xgopy " GVeraner-sopy

The IR absorbed fluxes, for the three different cases, are plotted in Figure 12; the errors with respect to the case
which makes use of temperature-dependant thermo-optical properties are reported in Figure 13.
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Figure 12. IR fluxes from the planet. Figure 13. Error on the heat flux implementing

fixed thermo-optical properties.

As can be seen, the two proposed approximations are not able to reproduce the real radiative behavior.
Implementing the average of the emissivity, the IR planetary flux is underestimated for each orbital position. In
particular, in the night side of the planet the absolute value of the error raises up to 70 %; the total absorbed energy
along one orbit is only 93 % of the real value. Implementing a fixed emissivity, based on the equivalent temperature
of the planet, the planetary fluxes are underestimated in the night side and overestimated in the day side of the
planet. The flux peak is overestimated by a factor of 1.3, and the total absorbed energy is 20 % more than in the real
case.

The fixed emissivity which causes the same total energy absorption has been numerically calculated and is
reported in Figure 12 and Figure 13 as a dashed black line. Even this solution, which is not known a priori, is not
able to reproduce the real IR absorption curve, and causes an overestimation of the planetary flux peak of about 10
%.

4.  Example 2

The second example presents the combined used of temperature-dependant thermo-optical properties for the
calculation of the absorbed environmental fluxes and of the internal radiative exchange. Moreover, the use of active
coatings will be introduced. This brand-new class of coatings promises to become a very important factor in the
design of space-purposed thermal controls. Active coatings allow controlling the thermo-optical properties of special
surfaces, usually by means of extremely low-power electric signals. The presented method can be used also to
simulate other types of dynamic coatings, such as thermochromic materials.

The active coating used in this example is EclipseVED™, developed by Eclipse Energy Systems, Inc.’.
EclipseVED™ is an electrochromic coating which can be controlled through a very low power (order of magnitude:
10* W'm™). This material can assume two different set of optical properties in the IR waveband: bleached, with low
emissivity/absorption, and colored, which is used instead to achieve high values of IR emissivity/absorption. The
spectra of the two modes of the EclipseVED™ coating are reported in Figure 14. From this data, the thermo-optical
properties have been integrated over the black body radiation. The explicit dependence of IR absorptance vs.
temperature has been found using the procedure described in §I-B. Since there is no data about how the material
spectrum changes with its surface temperature, it has been assumed that no significant variation of the emissivity
spectrum occurs with variation of the temperature. Therefore, the emissivity of the surface as a function of the
surface temperature has been considered coincident with the absorptivity with respect to an incident radiation from a
source with the surface temperature.
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Figure 15. EclipseVED™ coating, dependency of emissivity upon temperature.

A complete radiative and thermal simulation has been performed implementing both modes (bleached and
colored). A simple disc, always nadir-pointing, performs the orbit described in §IV-B-1. The use of a high
emissivity coating, such as the colored mode of EclipseVED™, causes high energy absorption from the planet, but
also low maximal temperatures. When the surface becomes hot, as a consequence of planetary and solar fluxes, a
high IR emissivity allows for an efficient dissipation of the heat. On the other hand, the use of a low emissivity
coating (like the bleached mode of EclipseVED™, causes low power absorption from the planet but high
temperature peaks. A good solution can therefore be to implement the bleached thermo-optical properties when the
disc faces the hot side of the planet, and the colored mode for the rest of the orbit. A possible switch condition may
refer to the planetary heat flux received from the planet: when this value is larger than a predefined limit, the
bleached mode is activated. The solution implemented in this simulation consists of switching to the bleached mode
when the incident planetary flux exceeds 0.01 W'm™, and to the colored mode when the planetary flux goes below
this value. Results in terms of IR fluxes and disc temperature are reported in Figure 16 and Figure 17.
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Figure 16. Planetary IR fluxes absorption. Figure 17. Disc temperature vs. time.

The temperature peaks which occur using the bleached mode for the whole orbit are due to the solar radiation. In
this segment of the orbit, the planet is cold but the disc experiences a low aspect angle with respect to the Sun. Since
the solar thermo-optical properties are fixed, at this point it is important to take advantage of the colored mode to re-
emit as much as possible the absorbed solar radiation. Shortly later, when the planet’s temperature grows hot and the
Sun aspect angle decreases, a bleached mode is preferable in order to absorb less planetary fluxes (down to 12 % of
the colored values). As a drawback, this causes a small increment of the surface temperature with respect to the case
which makes use of the colored mode only.

It is not easy to dynamically modify the radiative analysis: switching from one set of thermo-optical properties to
one other can be done only at a prearranged time step. It is not possible to switch from one condition to one other on
the base of a parameter which is calculated along the simulation. Therefore, the best solution is to implement the
control on the active coating in the thermal model. Two whole radiative analyses should be run, one for the bleached
mode and one for the colored mode. The IR absorptivity for each time step of the simulation can be calculated from
the curves reported in Figure 15 and using eq. 8 and eq. 10. Both the planetary flux and the emissivity for the two
cases should be implemented in the thermal model:

SU1000(41) = # SOLAR ABSORBED

0.000000, 1.231053, 0.000000, 0.000000, 0.000000,
AL1000(41) = # ALBEDO ABSORBED

0.000000, 0.051917, 0.163045, 0.309949, 0.714186,

PL1000_BLACKBODY (41) =

0.02549¢6,

PL1000_ COLORED (41) =

0.013316,

1.913371,

1.377715,

PL1000_BLEACHED (41) =

0.001992,

EPS COLORED (41) =

0.118157,

# PLANET ABSORBED

5.964851,

# PLANET ABSORBED

4.374247,

# PLANET ABSORBED

0.397461,

# IR EMISSIVITY

11.325100,

8.179911,

0.814742,

(COLORED

(BLACK BODY)

26.078820,

(COLORED MODE)

17.990770,

(BLEACHED MODE)

2.175783,

MODE)

0.52228339,

EPS_BLEACHED (41) =

0.07813240,

0.72004565,

0.06175352,

# IR EMISSIVITY

0.73333716,

0.06663381,

0.72228157,

(BLEACHED MODE)

0.0719%94126,

0.68986133,

0.08343103,

The standard routine used for the interpolation of the environmental fluxes should be modified, introducing an IF
structure which discriminates between two different cases modifying the implementation of the planetary flux:
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SUBROUTINE QCYCLC LANG = MORTRAN

QS1000 = INTCYC (TIMEM, ORBTIM, SU1000, 1, PERIOD, 0.0DO)
QA1000 = INTCYC (TIMEM, ORBTIM, AL1000, 1, PERIOD, 0.0DO)
#

IF (INTCYC (TIMEM, ORBTIM, PL1000 BLACKBODY, 1, PERIOD, 0.0DO) .GT. (0.01 / A1000)) THEN
QE1000 = INTCYC (TIMEM, ORBTIM, PL1000_ BLEACHED, 1, PERIOD, 0.0DO)
ELSE

QE1000 = INTCYC (TIMEM, ORBTIM, PL1000_COLORED, 1, PERIOD, 0.0DO)
END IF
#
RETURN
END

Finally, the emissivity of the interested surfaces should be updated considering the proper surface temperature,
and the GRs updated for each time step and for each iteration of the thermal solver. The radiative analysis should
provide for the necessary view factors (the radiative exchange factors are calculated using the VFAC subroutine).

SVARIABLES1

IF (SOLVER(:2) .EQ. 'SS') THEN
CALL QAVERG

ELSE
CALL QCYCLC
CALL RCYCLC

END IF

IF (INTCYC(TIMEM, ORBTIM, PL1000_BLACKBODY, 1, PERIOD, 0.0D0) .GT. (0.01 / A1000)) THEN
EPS1000 = INTCYC (TIMEM, ORBTIM, EPS BLEACHED, 1, PERIOD, 0.0DO)

ELSE
EPS1000 = INTCYC (TIMEM, ORBTIM, EPS_COLORED, 1, PERIOD, 0.0DO)
END IF
CALL VFAC
V. Approximation of 3D geometries
A. Code

The best way to implement a large number of shells makes use of the FOR DO loop. Inside the loop, it is
possible to call a shell generator command varying the parameters for each iteration. If the relevant parameters are
stored in matrixes, it is possible to refer to the proper values using the FOR DO loop index.

The geometrical shells can be defined using parameters or points: in this paper, the latter solution will be
presented. The first step is the identification of the relevant points: since a numerical code is the best solution to
calculate the geometrical parameters of eq. 14, eq. 15 and eq. 16 for a large number of shells, and in case to
numerically calculate the minimum of the error (eq. 19), the same code can be used also to calculate the position of
the definition points. An example of the definition points for the sphere is shown in Figure 18.
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Following this approach, a number of matrixes equal to the number of needed points must be defined. Each
matrix should have 3n elements, where 7 is the number of shells to be implemented for the approximation and the 3
represents the three Cartesian coordinates x, y, z of the node.

REAL P1[52, 3]
REAL P2[52, 3]
REAL P3[52, 3]

{0.0, 0.0, -0.000923179214403, 0.0, 0.0, -0.0027695376432082,
.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...
0.0611069739052909, 0.0, -0.000923179214403,
0.0611992116768011, 0.0, -0.0027695376432082,
.0, 0.0610697764855906, 0.001208641571195,

0.0, 0.0609790160629047, 0.00241728314239, ...
REAL P5([52, 3] = {0.0, 0.0611, 0.0, 0.0, 0.06106997764855906, 0.001208641571195,

wouwn
o

REAL P4 [52,

w

Il
—

o

For each definition point, the position coordinates should be stored in the following order: x-coordinate of the Px
point of the first shell, y-coordinate of the same point, z-coordinate of the same point, x-coordinate of the Px point of
the second shell, and so on. It is important to use the highest possible accuracy in the definition of the coordinates, in
order to avoid gaps or overlapping shells.

Once the matrixes of the points have been declared, it is possible to recall them inside a FOR DO loop for the
definition of the shells:

SHELL Approximation;
SHELL Segments[52];

FOR (n = 1; n <= 52; n=n + 1)

Segments [n] = SHELL SPHERE (pointl = [P1[n, 1], P1l[n, 2], Pl[n, 311,
point2 = [P2[n, 1], P2[n, 2], P2[n, 3]1],
point3 = [P3[n, 1], P3[n, 2], P3[n, 311,
point5 = [P5[n, 1], P5[n, 2], P5[n, 3]],
pointé = [P6[n, 1], P6[n, 2], P6[n, 311,
)i
END_FOR

Approximation = Segments[1l] + Segments([2] + Segments[3] + Segments[4] +

B. Example

The example herein presented consists of a Stavroudis reflective baffle’. This optical device is optimized to
reflect all the environmental radiation with an incident angle between 90° and a specified angle from the axis
boresight. The device consists of a series of ellipsoids and hyperboloids; the 2D cross section of a baffle which
makes use of the Stavroudis concept is reported in Figure 19. The optical functioning of this device is irrelevant to
the following discussion, but it is important to know that, assuming perfect shapes and implementing a perfect
specular reflectivity (diffusive reflectivity is zero), no environmental radiation coming from the defined range of
directions is able to reach the inner side of the front ring and the rear clear aperture of the device (see Figure 20).
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Figure 19. Stavroudis baffle geometry.
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Figure 20. Functioning of the Stavroudis baffle.

The first step is the expression of the analytic curves of the cross section in a suitable reference system. As can
be seen in Figure 19, the origin of the system has been placed at the beginning of the shape, the x axis aligned with
the axis boresight, which is also the axis of the surface of revolution.

The hyperboloids have negative Gaussian curvature'®'": this means that the local center of curvature lays outside
the surface of revolution. Spheres and paraboloids have instead positive Gaussian curvature'>" (the local center of
curvature lays inside the surface of revolution). Cones, which have a Gaussian curvature equal to zero', are
therefore the only possible solution to represent the hyperbolas without causing asymmetries in the 3D curves. The
ellipsoids are instead curves with positive Gaussian curvature'’, and can be represented by any of the previously
described curves. Part of the optimization of the discretization consists in finding the most suitable shape.

The equation of the first ellipse is

2 x’
b l_a_2

0<x<xg, (24)

Deciding to approximate the ellipse using straight lines (cones), and using » segments to discretize the x domain,
the systems expressed by eq. 26 should be solved:

. (i) _ (D (@)
Vi=L..n Yeong (x) = dcong - X+ beons (25)

y(CZBE(x = xi—l): y( = xi—l)

Vi=1,. (26)
(@) — — —
cong \X = X; ) = =M
Yeows(x=x,)=ylx=x,)
The system has as solution:
o _YiTVia
Acone =
Xi =X
. . X V., =X,V
Vizl..n 1pW), =X Yo Zm ) 27
Xi =X
O=x,<x <x,<..<X,, <X, =Xgp
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The 2n geometrical parameter acoyg and beong can be calculated for a homogeneous discretization of the domain
(equispaced x;). Otherwise, the error (eq. 19) can be minimized finding the best value of the x; parameters. In the
showed example, the optimum has been found numerically. The errors &, which represent the integral error for the n
segments of the discretization (see eq. 18), have been calculated numerically, then the solution has been iterated,
adjusting the discretization in order to reduce the approximation error.

Eq. 28 proved to be an efficient way to reach a solution which is near to the desired minimum. The updated
position x; of the generic node i is calculated weighting the local error & on the global error &,

Vi=1l,...n x;=xi1+(xi—xi1)[ L jl— né (28)
n

Defining the approximating cones in ESATAN-TMS using the nodal definition, the following matrixes of points
should be adopted:

Real surface

Figure 21. Approximation using cones.

_ b
Pi(l) — | — ZCONE , 0, 0
(i)
Acone

Vi=1l,..n <P =(x_,0,0) (29)
P3(i) = (xi—l > Victs O)
(

Adopting circumferences instead of straight lines, it’s handier to start with the following equations:

x* + yz + AepeX + BeweY + Vewe =0 (30)
_ ﬁCIRC =0 =0
Ycenter = > = - :BCIRC = (31)

Eq. 31 expresses the condition that the center of the circumference must lie on the axis of rotation.
The systems to be used to identify the geometrical parameters of the approximating curves are:

yg;}ié(x = xi—l): y(x = xi—l)
(1)

Vi=1,...n
yCIRC(x:xi):y(x:xi)

(32)
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Which have as solution:

P (i 3 35 KD X
1
aCIRC i (l 1)
QR
Vi=l,..n {7 i X i ) (33)
ool bl ooy o]
CIRC — x(i) _ x(i—l)
O=x,<x <x,<..<Xx,, <X, =Xgy

From eq. 33 it is possible to determinate the position of the center and the radius of the circumferences:

() _1 (@)

Aere = Zacuec
1 )
o _Lpn _
Vi=1,...n bcch—Z CIRC 0 (34)

o _ @ Y 6
Fere = \/(acmc) —7Ycire

O=x,<x <X, <..<X,, <X, =Xpyp

The 2n geometrical parameters acirc and bcjre have been calculated numerically finding the error minimum, in
the same way it has been done for the conical approximation.

Defining the spheres in ESATAN-TMS using the nodal definition, the following matrixes of points should be
adopted:

Real surface p,
¥~ ._Approximating shell
S

P27 " P17 Axs of rotation |

Figure 22. Approximation using circumferences.
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P = (. 0.0)
P =(0,0,0)
izl 4P =(alhe, e, 0) (9)
P =(x,,0,y,)
B =(0,0,y,,)

C. Optimization with respect to environmental fluxes

Performing an optimization using performance indexes based on the geometry, like the condition expressed in
eq. 19, it is not possible to easily estimate the performances in terms of optical behavior. The best trade-off between
performances and computational cost has to be found a posteriori, comparing the results of simulations applying
different discretizations.

Optical devices are often optimized in order to achieve particular radiative behaviors. In many cases, it is
possible to analytically calculate the amount of environmental radiation that reaches or is absorbed by some surface.
Performing a numerical simulation, it is possible to numerically calculate the same parameter: the difference
between the theoretical and the numerical results is the sum of the errors due to the approximation, due to the
stochastic method and to the numerical error. Implementing a very accurate definition of the shells, it is possible to
reduce the numerical errors; the inaccuracy due to the stochastic method can be reduced increasing the number of
rays fired by the ray-tracing method and implementing more severe accuracy parameters.

The results of different approximations of the geometry described in V-B are reported in Figure 23 and Figure
24.

1.0 200
M Ellipsoids: cones
0.9 ’* i # Ellipsoids: spheres 180 1 *AR
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= [2])
0.7 = 140
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[ i > i
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Computational time [h] Computational time [h]
Figure 23. Error parameter vs. computational time. Figure 24. Total number of shells vs. computational time.

The optimal trade-off uses a large number of shells for the approximation of the first ellipsoid, and a quite coarse
discretization for the other surfaces. This is due to the fact that the first ellipsoid receives most of the environmental
radiation, and therefore a good approximation (in terms of geometrical parameters) of this surface has a stronger
influence than a good approximation of the other surfaces.

An important result found is that the best shape to approximate the ellipsoids is the sphere. Using the same
number of shells for the approximation, this surface causes the lowest error on the environmental fluxes (see Figure
25). This is in accordance with the results of the geometrical error (defined as in eq. 19), which shows the lowest
values when the approximating curve is the circumference (and hence the approximating surface is the sphere).
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Figure 25. Error parameter vs. approximating surface.

A last observation can be made concerning the minimization of the geometrical error finding the minimum of eq.
19 with respect to the discretization nodes x;. Simulations which made use of a homogeneous discretization and
others with instead an optimized discretization (non homogeneous mesh) showed a little difference, especially if a
large number of surfaces were used to discretize the real geometry. The error of the optimized solution was never
lower than 98 % with respect to the error of the solution which used a homogeneous discretization.

VI. Conclusion

In this paper, two different topics have been discussed: the implementation of variable thermo-optical properties
and the approximation of complex 3D geometries using ESATAN-TMS.

The implementation of temperature-dependant thermo-optical properties for the calculation of the radiative
coupling has been illustrated. The procedure is applied in the analysis file directly, in which the radiative exchange
factors are dynamically recalculated on the base of the view factor and of a known relation of the emissivity upon
the temperature. This method is applicable if no modifications of the specular/diffuse reflectivity ration occur, and if
the transmissivity of every surface can be considered constant upon temperature variations. If these conditions are
not fulfilled, the radiative model should be modified updating the thermo-optical properties for each time step; the
thermal model should then be solved for the given optical properties set and lastly the thermo-optical properties of
the radiative model should be updated considering the temperature results from the thermal model. Some iterations
are needed to achieve the convergence.

The calculation of the environmental fluxes, taking into account for the wavelength dependency of the optical
properties, has also been presented. This method assumes a negligible dependency of the surface absorptivity
spectrum upon the temperature of the receiving body. The absorptivity spectrum is weighted upon the environmental
radiation to achieve a scalar value to be implemented in the code. A method to estimate the environmental radiation
spectrum, based on the equivalent temperature of the source, has also been introduced. If the hypothesis of
negligible dependency from the temperature of the absorptivity spectrum is not applicable, then some iterations of
radiative solver and thermal solver are needed. For each radiative analysis, the thermal model should be solved using
the given set of optical properties, based on the absorptivity spectrum at a given temperature of the body. Once the
temperatures have been calculated, it is possible to recalculate the thermo-optical properties weighting the spectra
correspondent to the updated temperatures.

An additional example which makes use of an active coating has been presented. The calculation of the
environmental fluxes and of the radiative coupling using this type of material has been presented, illustrating a
general method to implement variable optical-properties which depend on generic physical quantities or which are
user-controlled.

The representation of complex 3D geometries using ESATAN-TMS has been discussed. A general approach to
the optimization of the approximation using cones, spheres and paraboloids has been illustrated, as well as the code
necessary to implement the approximating shapes. The accuracy of the approximation has been estimated analyzing

25
American Institute of Aeronautics and Astronautics



the real radiative behavior of the model and comparing the computational results with the results from analytical
calculations, in order to achieve a more comprehensible engineering parameter.

The authors cannot provide a mathematical method to properly assess the quality of the approximation on the
base of geometry only; on the other hand, the accuracy should be estimated case by case on the basis of the
numerical results. The analysis of purely geometrical parameters does not guarantee a good approximation of the
radiative behavior of the system. The most important heat fluxes, in terms of absolute value and influence on the
system, must be compared with the analytical values, and the results should be compared with the tolerances specific
to any single design.

References

'Kreith, F., and Bohn, M., Principles of Heat Transfer, Thomson Learning, Toronto, Ontario, 2001, Sixth Edition, pp. 571-
572

2 Rohsenow, Warren M., Hartnett, James P., and Cho, Young 1. (ed.), Handbook of Heat Transfer, McGraw Hill, Boston,
Massachusetts, 1998, Third Edition, p. 7.8

3 Stock, N. J., Kirtley, C. J., De Koning, H. P., and Appel, S., Automatic Linear Conductor Generation Solution for Lumped
Parameter Models, 35th International Conference On Environmental Systems, July 2005, Rome, Italy

4Vilas F., Chapman, C. R., and Matthews, M. S. (ed.), Mercury, The University of Arizona Press, Tucson, Arizona, USA,
1988

5 Hanses, O. L., “Surface temperature and Emissivity of Mercury”, The Astrophysical Journal, No. 190, 1974 June 15, pp.
715-717

6 Demiryont, H., and Moorehead, D., “Electrochromic emissivity modulator for spacecraft thermal management”, Solar
Energy Materials & Solar Cells, No. 93, 2009 March 26, pp. 2075-2078

7 Shannon, Kenneth C. III, “Variable Emittance Electrochromic Thermal Control Space Testing”, Spacecraft Thermal
Control Workshop, El Segundo, California, 2009 March, p. 5

§ Alstom Acrospace, “ESARAD user manual”, UM-ESARAD-024, v. 7.0, 2007 October, p. XVI

% Stavroudis, O. N., and Foo, L. D., “System of reflective telescope baffles”, Optical Engineering, Vol. 33, No. 3, 1994
March, pp. 675-680

0ye, X., “The Gaussian and mean curvature criteria for curvature continuity between surfaces”, Computer Aided Geometric
Design, No. 13, 1996, pp. 549-567

" Aksu, T., “A finite element formulation for shells of negative Gaussian curvature”, Computers & Structures, Vol. 57, No.
6, 1995, pp. 973-979

12 Magid, E., Soldea, O., and Rivlin, E., “A comparison of Gaussian and mean curvature estimation methods on triangular
meshes of range image data”, Computer Vision and Image Understanding, No. 107, 2007, pp. 139-159

'3 Ghosh, B., and Bandyopadhyay, J. N., “Analysis of paraboloid of revolution type shell structures using isoparametric
doubly curved shell elements”, Computers & Structures, Vol. 36, Issue 5, 1990, pp. 791-800

26
American Institute of Aeronautics and Astronautics



	A. Radiative coupling
	B. Environmental fluxes
	A. Internal fluxes and radiation towards deep space
	Description
	2. Procedure using ESATAN-TMS
	Example 1

	Environmental fluxes
	1. Description
	2. Procedure using ESATAN-TMS
	3. Example 1
	4. Example 2

	A. Code
	B. Example
	C. Optimization with respect to environmental fluxes

