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Abstract – Vegetation cover is one of the key parameters for 
monitoring the state and dynamics of ecosystems. African 
semi-arid landscapes are especially prone to degradation due 
to climate change and increased anthropogenic impact on 
different spatial and temporal scales. In this study, a multi-
scale method is applied to monitor vegetation cover by 
deriving sub-pixel percentages of woody vegetation, 
herbaceous vegetation and soil. The approach is comparatively 
applied to two semi-arid savannas, one in Namibia and one in 
Kenya. The results in eastern and southern Africa 
demonstrate the applicability of the method to different semi-
arid ecosystems and to different types of remote sensing data. 
The presented analysis could show that continuous cover 
mapping is a highly suitable concept for semi-arid ecosystems, 
as these show gradual transitions rather than distinct borders 
between land cover types. Different spatial patterns of 
vegetation cover depending on land use practices and 
intensities could be revealed. 
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1. INTRODUCTION 
 
Climate change and an increasing anthropogenic impact can lead 
to both subtle modifications and severe transformations of 
terrestrial ecosystems. In this context, the analysis of semi-arid 
environments is particularly interesting since these ecosystems are 
especially vulnerable, and both conversion processes and climatic 
changes may lead to severe degradation (Lambin et al., 2005). At 
the same time, these systems are characterized by a strong natural 
variability on different spatial and temporal scales (e.g. Wessels et 
al., 2007; J.L. Dodd, 1994; Dube and Pickup, 2001). Human 
activities, such as forest clearing for agricultural land use and 
grazing, but also shifts in precipitation amount and variability can 
result in changed proportions of woody and herbaceous vegetation 
cover (Sankaran et al., 2005; Budde et al., 2004). Possible 
consequences are for example a decline in rangeland productivity, 
increased soil erosion and reduction of biodiversity. Moreover, 
globally relevant impacts are likely, such as altered carbon cycles 
as a consequence of changes in ecosystem biomass (Jackson et al., 
2002). Any in-depth understanding of the involved large-area 
change processes requires an accurate and long-term monitoring 
of the land surface (Lambin et al., 2005; Coppin et al., 2004). 
Especially the quantification (Ustin et al., 2005) of the “slow 
variables” of change (Lambin et al., 2005) is necessary, which 
requires spatially explicit and reliable data. However, up to now, 

the distinction between woody and herbaceous vegetation in 
savannas has not yet been approached adequately (Archibald and 
Scholes, 2007). 
The MODIS product Vegetation Continuous Fields (VCF, Hansen 
et al., 2003) is an example for a promising estimation of 
percentage tree and herbaceous cover at global scale. Here, like in 
few other studies (e.g. Hansen et al., 2002; Huang and 
Townshend, 2003; Yang et al., 2003; Xu et al., 2005), regression 
tree methods are applied to remote sensing data for sub-pixel 
estimation. These applications give evidence that regression trees 
are a valuable non-parametric tool for soft classification. 
However, the available global continuous cover products show 
ambiguities regarding woody and tree cover which are hard to 
separate in semi-arid environments and important small-scale 
patterns are not represented well at a resolution of 500 m. 
In this study, the percentage cover of herbaceous vegetation, 
woody vegetation and soil in African savanna ecosystems is 
derived from remote sensing data with decision tree regression 
following Breiman et al. (1984). The analysis is performed on 
three different spatial scales: 1) QuickBird and aerial imagery, 2) 
Landsat TM/ETM+ and 3) MODIS data. The applicability of the 
approach is tested comparatively for a southern and an eastern 
African semi-arid ecosystem, both of which are typical African 
landscapes strongly affected by various change processes.  
 

2. STUDY AREAS 
 
The multi-scale regression tree approach for deriving fractional 
vegetation cover in semi-arid environments was applied to two 
study areas: the north-eastern Kalahari woodland in Namibia and 
the savanna on the Laikipia plateau in central Kenya. These 
landscapes are semi-arid savannas, which are both composed of a 
relatively continuous herbaceous stratum and a disconnected layer 
of trees and shrubs. However, regarding climatic conditions, 
species composition and land use, the regions show several 
differences. 
Northeastern Namibia is characterized by a mosaic of savanna 
woodlands and thickets on deep, nutrient-poor Kalahari sands 
(Strohbach and Petersen, 2007). The annual precipitation of 450 to 
600 mm falls during a single rainy season between October and 
April and declines from northeast to southwest. The northern part 
of the region (Kavango) is mainly communal land where strong 
settlement activities have taken place since the 1970ies. The main 
land use type in this region is subsistence farming and fire plays a 
major role; in contrast, the southern part of the region of study 
(Otjozondjupa) is dominated by farming on freehold land 
(Mendelsohn, 2006). 
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The study site in Kenya is characterized by a strong rainfall 
gradient ranging from more than 1000 mm rainfall at the foot zone 
of Mt. Kenya towards less than 600 mm in the northwest on the 
Laikipia plateau and two main rainy seasons (Berger, 1989). 
Accordingly, land use and land cover varies from mountainous 
forests on the slopes of Mt. Kenya to agricultural fields at the foot 
zone and extensive cattle ranches and game reserves on the 
plateau. Over the last decades, population has increased drastically 
and land use has intensified by splitting up large scale farms into 
small scale farms, by increased livestock numbers and by the 
establishment of horticultural farms and additional game reserves 
(Kiteme et al., 1998). 
 

3. DATA AND METHODS 
 
The presented comparative analysis was performed on three scales 
using remote sensing data of three different spatial resolutions. 
The finest-scale analysis was based on pan-sharpened QuickBird 
data (spatial resolution: 0.6 m; coverage: 220 km2) for Namibia 
and aerial images (spatial resolution: 1 m; coverage: 6.5 km2) for 
Kenya. We took these aerial pictures with a digital camera Nikon 
D70 mounted on a small airplane, mosaicked them into sequences 
of 3 to 5 images and georeferenced them. The medium scale 
analysis was conducted at a spatial resolution of 30 m using 
Landsat TM and ETM+ data. For the Namibian study site, four 
Landsat TM acquisitions of the year 2007 (WRS-2 path 177 row 
73; Feb 15, May 6, Jun 23 & Jul 25) were used and for the Kenyan 
study region, two Landsat ETM+ scenes (WRS-2 path 168, row 
60; May 22 & Sep 11 2004) were utilized. MODIS time series 
with a spatial resolution of 232 m were the basis of the large scale 
analysis covering an area of 240000 km2 and 108900 km2 for 
Namibia and Kenya respectively. MODIS data of one year were 
utilized, starting in October 2006 for Namibia (in order to avoid a 
split-up of the vegetation period) and in January 2004 for Kenya. 
The time series of NDVI, EVI as well as of blue, red, NIR and 
MIR reflectances were derived from 16-day composites of the 
MODIS standard product MOD13Q1. 
 
The sub-pixel fractions of herbaceous vegetation, woody 
vegetation and bare soil surface were estimated using decision tree 
regression following Breiman et al. (1984). Particular advantages 
of regression trees are that they can handle high-dimensional data 
and non-homogeneous relationships and that normal distribution is 
not a prerequisite. The multi-scale procedure was performed in the 
same way for both study areas. 
 
Initial training data for the construction of regression trees were 
defined with the help of very high resolution data. For this 
purpose, the QuickBird data and aerial images were classified into 
discrete classes of woody vegetation, herbaceous vegetation and 
soil with a maximum likelihood approach. The resulting very high 
resolution classifications were aggregated to the Landsat pixel 
level of 30 m, resulting in continuous values of percentage woody 
cover, herbaceous cover and bare soil per pixel. For this upscaling 
procedure, the very high resolution classifications were overlaid 
with the Landsat grid. The contribution of each 60 cm or 1 m pixel 
to the upscaled value was weighted according to its occurence 
within the 30 m grid cell. From the resulting continuous cover 
values, training, pruning and validation samples for construction 
and validation of regression trees were extracted. 

On the basis of these samples, the fractional vegetation cover was 
estimated for the full extent of the Landsat scene, similar as 
described in Gessner et al. (2007). The features used for 
constructing the regression trees were the reflectances of Landsat 
band 1-5 and 7, the NDVI, SR, SAVI and Tasselled Cap 
Greenness, Brightness and Wetness for all available acquisitions. 
Additionally, the median, mean, minimum, maximum, range, 
standard deviation and sum of all acquisitions were calculated for 
these reflectances and indices. Regression trees were built from 
the training and pruning data for each cover type (i.e. woody, 
herbaceous and bare) individually. In a bagging procedure 
(Breiman, 1996), a random fraction of the training and pruning 
samples was drawn in eight iterations, regression trees were grown 
and subsequently pruned. The results of the eight trees were 
combined in order to stabilize the predicted values. 
 
The resulting percentage cover with a spatial resolution of 30 m 
was scaled to the 232 m MODIS grid and was used as training 
data for further regression trees to analyse MODIS time series. 
The procedure of upscaling, sampling and regression tree 
construction with bagging was performed in the same way as 
described above for Landsat data. Due to the differing data 
characteristics of multitemporal MODIS and multispectral Landsat 
data, different features were used for building the decision trees. 
The features derived from the annual MODIS time series were 
median, mean, minimum, maximum, range, standard deviation 
and sum of all bands. All features were calculated for rainy and 
dry seasons, as well as for the entire year. Due to the different 
precipitation regimes of the study regions, two seasons were 
considered for Namibia whereas in Kenya, four seasons were 
discriminated. 
 
The validation of the percentage cover values was performed 
using the independent validation sample set. Root mean square 
errors between predicted and true cover values were calculated. 
 

4. RESULTS AND DISCUSSION 
 
Figure 1 shows the estimation of woody cover on three spatial 
scales for a subset of the Namibian and the Kenyan study areas. At 
the highest spatial resolution, both landscapes are well represented 
by discrete classes as e.g. trees, shrubs, roads and cultivated plots 
are objects of bigger size than the pixel resolution (Figure 1 a and 
d). At the intermediate and coarse resolutions, these objects 
become smaller than pixel size, resulting in smooth transitions 
between land cover types. These gradual transitions are 
characterized very adequately through the sub-pixel percentage 
cover estimations (Figure 1 b-c & e-f). 
 
For the Namibian study region, apart from edaphic conditions, the 
most obvious spatial patterns of the landscape are related to fire 
and agriculture. Areas with low fire impact show spatially more 
homogeneous patterns with higher woody fractions and less bare 
soil than surrounding areas. An example for this is the fire-proof 
fenced plot in the western part of the subset in Figure 1 a-c. At the 
border between communal and freehold land of the north-eastern 
Namibian study region (not displayed in the Figure 1), no clear 
difference in woody and herbaceous vegetation cover could be 
depicted at resolutions of 30 m and 232 m. 
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Figure 1.  Estimated woody vegetation cover on three spatial scales. 
a-c Subset of the Namibian study region at 60 cm, 30 m and 232 m resolution 

d-f Subset of the Kenyan study region at 1 m, 30 m and 232 m resolution 
 
In Kenya, the different land use types become apparent regarding 
the tree cover abundance (Figure 1 d-f). While within the large 
scale ranches, a relatively high degree of woody cover exists 
(eastern part in  Figure 1 d-f), within the area of small scale farms, 
especially on the not yet settled plots, woody cover is highly 
reduced due to tree cuttings for fire wood and charcoal burning 
(western part in Figure 1 d-f). 
 
Root mean squared errors (RMSE) for the Kenyan and Namibian 
study site are listed in Table A. The results are very realistic, 
showing RMSE values below 10 % for both scales in Namibia and 
for the MODIS scale in Kenya. RMSE values for woody and 
herbaceous cover at 30 m resolution in Kenya were somewhat 
higher, but still fall clearly below 13 %. 
 
Table A.  Estimations of root mean squared error for the fractional 

vegetation cover at spatial resolutions of 30 m and 232 m. 
 

 woody herbaceous bare 
Namibia (232 m) 9.22 7.76 6.13 
Kenya (232 m) 7.90 8.10 3.30 
Namibia (30 m) 9.21 6.81 5.59 
Kenya (30 m) 11.45 12.19 9.21 

 
The slightly lower accuracies for the 30 m resolution in Kenya can 
be due to the characteristics of the available aerial images. First, 
the potential to derive the exact surface cover from the aerial 

images was lower than for high quality QuickBird data, especially 
because of the missing near infrared band. In addition, the limited 
extent of the imagery resulted in a considerably smaller number of 
samples available for training, pruning and validation of ETM+ 
data. Especially the rarely occurring percentage cover values were 
not represented adequately by the very high resolution data. In 
very heterogeneous landscapes like the Kenyan study area, it 
becomes especially problematic to work with a small coverage of 
very high resolution data as it is likely that certain typical cover 
fractions are not comprised in the imagery. Additionally, it has to 
be considered, that if the missing ranges are at the extremes of the 
value range, the regression trees are not able to predict these 
extreme values. Thus the location and representativeness of the 
highest and high resolution data within the target region is crucial 
in order to attain reliable estimations for the whole area. However, 
the 30 m results for Kenya, with RMSE values below 13 % are 
very promising and well usable for continuative applications. This 
shows that it is also possible to take aerial pictures by oneself in 
case there are no other very high resolution data available or 
affordable. 
 
The use of SLC-off ETM+ data for the intermediate scale in 
Kenya was due to the nonexistence of other high resolution data of 
the rainy season 2004. The disadvantage of large gaps in ETM+ 
data could be accepted as still a sufficient number of samples for 
the construction and validation of regression trees on MODIS 
scale could be derived, leading to good results at 232 m resolution 



(Table A). However, the thematic interpretation of the fractional 
cover maps derived from SLC-off ETM+ data is limited 
(Figure 1 e). 
 

5. CONCLUSIONS 
 
The accurate results for both study areas affirmed the applicability 
of the method to different semi-arid environments within a range 
of environmental conditions. The approach could be successfully 
applied to both study regions in exactly the same way, even 
though different high resolution images were used. The only 
difference in the preprocessing was the number of rainy seasons 
considered for the calculation of MODIS metrics, according to the 
respective rainfall regimes. Thus, the method seems to be highly 
suitable for automated processing. 
It was revealed that the representativeness and quality of the 
higher resolution training data has a considerable influence on the 
accuracy of the results. In this context, it was discussed that it is 
especially important that all cover ranges occurring in the 
landscape are well represented in the training data set. 
In general, for analyses depending on very high and high 
resolution data, the transfer to other regions and dates is often 
restricted by the non-availability of adequate data. Here, it was 
shown that for the presented approach, the use of aerial pictures as 
well as the now freely available SLC-off ETM+ data are efficient 
alternatives. 
For both regions, the results adequately reflect the gradual 
transitions of the landscapes and are congruent on all of the three 
spatial scales. Thus, it could be shown that when using MODIS 
data for large area mapping, it is still possible to monitor gradual 
transitions in vegetation cover. Moreover, different spatial patterns 
of vegetation cover depending on land use practices and intensities 
were revealed. It can therefore be concluded that the presented 
sub-pixel approach is capable to also monitor the gradual temporal 
changes in land cover which are induced by anthropogenic land 
use in semi-arid savannas. 
Further work will concentrate on the improvement of the 
representation of the extreme cover ranges and on the estimation 
of error propagation in the bottom-up multi-scale approach. 
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