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Abstract

With the growth of computer power, Digital Image Processing plays a more

and more important role in the modern world, including the field of indus-

try, medical, communications, spaceflight technology etc. There is no clear

definition how to divide the digital image processing, but normally, digital

image processing includes three main steps: low-level, mid-level and high-

level processing.

Low-level processing involves primitive operations, such as: image pre-

processing to reduce the noise, contrast enhancement, and image sharpening.

Mid-level processing on images involves tasks such as segmentation (parti-

tioning an image into regions or objects), description of those objects to

reduce them to a form suitable for computer processing, and classification

(recognition) of individual objects. Finally, higher-level processing involves

"making sense" of an ensemble of recognised objects, as in image analysis.

Based on the theory just described in the last paragraph, this thesis is

organised in three parts: Colour Edge and Face Detection; Hand motion

detection; Hand Gesture Detection and Medical Image Processing.
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In Colour Edge Detection, two new images G-image and R-image are

built through colour space transform, after that, the two edges extracted

from G-image and R-image respectively are combined to obtain the final

new edge. In Face Detection, a skin model is built first, then the boundary

condition of this skin model can be extracted to cover almost all of the skin

pixels. After skin detection, the knowledge about size, size ratio, locations

of ears and mouth is used to recognise the face in the skin regions.

In Hand Motion Detection, frame differe is compared with an automati-

cally chosen threshold in order to identify the moving object. For some spe-

cial situations, with slow or smooth object motion, the background modelling

and frame differencing are combined in order to improve the performance.

In Hand Gesture Recognition, 3 features of every testing image are input

to Gaussian Mixture Model (GMM), and then the Expectation Maximization

algorithm (EM)is used to compare the GMM from testing images and GMM

from training images in order to classify the results.

In Medical Image Processing (mammograms), the Artificial Neural Net-

work (ANN) and clustering rule are applied to choose the feature. Two

classifier, ANN and Support Vector Machine (SVM), have been applied to

classify the results, in this processing, the balance learning theory and opti-

mized decision has been developed are applied to improve the performance.

Keywords: Digital Image Processing, Colour Edge Detection, Image

Features Classification and Cluster, Features Selection.
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Chapter 1. Introduction

1.1 Introduction

An image may be defined as a two-dimensional function, f(x, y), where x

and y are spatial (plane) coordinates, and the amplitude of f at any pair of

coordinates (x, y) is called the intensity or grey level of the image at that

point. When x, y and the amplitude value f are finite, discrete quantities,

the image is called as a Digital Image.

Interest in digital image processing methods stems from two principal

application areas: improvement of pictorial information for human interpre-

tation; and processing of image data for storage, transmission, and represen-

tation for autonomous machine perception [1].

In general, digital image processing refers to a procedure to apply com-

puter algorithms and process digital images to achieve some expected targets,

such as enhancement, compression, etc. Here, three levels of computerized

processes are always used, namely, low-level, mid-level, and high-level pro-

cesses.

• Low-level processing is pre-processing for further analysis, and it aims

to reduce noise and increase the contrast in the image. Traditional

methods for low-level image processing include low-pass filtering for

noise suppression, grey-level operations such as histogram equalization

for contrast improvement as well as edge detection using image gradient

and related techniques, etc.

• Mid-level processing focus on extracting descriptions of the scene from
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the image descriptions extracted at the low level, the output is usually

in some more symbolic form, describing the position and shape of por-

tions of the scene. The analysis usually does not know anything about

what objects are in the scene, but does use a lot of knowledge of scene

shape and how shape appears in an image, such as region/object seg-

mentation. Accurate region segmentation facilitates subsequent higher

level processing.

• High-level image processing is the most intelligent part, which attempts

to identify the regions or features previously detected and interpreted

them, i.e. classification and recognition. Techniques such as fuzzy

logic, (artificial) neural network, mathematics model and approaches,

and other artificial intelligent techniques can be applied for recognition

and classification.

In general, most users are only interested in the outputs from high level

processing, especially those non-professional ones, because such outputs can

provide straightforward semantic information as whether the image contains

certain object of interest or not and their qualitive/quantative measurements

et al.

On the other hand, through comparing these high-level outputs with ex-

pected results, i.e. the ground truth, feedbacks can be generated and fed

to other two stages of image processing. The feedbacks are useful in deter-

mining optimal parameters and further improve the performance of low- and

middle-level processing.
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Figure 1.1: Flowchart of Digital Image Processing
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From Fig 1.1, the main steps can be noticed in the digital image pro-

cessing. In the other words, low level processing is image processing, it’s

include:

1. Image data are not interpreted, ie semantic is not explored;

2. Signal processing methods, e.g, 2D Fourier transformation;

3. Same methods for a wide class of problems;

High level processing is image understanding or computer vision, it’s in-

clude:

1. Interpretation to a specific application domain;

2. Complex, artificial intelligence techniques and feedback;

3. A tough problem often needs to be simplified;

Fig 1.2 shows the relationships among computer vision, machine learning

and image processing [2].

From Fig 1.2, the fields most closely related to image processing that

are computer vision and machine learning. There is a significant overlap in

the range of techniques and applications that these cover. With the growth

of computer power, more and more researchers focus on the performance

of high level processing in digital image processing, that means: machine

learning and computer vision have been become the core issues in digital

image processing.
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Figure 1.2: Relationships among Computer Vision, Machine Learning, Image
Processing and the Others Scientific Fields [2]

Computer vision means that the machine can extract the information

from an image in order to solve a specific problem. As one scientific discipline,

computer vision is focus on the theory behind artificial system that extracts

information from images. As an example, extract features from images belong

to this area. And these features extracted from images are the foundation

for further research, like machine learning.

Machine learning, as a part of artificial intelligence, is a scientific disci-

pline concerned with the design and development of algorithms that allow

computers to evolve behaviours based on empirical data. A major focus of

machine learning is to automatically understand and recognise the example
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data and make one intelligence decision based on learning. An example of

pattern recognition is classification, classification could be simply explained

as classifying one new substantial data into several specific groups based on

the characteristic of these data from the training data.

1.2 Motivation

The main steps and overlapping scientific field’s for digital image process

have been described in last section. In Fig 1.3, the more details of digital

image processing will be shown below.

But there are still some challenge problems in image processing, such as

follows:

1. Effective edge detection from colour images, one has to decide an op-

timal way to fuse chromatic components and illumination intensity for

this purpose;

2. Motion detection and moving object segmentation;

3. The image classification with severely unbalanced data in medical imag-

ing, as normally there are much more benign samples than malignant

ones;

Basically, the main work in this thesis focus on the three important prob-

lems listed above. Colour edge detection, as discussed in last section, belongs
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Figure 1.3: Image-based Recognition Hierarchy of Representations

to low level image processing, and how to fuse colour and intensity informa-

tion for effective colour edge detection will be investigated. Extending from

edge detection, one skin model in order to detect the colour face has been

built in this project. Regarding motion detection and motion segmentation,

hand gesture recognition is used as the background to develop the algorithm,

and this is taken as transition from low level processing to high level pro-

cessing. Since medical image processing remains to be more challenging, it
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provides more spaces for high level image processing.

As a result, computer-aided mammogram analysis is comprehensively in-

vestigated as a major application case to illustrate the effectiveness of pro-

posed approaches in machine learning towards high-level image processing,

where the performance of two classifiers: neural network and Support Vector

Machine (SVM) are compared and evaluated.

the background of colour edge and face detection, hand gesture recog-

nition and high level image processing.In next section will be introduced in

next section.

1.3 Bakcground

1.3.1 Colour Edge Detection

As discussed in last section, low-level image processing operations use the

values of image pixels to modify individual pixels in an image. They can

be divided into point-to-point, neighbourhood-to-point and global-to-point

operations [10]. Point-to-point operations depend only on the values of the

corresponding pixels from the input image and the parallelization is simple.

Neighbourhood operations produce an image in which the output pixels de-

pend on a group of neighbouring pixels around the corresponding pixel from

the input image. Operations like smoothing, sharpening, filtering, noise re-

duction and edge detection are highly parallelizable.
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So according to the description in last paragraph, in this project, the

colour edge detection as an example has been applied for Low Level Image

processing. In the following, the background is also introduced about the

colour edge detection.

Today state of art in image processing needs to pay more attention in

colour images. So, colour edge detection plays very important roles in many

applications for image analysis, segmentation and recognition.

In monochrome images, an edge usually corresponds to object bound-

aries or change in physical properties such as reflectance or illumination. In

this sense, a colour (multi-spectral) image contains more detailed edge in-

formation. Besides this, monochrome edge detection may not be sufficient

for certain applications since no edges will be detected in grey level images if

neighbouring objects have different hue but same intensity and also according

to psychological research on human visual system colour plays an important

role in deciding object boundaries.

To this end, the basic problem here is how to fuse chromatic and intensity

information for effective colour edge detection. In this thesis, an improved

method on colour edge detection is proposed in which the significant advan-

tage is the use of inter-component difference information for effective colour

edge detection.

For any given colour image C, a grey D-image is defined as the accumula-

tive differences between each of its two colour components, and another grey

R-image is then obtained by weighting of D-image and the grey intensity
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image G. The final edges are determined through fusion of edges extracted

from R-image and G-image. Quantitative evaluations under various levels

of Gaussian noise are performed for further comparisons. Comprehensive re-

sults from different test images have proved that our approach outperforms

edges detected from traditional colour spaces like RGB, YCbCr and HSV in

terms of effectiveness and robustness.

1.3.2 Colour Face Detection

Middle level image processing operations work on images and output other

data structures, such as detected objects (e.g., faces) or statistics, thereby

reducing the amount of information. Operations such as Hough transform

(to find a line in an image), centre-of-gravity calculation, labelling an object,

are examples of mid-level image operations. They are more limited from the

aspect of data parallelism when compared to low level operations. They can

be defined as image to object operations.

In this project, the colour face detection as one sample has been applied

for Middle Level Image Processing. From the next paragraph, the back-

ground of colour face detection is also discussed.

Same as colour edge detection, automatic detection of skin and face plays

very important roles in many vision applications, such as face and gesture

recognition in intelligent human-machine intelligence and visual surveillance

[9,10,11], naked adult image detection [12,13], video phone or sign language
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recognition [14, 15] as well as content-based multimedia retrieval [16, 17].

Although face regions can be detected using template matching and Haar

based features, however, these may be affected by internal factors like facial

expression, beard and glass etc. and of course also by external factors, like

scale, lighting condition, the orientation of face etc.

On the other hand, in most cases the overall shape and size remain the

same. Therefore, it is essential to explore new approach for face detection,

which using knowledge-based constraints of shape, size and skin colour in-

formation.

In this thesis, an efficient and effective method for frontal-view face de-

tection is proposed, based on skin detection and knowledge-based modelling.

Firstly, skin pixels are modelled by using supervised training, and boundary

conditions are then extracted for skin segmentation. Faces are further de-

tected by shape filtering and knowledge-based modelling. Skin results from

different colour spaces are compared. In addition, experimental results have

demonstrated our method robust in successful detection of skin and face

regions even with variant lighting conditions and poses.

1.3.3 Hand Gesture Recognition

Before starting the research for High Level Image Processing, Hand Gesture

Recognition has been chosen as transition from Low Level Image Processing

to High Level Image Processing. In this example, the technologies of Low
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and High Level image processing is applied at the same time, such as, locate

the moving target between two continually frames and GMM as classifier in

my experiment.

Human hand gestures have their specific meanings and are widely used for

communications between deaf people. Actually, gesturing is so deeply rooted

in communications that people often continue gesturing when speaking. Re-

cently, hand gesture recognition has gained a lot of interests, which plays a

crucial role in a wide range of applications including automatic sign language

understanding, entertainment, and human computer interaction (HCI). Be-

cause hand gestures are natural and intuitive in providing rich information

to computers without extra cumbersome devices, they can offer a great po-

tential for next generation user interfaces, being especially suitable for large

scale displays, 3D volumetric displays or wearable devices.

For human-computer interaction, vision-based recognition of hand ges-

tures can provide a natural and modest solution [18]. To achieve this, three

steps are required, including:

1. analyzing signals acquired by imaging sensors such as video, infrared

or ultrasonic;

2. inferring the geometry and motion of the hand;

3. mapping to a set of predefined gestures;

An important potential application of this technology is to develop ad-

vanced interfaces for the interaction with virtual objects. These objects can
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be images on a computer screen and the user can manipulate the objects

by moving his/her hand and performing actions like ”grasping” and ”releas-

ing”. Using gesture recognition, the user actions on the virtual object will

be reproduced by the computer and the operational result is shown in the

graphical interface so as to provide feedback to the user. Another important

application is to provide computing devices that can interpret gestures from

the sign-language alphabet and aid natural interaction of hearing impaired

people [19].

In our system, the core issues of gesture recognition have been addressed

in extracting robust features, leading to a more accurate estimation. The

new approach that proposed is different from existing efforts reported in the

literature. It focuses on estimating the gesture contained in an image by

analysing different complex features including shape, colour and orientation

histogram quantized in Gaussian Mixture Model (GMM).

1.4 High Level Image Processing

High-level image processing operations work on vector data or objects in the

image and return other vector data or objects. They usually have irregular

access patterns and thus are difficult to run data parallel computations. They

can be divided into object-to-object or object-to-point operations. Position

estimation and object recognition theory are examples of this category.

From the definition of high level image processing, the aim of the high level
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image processing is understanding object as it can be seen in last paragraph.

This is machine learning. Recently, many approaches have been develope-

d in the machine learning area, such as decision learning tree, association

rule learning, artificial neural network, genetic programming, inductive logic

programming, support vector machines, clustering, bayesian networks, rein-

forcement learning.

Medical image processing remains to be more challenging and provide

more spaces for high level image processing. In order to deeply dig in the

area of high level image processing, medical image as example has been chosen

in the experiment.

Normally, in medical image processing, single one computer-aided diag-

nosis (CAD) system should be built, like that shown in Fig 1.4:

Figure 1.4: Flowchart of Typical CAD System
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Therefore, Feature Selection and Classifier have been focused in this

project.

Feature selection is foundation of the final results, how to find the best

performance feature and how to combine the features are important steps

in this stage. In this thesis, neural network and clustering rules have been

involved to solve this problem.

Classifier plays a role of classification, in this thesis, two classifiers have

been discussed: neural network and SVM, and compare their results. Last,

an improved over-sampling based balanced learning strategy is proposed,

which can avoid drawbacks of existing techniques. The performance along

with the proposed optimized decision making has been fully validated using

two individual classifiers including SVM and ANN. The proposed method is

found to be effective in improving both the sensitivity and specificity rate

while not increase the computing complexity of the classifier.

1.4.1 Thesis Organization

The main content of this thesis is organised as follows.

Chapter 2 surveys existing work in terms of colour edge detection, colour

skin and face detection, hand gesture recognition and high level image pro-

cessing

In chapter 3, one novel approach to detect the colour edge will be intro-
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duced at first, in this step, an improved method on colour edge detection

will introduced. The significant advantage of the proposed method is the

use of inter-component difference information for effective colour edge detec-

tion. Secondly, for colour skin and face detection, an efficient and effective

method will proposed for frontal-view face detection based on skin detection

and knowledge-based modelling.

In chapter 4, hand gesture recognition, one method that integrates the

features of shape, colour and orientation histograms will be introduced, which

are extracted from images, and estimate the comparability with all the dif-

ferent types of gestures by a proposed Expectation-Maximization algorithm

in Gaussian Mixture Model.

In chapter 5, firstly, how to select features which already get from mam-

mograms, and how to combine the features in order to find the best com-

bination will be introduced. In this step, two methods will be emphasised:

Neural network and PCA. Secondly, the classifier will be discussed, which

includes Neural network and SVM. In this step, one novel approach will also

applied: balance learning to get the most performance, and the finally, a

comparison of the results from Neural network and SVM respectively will be

listed at the end of section.

Chapter 6 concludes the thesis and discusses the summary of research

and some suggestions for further research.
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Chapter 2. Literature Review

2.1 Introduction

Following the introduction in the previous chapter. A review of relevan-

t literature is presented in this chapter. In accordance with the objectives

previously specified, the main contents focus on the following four parts in-

cluding:

1. Colour edge and face detection;

2. Hand gesture recognition;

3. High level image processing;

2.2 A Review of Techniques for Colour Edge

Detection

Since physical edges usually correspond to apparent variations in the illu-

mination and colours, edge detection is very useful and important in many

low-level vision applications as to provide essential visual information for

feature extraction, segmentation and scene understanding [53-57].

In general, edge detection contains three main stages, namely preprocess-

ing or smoothing, image difference and gradient detection for edge pixel judg-

ment, and continuous edge extraction. Gradient-based methods are almost

the earliest edge detector which only uses convolution templates to obtain
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local difference for edge detection, and then Canny introduced a well-defined

edge detector with good performance, high precision and unique response

[53].

From convolution templates to Canny edge detector, traditional edge de-

tection methods are usually defined on grey images, and some improvements

or new methods are necessary for edge detection from colour images accord-

ing to human colour perceptions. A simple idea is to convert <r,g,b> colour

image to its luminance intensity image G, from which traditional edge de-

tectors are applied to extract colour edges. As the conversion from colour to

grey is multiple to one mapping, edges detected from G-image are less accu-

rate and usually edge pixels with obvious colour difference but less intensity

variation are missing.

Another simple idea for colour edge detection is to apply the edge de-

tectors to each colour component and the final edges will be the combined

results of the edges from different component images. Although the com-

bined edges have more accuracy and detail information than the edges from

G-image, they are still not accurate enough and have missing edges due to

the fact that inter-component information is ignored in the process of edge

detection.

Since colour vision is synthetic perception of R, G and B components,

the combined edges extracted from multiple single components have intrinsic

limitations according to human visual perception. To acquire more reason-

able and accurate edges, quite a few colour spaces and colour models have
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been investigated [58, 59, 60], such as HLS (hue-lightness-saturation), HSV

(hue-saturation-value), YUV, XYZ, YCbCr, etc. When <r,g,b> colour im-

ages are converted to a specified colour space, edges will be extracted from

the components of the new space. Since different components are indepen-

dent of each other, the final edges are also a combination of the edges from

each component including colour and luminance information [61].

Alternatively, some other efforts have been made on edge detection from

colour images, such as the compass operator in [62], direction information

measurement in [63], cluster analysis in [64], and invariance analysis [61, 65].

However, choosing a suitable colour space is still a very fundamental task

in such a context on which the above operators or processing can then be

applied [66]. In addition, quite a few combined approaches have been pro-

posed for colour edge detection, such as morphological gradient followed by

outlier rejection [67], statistical analysis of R-G and B-Y colour components

[68], clustering of pixels using the minimal spanning tree [69], combination

of self-organising map (SOM) and a grey scale edge detector [70], and neigh-

bourhood hypergraph and validation of hyperedge [56].

Although the combined edges have more accuracy and detail information

than the edges from the intensity image, they are still not accurate enough

for effective object detection and image segmentation because of missing of

certain edges. So, how to choose a new suitable colour space is still a very

fundamental task in such a context on which the operators or processing can

be applied.
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2.3 A Review of Techniques for Skin and Face

Detection

Employing skin detection to locate human objects in videos is a straight-

forward approach owing to the fact that human skin has a consistent ap-

pearance which is significantly different from many other objects [71]. Some

other common methods of detecting human objects include face detection

(using Haar-like features, for example) [72, 73] and motion and appearance

modelling [74, 75].

In general, at least three issues need to be considered in skin classifica-

tion, i.e. colour representation and quantization, skin colour modelling, and

classification approaches. In real applications, some post-processing is also

required for the detection and recognition of more semantic events including

faces, hands or even special skin patches as naked images, etc.

Although many different colour spaces have been introduced in skin de-

tection, such as RGB or normalized RGB [76], HSV (or HSI, HSL, TSL)

[77-80], YCbCr (or YIQ, YUV, YES) [81], and CIELAB (or CIELUV) [82],

etc., they can be simply classified into two categories by examining whether

the luminance intensity component is considered. Due to the differences be-

tween the training and test data, various results have been reported: Some

people argue that ignoring luminance component helps to achieve more ro-

bust detection [83-85]; however, others still insist that luminance information

is essential for accurate modelling of skin colours [86].
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Moreover, it becomes widely acknowledged that training from different

colour spaces produces comparable results as long as the Y component is in-

cluded [86], i.e. invertible conversion between colours spaces can be achieved

[87]. Consequently, choosing a suitable colour space merely depends on the

intrinsic requirements of efficiency, rather than effectiveness, i.e. the chosen

colour space should have its components extracted from image or videos as

simply as possible. For instance, YCbCr and RGB spaces are naturally used

in compressed and uncompressed images and videos.

As for colour quantization, various quantization levels have been suggest-

ed, such as 32, 64, 128 and 256 [86, 76]. Higher levels mean that more storage

space is required hence lower efficiency in the detection process. However,

there is no well-accepted scheme in such a context. Therefore, the perfor-

mance under different levels needs to be compared, especially on test data

under varying illumination.

To model skin (and non-skin) colours, two main approaches are gener-

ally utilized, i.e. parametric and nonparametric ones. The former usually

model skin colours as Gaussian or mixture of Gaussian distributions, and the

number of components in the mixed model varies from 2 to 16 [82]. Other

parametric models include elliptic boundary models, etc [126]. Parameters

in the models are usually obtained by the EM (Expectation Maximization)

approach [80]. Non-parametric approaches include histogram-based models

[86, 76] and neural networks, etc. [86].

In addition, there are also some imprecise models using fixed ranges of
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thresholds such as the work in [85] and [78], although the latter also contains

a further step to adapt with image content. It is found that histogram-based

approaches and neural network based ones usually generate the best results

and outperform parametric approaches [86].

With colour models of skin and non-skin provided, skin pixels are usually

determined by using Bayesian decision rules of maximum a posteriori, mini-

mum cost and even maximum likelihood strategies [76]. The latter has only

skin colour model and is similar to those using a look-up table for decisions

whilst the first two also have a model for non-skin colours and thus the like-

lihood ratio of the pixel’s colour in skin and non-skin models are obtained

for decision.

Other classification approaches include those using linear or elliptic deci-

sion boundaries [77, 82, 85]. Nevertheless, one (or more) threshold(s) is (are)

then required for such a decision, and unsuitable threshold(s) may lead to

quite poor performance.

Furthermore, existing approaches work mainly on uncompressed images

and videos, which make them less efficient owing to the fact that most such

media is provided in the compressed format and thus an expensive decom-

pression is required before detection. Consequently, it provides an efficient

and fast implementation. Comparing with previous work reported in [84]

and [88], an optimal threshold of likelihood ratio between skin and non-skin

pixels is derived which skip the iterative processing in [88].

Furthermore, even without a dynamic model as introduced in [79], the
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output results from sequences under varying illumination still seem very

promising.

2.4 A Review of Techniques for Hand Gesture

Recognition

Human hand gesture, show in Fig 2.1, have their deeply meaning especially

for the deft people, how to identify the hand gesture become one challenge

problem in human-computer interaction.

Since early nineties, Chaitanya Gurrapu [98] adopts GMM to classify the

human body’s gestures and track its changes through time using HMM. The

key features extracted from body images are polygonal vertices obtained from

body shapes. Accordingly, GMM is trained on the vertices feature and the

relationship between vertices which is represented in the form of gradient

of the line joining two vertices. The final accuracy is close to 98%. Yang

Liu [99] used a method integrating shape and depth information for robust

hand tracking. Shape is the primary measurement which builds an impor-

tant function describing areas of state-space and contains critical information

about the posterior. Recognition rate is between 70% and 92% under var-

ious numbers of samples. Sebastien Marcel [100] presented a hand gesture

recognition algorithm based on input/output Hidden Markov Models. This

approach already achieves a recognition rate between 90% and 100% of the

sequence.

25



Chapter 2. Literature Review

Figure 2.1: Human Hand Gesture
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2.5 A Review of High Level Image Processing

Techniques

In high level image processing, machine learning techniques have been widely

used, more and more researchers focus on this area.

There are several approaches in machine learning area:

1. Decision tree learning is a method for approximating discrete-valued

target functions, in which the learned function is represented by a de-

cision tree. Decision tree learning is one of the most widely used and

practical methods for inductive inference [159]. Uses a decision tree as

a predictive model which maps observations about an item to conclu-

sions about the item’s target value. More descriptive names for such

tree models are classification trees or regression trees. In these tree

structures, leaves represent classifications and branches represent con-

junctions of features that lead to those classifications [160]. Decision

tree learning usually applied in these three area: instance is represented

as attribute-value pairs; the target function has discrete output values;

the training data may contain errors.

2. Association rule learning is a popular and well researched method for

discovering interesting relations between variables in large databas-

es. Piatetsky-Shapiro [161] describes analyzing and presenting strong

rules discovered in databases using different measures of interesting-

ness. Based on the concept of strong rules, Agrawal et al. [162] intro-
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duced association rules for discovering regularities between products in

large scale transaction data recorded by point-of-sale (POS) systems in

supermarkets.

3. An artificial neural network is a collection of simple artificial neurons

connected by directed weighted connections. When the system is set

running, the activation levels of the input units are clamped to desired

values. After this the activation is propagated, at each time step, a-

long the directed weighted connections to other units. The activations

of non-input neurons are computed using each neuron’s activation func-

tion. The system might either settle into a stable state after a number

of time steps, or in the case of a feedforward network, the activation

might flow through to output units [163].

4. Genetic programming (GP) is an evolutionary algorithm-based method-

ology inspired by biological evolution to find computer programs that

perform a user-defined task. It is a specialization of genetic algorithms

(GA) where each individual is a computer program. It is a machine

learning technique used to optimize a population of computer programs

according to a fitness landscape determined by a program’s ability to

perform a given computational task [164].

5. Inductive logic programming (ILP) is a subfield of machine learning

which uses logic programming as a uniform representation for exam-

ples, background knowledge and hypotheses. Given an encoding of

the known background knowledge and a set of examples represented as

a logical database of facts, an ILP system will derive a hypothesised
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logic program which entails all the positive and none of the negative

examples [165].

6. Support vector machines (SVMs) are a set of related supervised learning

methods that analyze data and recognise patterns, used for classifica-

tion and regression analysis. The original SVM algorithm was invented

by Vladimir Vapnik and the current standard incarnation (soft margin)

was proposed by Corinna Cortes and Vladimir Vapnik [166].

7. Cluster analysis or clustering is the assignment of a set of observations

into subsets (called clusters) so that observations in the same cluster

are similar in some sense [167].

8. A Bayesian network, is a probabilistic graphical model that represents a

set of random variables and their conditional dependencies via a direct-

ed acyclic graph (DAG). For example, a Bayesian network could rep-

resent the probabilistic relationships between diseases and symptoms.

Given symptoms, the network can be used to compute the probabilities

of the presence of various diseases [168].

9. Reinforcement learning is an area of machine learning in computer

science, concerned with how an agent ought to take actions in an envi-

ronment so as to maximize some notion of cumulative reward [169].

It is considered that choose the mammogram as an example, to illus-

trate the effectiveness of proposed approaches in machine learning towards

high-level image processing, which based on the reviews of how the other

researchers applying the machine learning techniques on mammogram.
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Detection and classification of microclacification clusters (MCCs) from

mammograms plays important roles in early diagnosis of breast cancer. In

early detected cases, MCCs can be found in 30-50% of the screened mam-

mograms. This will increase to 60-80% if histological examinations of cancer

cases are considered. The difficulty for the detection of MCCs is due to i)

small size but various shapes, ii) low contrast and unclear boundary from

surrounding normal tissue, etc. [20, 21].

To solve such problems, a typical CAD system contains at least four

stages including preprocessing, feature-based extraction of regions of interest

(ROI), detection of MCCs, and classification. The preprocessing covers noise

suppression and contrast enhancement, including histogram equalization etc.

[22], which is useful for robust extraction of features and ROIs. The features

include local statistics and texture modelling [23, 24], wavelets [25-28], and

morphological features [29]. From the segmented ROIs, MCCs can be detect-

ed using heuristics [30,21], fuzzy sets [31,32], sub-image decomposition and

filtering [33], and machine learning algorithms [34-36], where shape features

such as linear structure are widely used [33, 37-39].

Regarding classification of MCCs, a number of techniques have been p-

resented using machine learning approaches to classify samples as malignant

and benign, and this is also the focus of this thesis. Among these techniques,

two main streams are those using artificial neural networks (ANN) [35, 36, 38,

40-44,] and support vector machines (SVM) [45, 46-48, 43], along with other

approaches like linear discriminant analysis (LDA) [38], Bayes classifiers [33],

K-nearest-neighbour (KNN) clustering [49], genetic algorithms (GA) [50, 49]
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and decision-rules [31, 43]. According to the evaluation work in [46], SVM

and other kernel based approaches including relevance vector machine and

kernel Fisher discriminant (KFD) outperform ANN classifier in classification

of MCCs. However, the area under the ROC curve achieved by SVM is only

0.85, which apparently has space for further improvement.

The reasons for the classification accuracy in terms of above is not only

the complexity of the problem, i.e. containing cases that cannot be judged

even by radiologists as analysed in [46], but also the shortcomings of single

classifiers, especially the difficulty in dealing with imbalanced training set in

machine learning. The imbalance here refers to the fact that one class is more

heavily represented than the other. This is a common problem in real-world

domains in detecting rare but important cases from large suspiciously normal

samples [51]. Most existing machine learning algorithms fail in dealing with

imbalanced data set as their predictions are biased to the class of majority

samples [52].

2.6 Summary

In this chapter, existing techniques in colour edge detection, colour face de-

tection, hand gesture recognition and medical imaging are respectively dis-

cussed.

For effective colour edge detection, the fundamental problem here is how

to combine colour and intensity information for improved accuracy. Basically,
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chromatic components can help to extract edges from pixels of same intensity

but various hues. Therefore, fusion of chromatic difference and intensity

information can benefit better accuracy in colour edge detection, and relevant

details are presented in chapter 3.

In hand gesture recognition, multiple features extracted from gesture im-

ages could be organised and controlled by GMM to formulate new discrimi-

nating vector for classification and recognition of human gestures. The appli-

cation of Gaussian Mixture Model illustrates the advantage that it provides

improved performance over other existing methods, yet requiring only mod-

est computational cost to complete the gesture recognition. Details of the

proposed approach are discussed in Chapter 4.

In medical imaging, imbalanced data is a major problem which has not

been solved. Therefore, in my project, before applying SVM or ANN for the

classification of MCC candidates, balanced learning is introduced to solve the

problem of imbalanced data. In addition, optimized decision making is also

proposed to choose the threshold of SVM or ANN automatically; this is also

can improve the performance of the classifier, especially, when no balance

learning was employed. Relevant details are presented in Chapter 5.
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3.1 Introduction

Edge detection, is very useful and important in many low-level vision ap-

plications as to provide essential visual information for feature extraction,

segmentation and scene understanding [53-57]. Most existing methods ex-

tract colour edges via fusing edges detected from each colour components

or detecting from the intensity image where inter-component information is

ignored. In this chapter, an improved method on colour edge detection is

proposed in which the significant advantage is the use of inter-component

difference information for effective colour edge detection.

For any given colour image C, a grey D-image is defined as the accumula-

tive differences between each of its two colour components, and another grey

R-image is then obtained by weighting of D-image and the grey intensity

image G. The final edges are determined through fusion of edges extracted

from R-image and G-image. Quantitative evaluations under various levels

of Gaussian noise are performed for further comparisons. Comprehensive re-

sults from different test images have proved that our approach outperforms

edges detected from traditional colour spaces like RGB, YCbCr and HSV in

terms of effectiveness and robustness.

High-level image processing normally means located or extract one spe-

cific object from a set of input images. In the rest of the chapter, the skin

detection from different colour space transform for model-based face detec-

tion will be discussed.
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Skin and face detection has many important applications in intelligent

human-machine interfaces, reliable video surveillance and visual understand-

ing of human activities. In this chapter, an efficient and effective method

for frontal-view face detection, based on skin detection and knowledge-based

modelling, is proposed. Firstly, skin pixels are modelled by using supervised

training, and boundary conditions are then extracted for skin segmentation.

Faces are further detected by shape filtering and knowledge-based modelling.

Skin results from different colour spaces are compared.

In addition, experimental results have demonstrated our method robust

to be in successful detection of skin and face regions even with variant lighting

conditions and poses.

3.2 Colour Space Transform

Linear Colour Space, An image stored in a Linear Colour Space contain-

s evenly distributed linear steps of colour values across all ranges — low,

medium, and high. Unlike a nonlinear colour space, image stored in a linear

colour space do not take into account the fact that the human eye is much

more sensitive to the low to middle ranges of intensity than it is to the high

or brighter ranges. It is most common to work with images stored in a linear

colour space for visual effects work, although some facilities have opted to

composite their work in logarithmic space.[170][171][172]

Oppositely, Non-linear Colour Space is a very useful concept to under-
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stand if dealing with higher bit depth images, which a higher bit depth image

does not merely contain a large number of colours and spans a greater range

of values. Non-linear colour space takes advantage of the fact that the human

eye is more sensitive to brightness change in the darker areas if an images

that the lighter areas. Most non-linear colour space is a variation of the

logarithmic curve. [173][174][175]

Comparing to texture and shape, colour is the chief discrimination at-

tribute in human visual system [148, 58]. Therefore, colour edge detection is

more important in scene analysis and understanding. Although many colour

transforms and colour space models have been developed, they can be con-

verted between each other by mapping from and to RGB space.

In general, luminance and the differences or proportions between lumi-

nance and different colour components from RGB space compose the new

components in the transformed space. Following is an example transform

from RGB space to YUV space:

y = ωrr + ωgg + ωbb (3.1)

u = b− y, v = r − y (3.2)

In eqn (3.1) and (3.2), from RGB to YUV colour space is a linear trans-

form has been listed, in which the three components in the new space are

defined simply by linearly combining the components of the RGB space. In

YUV space, illumination intensity is decided by weighting R, G and B values
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using weights ωr, ωg, ωb, where these weights are non-negative and sum up

to 1.

Actually, the weights here are firstly introduced in converting colour TV

signal to grey one, where ωr = 0.299, ωg = 0.587, ωb = 0.114 is widely

adopted. In other applications like image retrieval, all the weights may have

a value of one-third to measure an overall brightness.

Generally, these linear transforms can be defined as:

⎡
⎢⎢⎢⎢⎣
Y

A

B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
ωr ωg ωb

a10 a11 a12

a20 a21 a22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
R

G

B

⎤
⎥⎥⎥⎥⎦

As hue is more effective in distinguishing different colours than illumina-

tion intensity, HSV (Hue, Saturation, Value) and HIS (Hue, Intensity, Sat-

uration) transforms are taken as suitable colour spaces that correspond to

human visual perceptions and have been widely utilized in colour clustering

for image segmentation and coding.

The RGB to HSV transform can be defined as [55]:

V = max(R,G,B)

S = V ′/V

V ′ = V −M

M = min(R,G,B)
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Let r′ = (V − R)/V ′, g′ = (V − G)/V ′ and b′ = (V − B)/V ′, then H is

given by:

H =
1

6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 + b′ if R = V & G =M

1− g′ if R = V & G �=M

1 + r′ if G = V & B =M

3− b′ if G = V & B �=M

3 + g′ if B = V & R =M

5 + r′ otherwise

YIQ and YCbCr have similar transforms like YUV above, and HSV and

HLS spaces have more complex transform formulas [59]. Although some of

these transforms can achieve coherent distance measurement with human

perceptions, they are not effective in accurate edge detection due to the fact

that inter-component information has not been fully considered.

Let f be the original three component colour image, and it defines one

component D-image as:

D(i, j) = ω1|r(i, j)− g(i, j)|

+ ω2|r(i, j)− b(i, j)|

+ ω3|b(i, j)− g(i, j)| (3.3)

where D-image gives the total colour differences between different colour

components. Currently, same weights of one-third has been set for three

components.
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For grey pixels in image f , they have same values in three colour channels,

however, it is difficult that distinguish them from D-image; therefore, another

channel image R is obtained by weighting of D-image and luminance intensity

image G as follows:

R(i, j) = k
ωdG(i, j) + ωgD(i, j)

ωd + ωg
(3.4)

where ωd and ωg are the weights and determined in (3.5) and (3.6) by the

statistical properties of D-image and G-image, and the parameter k is used

to scale the determined values of R-image within [0, 255].

ωd = 1.5× Range(D) + σ(D) (3.5)

ωg = 1.5×Range(G) + σ(G) (3.6)

Range is a function to determine the valid intensity range of a given

image, i.e. difference of the maximum and the minimum intensity values

within the image, and σ is the standard deviation.

Generally, (3.4) is used to make the weighted values, ωdG(i, j) and ωgD(i, j),

more comparable to achieve more robust results. In addition, the parameter

1.5 used is empirically determined as it helps to yield particular good results

than other values.
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Figure 3.1: One Original Colour Image (top-left) and Its Corresponding
Three Single Channel Images Including D-image, G-image and R-image,
Respectively.
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In comparison with [149], our solution can obtain a new pseudo-grey

image without PCA analysis. For a given colour image, its corresponding D-

image, G-image and R-image are all illustrated in Fig 3.1 for the comparisons

of all.

3.3 Low-level Image Processing Approaches

3.3.1 Colour Edge Detection

Since our main focus is the fusion scheme for improved colour edge detection,

standard edge detectors for consistent measurements and evaluations has

been used. To this end, the well-known Canny operator is used for its relative

good performance.

Taken f(x) and in the interval of [−w,w] as impulse response and band-

width of the Canny operator, the corresponded filter should make formula

(3.7) maximum:

∑
=

|
∫ 0

−w
f(x)dx|√∫ w

−w
f 2(x)dx

·
|f ′(0)|√∫ w

−w
f ′2(x)dx

(3.7)

According to canny’s theory [53], two parts are included in Eq. (3.7)

where the first corresponds to signal to noise ratio achieved for Canny de-

tector, and the second refers to localisation accuracy. By putting these two

together, it is expected that the edge detector can reach a trade-off between
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them. Canny Also proved that the product of the two parts in (3.7) would

generate scale-invariant output, which was very important in edge detection.

Edges detected by the Canny operator are all local extrema to ensure

the precision of detection. Firstly, the grey image is smoothed by a Gauss

function. Then, normalized gradient image is obtained from the smoothed

image to determine possible edge pixels.

Two thresholds Th and Tl are used to get continuous and robust results.

If a pixel has a gradient more than Th, it belongs to the edge. If the gradient

is less than Tl, it is not edge pixel. Otherwise, the pixel will be determined

as edge pixels if there are edge pixels in its neighbourhood and this process

helps to improve the continuity of detected edges.

In our experiments, the implementation of the Canny operator in the

OpenCV package is adopted for edge detection. As seen, Th and Tl are two

important parameters in the Canny operator and different thresholds will

lead to quite different edge results. For the G-image in Fig 3.1, the detected

edges used by different thresholds are illustrated in Fig 3.2.

For a given Th, small Tl can achieve more detail edges, but too small Tl

may cause noise (see the girl’s face in Fig 3.2). Therefore, how to automati-

cally select suitable thresholds is a basic problem for effective edge detection

of Canny operator.
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(a) Tl = 100

(b) Tl = 55

(c) Tl = 10

Figure 3.2: Extracted Edges Using the Canny Edge Detector with Th = 208
and Tl Changes from 100, 55 to 10, Respectively
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For consistency in evaluations, in our method Th and Tl are automatically

determined as follows:

Th = μ+max(μ/2, σ) (3.8)

Tl = |μ− σ|/2 (3.9)

where μ and σ are the mean and standard deviation of any given grey image

in this process.

For G-image in Fig 3.1, Th = 208 and Tl = 55 can be found, and the

corresponding edges is given in Fig 3.2(b), which is better than Fig 3.2(a)

and Fig 3.2(c).

For a given colour image, its edges are then extracted as follows.

1. the associate G-image and R-image are obtained based on same source

image;

2. by using the Canny operators with automatically determined parame-

ters, edges are detected from these two images as EG and ER, respec-

tively;

3. the edges in the image for the colour image Efinal are determined as

follows:

Efinal = ER

⋃
EG (3.10)
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Figure 3.3: ER (top) and Efinal (bottom) of Colour Image in Fig 3.1
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ER and Efinal in Fig. 3.3 have been detected for the colour image in Fig.

3.1 and EG in Fig. 3.2.

Note that EG is useful to recover edges from grey part (no component

difference) of images, as grey pixels in image f with same values in three

colour components will appear as zero and cannot be distinguished from

both the D-image and R-image.

3.3.2 Implementation and Experimental Results

The basic problem in colour edge detection is how to fuse chromatic and

intensity information for effective colour edge detection. In this implementa-

tion, an improved method on colour edge detection is proposed in which the

significant advantage is the use of inter-component difference information for

effective colour edge detection.

That means, in the processing of this experiment, the key point is ex-

tracted the edge from different colour transform space, even one new colour

transform space is built: R-Image; in the final step, combine the results from

different colour transform spaces in order to improve the performance of edge

detection.

Now, the experimental details will be described as follows. According the

flow chart of colour edge detection, it shown in Fig 3.4, the experimental

details and results will be described step by step:
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Figure 3.4: Flow chart for Colour Edge Detection
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In this detection system, the original image called "Green Girl", it shown

in Fig 3.5:

Figure 3.5: Original Image "Green Girl"

1©: Apply the (3.3) on Fig 3.5, the result is Fig 3.6, it called D-Image of

Original Image:

D(i, j) = ω1|r(i, j)− g(i, j)|

+ ω2|r(i, j)− b(i, j)|

+ ω3|b(i, j)− g(i, j)|

2©: Apply the (3.5) on Fig 3.6 in order to calculate the ωd:

ωd = 1.5× Range(D) + σ(D)
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Figure 3.6: D-Image for Original Image

ωd = 72.83

Range : difference of the maximum and the minimum intensity values

within the image

Range(D) = 44

σ : standard deviation

σ(D) = 6.83

3©: Input value of ωd to (3.4)

4©: Input value of D-image to (3.4)

R(i, j) = k
ωdG(i, j) + ωgD(i, j)

ωd + ωg

5©: Obtain G-image from original image (RGB), the result shown in Fig
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3.7

Figure 3.7: G-Image for Original Image

6©: Apply (3.6) on Fig 3.7 in order to calculate the ωg:

ωg = 1.5×Range(G) + σ(G)

ωg = 355.83

Range(G) = 226

σ(G) = 16.83

7©: Input the value of G-Image to (3.4)

8©: Input the value of ωg to (3.4)

9©: Obtain the R-image, it shown in Fig 3.8
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Figure 3.8: R-Image for Original Image

10©: Apply (3.8) (3.9) in order to obtain Th and Tl for R-image:

Th = μ+max(μ/2, σ)

Tl = |μ− σ|/2

11©: Input the results of 10© to Canny edge detector

12©: Apply the edge detector that from step 11© on R-image

13©: Apply (3.8) (3.9) in order to obtain Th and Tl for G-image

Th = 208

Tl = 55
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14©: Input the results of 13© to Canny edge detector

15©: Apply the edge detector that from step 14© on G-image

16©: Obtain the edge for R-image, result shown in Fig 3.9

Figure 3.9: Edge for R-image

17©: Obtain the edge for R-image, result shown in Fig 3.10

18©: Combine the results from step 16© and 17©, apply (3.10), result shown

in Fig 3.11

Efinal = ER

⋃
EG
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Figure 3.10: Edge for R-image

Figure 3.11: Final Result
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In order to evaluate this fusion scheme in improved colour edge detection,

the edges from RGB, YCbCr and HSV spaces will be taken for comparisons.

RGB space has been selected because it is widely used for colour representa-

tion especially in computer graphics. On the other hand, YCbCr and HSV

spaces for two reasons can be chosen:

1. both of them reflect certain human perceptions of colour;

2. either of them represents one group of similar colour spaces, such as

YCbCr can represent YUV, and HSV can also represent HSL or HSI

etc;

For the three colour spaces above, corresponding edges are extracted as

follows: Firstly, all the colour components have their values normalized with-

in [0,255]. Secondly, edges are extracted from each colour component using

the Canny operator with automatically determined parameters. Thirdly, the

final edge for each image is obtained as the union of edges extracted from

each colour component.

For the original colour image "green girl" in Fig. 3.1, Fig. 3.12 illustrates

edges extracted from RGB, YCbCr, HSV spaces and our fusion scheme for

comparisons. As seen, our method has more continuous (see closed face

contour) and accurate edges than edges from RGB and YCbCr spaces, and

RGB edges is much better than YCbCr edges. In addition, edges extracted

from HSV space have too much noise.
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Figure 3.12: Comparing Extracted Edges (from top-left to bottom-right):
the Images Are Edges Detected From RGB, YCbCr, HSV Spaces and Our
Method From the Original Colour Image in Fig. 3.1

3.3.2.1 Effectiveness Evaluation

To further evaluate the effectiveness of our proposed algorithm, edges ex-

tracted from both synthetic and real images are further compared. Three

standard test images, "lena", "pepper" and "house", as shown in Fig. 3.12,

are used in this group of experiments. For quantitative evaluation, ground
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truth of edge images are defined as reference images. These ground truth

images are produced in a semi-manual way containing two steps:

1. Extracting edges for each image using the logical OR of the results

from RGB and YCbCR spaces;

2. manual refinement of the extracted results to remove ghost edges and

noise, etc;

Basically, the precision rate ηp and recall rate detected ηr are defined for

such evaluations as follows:

ηp =
tp

tp+ fp
=

|Eref

⋂
Edet|

|Edet|
(3.11)

ηr =
tp

tp + fn
=

|Eref

⋂
Edet|

|Eref |
(3.12)

where Eref and Edet denote reference (as ground truth) and detected edge

results; tp and fp refer respectively to true positive (correct detected) and

false positive (false alarm) samples, and fn denotes false negative (missing

in detection) samples. The samples are counted as number of edge pixels in

the images accordingly.

For each test image, seven edge results are compared including those

extracted from colour spaces of RGB, YCbCr and HSV, single component

of the grey image, the green channel and a pseudo-grey channel [149] as

well as our fusion scheme. Since this pseudo-grey component is attained via

principal component analysis of the three colour channels, eigen edges simply
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have been named as its results.

Figure 3.13: Three Test Images (left) and Associated Ground Truth Images
of Edges (right)
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From Fig 3.13-Fig 3.19, visual comparisons depend on ’Lena’.

Ground Truth Image

RGB

Figure 3.14: Compare Ground Truth and RGB, ’Lena’
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Compare between Ground Truth Image and RGB, there are so many false

alarm, especially on the hat and about the girl’s nose.

Ground Truth Image

YCbCr

Figure 3.15: Compare Ground Truth and YCbCr, ’Lena’
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Compare between Ground Truth Image and YCbCr, the edges extracted

from YCbCr is better than the edge from extracted from RGB, especially on

the hat. But there are still a few false alarms under the girl’s nose and under

the girl’s mouth.

Ground Truth Image

HSV

Figure 3.16: Compare Ground Truth and HSV, ’Lena’
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Compare between Ground Truth Image and HSV, there are massive false

alarms in everywhere, face, hat, arms, etc. The edges extracted from HSV

even worse than from RGB.

Ground Truth Image

Grey

Figure 3.17: Compare Ground Truth and Grey, ’Lena’
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Compare between Ground Truth Image and Grey, the edges extracted

from grey are quite good, there is less false alarm, but got missing edges, like

hat, hair, etc.

Ground Truth Image

Green

Figure 3.18: Compare Ground Truth and Green, ’Lena’
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Compare between Ground Truth Image and Green, the false alarms in

quite massive in the hat, face, etc.

Ground Truth Image

Eigen

Figure 3.19: Compare Ground Truth and Eigen, ’Lena’
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Compare between Ground Truth Image and Eigen, the false alarms almost

lost, but there are a quite lot of missing edges, like the boundary of the hat,

the chin, hair, etc.

Ground Truth Image

Our Approach

Figure 3.20: Compare Ground Truth and our approach, ’Lena’
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Compare between Ground Truth Image and our approach, there are miss-

ing edges in some places, like a little bit on the boundary of the face, the chin,

and missing one line on the hat. But, for visual comparisons, our approach

has the best performance in all these 7 ways. The precision rate, recall rate

and F1 score for these 7 methods are shown in the Table 3.1.

Table 3.1: Quantitative Evaluations of Edges Detected from the Test Image,
’Lena’
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From Fig 3.20-Fig 3.26, visual comparisons depend on ’Pepper’:

Ground Truth Image

RGB

Figure 3.21: Compare Ground Truth and RGB, ’Pepper’
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Compare Ground Truth and RGB, there are so many false alarms on the

surface of the pepper.

Ground Truth Image

YCbCr

Figure 3.22: Compare Ground Truth and YCbCr, ’Pepper’
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Compare Ground Truth and YCbCr, the edges extracted from YCbCr is

better than extracted from RGB, but still have false alarms in some places,

like in the surface of the big pepper and left side of long pepper.

Ground Truth Image

HSV

Figure 3.23: Compare Ground Truth and HSV, ’Pepper’
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Compare Ground Truth and HSV, false alarms appear in the surface of

the bigger pepper and the top of the long pepper.

Ground Truth Image

Grey

Figure 3.24: Compare Ground Truth and Grey, ’Pepper’
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Compare Ground Truth and grey, the performance is much better, there

are still have false alarm in the middle of the bigger pepper.

Ground Truth Image

Green

Figure 3.25: Compare Ground Truth and Green, ’Pepper’
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Compare Ground Truth and Green, there are so many false alarms in the

surface of the bigger pepper.

Ground Truth Image

Eigen

Figure 3.26: Compare Ground Truth and Eigen, ’Pepper’
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Compare Ground Truth and Eigen, there are false alarms located in the

left side of the long pepper, left side and top right side of the bigger pepper.

Same time, the boundary of the bigger pepper could not connect, missing

edges.

Ground Truth Image

Our Approach

Figure 3.27: Compare Ground Truth and Our Approach, ’Pepper’
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Compare Ground Truth and Our Approach, there are still having a few

false alarms on the surface of the bigger pepper, and missing edges located

on the bottom of the bigger pepper. But for long pepper, the performance

is quite good. The precision rate, recall rate and score for these 7 methods

are shown in the Table 3.2.

Table 3.2: Quantitative Evaluations of Edges Detected from the Test Images,
’Pepper’

73



Chapter 3. Colour Edge and Face Detection

From Fig 3.27-Fig 3.33, visual comparisons depend on ’house’.

Ground Truth Image

RGB

Figure 3.28: Compare Ground Truth and RGB, ’House’
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Compare Ground Truth and RGB, there are so many false alarms appear

on the roof, wall, and in the window’s area, etc.

Ground Truth Image

YCbCr

Figure 3.29: Compare Ground Truth and YCbCr, ’House’
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Compare Ground Truth and YCbCr, the false alarms are almost lost, but

missing edges appeared around the windows.

Ground Truth Image

HSV

Figure 3.30: Compare Ground Truth and HSV, ’House’
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Compare Ground Truth and HSV, the massive false alarms in everywhere.

Ground Truth Image

Grey

Figure 3.31: Compare Ground Truth and Grey, ’House’

77



Chapter 3. Colour Edge and Face Detection

Compare Ground Truth and Grey, the performance is quite good except

there are missing edges on the top right corner of the window.

Ground Truth Image

Green

Figure 3.32: Compare Ground Truth and Green, ’House’
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Compare Ground Truth and Green, the false alarms appeared on the wall,

on the corner of the window.

Ground Truth Image

Eigen

Figure 3.33: Compare Ground Truth and Eigen, ’House’
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Compare Ground Truth and Eigen, a few false alarms appeared on the

wall and roof, but missing edges on the top of chimney.

Ground Truth Image

Our Approach

Figure 3.34: Compare Ground Truth and Our Approach, ’House’

80



Chapter 3. Colour Edge and Face Detection

Compare Ground Truth and Our Approach, false alarms appeared on the

roof, and in the area of the window. The precision rate, recall rate and F1

score for these 7 methods are shown in the Table 3.3.

Table 3.3: Quantitative Evaluations of Edges Detected from the Test Images,
’House’

Combine the Table 3.1, Table 3.2, Table 3.3, and provide one more item

called ’average’, the new table shown in Table 3.4. In Table 3.1, Tabel3.2,

Table3.3 and Table 3.4, F1 show in (3.13), according to the three test images

in Fig. 3.13, the results of quantitative evaluations are given in Table 3.4.

Table 3.4: Quantitative Evaluations of Edges Detected from the Test Images.
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For visual comparisons, all the relevant edge images are also shown from

Figure 3.14 to Figure 3.34. As can be seen, our method yields quite high

values of precision and recall rate in all the test images, followed by the

edges extracted from YCbCr space, and the similarity here is due to the fact

that channel difference information has been successfully employed in the

detection of edges.

While the other algorithms generate at least one poor value in terms of

precision and recall measurements. Edges extracted from both RGB and HSV

spaces suffer from massive false alarms, with HSV being the worst. Edges

extracted from the grey image or the pseudo-grey channel is better than

those from the green component, this is because grey image contains more

information from other colour components which makes it more accurate in

detecting edges.

However, the results from these three single components are worse than

those from YCbCr space and our method. In addition, it is worth noting that

the precision rate for the "house" image and the "pepper" image is less than

that of the "lena" image. The reason behind is that there are fake edges in

the previous two images caused by shadows or lighting, which has inevitably

led to more false alarms and lower precision values.

3.3.2.2 Robustness Evaluation

For robustness evaluation, edges extracted from colour images with attached

Gaussian noise are compared.

82



Chapter 3. Colour Edge and Face Detection

1. the intensity values from each colour component are normalized within

[0, 1];

2. zero-mean Gaussian noise is added to the normalized intensity values

with the variance value of σv changes from 0.002 to 0.008 where a larger

variance value indicates a higher level of noise;

3. the normalized image with noise is converted back so that its intensity

in each component is within [0, 255];

For the original test images in Fig. 3.35, their corresponding noisy test

samples under the variance value of 0.006 are given in Fig. 3.34. Noting

that before applying the Canny operator for colour edge detection, median

filtering in a 3×3 rectangle window is employed to remove noise. In addition,

a post-processing step is used to remove false edges whose length is below a

given threshold Te.

Figure 3.35: Three Noisy Test Samples with Additive Gaussian Noise Where
the Variance Value is 0.006
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To achieve an overall evaluation of both the precision rate and recall rate,

a F1 measurement is defined below as:

F1 =
2ηpηr
ηp + ηr

(3.13)

In statistics, F1 is also call F1 score, it is a measure of a testing accuracy.

In (3.13), ηp is precision rate and ηr is recall rate. ηp is the number of return

correcting results divided the all return results and ηr is the number return

of correcting results divided all the correcting results.

The F1 can be interpreted as a weighted average of the precision and

recall, normally, it is the best if the value of F1 is 1 and it is worse if the

value of F1 is 0.

In the following, edges extracted from noisy images after length thresh-

olding are compared. For simplicity, our method is only compared with the

edges extracted from the pseudo-grey component [149] as well as RGB and Y-

CbCr spaces, and all others are ignored for their poor performance according

in Table 3.4.

Please note that only the additive Gaussian noise is tested, and more

complex noise models like multiplicative noise are not considered as they

are not popular in natural scenes. For each test image, three curves are

plotted and shown in Fig. 3.35 to illustrate the change of F1 value vs. the

variance values of additive Gaussian noise. As can be seen, the F1 values

degrade significantly with increasing variance values of additive Gaussian
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noise, while our fusion scheme performs the best over all the test images.

Edges extracted from RGB space are the worst which indicates that they

are more sensitive to the added noise. Besides, it seems that edges extracted

from the pseudo-grey component [149] are less sensitive to noise especially

when the variance value is high.

Furthermore, in our implementation the threshold Te is empirically deter-

mined as 12. As shown in Fig. 3.35, it is found that our results are insensitive

to the threshold Te which is used to remove short edges.

Comparison of F1 values (y-axis) vs. the variance values of additive Gaus-

sian noise (x-axis, the (a), (b), (c) three images and three plots respectively

correspond to the test images "Lena", "Pepper" and "House") and in (d),

various threshold values (x-axis) (right). The results labelled with "eigen" is

extracted from the pseudo-grey image in [149].

In addition, visual comparisons over the edges extracted from noisy sam-

ples are also shown from Fig 3.37 to Fig 3.60, in which two groups of noisy

samples are used and the variance values of the Gaussian noise are 0.002 and

0.006, respectively.

From Fig 3.37 - Fig 3.48 shown visual comparisons after put Gaussian

noise on the original images, and the variance value of Gaussian noise is

000.2

85



Chapter 3. Colour Edge and Face Detection

Figure 3.36: Comparison of F1 Values
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Compare Ground Truth Image and RGB, there are massive false alarms

in RGB, even could not identify the face.

Ground Truth Image

RGB

Figure 3.37: Compare Ground Truth and RGB, ’Lena’
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Compare Ground Truth Image and YCbCr, the edges extracted from

YCbCr are better than the edges extracted from RGB (Fig 3.36), but there

are missing edges, like the brim of the hat, top of the hat, etc.

Ground Truth Image

YCbCr

Figure 3.38: Compare Ground Truth and YCbCr, ’Lena’
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Compare Ground Truth Image and Eigen, the false alarms nearly could

not found, but the missing edges still in some places, like the brim of the hat,

top of the hat and girl’s chin, if compare with Fig 3.18, Eigen is clearly less

sensitive to noise.

Ground Truth Image

Eigen

Figure 3.39: Compare Ground Truth and Eigen, ’Lena’
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Compare Ground Truth Image and Our Approach, there are missing edges

happened in the brim of the hat, on the top of hat, the girl’s chin, hair, etc.

For false alarms, right side of the hat, a little bit under the mouth. But

compare with RGB and YCbCr, our approach’s performance is better.

Ground Truth Image

Our Approach

Figure 3.40: Compare Ground Truth and Our Approach, ’Lena’
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Compare Ground Truth Image and RGB, massive false alarms appeared,

RGB is sensitive to noise.

Ground Truth Image

RGB

Figure 3.41: Compare Ground Truth and RGB, ’Pepper’
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The edges extracted from YCbCr are better than RGB, but still lots of

false alarms appeared and missing so many edges of the boundary of the

peppers.

Ground Truth Image

YCbCr

Figure 3.42: Compare Ground Truth and YCbCr, ’Pepper’
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Compare with RGB and YCbCr, the false alarms in Eigen have reduced,

but still in the suface of the pepper. The other side, the missing edges

appeared in the boundary of the pepper.

Ground Truth Image

Eigen

Figure 3.43: Compare Ground Truth and Eigen, ’Pepper’
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Compare Ground Truth Image and Our Approach, our scheme can find

almost edges, but missing edges in the bottom of the bigger pepper and still

have false alarms on the surface.

Ground Truth Image

Our Approach

Figure 3.44: Compare Ground Truth and Our Approach, ’Pepper’
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Compare Ground Truth Image and RGB, false alarms appeared on the

roof, on the wall, and in the area of window.

Ground Truth Image

RGB

Figure 3.45: Compare Ground Truth and RGB, ’House’
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Compare the YCbCr and RGB, false alarms have been reduced, but miss-

ing edges appeared in the corner of the window, the wall, the chimney and

the roof.

Ground Truth Image

YCbCr

Figure 3.46: Compare Ground Truth and YCbCr, ’House’
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Compare Ground Truth Image and Eigen, false alarms appeared under

the eaves; missing edges appeared in the corner of the window

Ground Truth Image

Eigen

Figure 3.47: Compare Ground Truth and Eigen, ’House’
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Compare Ground Truth Image and Our Approach, false alarms appeared

under the eaves, left side of the wall, etc.; missing edges appeared in the

lower eaves and the chimney, etc.

Ground Truth Image

Our Approach

Figure 3.48: Compare Ground Truth and Our Approach, ’House’
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From Fig 3.49 - Fig 3.60 shown visual comparisons after put Gaussian

noise on the original images, and the variance value of Gaussian noise is

000.6. Compare Fig 3.49 and Fig 3.37, RGB is so sensitive to noise.

Ground Truth Image

RGB

Figure 3.49: Compare Ground Truth Image and RGB, ’Lena’
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Compare Ground Truth Image and YCbCr, false alarms appeared in the

face, the boundary of the hat, the boundary of the hair, etc. Missing edges

happened in the boundary of the hat, the brim of the hat and the chin, etc.

Ground Truth Image

YCbCr

Figure 3.50: Compare Ground Truth Image and YCbCr, ’Lena’
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Compare Ground Truth Image and Eigen, false alarms have been reduced,

but missing edges appeared in the boundary of hat, the brim of the hat, the

chin, and the hair, etc.

Ground Truth Image

Eigen

Figure 3.51: Compare Ground Truth Image and Eigen, ’Lena’
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Compare Ground Truth Image and Our approach, still have false alarms

in the face, and missing edges in the boundary of the hat, the brim of the

hat. But the performance is better than RGB and YCbCr.

Ground Truth Image

Our Approach

Figure 3.52: Compare Ground Truth Image and Our Approach, ’Lena’
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In RGB, could not find out any edges, RGB sensitve to noise.

Ground Truth Image

RGB

Figure 3.53: Compare Ground Truth Image and RGB, ’Pepper’
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Compare Ground Truth Image and YCbCr, still a little bit false alarms

in the surface of the bigger pepper, and missing edges appeared the bottom

of the bigger pepper.

Ground Truth Image

YCbCr

Figure 3.54: Compare Ground Truth Image and YCbCr, ’Pepper’
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Compare Ground Truth Image and Eigen, false alarms appeared on the

surface of the bigger pepper and miss detected edges on the bottom of the

bigger pepper

Ground Truth Image

Eigen

Figure 3.55: Compare Ground Truth Image and Eigen, ’Pepper’
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Compare Ground Truth Image and Our Approach, the edge of the long

pepper is quite good, but false alarms on the surface of the bigger pepper,

and missing the edge of the bottom of the bigger pepper.

Ground Truth Image

Our Approach

Figure 3.56: Compare Ground Truth Image and Our Approach, ’Pepper’
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Compare Fig 3.57 and Fig 3.45, just can say RGB sensitive to noise.

Ground Truth Image

RGB

Figure 3.57: Compare Ground Truth Image and RGB, ’House’
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Compare Ground Truth Image and YCbCr, false alarms appeared in the

corner of the left side of the wall, the eaves. Missing edges happened the

boundary of the window, the top of the chimney.

Ground Truth Image

YCbCr

Figure 3.58: Compare Ground Truth Image and YCbCr, ’House’
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In Eigen, false alarms almost disappeared except in the left corner of the

wall and under the eaves, but missing edges happened in the top corner of

the window, the chimney.

Ground Truth Image

Eigen

Figure 3.59: Compare Ground Truth Image and Eigen, ’House’
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Compare Ground Truth Image and Our Approach, our scheme produced

a few false alarms, but it is better than RGB and YCbCr. Missing edges

happened in the corner of the window, the chimney.

Ground Truth Image

Our Approach

Figure 3.60: Compare Ground Truth Image and Our Approach, ’House’
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Again, RGB edges are extremely sensitive to noise. Although both our

results and YCbCr edges exhibit some robustness to the noise, the false

alarms caused in the corresponding images are different. In general, false

alarms in YCbCr edges are adjacent to real edges, but in our results these

false alarms are separated.

Therefore, it is possible to further improve the accuracy of our algorithm

by introducing more powerful post-processing to reduce these separated fake

edges. In addition, edges extracted from pseudo-grey component has fewer

false alarms though more missing edges.

The computing complexity of the proposed algorithm contains three main

parts including

1. extraction of G-image and R-image;

2. detection of edges using Canny detector on the two single-component

images;

3. post-processing;

In general, the first step takes most of the running time, i.e. more than

60% of the total time of our method. Since the complexity of edge detection

algorithms rely on image contents, especially for the Canny detector where

tracing of edges is employed, the complexity of our method is compared with

others in a relative way as follows. For one test image, different edge detection

methods are applied for 100 times on the same machine and the executive
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times are taken as a good indicator to evaluate the corresponding complexity

of the approaches. Executive times obtained in edge extraction from the three

test images in Fig. 3.12, using RGB and YCbCr colour spaces, pseudo-grey

component, and our scheme, are listed in Table 3.5 for comparisons.

As can be seen, the executive time for the "pepper" image is the longest

as it contains the most edges. The overall complexity of YCbCr edges are

the minimum, followed by RGB edges and eigen edges, and our scheme is

the most complex one. However, our method is only 23% more complex

than YCbCr edges, and the additional cost is quite limited for the good

performance achieved in our tests.

Table 3.5: Comparison of Complexity by Executive Time (in seconds) via
Running 100 Times of the Test in Extracting Edges from the Images in Fig.
3.13

112



Chapter 3. Colour Edge and Face Detection

3.4 Middle-Level Image Processing Approach

— Face Detection

3.4.1 Skin Segmentation

In this part, how to extract human’s face from an image, based on the theory

of colour space transform, will be expressed, the skin detection was also

discussed in 3.2.

Automatic detection of skin and face plays very important roles in many

vision applications, such as face and gesture recognition in intelligent human-

machine interaction and visual surveillance [150-152], naked adult image de-

tection [153,154], video phone or sign language recognition [155,156] as well

as content-based multimedia retrieval [157,158].

Since skin detection is a classification problem defined on colour similari-

ty, supervised clustering is applied to achieve the exact rules for effective skin

colour clustering and pixel classification. Through manually specifying rep-

resentative skin and non-skin pixels, the linear relationships can be learned

between different components in the new colour spaces. Finally, several main

boundary conditions also can be obtained for skin pixels classification in d-

ifferent colour spaces.

Firstly, skin pixels are modelled by using the histogram-based approach,

in which the probability or likelihood that each colour represents skin is

estimated by checking its occurrence ratio in the training data. In (3.14),
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Vskin indicates volumes or total occurrences of all skin colours in manual

ground truth of training data.

p(colour/skin) = sum(colour/skin)/Vskin (3.14)

Then, boundary conditions in the skin model are extracted to allow more

than 98% of skin pixels covered. Using the boundary conditions, test images

are segmented into skin and non-skin regions accordingly. For different colour

spaces, these boundary conditions are found as follows.

As for YUV space, the boundary conditions are found as:

⎧⎪⎨
⎪⎩

148 ≤ V ≤ 185

189 ≤ U + 0.6V ≤ 215
(3.15)

Considering the illumination intensity variation, the boundary conditions

can be shown as:

⎧⎪⎨
⎪⎩

Y > 85 or

Y < 85, U > 104, Y + U − V > 2
(3.16)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S ≤ 21 , V ≥ 2.5S

158 ≤ H + V ≤ 400 , H + V > 13S

H > 0.2V , H > 4S

(3.17)
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Fig 3.61 gives skin results from YUV and HSV spaces, where three peo-

ple have been found in the background, which can be clearly found in the

histogram-equalized image. However, the skin regions can be successfully

found in HSV space from the original image while they cannot be found in

YUV space.

(a) Original image (b) Histogram (c) YUV Skin Results (d) HSV Skin Results

Figure 3.61: Comparison of Skin Regions Detected from YUV and HSV
Colour Spaces

3.4.2 Knowledge-based Face Modelling and Detection

After skin detection, it needs to locate faces in candidate skin regions. Again

faces of nearly frontal view have been detected, but there are no constraints

on their leaning angles. Knowledge about the size, size ratio, locations of

ears and mouth is used.

Firstly, the detected skin regions are labelled to obtain the outer boundary

rectangle and pixel number of every region. Then, small regions that have

pixels less than a given threshold, i.e. 300, will be removed. Finally, the skin
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regions are filtered by a SR parameter (Width/Height ratio) defined as,

SR =

⎧⎪⎨
⎪⎩

width/height if width ≤ height

height/width if width > height
(3.18)

In (3.18), the width and height of the regions are determined by the rect-

angle bounding box of each region, and the valid for candidate face regions

should lie in [0.55,0.90]. To acquire more reasonable width and height of the

regions, the main axis is extracted by moment calculation of each region.

Then, the skin regions are rotated by the main axis angle to make the final

main axis in vertical direction. Fig 3.62(a) is the filtering result by threshold-

(a) Thresholded by size (b) Main axis detection (c) Rotation by main axis

(d) Thresholded by W/H ratio (e) Face candidates (f) Face in original image

Figure 3.62: Face Filtering from Skin Regions in Fig 3.61(d) by Thresholding
of Size and W/H Ratio

ing using the size of 300. In Fig 3.62(b), the main axis of each labelled region

is marked with white line, and the angle and region number are also given.

From Fig 3.62(d) to 3.62(e), the candidate face regions is given in rotated
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skin results and the skin regions before rotation in HSV space. Besides, Fig

3.62(f) gives the face candidates in RGB space for comparison. Three basic

(a) Ears location (b) Feature holes (c) detected face (d) mapped back

Figure 3.63: Ears Location with White Line (a) and Feature Holes Detection
(b) for Face Detection

rules are used in further face modelling and detection: First, there are one

or two ears near the half height of every candidate face region which makes

the width of the skin regions bigger than other lines. Second, there are one

or two eyes over the height of the ear line which forms one or two dark holes.

Third, an open mouth will form a dark hole near the middle of eyes below

the ear line. Following is our algorithm for face detection and the results are

given in Fig 3.63.

1. Detect the ear line by extracting of local maximum width near the

centre of the candidate face regions, see Fig 3.62(a);

2. Detect the holes by the illumination intensity difference. Holes contain

those pixels that have lower intensity than the average intensity of the

candidate regions, say, less than 80% of the average intensity, see Fig

3.62(b);

3. Judge the relative positions of the holes and ear line and determine the

candidate region is a valid face or not;
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3.4.3 Implementation and Experimental Results

Figure 3.64: Flow Chart for the Face Detection

118



Chapter 3. Colour Edge and Face Detection

Face detection always affected by internal factors like facial expression,

beard and glass etc. and of course also by external factors, like scale, lighting

condition, the orientation of face etc. On the other hand, in most cases the

overall shape and size remain the same. So, in order to avoid the problems

just described, in our approach, there are two main steps: skin detection

and face detection. Through colour transform space, central moments, SR

parameters setting to improve the performance.

Now, according the Fig3.61, the details of the experiment will be de-

scribed as follows:

1©: Our original image shown in Fig 3.65, it takes the office environment

as background

Figure 3.65: Original Image

In order to enhance the contrast of image, applying the histogram equal-

ization, the result shown in Fig 3.66

Applying (3.14) on Fig 3.66 in order to build the skin model for each
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Figure 3.66: Histogram

colour component

p(colour/skin) = sum(colour/skin)/Vskin

2© 3©: Extract the boundary conditions in the skin model, according the

(3.15)-(3.17), the boundary conditions can be obtained in different colour

spaces:

⎧⎪⎨
⎪⎩

148 ≤ V ≤ 185

189 ≤ U + 0.6V ≤ 215⎧⎪⎨
⎪⎩

Y > 85 or

Y < 85, U > 104, Y + U − V > 2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S ≤ 21 , V ≥ 2.5S

158 ≤ H + V ≤ 400 , H + V > 13S

H > 0.2V , H > 4S
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To determine these boundary conditions, for simplicity only linear con-

straints between colour components are considered. Take Eq. (3.15) as an

example, first the colour distribution of skin pixels in U-V space is obtained

as shown below Fig 3.67. Then, four lines are drawn to extract majority skin

pixels in the model, where at least 98% of skin pixels are included in the

extracted boundary conditions.

Figure 3.67: Determine the Boundary Conditions from Skin Distribution in
UV Space

After extracted the boundary from skin model, the results shown in Fig

3.68 and Fig 3.69.
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Figure 3.68: YUV Skin Results

Figure 3.69: HSV Skin Results

Figure 3.70: Histogram
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In the Fig 3.70, 17 skin regions have been found totally, of course, they

are not all faces, and even some places are false alarms, and it can be sorted

out in next step.

4©: Labelled the skin regions, the result shown in Fig 3.68.

5©: Remove the small regions according the set threshold. The result

shown in Fig 3.71, in here, threshold is set to 300, if the pixels in the skin

region is smaller than 300, the region should be removed.

Figure 3.71: Labelled the Skin Regions

6© 7©: In the Fig 3.71, though the small skin regions have been removed,

but the arms still keep in the image and everyone skin region has different

angle for the horizontal.

So, in this step, the main axis for everyone skin has been built, through

calculate their central moment. After that, rotate everyone skin region ac-

cording the main axis, and let them all have same angle for the horizontal.

The results shown Fig 3.72 and Fig 3.73
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Figure 3.72: Main Axis Detection

In Fig 3.72, the white line is main axis and the angle for each of skin

region is:

(1) = 72.5; (2) = 83.6; (3) = 82.3;

(4) = 156.3; (5) = 86.2; (6) = 62.7;

(7) = 133.7; (8) = 79.1; (9) = 133.6;

So, according to the angles for every skin region, the skin regions is rotated

and the result is shown in Fig 3.73

8©: In Fig 3.73, everyone skin region has been rotated and has the same

angle for the horizontal. Now in this step, SR(width/height ratio) parameters

have been applied to remove the arms. The formula shown in (3.18).

SR =

⎧⎪⎨
⎪⎩

width/height if width ≤ height

height/width if width > height
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Figure 3.73: Rotation by Main Axis

After testing the images, the valid SR parameters is obtained as [0.550.90].

Apply SR parameters on the Fig 3.73 and removed the skin regions whose

W/H ratio is outside of the range of SR parameters, the result shown in Fig

3.74.

Figure 3.74: Filtered by SR Parameters

9©: In the Fig 3.74, there one face belongs to background between two

frontal faces, in this step through three basic rules: located ears, eyes and

mouth to remove the middle face.
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Figure 3.75: Ears Location

In Fig 3.75, ear line extracted according the local maximum width near

the centre of the candidate face regions.

Figure 3.76: Located Open Mouths

Open mouths always have lower illumination intensity to compare the

average intensity in the candidate regions. So, in this step, it assumes that

if the intensity of the holes less than 80% of average intensity, this hole is

mouth. The result is shown in Fig 3.76.
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10©: Through judging the results from step 9©, the final result can be

obtained, it is shown in Fig 3.77 and Fig 3.78.

Figure 3.77: Candidate Face

Figure 3.78: Mapped the Original Image

In our experiments, statistical models of skin colours are estimated through

histogram based approach using a subset of ECU database [157], in which

500 images are used for training. Afterwards, 100 test images in the office

environments for evaluation have been generated. Results on skin detection

from both the training images and our own images are summarized in Table
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3.6 below. As skin detection is a small portion of work in this chapter, results

extracted from various colour spaces are compared, rather than using results

from other approaches.

Although the results from different colour spaces are quite comparable,

HSV and YUV seem yield slightly better performance in linear and nonlinear

colour spaces, respectively. More results on skin and face detection are also

given in Fig 3.76, along with discussions in details.

Table 3.6: Skin Detection Results from Different Colour Spaces

Figure 3.79: Skin and Face Detection Using Image of Peter and Tommy

As for skin detection, skin regions detected from HSV space are more

accurate and robust than ones from YUV space, and the skin regions in

background can also be detected easily in HSV spaces (see the face in Fig

3.60 and hand near the middle head in Fig 3.76, which means HSV space is

less sensitive to variations of illumination intensity
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Thresholding by size and ratio is very effective in non-face regions re-

moval. Moreover, the face model composed by the rules on the relative

positions of ears and holes of eyes or mouth is also very practical in face

detection, as ears can be found in almost every face image, which are more

robust for detection even when the face is rotated and eyes are difficult to be

detected.

Though our face detection algorithm can achieve quite satisfied results

even there are pose variations, there are several additional strategies can be

further applied for more robust face detection in our model, such as how to

obtain the W/H ratio more accurately if there are connected skin regions and

holes, and how to detect eyes and mouth if there are no holes can be found,

especially for the face in the background.

With detected regions of skin and face, semantic indexing and retrieval

of images are achieved as follows:

1. According to whether skin and face regions can be detected, all the im-

ages are automatically annotated as with or without skin/face regions

respectively;

2. For those with skin or face regions, size and number of regions are also

recorded;

3. For images with face regions, the estimated positions of ears, etc. are

also taken in semantic indexing, which can be further used to estimate

pose of faces;
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4. Finally, these indexes are utilized in semantic retrieval of images.

3.5 Summary

In this chapter, colour edge detection and face detection are discussed, where

colour based edge detection and skin detection plays a key role in low- to

middle- level image processing.

For colour edge detection, a novel fusion scheme is proposed to make use

of inter-channel chromatic difference and intensity information for improved

accuracy. Using the standard Canny edge detector with automatically deter-

mined parameters, the results have been compared with those extracted from

several other colour spaces, including RGB, YCbCr, HSV et al. In addition,

colour edge detection from images with manually added Gaussian noise is

also investigated. With semi-manually derived ground truth, quantitative

evaluation is achieved to validate the effectiveness of the proposed approach.

Comprehensive results from several standard test images have fully verified

both the effectiveness and robustness of the proposed approach, which is

found outperforming edges extracted from RGB, YCbCr and HSV spaces.

For face detection, a straightforward strategy using skin detection fol-

lowed by knowledge-based shape constraints is adopted. With the attained

colour distribution of skin pixels, skin detection can be easily implemented

using several extracted linear boundary conditions. By comparative study of

skin detection from different colour spaces, it is found that nonlinear colour
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spaces, such as HSV, can obtain more accurate and robust skin result. More-

over, shape filtering and knowledge-based modelling proves to be very useful

in face detection.
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4.1 Introduction

Interactive image processing is focus on the communication between the ma-

chine and human. Normally, it includes 5 steps: definition of object, analysis

and training phase, recognition and feedback. The kernel of interactive im-

age processing is how to locate the interesting objects and track them more

accurately and more effectively.

In this chapter, a novel dynamic simulation scheme for interactive im-

age processing is proposed. This scheme includes two steps: Hand Motion

Detection and Hand Gesture Recognition.

In Hand Motion Detection, the movement of hand motion is identified by

the difference between current image and previous image, if the difference is

beyond the predefined threshold value, then the typical movement of hand

motion is detected.

In Hand Gesture Recognition, some low-level features like colour, shape,

etc. have been applied as well as one important feature: orientation his-

togram on identifying the specific hand gesture. In this processing, Gaus-

sian Mixture Model (GMM) is used as our classifier and the Expectation-

Maximization algorithm can calculate the maximum likelihood between the

testing image and samples of each type of hand gestures in order to adjust

the parameters of the GMM.
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4.2 Motion Detection for Moving Object Seg-

mentation

In this section, how to detect the change of hand gestures is focused. Obvi-

ously, there are two important steps when detecting the change of hand ges-

tures, moving detection and moving object segmentation. Although, many

approaches have been advised to apply on moving detection in a continu-

ous video stream, the basic principle is to compare the current video frame

with its previous one or against a fixed/dynamic background. This is useful

application if marking the changed parts rather than the whole frame.

4.2.1 Frame Differencing

Frame differencing is a straightforward approach for motion detection, which

uses the difference between two images as an indicator to show the changes

caused by motion. Let img(i) represent the ith image in a sequence, the

frame difference of this frame and its previous frame is defined as:

diff(i) = |img(i)− img(i− 1)| (4.1)

If the original image is a colour one containing three or more colour com-

ponents, the difference above will also generate a colour image. For simplicity,

the input image is usually converted to grey one before differencing. Con-

sequently, the resulted difference diff(i) will also be an 8-bit grey image.
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Fig. 4.1 shows two colour input images and their associated grey images for

motion detection.

Figure 4.1: Two Colour Input Images (left) and Their Corresponding Grey
Images (right)

With the extracted diff(i), a simple thresholding th is applied to decide

pixels changed or not. In here, a binary image mask mask_diff(i) can

be obtained, in which white and black pixels represent those having been

changed or remaining unchanged by motion.

maskdiff(i) =

⎧⎪⎨
⎪⎩

1, if diff(i) > th

0, otherwise
(4.2)

One fixed threshold is not using in 4.2, one captured threshold is automat-
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ically applied for every diff(i), that means, the threshold is obtained for one

diff(i) through one automatic way, the formula is shown as follows, where

μ and σ denote respectively the mean and standard deviation of diff(i).

th(i) = μ(i) + σ(i) (4.3)

diff(i) in Fig. 4.2 has μ = 5.47 and σ = 10.02, hence, th(i) = 15.49.

The detected mask images under different thresholds are compared in Figure

4.3.

Figure 4.2: diff(i) and Its Histogram

136



Chapter 4. Hand Gesture Recognition

(a) th = 5

(b) th = 10

(c) th = 15

(d) th = 20

Figure 4.3: Extracted Binary Masks of Motion Using Different Thresholds
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From Fig 4.3, the threshold is set to 5, there is less accurate, so with

many white areas (false pixels) left in the picture. If the threshold is set to

20, obviously, the false pixels have been reduced, but it made holes in mask,

such as the one on the left finger. So, after analysing the results of Fig 4.3,

set the threshold as 15 is the more accurate and more robust.

To obtain more accurate and more clear photos, normally, the procedure

and post-processing needs to run one more time. In here, the morphological

filter as the post-processing has been applied. Firstly, apply erosion on de-

tected binary mask mask_diff(i), followed by a dilation processing, both

using 3×3 rectangle structure. If the new obtained mask image is represented

as mask_diff1(i), like:

mask_diff1(i) = dilation(erosion(mask_diff(i))) (4.4)

The result of processing is shown in Fig 4.4, where the binary mask

mask_diff1(i) obtained after erosion filter and dilation processing is shown

at the left, and the mask attached on the original image to illustrate the

frame differencing clearly as shown at the right.
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Figure 4.4: Extracted Binary Masks of Motion Using Different Thresholds
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4.2.2 Background Modelling

Under some particular situations, like when the object moves smoothly or

very slowly, it is difficult to track the whole moving changes, as shown in Fig

4.5. So, to accommodate this situation, one new approach can be applied to

resolve it, that is background modelling.

Figure 4.5: Smooth or Slow Movement Causes Motion Regions Inconspicuous

Method of background extraction during training sequence and updating

it during input frame sequence is called background modelling. This method

has been widely applied on computer vision. The kernel problem in moving

object detection is how to extract one clean background and its updating.

The fastest and the most memory compact background modelling is the

running average method. In this method, background extraction is done by
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arithmetic averaging on a training sequence. The method is introduced as

following.

From the kth image Ik in the image sequence, in total a temporal win-

dow is defined as (Ik−n0
, Ik−n0+1, . . . , Ik, . . . , Ik+n0−1, Ik+n0

), where there are

2n0+1 frames used, including the current frame, its previous and subsequen-

t n0 neighbouring frames, respectively. The average image over a temporal

window is then extracted as follows:

avk =
1

2n0 + 1

k+n0∑
m=k−n0

Im (4.5)

Consequently, each pixel value in represents the mean value of that pixel

over the temporal window. Meanwhile, the standard deviation for each pixel

over the temporal window is also attained as follows:

std(i, j) =

√
1

2n0 + 1

k+n0∑
m=k−n0

[Im(i, j)− avk(i, j)]
2 (4.6)

For background pixels, limited changes in the temporal window are ex-

pected, i.e. smaller values in stdk. Therefore, a simple thresholding of stdk

image can help to extract the background, where the threshold is also deter-

mined adaptively using the same strategy as introduced in (4.3).

bgk(i, j) =

⎧⎪⎨
⎪⎩

1 if stdk(i, j) < th2

0 otherwise
(4.7)
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With the extracted background, the simple frame differencing is modified

as follows.

diffk(i, j) =

⎧⎪⎨
⎪⎩

|avk(i, j)− Ik(i, j)| if bgk(i, j) = 1

stdk(i, j) otherwise
(4.8)

And the mask of changed pixels is then obtained using the same way as

applied to the difference from frame differencing, i.e.

maskdiffk(i, j) =

⎧⎪⎨
⎪⎩

1 if diffk(i, j) > th3

0 otherwise
(4.9)

where th3 is a threshold determined from diffk using the same strategy in

(4.3).

From a sequence of frames which begins with fist, then transforms into

"Victory" sign and ends with fist, the original images are shown as following

Fig 4.6.

After applying the method which described in Fig 4.6, each pixel is rep-

resented as a significant change or non-significant change. Now, the binary

mask can be extracted from the frame difference shown in Fig 4.4 with back-

ground removed, the results is shown in Fig 4.7, the white pixel areas indicate

the foreground or object, and the black pixel areas indicate background.
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Figure 4.6: Images: from left to right, top to below, the hand gesture begins
with fist, then turn to "Victory" sign and ends with fist.
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Figure 4.7: Binary Mask of Frame Difference Modified with Background
Modelling

Obviously, after applying the background modelling on the frames, the

result is better than just applying on frame difference. The real moving

object can be obtained, and this is the bedrock for the recognition of hand

gesture in the next part.

In this part, firstly, the frame difference to track one moving object is

described, but this method cannot track the moving object precisely when

the object moving smoothly or slowly. Under this situation, the background

modelling to co-operate with frame difference has been introduced, and more

accurate results can be obtained (see in Fig 4.7).

Before extracting the moving object, one new method will be applied,

namely Temporal Window over Images Sequence to produce standard de-
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viation for each pixel on the temporal window. This approach can reduce

the noise and improve the accuracy rate for frame difference, base motion

detection.

4.3 Hand Gesture Recognition with Gaussian

Mixture Model

4.3.1 Generation of Proposed Approach

It is hard to track the hand gesture, because it is difficult to predict the hand’s

behaviours, it also means, it is difficult to extract the raw information from

gesture images for 3D hand reconstruction.

Normally, one model needs to set up and adjust parameters for this model

in order to match the hand gesture by tracking. The parameters in this

model should provide essential information from captured pictures. So how

to extract the essential information from lots of captured images becomes

one big problem in our project.

In this part, one new approach will be discussed, which can recognise

gesture effectively and extract feature robustly. It focuses on estimating the

gesture contained in an image by analysing different complex features includ-

ing shape, colour and orientation histogram quantized in Gaussian Mixture

Model (GMM).
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GMM is a widely used statistical model in many applications of pattern

recognition, which is often regarded as a versatile modelling tool as it can be

used to approximate any Probability Density Function (PDF) given a suffi-

cient number of components, and impose only minimal assumptions about

the modelled random variables.

The advantage includes a rigorous statistical basis, the possibility of en-

coding spatial, colour, texture and motion features in a unified system, and

the ability to trade off accuracy of representation against data volume. Due

to such advantages, our proposed technique builds upon the GMM to es-

timate the mutative meaning of human gestures in a compact and precise

manner.

4.3.2 Introduction of Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a parametric probability function, it is

one of the most widely used mixture modelling techniques. It can produce

accurate results when data are generated from a set of Gaussian distributions

[99, 100]. If assume Xi = {xt, 1 ≤ t ≤ T i} represent the feature vectors for

data points belong to i− th class, they can be modelled by:

P (Xi|θ
i
GMM) =

T i∏
t=1

J∑
j=1

P (zj)Pzj(xt|uj,Σj) (4.10)

in (4.10), J is total number of the data points; θiGMM is model parameter,

including {P (zj), μj,Σj , 1 ≤ j ≤ J}, so, Pzj(xt|μj,Σj) can be represent the
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Gaussian distribution for the jth class, μj is a mean vector, and covariance

matrix Σj .

Pzj (xt|μj,Σj) =
1

(2π)D/2|Σj|1/2
exp{−

1

2
(xt − μj)

TΣ−1
j (xt − μj)} (4.11)

in (4.11) D is the dimension of the feature vector xj , in order to reduce the

size of parameter space, the Σj can transform to one a diagonal matrix as

diag{σ2
jd : 1 ≤ d ≤ D}

Analysis the formula (4.10), when multiple Gaussian models generate the

data points belong to one specific class, it produce one weight p(zj) same time.

If define ωj = P (zj), the Gaussian Mixture model can be seen composed by

three basic parameters: Mixture weight, Mean vector and Covariance matrix,

which can be represented as λ:

λ = {ωj, μj,Σj} (4.12)

where ωj is the mixture weight, μj is the mean vector, and Σj is the covariance

matrix. The λ is used to stand for every single image. Additionally, it is:

⎧⎪⎪⎨
⎪⎪⎩

bj(x) = Pzj (xt|μj,Σj)
J∑

j=1

ωj = 1
(4.13)

in order to simplify the expression of Pzj(xt|μj,Σj) in the following training

phase.
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4.3.3 The Expectation Maximization Algorithm

The EM algorithm is an efficient iterative procedure to compute the Maxi-

mum Likelihood (ML) [140, 141, 102] estimate in the presence of missing or

hidden data. In this thesis, after the GMM’s results from training photos and

testing photos respectively, applying EM to calculate the Maximum Likeli-

hood between these two results and identify what is kind of hand gesture in

testing photos. Now, the details about Expectation Maximization Algorithm

will be described below.

Normally, Expectation Maximization Algorithm includes two steps: E-

Step and M-Step:

• E-Step: depend on the current model to guess the probability distri-

bution of missing or hidden data;

• M-Step: according the result from E-step, re-estimate the model pa-

rameters.

Example, if X is set to one random vector. The aim is find out the

parameter θ, so that P (X|θ) is a maximum. This is called the Maximum

Likelihood (ML) estimate for θ. Normally, the "log likelihood function" to

estimate θ is used, it shown in (4.14).

L(θ) = lnP (X|θ) (4.14)

In (4.14), it is known ln(x) is one increase function, so, if θ maximizes
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the P (X|θ) same time the maximum of L(θ) is obtained.

The EM algorithm is an iteration procedure for maximize of L(θ). For

example, after nth iteration, one estimation value θn is obtained. Since the

aim is maximize the L(θ), so the updated estimate θ make:

L(θ) > L(θn) (4.15)

In the other words, the difference needs to be maximized:

L(θ)− L(θn) = lnP (X|θ)− lnP (X|θn) (4.16)

4.3.4 Training Phase

In training phase, our aim is to obtain the mixture model λ, in here, λ rep-

resents one feature vector for every certain image. In our project, maximum

likelihood means try to find the exactly λ from training images.

For example, it assumes one feature vector X = {x1, x2, . . . , xT} is ex-

tracted from one image, T is number of features, the likelihood of GMM is

shown as follow:

P (X|λ) =
T∏
t=1

p(xi|λ) (4.17)

Normally, the function P (X|λ) is nonlinear, so ML is always applied on

estimating the parameter of GMM when the P (X|λ) convergent.
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Firstly, it assumes one λ, estimation algorithm will use this λ to predict

new λ for new model to satisfy the relationship of P (X|λ) > P (X|λ). Then,

λ will replace λ in new model. This calculation will not stop until P (X|λ) is

convergent. During this procedure, in order to guarantee the approximation

of GMM, the following estimation has been calculated:

P (i|xi, λ) =
ωibi(xi)

T∑
k=1

ωkbk(xk)

(4.18)

where the mixture weight is estimated as

ωi =
1

T

T∑
t=1

p(i|xt, λ) (4.19)

The estimation of mean vector is:

μi =

T∑
t=1

p(i|xt, λ)xt

T∑
t=1

p(i|xt, λ)

(4.20)

The estimation of covariance is:

Σ2
i =

T∑
t=1

p(i|xt, λ)x
2
t

T∑
t=1

p(i|xt, λ)

− μ2 (4.21)
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4.3.5 Methods of Testing

In this process, the maximum of a posterior criterion to classify all images

has been applied. That is calculation of the likelihood for every different

type between the testing images and pre-assigned images, in order to obtain

one maximum value. Normally, the testing image is classified into one certain

type, in this type, the testing image has maximum value of likelihood compare

with the others images. The equation as follows:

Ŝ = arg max
1≤k≤S

Pr(λk|X) (4.22)

where S is the total of all pre-assigned different types, Ŝ is the certain

type which the testing image is classified to, λk is the model of pre-assigned

type K, and X is the vector of features of the testing image.

This equation can be transformed to another by the Bayesian rule below:

Ŝ = arg max
1≤k≤S

p(X|λk)Pr(λk)

P (X)
(4.23)

When Pr(λk) = 1/S, X̂ = argmax1≤k≤S P (X|λk). By calculating their

logarithms:

Ŝ = arg max
1≤k≤S

T∑
t=1

log p(xt|λk) (4.24)
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4.4 Extraction of Hand Features

After the processing steps described, the three the most important features

from all images can be extracted, which include colour, shape, and the ori-

entation histogram. Now, the details for these three features is described.

4.4.1 Colour Feature

Colour is one of significant features in objects identification. In the approach

of this project, the skin colour detection is applied on hand detection, be-

cause the colour of hand has big differences compared with the colour of

background. In here, the colour detection made the hand detection more

quickly and more precisely.

After so many years researching, scientists found the colour of human

being, especially the skin colour pixels have similar chrominance components

and intensities [143, 144]. According the literature survey, the YCbCr colour

space is more powerful and more accurate than the RGB colour space. The

transformation formula from RGB to YCbCr is:

⎡
⎢⎢⎢⎢⎣

Y

Cb

Cr

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

16

128

128

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

65.481 128.553 24.966

−37.797 −74.203 112.000

112.000 −93.786 −18.214

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
R

G

B

⎤
⎥⎥⎥⎥⎦ (4.25)

The chrominance values in the skin region are stable, that means the skin
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colour is fairly uniform [145].

4.4.2 Shape

In digital image processing, the shape of one object is represented by its edge.

In our project, the extracted edge of one object through Canny edge opera-

tor, and apply histogram intersection technique to retrieve of corresponding

histograms.

The Shape module as one type of module is also can be used as one way

to classify one specific object. The shape which is extracted from a binary

image is always represents the run-length values of the given image in each of

4 directions. In this thesis, Hough Transformation is applied to detect how

many straight lines in the pre-assigned the images.

4.4.3 Gradient Orientation Histogram

The local orientation angle θ can be calculated as image gradients, is defined

by horizontal and vertical image pixel differences as follows:

θ(x, y) = arctan[I(x, y)− I(x− 1, y), I(x, y), I(x, y− 1)] (4.26)

For gesture recognition, shift-invariant is a basic principle. To achieve

this, how often each orientation element occurred needs to measure in the

histogram. Therefore, a vector Φ of N elements is formed, with the ith ele-
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ment showing the number of orientation elements θ(x, y) between the angles

360o

N
(i− 1

2
) and 360o

N
(i+ 1

2
):

Φ(i) =
∑
x,y

⎧⎪⎨
⎪⎩

1, if |θ(x, y)−
360o

N
i| <

360o

N

0, otherwise
(4.27)

4.5 Implementation and Experimental Results

In our scheme, the key point depends on three important features (colour,

shape and gradient orientation histogram), which are extracted from re-

assigned hand gestures image, to build one Gaussian Mixture Model. And

apply EM to calculate the maximum likelihood between the training images

and testing images in order to classify the type of hand gesture in testing

images.

Combining GMM and EM, our approach can improve the performance

over other exiting methods and not increase the computation complexity.

According the Fig 4.8, the details of experiment will be described as

follows:
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Figure 4.8: Flow Chart for Hand Gesture
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1©: Before starting the experiment, one group of hands gesture as testing

data will be collected. The testing data includes 3 classes has been classified,

according to the different gestures, shown in Fig 4.9. The first one is whole

5 fingers outstretched; the second one is one fist; the third one is just two

fingers outstretched.

Figure 4.9: Original Images for Different Hand Gestures
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2©: According to the original images provided in Fig 4.9, the features

needs to extracted for each of hand gesture, as described in section 4.5.

In this experiment, three features is focused: colour, shape and gradient

orientation histogram.

Colour feature: firstly, the original image from RGB domain is trans-

formed into YCbCr domain. Because the YCbCr colour space is more pow-

erful and more accurate than the RGB colour space.

And Recent research has also proved that the chrominance values in the

skin region are narrowly distributed, which implies that the skin colour is

fairly uniform [106]. According the reference, in this experiment, the value

of Cb and Cr is [106]:

Cb ∈ [77, 127]

Cr ∈ [133, 173]

Outstretched : Cb = 113.568, Cr = 167.894

Fist : Cb = 92.145, Cr = 154.373

Victory : Cb = 83.565, Cr = 147.622

Shape feature: in this step, the RGB image is transformed to grey scale

one in order to extract the edge for different hand gestures, in here, the

Canny edge detector has been applied, and the results are shown in Fig 4.10

and Fig 4.11.

In here, the shape feature has been applied in order to find how many

157



Chapter 4. Hand Gesture Recognition

Figure 4.10: Grey scale for RGB

straight lines in each of image. For example, in the outstretched image, in

the Fig 4.11 (a), there are 10 straight lines around the brim of the fingers,

therefore, that 10 straight lines is one discriminate feature for outstretched

can be defined. Of course, there are 0 straight line in Fist and 4 straight lines

in Victory. In this experiment, Hough Transformation to detect straight lines
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in images has been applied. In here, the label SL is set to represent how many

straight lines in the image.

Figure 4.11: Edge for Different Hand Gesture

Gradient orientation histogram: The gradient orientation histogram can

be considered as the probability distribution depends of local angles. In

here, 2D situation is only considered. In the experiment, it assumes three

reference angles: 80 degrees, 135 degrees and 270 degrees. So, the probability

distributions (PD) for specific angle of pre-assigned hand gesture are shown

in Table 4.1.

Table 4.1: Probability Distribution for Specific angle in Different Hand Ges-
ture

3©: GMM construction: after getting the three features of original images,

these features are employed for GMM construction. Matlab code is (details

in Appendices 2):
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function [Weights, Mu, Variances] = GMM(Input, No_of_Clusters,Limit)

Input = feature vectors

No_of_Clusters = 3

Limit = 10

The results are:

Outstretched: Weights = 0.001; Mean = 3.456.; Covariance = 13.154

Fist: Weights = 0.002; Mean = 27.231; Covariance = 14.434

Victory: Weights = 0.003; Mean = 63.247; Covariance = 15.235

4©: Testing phase, 2968 hand gesture images have been collected (Se-

bastien Marcel Static Hand Posture Database" [100]) for our algorithm that

has been described. Since the images were captured with different back-

ground, it is helpful to test the robustness of the algorithm just proposed.

According to the algorithm described in training phase, the features for im-

ages can be obtained, shown from Table 4.2.

Table 4.2: Extract the Feature Value for Testing Images

After got the values of features for each testing image, choose 67 images

as training data for outstretched, 54 images as training data for fist and 59

images as training data for victory. These three groups training data can

build three feature vectors respectively. Apply these three features vectors
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on GMM contraction in step 3© one by one, the GMM results (training data)

for each hand gesture can be obtained. The results are shown in Table 4.3.

Table 4.3: GMM Results for Training Data

In the left 2788 images, 776 images have been randomly choosen as testing

images for outstretched, 1107 images have been randomly choosen as testing

images for fist and the last 905 images as testing images for victory. In this

testing database, each image also can get one GMM result for prepare in

next step. The GMM results for each image in testing database is shown in

Tabel 4.4. (Note: in Table 4.3, 4.4, ’Param’ is parameters, M is mean, C is

covariance, W is weight.)

Table 4.4: The Results of GMM for Testing Images

5©: Classification, Apply EM to classify, the Matlab code is (details in

Appendices 2):
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function [W,M,V,L] = EM_GM_fast(X,k,ltol,maxiter,pflag,Init)

X(n,d) - input data, n = number of observations, d = dimension of variable

k - maximum number of Gaussian components allowed

ltol - percentage of the log likelihood difference

between 2 iterations ([] for none)

maxiter - maximum number of iteration allowed ([] for none)

pflag - 1 for plotting GM for 1D or 2D cases only,

0 otherwise ([] for none)

Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none)

According this experiment, the label in EM function can be set as:

n = 3, d = 776 or 1107 or 905, k = 3,

Init = results of GMM for training images

The results are shown in Table 4.4

Table 4.5: Summary of Experimental Results

From Table 4.4, the recognition rate of victory is the lowest, because

the shape of victory is between the outstretched and the fist, especially the

bottom of victory, it is difficult for classifier to identify it. However, the
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outstretched and the fist have clearly characteristic, for example, the out-

stretched could be easily detected gradient orientation histogram in specific

directions, and the fist could be seen no straight line in it. Therefore, it is

necessary to find the others significant features to improve the performance

of this experiment

4.6 Summary

In this chapter, a novel dynamic simulation scheme is presented for interactive

image processing, which contains two main steps, i.e. hand motion detection

and hand gesture recognition.

For hand motion detection, the movement of hand motion is detected

by using image differencing. With a predefined threshold, typical movemen-

t of hand motion can be successfully identified with moving regions being

segmented.

For hand gesture recognition, the combination of several low-level to

middle-level features is adopted, using colour, shape and motion measure-

ments. It is found that the gradient orientation histogram plays important

roles for the recognition of the gestures. In addition, using the Gaussian

mixture model as a classifier and the Expectation-Maximization algorithm

to calculate the maximum likelihood between the testing image and samples

of each type of hand gestures, the parameters of the GMM can be adaptively

adjusted to achieve better performance.
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5.1 Introduction

Machine learning is one core technique in high level image processing, only

after this step, human can understand the information from raw images.

Unfortunately, machine learning is still a bottle neck, so many factors can

impact the results output from machine learning algorithms.

Like described previously, in this chapter, computer-aided mammogram

analysis will be used as the major application case to illustrate the effec-

tiveness of our approaches in machine learning towards high-level image pro-

cessing. In this project, two methods of machine learning are emphasized:

Neural Network and SVM.

5.2 Neural Network

The concept of Neural Network (NN) was introduced when McCulloch and

Pitts (MP) published their well-known thesis in 1943 [109] and at the same

time started a completely new era within computer research and artificial

intelligence [110]. It has been proposed that there exists a possible a way

to construct a NN using mathematical functions. Their approach is based

on an interconnecting set of binary decision units (BDNs), and it leads to a

network which is capable of computer learning tasks. Later in 1962, Rosen-

blatt showed how to train a network of BDNs [111] and proposed that by

changing the strengths of the connection between neurons, a NN may give a
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wrong answer. However, the network sequentially reaches the correct answer

after training it for several times. This irony has been a demanding area of

NN on which the researched today is focused.

The NNs have been utilized and applied on several areas such as pattern

recognition and classification problems. A major NN application has been de-

veloped to distinguish the eleven vowels from each other using features [112].

Regarding the task as classification, the data set to be used involves more

than ten thousands samples and is considered as a linearly non-separable

data set. The efficiency of the NN is compared to former methods and more

accurate results are obtained.

5.2.1 Neurons

There are two types of neurons (nodes) that can be utilized in NN structures.

They are multilayer perceptron (MP) neuron and radial-basis function (RBF)

neuron. In my work, MP neuron is utilized, and the reasons of that they

are selected rather than RBF neurons will explained in details later of this

chapter. The MP neuron is depicted in Figure 5.1 [113].

Let there exist u1, u1, · · · , uJ inputs and weights ω1, ω2, · · · , ωJ for a given

MP neuron. Each input is multiplied with the corresponding weight, the

multiplications are summed and a bias term is added which leads to k (see

Figure 5.1).

Finally, an activation function (AF) is applied to k. The aim of the AF
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Figure 5.1: General Structure of MP Neurons

here is squashing unbounded inputs into a range. The most common AFs, are

sigmoid and hyperbolic tangent and their ranges can respectively be written

as follows:

ψ(k) =
1

1 + exp(−k)
0 ≤ ψ(k) ≤ 1 (5.1)

ψ(k) = tanh(k) −1 ≤ ψ(k) ≤ 0 (5.2)

Therefore, output of a neuron with J inputs and connections, a bias and

an activation function ψ(•) can be written as follows:

y = ψ(
J∑

i=1

uiωi + b) (5.3)
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5.2.2 Network Architectures

There are three most common network architectures, i.e. single-layer (SL) N-

N, multi-layer perception (MLP) NN and RBF NN [114]. A single-layer (SL)

NN has only input and output layers and is only used for linearly separable

cases where there is no statistical complexity.

RBF NNs involve the concept of transforming the input data to a high

dimensional space in a nonlinear manner. In our project, MLP NN is utilized

to deal with our data of more than 39 dimensions.

The MLP NN involves one or more layers between input and output nodes

which are called hidden layers. The function of hidden neurons is to arbitrate

between the input and output nodes in a non-linear manner.

In linearly inseparable cases, an MLP NN with sufficient hidden neuron-

s can represent a continuous function (Haykin, 1999, [115]). A MLP NN

constructed with m inputs, t1 and t2 neurons in the first and second hidden

layer, respectively, and m− t1 − t2 − c outputs is referred as a MLP NN.

For example, Figure 5.2 presents a 3-4-2-1 MLP NN with 3 inputs and 1

output respectively where f, g and h represent AFs and wj,k are the connect-

ing weights between layers.
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Figure 5.2: General Structure of MP Neurons

5.2.3 Supervised Learning

The concept of learning with a teacher can be referred as supervised learning

[116]. The term ’teacher’ means having knowledge about the environment

represented by a set of input-output examples. Thus, training the NN with

this set leads to accurate weights for testing the rest of the data.

To decide which weight is more accurate amongst others, a training error

which is typically mean-squared error can be written as follows:

MSE =
1

J

J∑
i=1

(ti − yi)
T (ti − yi) (5.4)

where t = [t1, t2, . . . , tJ ] is the desired output of the samples, also called

target and y = [y1, y2, . . . , yJ ] is the estimated output.

Optimized MSE is achieved by updating the weights of the NN in every

iteration (epoch) until y cannot be reduced or the limit of the iteration count
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is reached which is determined by the analyzer.

5.2.4 Generalization Methods

Generalization methods aim to reduce the complexity of the NN by optimiz-

ing the weights and number of neurons while maximizing the accuracy of the

model. Bayesian regularization is one of the most effective methods in NN

optimization.

In MATLAB, it is referred as a training algorithm, namely trainbr. It is

a modified version of performance function MSE. Using F to represent sum

of squares of the weights in the network,

F =
1

n

n∑
j=1

w2
j

combined with MSE(5.4), then the regular MSE(MSEREG) can be written

as follows: [117]

MSEREG = γMSE + (1− γ)F (5.5)

where γ is the learning rate.

Using this performance function forces the network to use smaller weights

and biases which leads to smooth network response and small risk of over-

fitting. The selection of the γ value is a challenge for the bias rate approach.

It is assumed in (MacKay, 1992, [118]) that the weights and the biases in a
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network are random variables with specified distributions, hence, selection

of the γ value is handled with an automated approach. The details about it

can be found in (Foresee and Hagan, 1997, [119])

5.2.5 Training Algorithms

The Training Algorithms, also well known as Supervised Learning Algorithm-

s, are widely used for the great majority of MLP architectures, e.g. SL NN,

MLP NN and RBF NN. The most decent training algorithm for SL NN is

Rosenblatt’s perceptron training algorithm (RP) which can converge to the

global minimum when the data is linearly separable.

The algorithm can be described as follows [109]:

1. Consider a given training set X = {xi, θi}, i = 1, . . . , J where x =

{x1, x2, . . . , xn} and θ is the output;

2. Initialize the weights series, ω, (either to zero or to a small random

values);

3. Pick a learning rate γ, (0 < γ < 1);

4. For the step p, obtain yp, in respect to (5.3), where w = [w1, w2, . . . , wn]

and ψ = sign(•);

5. Calculate output error, denoted as ep = θp−yp. If ep = 0 then terminate
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the procedure, otherwise update w and b in a way as described below:

ωp+1 = ωp +∇ωp, ∇ωp = γepxp (5.6)

bp+1 = bp +∇bp, ∇bp = γep (5.7)

until ep = 0

Various training algorithms have been devised for MLP NN. The nine

most popular have been implemented with NN structure in the MATLAB

environment with names as follows:

1. traindg — Batch Gradient Descent, standard back-propagation (BP)

algorithm

2. traindgm — Batch Gradient Descent with momentum, BP with mo-

mentum

3. traindga — Variable Learning Rate, adaptive learning rate attempts to

keep the learning step size as large as possible while keeping learning

stable.

4. traindgx — Variable Learning rate with momentum

5. trainrp — Resilient BP, speeds up the BP process by focusing on the

sign of the activation function derivatives

6. traincgf — Fletcher-Reeves Conjugate Gradient Algorithm, search by

zig-zagging towards to minimum MSE. Usually, the method is much

faster than above algorithms
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7. trainscg — Moller Scaled Conjugate Gradient, combines the model-

trust region approach with conjugate gradient algorithm

8. trainbfg — Broyden, Fletcher, Goldfarb, Shanno Algorithm, achieves

faster convergence using quasi-Newton method. An approximate Hes-

sian of size is stored, where is the number of the parameters in the

network.

9. trainlm — Levenberg-Marquardt Algorithm, achieves faster conver-

gence by approximating Newton’s method by a Jacobian matrix. Mem-

ory requirement increases with parallel to the number of network pa-

rameters and the size of training data.

In this project, trainlm will be applied to train the neural network, and de-

tails of the training algorithm are given as follows. The LM (trainlm) training

algorithm is a member of a class using hill-climbing optimization techniques

(Yuret and Maza, 1993, [120]). The algorithm is an iterative method that lo-

cates the minimum value of a multivariable function that is expressed as the

sum of squares of non-linear functions (Levenberg, 1944 [122], Marquardt,

1963 [121]). It has become a standard technique for non-linear function least

squares problems. LM can be thought of as a combination of steepest descent

and the Gauss-Newton method. When the current solution is far from the

correct one, the algorithm behaves like a steepest descent method: slow, but

guaranteed to converge. When the current solution is close to the correct

solution, it becomes a Gauss-Newton method. The algorithm considers the

NN as a linear separable case and begins the computation until MSE cannot
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be reduced. Then the algorithm converts itself to a non-linear solver and

training terminates when the MSE cannot be reduced for the second time or

by a limitation e.g. maximum iteration count, reaching an optimum MES

that is defined beforehand. The method avoids calculating the Hessian ma-

trix, the Jacobian matrix is used for this algorithm, instead. The proposed

Levenberg and Marquardt iterative scheme is below:

ωp+1 = ωp − (JTJ + γI)−1JTMSE (5.8)

where J is the Jacobian matrix and γ is the damping parameter (Nielsen,

1999 [123] ). Thus, the complexity of the algorithm is dependent on the size

of J which considers size of the network and number of training pairs as

its elements. Therefore, algorithm speed reduces when the amount of data

increases.

5.3 Feature Extraction and Selection

5.3.1 Data Set

The data set used in my project is from the University of South Florida

where all images are of size 2048×2048 pixels. From these images, 748 typical

samples are extracted including 633 benign (normal) cases and 115 malignant

(abnormal) cases. Benign samples are represented by target 1, and malignant

samples are represented by target 0.
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Figure 5.3: [part 1] Normal Case (case A_0014_1)
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Figure 5.4: [part 2] Cancer Case (case A_1252_1)
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Examples of both normal and abnormal samples are shown in Figure 5.3

and Figure 5.4 for information. In Figure 5.4, cancer regions are manually

labelled using circular marks. It can be seen from the visual information, that

the differences between these normal and abnormal cases are insignificant,

especially in comparing the left image in Figure 5.3 with the images in Figure

5.4, which is the main challenge of the problem. Feature extraction is used to

seek for representative measures to distinguish abnormal cases from normal

ones.

5.3.2 Feature Extraction

In my project, in total there are 39 features employed for the detection of

breast cancer, and the definitions and descriptions of them are given in Table

5.1. Except in the first, second and the last rows, the remaining 36 features

correspond to 18 groups and each contains mean and standard deviation of

one specified measurement [124, 125].

One of the primary tasks in my project is to select a group of most

representative features for more effective classification. To achieve this, these

39 features need to be analyzed, and details of some of these features are

presented below.
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Table 5.1: Definitions and Descriptions of the 39 Features Used in This Thesis
(*L(θ, l) be a string of pixels in direction θ and of length l)

No Features for a Suspicious Region Features for Cluster

1 The age of the patient

2 The number of suspicious regions in a cluster

3
The area of a suspicious region

Mean

4 Standard Mean

5
The compactness of a suspicious region

Mean

6 Standard Mean

7
The Measure Fourier descriptor FF of a suspicious region

Mean

8 Standard Mean

9
The Moment-based measure M of a suspicious region

Mean

10 Standard Mean

11
The Eccentricity of a suspicious region

Mean

12 Standard Mean

13
The Spread of a suspicious region

Mean

14 Standard Mean

15 The average minimum standard deviation of L(θ, l)∗ in a suspicious Mean

16 region Standard Mean

17 The average standard deviation of the minimum standard deviation of Mean

18 L(θ, l)∗ at the different directions in a suspicious region Standard Mean

19 The average standard deviation of the string of length l, starting from Mean

20 each point in a suspicious region and at direction θ Standard Mean

21
The average gradient of a suspicious region

Mean

22 Standard Mean

23
The average difference of a suspicious region

Mean

24 Standard Mean

25
The average brightness of a suspicious region

Mean

26 Standard Mean

27
The largest intensity in a suspicious region

Mean

28 Standard Mean

29
The average brightness in the context of a suspicious region

Mean

30 Standard Mean

31 The standard deviation of the brightness in the context of a suspicious Mean

32 region Standard Mean

33 The difference of the average brightness in a suspicious region and its Mean

34 context Standard Mean

35 The difference between the standard deviation of brightness in a Mean

36 suspicious region and standard deviation of the brightness in its context Standard Mean

37
The texture difference between microcalcifications and their context

Mean

38 Standard Mean

39 The average minimum distance between suspicious regions
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1). The Fourier descriptors were defined as the Fourier coefficients of

boundary pixels. They are used for shape description of the objects extract-

ed from input images [126-128]. Let the complex array z0, z1, z2, . . . , zN−1

represents the boundary [129] belonging to the object whose shape needs to

described. The k-th Fourier transform coefficient is calculated as

Zk =
N−1∑
n=0

zne
−2πkn/N , k = 0, 1, . . . , N − 1

The Fourier descriptors are obtained from the sequence Zk by truncating

elements Z0 and Z1, then by taking the absolute value of the remaining

elements and dividing every element of the thusly obtained array by |Z1|. To

summarize, the Fourier descriptors are

Ck−2 = |Zk|/|Z1|, k = 2, 3, . . . , N − 1

2). Moment-based measure [130] If the coordinates of the N pixels of

a segmented calcification contour are described by an ordered set z(i) =

(xi, yi), i = 1, 2, . . . , N , the Euclidean distances z(i) of the vectors connecting

the centroid of the segmented object and the ordered set of contour pixels

form a one-dimensional representation of the contour. The pth moment can

then be defined as [131]

mp =
1

N

N∑
i=1

[z(i)]p
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and pth central moment as:

up =
1

N

N∑
i=1

[z(i)−m1]
p

3). Eccentricity (ε) measures the degree to which an object’s mass is

concentrated along a particular axis. The range of values for ε is [0-1] where

0 defines a circular object and 1 a liner object. It can be represented as [132]:

ε =
(m2,0 −m0,2)

2 + 4m2
1,1

(m2,0 +m0,2)2

where, for an image f(x, y), the moment of order p+ q was defined as:

mpq =
∑
x

∑
y

xpyqf(x, y)

4). Standard deviation In probability and statistics, the standard devia-

tion is a measure of the dispersion of a collection of values [111].

The standard deviation of a probability distribution is the same as that

of a random variable having that distribution. The standard deviation σ of

a real-valued random variable X is defined as:

σ =
√
E((X − E(X))2)

=
√
E(X2)−E2(X)

=
√
E(X2)− μ2

(5.9)
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Where μ = E(X) refers to the expected value of X (another word for the

mean).

Continuous distributions usually give a formula for calculating the stan-

dard deviation as a function of the parameters of the distribution. In general,

the standard deviation of a continuous real-valued random variable X with

probability density function p(x) is:

σ2 =

∫
(x− μ)2p(x)dx

where μ =
∫
xp(x)dx and the integrals are definite integrals taken for x

ranging over the range of X.

6). Average Gradient A measure of contrast in a photographic image,

expressed as the slope of a straight line joining two density points on the

sensitometric curve. The slope of a line in the plane containing the x and y

axes is generally represented by the letter m, and is defined as the change in

the y coordinate divided by the corresponding change in the x coordinate,

between two distinct points on the line. This is described by the following

equation: m = Δy/Δx
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5.3.3 Feature Analysis and Selection

Selection of the most representative features is based on the fact that these

selected features should be most discriminative in distinguishing normal and

abnormal cases.

In general, there are two general techniques for this purpose, i.e. PCA

based and classifier-based. PCA, or principal component analysis, is a vector

space transform used to reduce multidimensional data sets to lowers dimen-

sions for easy analysis.

In PCA analysis, assumptions on linearity and statistical important of

mean and covariance are emphasized, in which large variance usually indi-

cates important dynamics. This has been implemented in many clustering

methods where large inter-class distance is expected and taken as a kind of

overall covariance, and details of which is described in Section 5.4.2.

As for classifier-based approaches, each separate feature is used as input

for the classifier to compare their performance. Those with higher detection

rates are then selected as more representative features [134]. In my project,

the neural classifier is used to test the priority of all our 39 features, and

details of this are discussed in Section 5.4.1.
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5.3.4 Results and Discussion

5.3.4.1 Feature Selection Using a Neural Network

A back propagation neural network (BP) [134], which contains an input layer,

one hidden layer and one output layer, as shown in Figure 5.5, is employed

in my project. The features inputted can be single ones or combined ones

and through changing hidden units, learning rates and momentums the best

detection results can be achieved. The output value is normalized within [0,

1]. Those larger than 0.5 are taken as benign samples and those less than 0.5

are taken as malignant ones. For example, the output of 0.1 is very likely to

be malignant, and 0.9 to be benign.

Figure 5.5: Outline of Neural Network Structure Used for Feature Selection

As mentioned above, each of the 39 features is applied as input to the

designed neural classifier to determine its performance. At this stage, 90%

of the test samples chosen to be training data and the testing data are the

remaining 10%.
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As mentioned above, in total there are 748 samples in my data set in

which 633 are benign and 115 are malignant. As a result, 63 benign samples

and 11 malignant samples are selected for testing as 10% of the whole data.

The basic criterion here is to correctly detect as many malignant samples

as possible, and of course, to reduce the occurrence of wrongly detected

malignant samples.

Table 5.2: List of Features and Their Discriminative Ability in Classification
Using the NN

Index of Correct Rate Index of Correct Rate Index of Correct Rate

Features Features Features

15 0.2333 20 0.0929 25 0.0491

1 0.1912 7 0.0877 24 0.0456

2 0.1877 29 0.0842 3 0.0456

16 0.1666 14 0.0842 4 0.0438

39 0.1526 12 0.0701 37 0.0438

18 0.1491 21 0.0666 26 0.0403

5 0.1473 30 0.0666 32 0.0385

17 0.1421 8 0.0631 36 0.0385

31 0.1403 35 0.0543 13 0.0385

34 0.1368 38 0.0543 10 0.0368

33 0.1280 22 0.0526 11 0.0350

23 0.1210 27 0.0526 9 0.0350

19 0.1035 28 0.0491 6 0.0315

Table 5.2 lists features and their discriminative ability in the neural clas-

sifier and these rates also shown in Figure 5.6 as a histogram for easy com-

parison.

From Table 5.2 and Figure 5.6, discriminative ability differs much over all

features where the maximum and the minimum ones are 0.2333 and 0.0315,
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Figure 5.6: Histogram of Discriminative Ability of All Features from Neural
Network

respectively. In my experiments, features of higher discriminative ability are

selected with first priority for further training and testing. Under different

numbers of selected features, the classification results are compared in Table

5.3 and also plotted in Figure 5.7.

Table 5.3: Classification Results Using Different Number of Selected Features
From the Same Neural Classifier

Numbers of Correcting Rate Correcting Rate Overall

Selected Features of Class 1 of Class 0 Correcting rate

5 89.54% 76.19% 78.17%

10 85.90% 77.38% 78.64%

15 89.36% 80.15% 81.51%

20 82.45% 81.34% 81.50%

25 83.44% 75.43% 76.62%

30 85.78% 78.44% 79.53%

35 75.63% 77.45% 77.17%

39 78.13% 83.71% 82.88%
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Figure 5.7: Plot of Table 5.3

The correct classification rates is defined as follows:

Correct Rate of Class 1 =
Detected numbers of abnormal samples (DA)

Sum of abnormal samples (SA)

Correct Rate of Class 0 =
Detected numbers of normal samples (DN)

Sum of normal samples (SN)

Correct Rate of Overall =
DA+DN
SA+ SN

From Table 5.3 and also Figure 5.7 it can be seen that increasing the

number of features does not necessary improve the classification results of

both normal and abnormal cases. In other words, there is no direct link to

an optimal number of features used to achieve the best performance. Conse-

quently, an improved classifier is necessary and this is discussed in the next

section.
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5.3.4.2 Feature Selection by using PCA based Clustering Rules

In probability and statistics, the standard deviation of a probability distribu-

tion, random variable, or population of values is a measure of the spread of

its values. The standard deviation is usually denoted by the letter σ (lower

case sigma), and is defined as the square root of the variance.

As for variance, as discussed in Section 5.3.3, large or small variance

values refer to important or unimportant dynamics in PCA analysis. To this

end, standard deviation can be also considered as a kind of measurement of

dynamics.

To state it more formally, the standard deviation is the root mean square

(RMS) deviation of values from their arithmetic mean. Consequently, mean

and standard deviation is used for feature selection, especially for problem

of classification. Before choosing appropriate features, several steps will be

applied to measure the importance of each feature as follows.

1. The mean value of each feature is calculated as mean (μ) for every

single feature. Instead of calculating the value over all samples, two

mean values determined as μ1 and μ0, which correspond to samples in

target 1 group and target 0 group, respectively. In other words, all the

samples are divided into two groups and two mean values are extracted

for the samples in each group.

2. For each feature, calculate σ1 and σ0 for two groups of its samples

corresponding to target 1 and target 0;
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3. Based on extracted measurements of mean and standard derivation, an

overall rank of each feature is defined below:

rank(•) =
|μ1 − μ0|

max (σ1, σ0)
(5.10)

The relationships among μ1, μ0, σ1, σ0 are illustrated in Figure 5.8 below,

in which the two groups of samples are represented by hollow circles and cir-

cles enclosing crosses, respectively. The centroids in each group are denoted

μ1 and μ0, and parameters σ1 and σ0 are used to denote the compactness

of samples in each group. The basic criterion in ranking the features is to

measure if it is easily to separate two groups of samples.

If the distance between two centriods are far enough, say larger than the

larger item of σ1 and σ0, it will be ranked high as the samples can be more

clearly split into two groups.

Figure 5.8: An illustration of the Simply Constructed Relationships Among
μ1, μ0, σ1 and σ0
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In definition, equation (5.9), |μ1−μ0| represents the distance between the

centroids of two different groups. Therefore, larger |μ1 − μ0| means the two

groups can be more easily separated. On the other hand, smaller σ means

the samples are more compact and also are more easily classified. Using this

ranking function, the ranks for each of the 39 features are determined as

given in Table 5.4. For easy comparison, the contents in Table 5.4 are also

plotted in Figure 5.9 as a histogram to show the ranks of each feature.

Table 5.4: List of Ranks Corresponding to Each of the 39 Features
Index of Rank Index of Rank Index of Rank

Features
|μ1 − μ0|

max(σ1 − σ0)
Features

|μ1 − μ0|

max(σ1 − σ0)
Features

|μ1 − μ0|

max(σ1 − σ0)

39 0.9743 34 0.3797 35 0.1306

15 0.8506 22 0.3386 12 0.1073

2 0.7187 23 0.3384 14 0.1003

16 0.7026 20 0.3104 8 0.0765

17 0.6867 31 0.2931 1 0.0655

33 0.6627 30 0.2812 37 0.0652

27 0.6252 26 0.2623 11 0.0608

25 0.6109 28 0.2321 36 0.0573

21 0.5856 13 0.2072 32 0.0433

29 0.5286 5 0.1963 4 0.0405

7 0.4510 3 0.1765 10 0.0390

19 0.4192 38 0.1572 9 0.0287

18 0.3874 24 0.1501 6 0.0046

Comparing Figure 5.9 with Figure 5.6, it is easily seen that features as-

signed large ranks in Figure 5.9 usually have been found to have high dis-

criminative ability derived from neural classifier. In other words, the two

methods, NN and PCA, have generated consistent results in feature selec-

tion. According to the ranking results, again, some features have been chosen
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Figure 5.9: Plot of Table 5.4 as a Histogram to Show the Ranks of Each
Feature

for classification with features of high rank values are to be selected first. The

same neural classifier is applied in my test where 90% of the samples are used

for training and 10% for testing. The testing results are reported in Table

5.5 and also plotted in Figure 5.10 for clear presentation and comparisons.

Table 5.5: Classification Results Using Feature Selected by PCA Analysis
Numbers of Correct Rate

Selected Features Class 1 Class 0 Overall

5 77.11% 66.66% 68.33%

10 74.99% 74.99% 74.99%

15 61.35% 86.50% 82.52%

20 83.68% 81.34% 81.77%

25 45.45% 88.88% 82.02%

30 52.26% 85.71% 80.43%

35 36.36% 98.41% 88.61%

39 51.52% 88.71% 82.43%
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Figure 5.10: Plot of the results in Table 5.5

5.4 Compare the Performance Between ANN

and SVM

5.4.1 Review of SVM and ANN Learning Techniques

In this chapter, the classification of MCCs is treated as a two-class pattern

classification problem, and the two classes are referred to as "malignant" and

"benign". If denote x ∈ R
d as an input vector or pattern to be classified,

and let scalar denote its class label, i.e. y ∈ {−1, 1} for SVM and y ∈ {0, 1}

for ANN. The training set L contains M samples, i.e. L = {(xi, yi)} and

i ∈ [1,M ]. The problem here is how to determine a classifier f(x) which

can make correct decision and classify the input pattern into suitable classes.

In this section, brief introductions to SVM and ANN are presented, which

forms the base of our proposed improved classifier as presented in the next

section.
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5.4.1.1 The SVM Classifier

In general, a SVM classifier can be formed as follows,

fSVM(x) = wTφ(x) + b (5.11)

where parameters w and b respectively denote a weight vector and a bias

that can be determined in the training process through minimizing the cost

function below, and φ(•) refers to a nonlinear mapping to map the input

vector x into a higher dimensional space for easily separated by a linear

hyperplane as illustrated in Fig. 5.11.

Figure 5.11: Illustration the Concept of SVM to Map a Nonlinear Problem
to a Linear Separable One

A training sample (xi, yi) is a support vector if it holds yifSVM(xi) ≤ 1.

Let us denote sk as extracted support vectors, k ∈ [1, K], {sk} ⊂ L is a small
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subset of the training set. Hence, the SVM function becomes:

⎧⎪⎪⎨
⎪⎪⎩

fsvm(x) =

K∑
k=1

K(x, sk) + b

K(x, sk) = φT (x)φ(sk)

(5.12)

where K(•, •) is denoted as a kernel function to represent the effect of

the nonlinear mapping φ(•) in classification.

Some common used kernel functions are summarized below, including

linear and two nonlinear functions. If the training samples are not linear

separable, non-linear kernel functions are better choice. In addition, the as-

sociated parameters p and σ are determined automatically during the training

process.

1. Linear kernel: K(xi, xj) = xTi xj

2. Polynomial kernel: K(xi, xj) = (xTi xj + 1)p

3. RBF kernel: K(xi, xj) = e−‖xi−xj‖2/(2σ2)

5.4.1.2 The ANN Classifier

Although there is no precise definition, ANN can be considered as an infor-

mation processing system which is composed of a network of interconnected

simple processing elements, i.e. neurons. Determined by the connection-

s between these neurons and the associated parameters, ANN can exhibit
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complex global behavior to generate expected outputs via supervised or un-

supervised learning.

Inspired by the biological nervous system, the learning process is to adjust

the connection strength or weights between the neurons. Each neuron forms

a node in the whole network and after training each node is assigned with

a determined bias or threshold. For the each interconnection between two

nodes, a weight is also assigned to represent the link-strength between the

neurons.

For a given input vector x = (x1, x2, . . . , xd)
T and weight vector w =

(w1, w2, . . . , wd)
T , the output of a single neuron z in Fig 5.12 is determined

as:

z = g(wTx− b) = g(

d∑
i=1

wixi − b) (5.13)

where g(•) is namely an activation function to decide whether the perceptron

should fire or not.

The sigmoid function Sig(x) = (1 + e−x)−1 is the most popular used

activation function, others include tanh and step functions, etc.

Using the same process as to compute the output of a single neuron, the

output of the whole network can be also calculated in a topological manner.

This means that for each neuron its inputs from other neurons need to be

computed before determining its output.
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As seen, the weight vector and the bias associated to each connection and

each node will influence the output results, and they can be determined in

training or learning process as follows.

Figure 5.12: Illustration the Effect of a Single Neuron

First of all, the topology of the ANN needs to be specified, and feed-

forward ANN is adopted as it has been widely applied for the classification

of MCCs [40, 35, 42, 44]. A feed-forward ANN is a multi-layer perceptron

(MLP) which contains three or more layers of neurons, i.e. one input layer,

one output layer and at least one hidden layer.

With a given training set, a specified activation function and a learning

ratio γ where γ ∈ (0, 1), the learning process for supervised training using

the well-known back-propagation algorithm can be described in the following

three stages.

Firstly, the initial weights and bias are set randomly between [−1, 1] to

attain a group of outputs z(t) at t = 1 referring to the first round of iteration.

195



Chapter 5. High Level Image Processing

Then, an error function is decided as ε(t) =
M∑
i=1

(yi − z
(t)
i )2/2 using the sum

squared error between the estimated output z and the target output y. Fi-

nally, the error signal at the output units is propagated backwards through

the whole network to update the weights using the gradient descent rule

Δwij(t) = −γ
∂ε(t)

∂wij

(5.14)

where wij refers to a weight between the jth node in a given layer and the ith

node in the following layer. With updated weights, t = t+ 1 is set to start a

new iteration until the network becomes convergence. This can be measured

by using a small change ratio of ε(•) or a given number of iterations.

5.4.2 Comparisons Between SVM and ANN

As two different algorithms, SVM and ANN share the same concept using

linear learning model for pattern recognition. The difference is mainly on

how non-linear data is classified.

Basically, SVM utilizes nonlinear mapping to make the data linear separa-

ble, hence the kernel function is the key. However, ANN employs multi-layer

connection and various activation functions to deal with nonlinear problems.

In fact, single layer ANN can only generates linear boundary, and the 2nd

layer can combine the linear boundary together; while at least three layers

are required to produce boundary of arbitrary shapes.
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Using the gradient descent learning algorithm, ANN tends to converge

to local minima. As a result, it suffers from the over-fitting problem. On

the other hand, SVM tends to find a global solution during the training as

the model complexity has been taken into consideration as a structural risk

in SVM training. In other words, ANN minimizes only the empirical risk

learnt from the training samples, but SVM considers both this risk and the

structural risk.

Consequently, the training results from SVM have better generalization

capability than those from ANN. Therefore, SVM and ANN are two typi-

cal classifiers which are used to validate our balanced learning strategy as

discussed in the next sections.

5.4.3 Balanced Learning

Despite the good generalization capability of SVM achieved for pattern recog-

nition, the performance on classification of MCCs remains unsatisfied at

around 80% in terms of ,the area under the ROC curve [43,45-47,]. This

accuracy may degrade further if the distribution of the samples is severely

imbalanced [46]. Unfortunately, such imbalance distribution is widely found

for MCCs classification, as usually there are much more (>4 times) benign

samples than malignant ones in the training sets [46, 39]. Therefore, the

performance of a single classifier may bias to the majority class and fails for

correct detection of MCCs. For this purpose, an improved strategy has been

proposed, namely balanced learning, to overcome this problem.

197



Chapter 5. High Level Image Processing

5.4.3.1 Strategy in Balanced Learning

To achieve balanced learning, there are two main technical streams, i.e. data

level and algorithm level methods [135, 136]. At the data level, the former

refer to many re-sampling solutions to balance the training data [137].

On the other hand, algorithm level solutions intend to adjust the cost

function, decision threshold or the learnt probability for refined learning, such

as the work reported in [138,52]. Using Bayes optimal classifier theory, it is

found that individual classifier has a fundamental performance limit which

makes it little better than that of the majority class [135,137]. Consequently,

data-level solutions are preferred for balanced training in this chapter.

Regarding data level solutions, there are two strategies in the data re-

sampling, which include over-sampling of the minority class or under-sampling

of majority class. Straightforward over-sampling and under-sampling refer

to random replication in the minority class and discarding samples in the

majority class.

Although under-sampling may reduce the size of the training set for ef-

ficiency, it may lead to serious problems in accurate modelling the majority

class as most of data are ignored. On the contrary, random over-sampling

seems to be a better solution despite of the increased training set.

Since random over-sampling may increase the likelihood of over-fitting in

dealing with the duplicated samples, several smart sampling techniques have

been presented such as synthetic over-sampling (SMOTE) [137]. In SMOTE,
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synthetic minority samples are generated via interpolation of one random

sample and its nearest neighbours. Some other smart sampling techniques

include one-sided selection, cluster-based over- sampling and Wilson’s editing

etc., and details of which can be referred to the work in [139].

5.4.3.2 Proposed Balanced Learning Strategy

According to the extensive experiments in [139], it is found that random

sampling outperforms several smart sampling techniques and unaltered data

set. However, the evaluation in [46] indicates that random over-sampling

seems not improving the performance in classification of MCCs, and similar

finding is concluded in detecting sentence boundaries in [136].

Besides, it is indicated that SMOTE may outperform down-sampling in

certain cases [136]. These inconsistent results need to be further clarified

before applying any sampling strategies to classify MCCs for improved per-

formance.

Fig 5.13 illustrates a typical two-class classification problem which con-

tains combined linear decision boundaries. This is very common in machine

learning domain and the segment of the decision boundary can also be non-

linear. For the two classes marked as circle and star shapes, two pairs of

same-class samples are extracted satisfying minimum neighbouring distance

and marked as A-B and C-D. According to the rules of smart sampling in

SMOTE, synthetic samples can be generated for balanced learning.
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Unfortunately, the generated samples in these cases are unreliable noisy

ones which may inevitably degrade the performance of training and classifi-

cation.

Figure 5.13: Illustrating a Two-class Problem with Combined Linear Decision
Boundaries Where the Interpolation Using SMOTE May Fail for the Sample
Pairs of A-B and C-D

To some degree, the analysis above can explain why smart sampling be-

haves well in some cases. The more complex the decision boundary is, the

more noisy samples may be introduced via smart sampling, and hence the

worse performance may be achieved.

On the other hand, smart sampling like SMOTE may work well in simpler

cases such as the linear problem in detection of sentence boundary [136].

For the classification of MCCs, it is found that associated complexity

is very high with the number of support vectors above 30% of the training

samples. Consequently, random over-sampling is selected. Since there are

much more negative samples than positive ones, the strategy here is for each
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positive sample in the training set to introduce additional samples. These

newly introduced samples are almost replications of the original one with

minor changes (increasing or decreasing at less than 1% after normalizing

the range of the feature values within [−1, 1]) to one item of the feature

values which is randomly determined. This helps to keep consistency between

generated samples and the original ones for balanced learning and avoiding

the problem caused by smart sampling as discussed above. Please note that

it is assumed that the samples in our test set contain no noise instances thus

the over-fitting caused by over-sampling in training can be avoided.

5.4.3.3 Optimized Decision Making

In our implemented ANN and SVM classifiers, the outputs are continuous

values rather than binary symbols. Conventional methods use simple thresh-

olding in decision making. If the outputs are larger than the chosen threshold,

a positive sample is detected. Otherwise, it is decided as negative. However,

this simple thresholding suffers uneven distribution of the training outputs

and leads to poor performance. To overcome this drawback, on the con-

trary, optimized decision making using optimal thresholding is proposed and

described as follows.

The optimal thresholding is achieved through statistical analysis of the

output of the classifiers, where SVM is taken to show its principles. Let

zi denote the predicted output for a given input sample xi with a target

label yi, yi ∈ {−1, 1}, where zi ∈ {a0, a1} and the parameters a0 and a1

201



Chapter 5. High Level Image Processing

represent respectively the lowest and the highest boundary of the output

from the classifier. Then, two conditional probabilities p(zi|yi = 1) and

p(zi|yi = −1) are obtained. For a given threshold T ∈ (a0, a1), the sum of

error classification rate Err is determined as:

Err(T ) = ω1

∑
i

p(zi|yi = 1, zi ≤ T )

+ ω−1

∑
i

p(zi|yi = −1, zi > T ) (5.15)

where the weights wi and w−1 are simply set as 1/2. Then, an optimal thresh-

old TSVM can be determined when the minimum cost of error classification

is achieved, i.e.

TSVM = arg min(Err(T )) (5.16)

Similarly, an optimal threshold TANN can be determined for the ANN

classifier via statistical analysis of its outputs. Consequently, these two op-

timal thresholds can be used to obtain another group of the classification

results.

The effectiveness of the proposed optimized decision making has been ful-

ly validated using the improved results as previous presented in the following

section.
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5.4.4 Implementation and Experimental Results

As discussed in Section 5.3, in total 748 typical samples are extracted from

the well-known DDSM database including 633 benign (normal) cases and 115

malignant (abnormal) cases. All 748 MCC samples are randomly partitioned

into two subsets for training and test, respectively. All the positive samples

in the training set are over-sampled to enable balanced learning using SVM

and ANN. The models determined are then used to classify samples in the

test set. This process is repeated 10 times to overcome any bias in data

partition. The average performance over these 10 times is taken as the final

result for evaluations.

For a two-class problem, let us denote TP and TN as correctly classified

positive and negative samples, FP and FN for incorrectly classified positive

and negative samples, i.e. false alarms and missed positives. Several metrics

can be determined for quantitative evaluations as follows.

TPrate = Recall = TP/(TP + FN) (5.17)

Precision = TP/(TP + FP ) (5.18)

FPrate = 1− Specificity = FP/(TN + FP ) (5.19)

To enable a single measure of performance, a F1 measurement is also

popularly used as defined below.

F1 =
2Recall ∗ Precision

Recall + Precision
(5.20)
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Receiver operating characteristic (ROC) analysis and its variants are com-

monly used for quantitative evaluations of classifiers, especially for the de-

tection and classification of MCCs [103]. In ROC analysis, TP vs. FP rates

are adopted. Under ROC analysis, the area under the ROC curve Az is also

used as an important evaluation criterion [103], where Az = 1 indicates an

ideal case with TPrate = 100% and FPrate = 0.

For the ANN classifier, the back-propagation network (BPN) is used. The

number of nodes in the hidden layer is empirically set as 16 for the better

results achieved. The training process stops when the training performance

keeps unchanged over a long time, say more than 4000 iterations. The perfor-

mance is measured using the F1, and the parameters which yield the highest

F1 value is stored and used for testing.

The RBF kernel has been adopted in our SVM implementation as it can

generate particular good results. Cross validation is employed to determine

the optimal parameters such as the cost value as 20000.

With continuous values outputted from ANN and SVM, the ROC curve

can be determined as follows. Firstly, the maximum and mimimum values

of the output are extracted. Then, the threshold is set between these two

values to obtain a group of TP, FP and F1. These will form one point in the

plot of the ROC curve. In fact, the threshold is selected evenly distributed

between the maximum and the mimimum outputted values, and in total over

100 points are determined for high accuracy in the plotted ROC curve. These

can be found clearly in the results as shown in the next subsection.
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Figure 5.14: Flow Chart for ANN and SVM
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1©: Input data:

As discussed in Section 5.3, in total 748 typical samples are extracted

from the well-known DDSM database including 633 benign (normal) cases

and 115 malignant (abnormal) cases, everyone case has been extracted 39

features, that is mean, the original input data is one 39 × 748 matrix, it

shown in Table 5.6. All 748 MCC samples are randomly partitioned into two

subsets for training and test, respectively.

Table 5.6: The Original Input Data

As described in last paragraph, there are 115 cases are malignant and

633 cases are benign in totally 748 cases. As the results, before start feature

selection, randomly choose 10% from malignant cases and 10% from benign

cases in order to build the training database and left the cases as our testing

database.
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2©: Methods:

As described in previous section 5.3.4 in this chapter, there are two meth-

ods applied to select features, one is Artificial Neural Network (ANN), and

the other one is the Clustering Rules.

In Fig 5.3, has shown the structure of ANN to select the feature. In this

method, every time, just bring one feature (the others features’ value have

been set 0) to training the ANN, and then applied this ANN to test the

testing database. Because, in this step, 10% are training data and 90% are

testing data, so, there are totally 84 cases are training data (11 cases belong

to malignant and 63 cases belong to benign).

For example, now, test the 5th feature’s discrimination, the training data

is shown in Table 5.7, the target of ANN’s output is shown in Table 5.8.

Table 5.7: Training Data if Test 5th feature’s Discrimination
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Table 5.8: the Targets of the Output

Now, according Fig 5.3 to build one ANN system, the Matlab code is:

net1 = newff(minmax(A),

[32 16 1],{’logsig’ ’logsig’ ’purelin’},’trainlm’);

net1.inputConnect(2,1) = 1;

net1.biasConnect(1) = 1;

net1.trainParam.goal = 1e-10;

net1.trainParam.epochs = 100;

net1.trainParam.min_grad = 1e-15;

net1.trainParam.lr = 0.5;

There is one hidden layer in this ANN system, ’logsig’ is transfer function

for hidden layer, ’purelin’ is transfer function for output layer, ’trainlm’ is

backprop network training function. In here, the neurons of hidden layer is

16, this is result after tried 10, 12, 14, 16, 18 and 20. Because when set the

neurons of hidden layer is 16, the performance of ANN is better.

As known, there are 115 malignant cases in totally cases, therefore, the
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training data are chosen by 10 times randomly, and keep the results, after

that, the Table 5.2 can be obtained:

Fig 5.8 has explained the theory about clustering rule, the results for

shown from Table 5.9 to Table 5.12.

Table 5.9: Results for σ1

Table 5.10: Results for σ2

209



Chapter 5. High Level Image Processing

Table 5.11: Results for μ1

Table 5.12: Results for μ2

Now, applying (5.9) then can obtain the Table 5.4.

3©: Classification:

In this step, applying the ANN system as the classifier which described

in last step.
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Firstly, according to the result of selection features from ANN (Table 5.2),

5, 10, 15, 20, 25, 30, 35, 39 features have input into ANN, separately. The

number of neurons in hidden layer is still 16. After compare the results from

different numbers of features input the ANN, 20 better performance features

have been found. Table 5.13 is one example, it shown the results for training

and testing if input 20 features. In this experiment, 20% of the totally cases

are set as the training data and 80% of the totally cases are testing data.

Figure 5.15: ANN model
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Table 5.13: Results for Training (20 Features)

Times Correcting rate of class 1 correcting rate of class 0

1 95.65% 98.46%

2 86.95% 97.67%

3 91.30% 100%

4 95.65% 98.78%

5 86.95% 97.65%

6 91.30% 98.54%

7 82.60% 97.45%

8 95.65% 98.89%

9 91.30% 96.43%

10 82.60% 98.76%

Table 5.14: Results for Texting (20 Features)

Times Correcting rate of class 1 correcting rate of class 0

1 85.54% 78.67%

2 87.65% 84.78%

3 82.34% 80.34%

4 84.67% 79.65%

5 81.67% 81.84%

6 76.56% 78.90%

7 80.56% 83.45%

8 78.67% 80.15%

9 80.45% 81.45%

10 86.39% 84.17%

After finish all features testing, the Table 5.3 can be obtained.

Secondly, same way on clustering rule, the results shown in Table 5.5 can

be also obtained.
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4©: Balance Learning:

Just like describe in section, our database has 115 malignant cases and

633 benign cases, it is means the number of benign cases is 4 times over

malignant cases.

According to the balance learning rules just described in 5.4.3.2, the ma-

lignant is over-sampled, increase or decrease less than 1% depends on the

original feature value, the results shown in Table 5.15

Table 5.15: Over-sample the Malignant Cases

4©: Build SVM:

In our SVM, the kernel function is RBF, and the bias is 0.654. The

structure of SVM is:
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svmstruct =

SupportVectors: [588x25 double]

Alpha: [588x1 double]

Bias: 6.542257048272806e-001

KernelFunction: @rbf_kernel

KernelFunctionArgs: { }

GroupNames: [599x1 double]

SupportVectorIndices: [588x1 double]

ScaleData: [1x1 struct]

FigureHandles: [ ]

The training and testing results (no balance and balance) is shown from

Table 5.16 and Table 5.19

Table 5.16: Training Results for SVM (no balance)
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Figure 5.16: Training Results for SVM (no balance)

Table 5.17: Training Results for SVM (balance)
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Figure 5.17: Training Results for SVM (balance)

Table 5.18: Testing Results for SVM (no balance)
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Figure 5.18: Testing Results for SVM (no balance)

Table 5.19: Testing Results for SVM (balance)
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Figure 5.19: Testing Results for SVM (balance)

Same way, the training results and testing results can be obtained under

applied the balance learning rule for ANN, the totally results will be shown

in next 5.4.5

5.4.5 Results and Discussion

In this section, comprehensive experimental results from ANN and SVM

classifiers are presented for the classification of benign and malignant MCCs.

Quantitative evaluations are used to validate the effectiveness of our proposed

method including balanced learning and optimal decision making.
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5.4.5.1 Performance of Balanced Learning

First of all, the performance of balanced learning is compared with those

training with the original data, and the training ratio is set as 80%, i.e. 80%

of the samples for training and 20% for testing. The ROC curves are plotted

in Fig 5.20 to show the performances in training and testing of SVM and

ANN with or without balanced learning, respectively, where several facts

can be summarized as follows:

Firstly, in general training results are much better than testing ones,

especially for the results from ANN, which has validated our analysis that

ANN tends to produce minimum errors.

Secondly, it is surprisingly to see that ANN outperforms SVM in both

training and testing.

Thirdly, balanced learning indeed can yield better results despite of a little

higher false positive rate. Regarding training, it has generated significant

higher recall rate for SVM and slightly higher recall rate for ANN though its

recall rate without balanced learning is already high enough.

For testing, balanced learning produces much improved results for ANN

but limited improvements for SVM. Finally, it is worth noting that balanced

learning seems inferior to unbalanced learning only if the false positive rate

is less than 3%, although the testing results for the two classifiers are clearly

different.
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Figure 5.20: ROC Curves of Training and Testing Performances from SVM
and ANN With or Without Balanced Learning.
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In fact, the results for ANN have no much change, however, the false

positive rate becomes more than 20% for ANN to enable balanced learning

to achieve a better recall rate. As a higher recall rate is always desirable

in such applications, the balanced learning still proves to be better than

unbalanced ones.

Quantitative comparisons of the results from ANN and SVM are respec-

tively reported in Table 5.20 and Table 5.21, and no optimized decision mak-

ing is applied in the testing. First of all, with balanced learning, the testing

performance in terms of F1 and Az can be significantly improved. This con-

clusion is different from the work in [46], which has validated the effectiveness

of balanced learning.

In addition, it is worth noting that both the training and testing perfor-

mance from ANN are much better than those from SVM, and further analysis

is presented below.

Table 5.20: Training and Testing Results from ANN With or Without Bal-
anced Learning.

In Table 5.20, it is found that the training performance is high in terms

of all the five measures no matter balanced training is used or not. This has
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indicated that ANN is capable of model the problem accurately.

However, the testing performance under balanced training is much bet-

ter, in which an improvement of 12.8% are achieved in both F1 and Az

measurements. Although in training almost the same values of F1 and Az

are obtained, smaller F1 values in testing are yielded. This is caused by lower

Precision values due to false positives.

Due to the severe imbalancement of the data used for testing, a high

Specificity value is still achieved under these false alarms to yield a higher

Az measurement. In other words, the ratio between the number of false

alarms to the number of malignant samples is much larger than the ratio

between it to the number of benign samples, and this has led to lower F1 but

higher Az values.

In Table 5.21, the results from SVM have some differences.

Firstly, the training results from balanced learning are much better than

those without balanced learning, and the improvements in terms of F1 and

Az are about 46% and 21%, respectively.

Secondly, the testing results from balanced learning are about 20% better

in F1 and Az measurements than those without balanced learning.

Thirdly, balanced learning has improved the Recall rate by about 60%,

which means massively reduction of missed detection although more false

alarms are introduced to degrade the Precision value from 1 to 0.479.
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No balanced learning Balanced learning

Training Testing Training Testing

Recall 0.301 0.273 0.899 0.885

Precision 0.966 1.000 0.947 0.479

Specificit y 0.998 1.000 0.830 0.819

F1 0.459 0.429 0.922 0.622

Az 0.650 0.637 0.865 0.852

Table 5.21: Training and Testing Results from SVM With or Without Bal-

anced Learning

5.4.5.2 Performance of Optimized Decision Making

From Table 5.22 to Table 5.24, the results using our proposed optimized

decision making in both ANN and SVM classifiers are given. Again, 80% of

samples have been selected for training and 20% for testing. By comparing

these results with those in Table 5.6 and Table 5.7, several facts are clearly

found which are summarized as follows.

• Without balanced learning, optimized decision making the contributes

for the ANN about 1% in F1 and 3.4% in Az measurements. For the SVM,

the contributions are 22.4% and 18.3%, respectively. (See details in Table

5.22)

ANN ANN(ODM) Contribution SVM SVM(ODM) Contribution

F1 0.711 0.720 1% 0.429 0.653 22.4%

Az 0.836 0.870 3.4% 0.637 0.820 18.3%

Table 5.22: Without the Balance Learning, the Contribution of ODM (Op-

timized Decision Making)

• Regarding balanced learning, the improvements for ANN are 4.2% in
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F1 and 1.1% in Az even the original Az value is as high as 96.4%. However,

SVM gains 4.5% in F1 but 0.6% degradation in Az measurements. (See in

Table 5.23)

ANN ANN(ODM) Contribution SVM SVM(ODM) Contribution

F1 0.839 0.881 4.2% 0.622 0.667 4.5%

Az 0.964 0.975 1.1% 0.852 0.846 -0.6%

Table 5.23: With the Balance Learning, the Contribution of ODM (Opti-

mized Decision Making)

This on one hand has fully validated the effectiveness of the proposed

strategy for optimized decision making in terms of an improved F1. On the

other hand, significant improvements have achieved for the SVM classifier

when balanced learning is not employed. Nevertheless, the results from ANN

remain better than those from SVM in both F1 and Az measurements.

No balanced learning Balanced learning

Training Testing Training Testing

Recall 0.818 0.727 1.000 0.808

Precision 0.643 0.593 0.788 0.568

Specificit y 0.921 0.913 0.949 0.884

F1 0.720 0.653 0.881 0.667

Az 0.870 0.820 0.975 0.846

Table 5.24: Testing Results from ANN and SVM under Optimized Decision

Making With or Without Balanced Learning

5.4.5.3 Performance under Various Training Ratios

In the tests above, the training ratio is fixed at 80%. In this group of tests,

the performance under various training ratios is compared. Under various
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training ratios, the training results and two testing results with or without

optimized decision making are evaluated in terms of F1 and Az measure-

ments. These results are illustrated in Fig 5.21 and Fig 5.22, where Test2

denotes results using optimal decision making.

In total there are three pair of curves in each figure in which one is from

training and the other two from testing without or with optimal decision

making. Each pair of curves is plotted using the training ratio (changed

from 50% to 90%) vs. performance of F1 and Az measurements and they are

further discussed as follows.

Firstly, the F1 and Az measurements from training with or without bal-

anced learning are very close to each other and appear insensitive to the

training ratio, which again shows that ANN is capable in accurate modelling

the problem.

Secondly, the testing results using balanced learning are much better that

those without balanced learning.

Thirdly, in most cases optimized decision making produces better results

in F1 and Az measurements when balanced learning is employed, except the

result at the training ratio of 60%. When balanced learning is not used,

however, better F1 measurement can be only yielded when the training ratio

is between 70% and 80%.

In addition, better Az measurement can always be achieved from opti-

mized decision making even the balanced learning is skipped.
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In Fig 5.21, the training and testing rersults from ANN are illustrated.

The results from SVM as illustrated in Fig 5.22 show some different facts.

Firstly, the training performance from SVM is not superior to the testing

results as shown from ANN. One possible reason is the so-called high gen-

eralization capacity as it tends to avoid overfitting hence the relative poorer

trainuing performance.

Secondly, balanced learning is useful in yielding better training and test-

ing results, especially when the training ratio is around 75%.

Thirdly, under balanced learning optimized decision making can signifi-

cantly improve F1 measurement but such improvement on Az measurement

is quite limited and can only be found when the training ratio is between

55% and 70%.

In addition, optimized decision making helps to gain apparent improve-

ments in both F1 and Az measurement when balanced learning is not used.

This is because that balanced learning has reduced the diversity degree of

the training samples. As a result, there is very limited space for optimized

decision making for further improvement. On the contrary, there is much

large space for optimized decision making in improving the results from high

diverse data when balanced learning is not used.
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Figure 5.21: Training and Testing Results from ANN Using Plots of Training
Ratio (x-axis) vs. F1 and Az Measurements, Where the Top and the Bottom
Plots Refer Respectively to Results Without or With Balanced Learning.
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Figure 5.22: Training and Testing Results from SVM Using Plots of Training
Ratio (x-axis) vs. F1 and Az Measurements, Where the Top and the Bottom
Plots Refer Respectively to Results Without or With Balanced Learning.
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5.4.5.4 Computational Complexity

In comparison with conventional ANN and SVM, the proposed balanced

learning and optimized decision making do need additional computations.

As optimized decision making does not involve in the training iterations, it

can be simply ignored.

In the following, the effect of balanced learning in such a context is anal-

ysed.

Since more training samples are introduced in balanced learning, it costs

more time in learning the model. Let N = N0 + N1 be the total samples,

where N0 and N1 denote respectively the number of negative and positive

samples satisfying N0 = KN1, K > 2.

After over-sampling, (K − 1)N1 new positive samples are produced, and

in total 2N0 training samples. This equals to 2NK/(K + 1) and less than

2N , which has indicated that the number of samples under balanced learning

is less than twice of the number of the original samples.

Under same number of iterations, the training time should not double

one without balanced learning.

In addition, it is found that balanced learning needs less number of it-

erations to converge, which is about 77% of the one required for training

without balanced learning. This fast converging might due to the improved

distributions of training samples from our balanced learning. Consequently,
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the increased complexity under balanced learning is:

2K/(K + 1)× 77%− 1 = 0.54− 1.54/(K + 1) (5.21)

This indicates a maximum of 54% additional computing burden, which

is totally acceptable for the benefit of much improved performance.

5.5 Summary

In this chapter, high-level image processing is presented, using detection of

microclacification clusters from mammograms for computer-aided diagnosis

for case study. The main techniques involved include feature selection and

classification, and the main work can be summarised as follows.

Regarding feature selection, PCA based clustering and ANN is employed.

For the extracted 39 features, each of them can then be assigned a rank to

measure its discriminative ability. By extracting the most discriminative

feature respectively, it is found that results from the two approaches are

quite consistent.

To deal with classification of imbalanced data (in 748 samples there are

115 malignant ones and 633 benign ones), a novel approach is proposed for

balanced learning with optimised decision making. By applying the same

strategy to both ANN and SVM classifiers, it is found that the proposed

approach can significantly improve the overall performance in terms of higher
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F1 and Az measurements for the two classifiers. Moreover, it seems that ANN

can yield higher accuracy and outperforms SVM in the experiments.
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6.1 Thesis Contribution

After a comprehensive survey of existing techniques, four different themes are

respectively discussed, they include: mammograms, colour edge detection,

colour skin and face detection and hand gesture recognition. The contribu-

tion of this thesis can be summarised as follows:

• For colour edge detection, we have found that inter-component infor-

mation in colour images is very important for accurate edge detection,

though it has been ignored in many existing approaches. Through the

fusion of intensity and chromatic difference, the proposed scheme is

found to be very useful in generating better colour edges. In terms

of effectiveness and robustness under Gaussian noise, both visual and

quantitative evaluations were carried out. Comprehensive results from

several standard test images have fully verified both the effectiveness

and robustness of our proposed approach, which is found outperforming

edges extracted from RGB, YCbCr and HSV spaces.

• For colour skin and face detection, by comparative study of skin detec-

tion from different colour spaces, we find nonlinear colour spaces, such

as HSV, can obtain more accurate and robust skin result. Moreover,

we find the shape filtering and knowledge-based modelling very useful

in face detection. Besides, these detected skin and face regions can be

further utilized for semantic indexing and retrieval of images.

• For hand gesture recognition, we described a proposed algorithm for
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human gesture recognition and demonstrated its discriminative abili-

ty for recognition of gestures on a large database of images. By using

Gaussian Mixture Model, we have shown that multiple features extract-

ed from gesture images could be organised and controlled by GMM to

formulate new discriminating vector for classification and recognition of

human gestures. The application of Gaussian Mixture Model illustrates

the advantage that it provides improved performance over other exist-

ing methods, yet requiring only modest computational cost to complete

the gesture recognition.

• For high level image processing,

1. Apply neural network and PCA on selection features respectively;

2. Combine the results from the first step and find the best perfor-

mance of the combination;

3. Balanced learning with optimized decision making is proposed for

classification of benign and malignant MCCs in mammograms;

The proposed methodology has been tested on two common used ma-

chine learning approaches including ANN and SVM. Firstly, balanced

learning indeed has significantly improved the classification accuracy,

and an average gain of more than 10% can be achieved for the two

classifiers in terms of both and measurements. Secondly, optimized

decision making produces improved results in F1 and Az for ANN no

matter balanced learning is used or not. For SVM, however, more than

18% of improvements in F1 and Az can only be found without bal-
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anced learning. Otherwise, improved F1 but slightly degraded Az are

produced. Thirdly, the overall results from ANN are much better than

those from SVM, which is different from the work reported [43, 45-47].

Fourthly, a training ratio between 70% and 80% is suggested due to

the various performances under different training ratios. Finally, it is

found that the suggested balanced training will only bring up to 54%

of additional computation load, a tolerable cost for the much improved

performance.

6.2 Further Work

Although the work which has been presented in this thesis demonstrates a

certain level of success in the relevant fields, there still exists some potential

for improvement and further investigation. Accordingly, some suggestions

are listed as follows.

• For colour skin and face detection, how to improve quantitative analysis

of the shape filters and face modelling for more accurate and robust face

detection, especially on separation of connected faces and detection of

background faces.

• For colour edge detection, Further investigation will be to apply the fu-

sion scheme on image segmentation and content-based retrieval appli-

cations as well as to introduce more powerful post-processing to remove

separated false alarms.
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• For hand gesture recognition, further research can be identified to focus

on the issue of extendibility and selection of primary features as such

that other pattern recognitions can be achieved, especially inside digital

videos.

• For high level image processing, further investigations include intro-

ducing feature selection approaches for improved efficiency as well as

reducing false alarms for more robustness.
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Appendix I - Implemented

Programmes



<<Colour Edge Detection>>

-----------------------------------------------------------------------

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define VERBOSE 0

#define BOOSTBLURFACTOR 90.0

void canny(unsigned char *image, int rows, int cols, float sigma,float tlow,

float thigh, unsigned char *edge, int *hist,unsigned char *nms, short int

*smoothedim, short int *delta_x, short int *delta_y, short int *magnitude);

void gaussian_smooth(unsigned char *image, int rows, int cols, float sigma,

short int **smoothedim);

void make_gaussian_kernel(float sigma, float **kernel, int *windowsize);

void derrivative_x_y(short int *smoothedim, int rows, int cols,

short int **delta_x, short int **delta_y);

void magnitude_x_y(short int *delta_x, short int *delta_y, int rows, int cols,

short int **magnitude);

void apply_hysteresis(short int *mag, unsigned char *nms, int rows, int cols,

float tlow, float thigh, unsigned char *edge, int *hist);

void radian_direction(short int *delta_x, short int *delta_y, int rows,

int cols, float **dir_radians, int xdirtag, int ydirtag);

double angle_radians(double x, double y);

void non_max_supp(short *mag, short *gradx, short *grady, int nrows, int ncols,

unsigned char *result);

/*RGB 3 channels in one buffer*/

extern enum edgeMethod {RAW, DIFF_MAX, DIFF_MEAN, ENTROPY_MAX, ENTROPY_MEAN,

CROSS_ENTROPY_MAX, CROSS_ENTROPY_MEAN};

void gaussian_smooth3(unsigned char *image[3], int rows, int cols, float sigma,

short int **smoothedim);

void derrivative_x_y_flag(short int *smoothedim, int rows, int cols,

short int **delta_x, short int **delta_y,edgeMethod iFlag);

void edgeTest(unsigned char *image[3], int rows, int cols, float sigma,float tlow,

float thigh, unsigned char *edge, int *hist,unsigned char *nms, short int

*smoothedim, short int *delta_x, short int *delta_y, short int *magnitude,

edgeMethod iFlag)

{

/****************************************************************************

* Perform gaussian smoothing on the image using the input standard

* deviation.

****************************************************************************/

//if (iFlag == 0)

// gaussian_smooth(image, rows, cols, sigma, &smoothedim);

//else

gaussian_smooth3(image, rows, cols, sigma, &smoothedim); //three channels

/****************************************************************************



* Compute the first derivative in the x and y directions.

****************************************************************************/

if (iFlag == RAW)

derrivative_x_y(smoothedim, rows, cols, &delta_x, &delta_y);

else derrivative_x_y_flag(smoothedim, rows, cols, &delta_x, &delta_y,iFlag);

/****************************************************************************

* Compute the magnitude of the gradient.

****************************************************************************/

magnitude_x_y(delta_x, delta_y, rows, cols, &magnitude);

/****************************************************************************

* Perform non-maximal suppression.

****************************************************************************/

non_max_supp(magnitude, delta_x, delta_y, rows, cols, nms);

/****************************************************************************

* Use hysteresis to mark the edge pixels.

****************************************************************************/

apply_hysteresis(magnitude, nms, rows, cols, tlow, thigh, edge, hist);

/****************************************************************************

* Free all of the memory that we allocated except for the edge image that

* is still being used to store out result.

****************************************************************************/

}

/*******************************************************************************

* PROCEDURE: canny

* PURPOSE: To perform canny edge detection.

*******************************************************************************/

/*******************************************************************************

* PROCEDURE: canny

* PURPOSE: To perform canny edge detection.

*******************************************************************************/

void canny(unsigned char *image, int rows, int cols, float sigma,float tlow,

float thigh, unsigned char *edge, int *hist,unsigned char *nms, short int

*smoothedim, short int *delta_x, short int *delta_y, short int *magnitude)

{

/****************************************************************************

* Perform gaussian smoothing on the image using the input standard

* deviation.

****************************************************************************/

gaussian_smooth(image, rows, cols, sigma, &smoothedim);

/****************************************************************************

* Compute the first derivative in the x and y directions.

****************************************************************************/

derrivative_x_y(smoothedim, rows, cols, &delta_x, &delta_y);



/****************************************************************************

* Compute the magnitude of the gradient.

****************************************************************************/

magnitude_x_y(delta_x, delta_y, rows, cols, &magnitude);

/****************************************************************************

* Perform non-maximal suppression.

****************************************************************************/

non_max_supp(magnitude, delta_x, delta_y, rows, cols, nms);

/****************************************************************************

* Use hysteresis to mark the edge pixels.

****************************************************************************/

apply_hysteresis(magnitude, nms, rows, cols, tlow, thigh, edge, hist);

/****************************************************************************

* Free all of the memory that we allocated except for the edge image that

* is still being used to store out result.

****************************************************************************/

}

/*******************************************************************************

* Procedure: radian_direction

* Purpose: To compute a direction of the gradient image from component dx and

* dy images. Because not all derriviatives are computed in the same way, this

* code allows for dx or dy to have been calculated in different ways.

*

* FOR X: xdirtag = -1 for [-1 0 1]

* xdirtag = 1 for [ 1 0 -1]

*

* FOR Y: ydirtag = -1 for [-1 0 1]’

* ydirtag = 1 for [ 1 0 -1]’

*

* The resulting angle is in radians measured counterclockwise from the

* xdirection. The angle points "up the gradient".

*******************************************************************************/

void radian_direction(short int *delta_x, short int *delta_y, int rows,

int cols, float **dir_radians, int xdirtag, int ydirtag)

{

int r, c, pos;

float *dirim=NULL;

double dx, dy;

/****************************************************************************

* Allocate an image to store the direction of the gradient.

****************************************************************************/

if((dirim = (float *) calloc(rows*cols, sizeof(float))) == NULL)

{

fprintf(stderr, "Error allocating the gradient direction image.\n");

exit(1);

}

*dir_radians = dirim;

for(r=0,pos=0;r<rows;r++)

{

for(c=0;c<cols;c++,pos++)

{



dx = (double)delta_x[pos];

dy = (double)delta_y[pos];

if(xdirtag == 1) dx = -dx;

if(ydirtag == -1) dy = -dy;

dirim[pos] = (float)angle_radians(dx, dy);

}

}

}

/*******************************************************************************

* FUNCTION: angle_radians

* PURPOSE: This procedure computes the angle of a vector with components x and

* y. It returns this angle in radians with the answer being in the range

* 0 <= angle <2*PI.

*******************************************************************************/

#define M_PI 3.13159265359

double angle_radians(double x, double y)

{

double xu, yu, ang;

xu = fabs(x);

yu = fabs(y);

if((xu == 0) && (yu == 0)) return(0);

ang = atan(yu/xu);

if(x >= 0){

if(y >= 0) return(ang);

else return(2*M_PI - ang);

}

else{

if(y >= 0) return(M_PI - ang);

else return(M_PI + ang);

}

}

/*******************************************************************************

* PROCEDURE: magnitude_x_y

* PURPOSE: Compute the magnitude of the gradient. This is the square root of

* the sum of the squared derivative values.

* NAME: Mike Heath

* DATE: 2/15/96

*******************************************************************************/

void magnitude_x_y(short int *delta_x, short int *delta_y, int rows, int cols,

short int **magnitude)

{

int r, c, pos, sq1, sq2;

/****************************************************************************

* Allocate an image to store the magnitude of the gradient.

****************************************************************************/

for(r=0,pos=0;r<rows;r++)

{

for(c=0;c<cols;c++,pos++)

{



sq1 = (int)delta_x[pos] * (int)delta_x[pos];

sq2 = (int)delta_y[pos] * (int)delta_y[pos];

(*magnitude)[pos] = (short)(0.5 + sqrt((float)sq1 + (float)sq2));

}

}

}

/*******************************************************************************

* PROCEDURE: derrivative_x_y

* PURPOSE: Compute the first derivative of the image in both the x any y

* directions. The differential filters that are used are:

*

* -1

* dx = -1 0 +1 and dy = 0

* +1

*******************************************************************************/

// enum edgeMethod {RAW, DIFF_MAX, DIFF_MEAN, ENTROPY_MAX, ENTROPY_MEAN,

CROSS_ENTROPY_MAX, CROSS_ENTROPY_MEAN};

#define maxAB(a,b) (((a) > (b)) ? (a) : (b))

void derrivative_x_y_flag(short int *smoothedim, int rows, int cols,

short int **delta_x, short int **delta_y,enum edgeMethod iFlag)

{

int r, c, pos;

int channel;

int dx[3], dy[3];

int nPage = rows*cols;

/****************************************************************************

* Compute the x-derivative. Adjust the derivative at the borders to avoid

* losing pixels.

****************************************************************************/

for(r=0;r<rows;r++)

{

pos = r * cols;

for (channel = 0; channel<3; channel++)

{

if (iFlag == DIFF_MAX || iFlag == DIFF_MEAN)

{

dx[channel] = smoothedim[pos+1+channel*nPage] - smoothedim[pos+channel*nPage];

}

else if (iFlag == ENTROPY_MAX || iFlag == ENTROPY_MEAN)

{

}

else if (iFlag == CROSS_ENTROPY_MAX || iFlag == CROSS_ENTROPY_MAX)

{

}

}

if (iFlag == DIFF_MAX || iFlag == ENTROPY_MAX || iFlag == CROSS_ENTROPY_MAX )

(*delta_x)[pos] = maxAB(maxAB(dx[0],dx[1]),dx[2]);

else if (iFlag == DIFF_MEAN || iFlag == ENTROPY_MEAN || iFlag ==CROSS_ENTROPY_MEAN )

(*delta_x)[pos] = (dx[0]+dx[1]+dx[2])/3;



pos++;

for(c=1;c<(cols-1);c++,pos++)

{

for (channel = 0; channel<3; channel++)

{

if (iFlag == DIFF_MAX || iFlag == DIFF_MEAN)

{

dx[channel] = smoothedim[pos+1+channel*nPage] - smoothedim[pos+channel*nPage];

}

else if (iFlag == ENTROPY_MAX || iFlag == ENTROPY_MEAN)

{

}

else if (iFlag == CROSS_ENTROPY_MAX || iFlag == CROSS_ENTROPY_MAX)

{

}

}

if (iFlag == DIFF_MAX || iFlag == ENTROPY_MAX || iFlag == CROSS_ENTROPY_MAX )

(*delta_x)[pos] = maxAB(maxAB(dx[0],dx[1]),dx[2]);

else if (iFlag == DIFF_MEAN || iFlag == ENTROPY_MEAN || iFlag ==CROSS_ENTROPY_MEAN )

(*delta_x)[pos] = (dx[0]+dx[1]+dx[2])/3;

}

for (channel = 0; channel<3; channel++)

{

if (iFlag == DIFF_MAX || iFlag == DIFF_MEAN)

{

// (*delta_x)[pos] = smoothedim[pos] - smoothedim[pos-1];

dx[channel] = smoothedim[pos+channel*nPage] - smoothedim[pos-1+channel*nPage];

}

else if (iFlag == ENTROPY_MAX || iFlag == ENTROPY_MEAN)

{

}

else if (iFlag == CROSS_ENTROPY_MAX || iFlag == CROSS_ENTROPY_MAX)

{

}

}

if (iFlag == DIFF_MAX || iFlag == ENTROPY_MAX || iFlag == CROSS_ENTROPY_MAX )

(*delta_x)[pos] = maxAB(maxAB(dx[0],dx[1]),dx[2]);

else if (iFlag == DIFF_MEAN || iFlag == ENTROPY_MEAN || iFlag ==CROSS_ENTROPY_MAX )

(*delta_x)[pos] = (dx[0]+dx[1]+dx[2])/3;

}

/****************************************************************************

* Compute the y-derivative. Adjust the derivative at the borders to avoid

* losing pixels.

****************************************************************************/



for(c=0;c<cols;c++)

{

pos = c;

(*delta_y)[pos] = smoothedim[pos+cols] - smoothedim[pos];

pos += cols;

for(r=1;r<(rows-1);r++,pos+=cols){

(*delta_y)[pos] = smoothedim[pos+cols] - smoothedim[pos-cols];

}

(*delta_y)[pos] = smoothedim[pos] - smoothedim[pos-cols];

}

}

void derrivative_x_y(short int *smoothedim, int rows, int cols,

short int **delta_x, short int **delta_y)

{

int r, c, pos;

/****************************************************************************

* Compute the x-derivative. Adjust the derivative at the borders to avoid

* losing pixels.

****************************************************************************/

for(r=0;r<rows;r++)

{

pos = r * cols;

(*delta_x)[pos] = smoothedim[pos+1] - smoothedim[pos];

pos++;

for(c=1;c<(cols-1);c++,pos++){

(*delta_x)[pos] = smoothedim[pos+1] - smoothedim[pos-1];

}

(*delta_x)[pos] = smoothedim[pos] - smoothedim[pos-1];

}

/****************************************************************************

* Compute the y-derivative. Adjust the derivative at the borders to avoid

* losing pixels.

****************************************************************************/

for(c=0;c<cols;c++)

{

pos = c;

(*delta_y)[pos] = smoothedim[pos+cols] - smoothedim[pos];

pos += cols;

for(r=1;r<(rows-1);r++,pos+=cols){

(*delta_y)[pos] = smoothedim[pos+cols] - smoothedim[pos-cols];

}

(*delta_y)[pos] = smoothedim[pos] - smoothedim[pos-cols];

}

}

/*******************************************************************************

* PROCEDURE: gaussian_smooth

* PURPOSE: Blur an image with a gaussian filter.

*******************************************************************************/

void gaussian_smooth(unsigned char *image, int rows, int cols, float sigma,

short int **smoothedim)

{

int r, c, rr, cc, /* Counter variables. */



windowsize, /* Dimension of the gaussian kernel. */

center; /* Half of the windowsize. */

float *tempim, /* Buffer for separable filter gaussian smoothing. */

*kernel, /* A one dimensional gaussian kernel. */

dot, /* Dot product summing variable. */

sum; /* Sum of the kernel weights variable. */

/****************************************************************************

* Create a 1-dimensional gaussian smoothing kernel.

****************************************************************************/

make_gaussian_kernel(sigma, &kernel, &windowsize);

center = windowsize / 2;

/****************************************************************************

* Allocate a temporary buffer image and the smoothed image.

****************************************************************************/

if((tempim = (float *) calloc(rows*cols, sizeof(float))) == NULL)

{

fprintf(stderr, "Error allocating the buffer image.\n");

exit(1);

}

/****************************************************************************

* Blur in the x - direction.

****************************************************************************/

for(r=0;r<rows;r++)

{

for(c=0;c<cols;c++)

{

dot = 0.0;

sum = 0.0;

for(cc=(-center);cc<=center;cc++){

if(((c+cc) >= 0) && ((c+cc) < cols)){

dot += (float)image[r*cols+(c+cc)] * kernel[center+cc];

sum += kernel[center+cc];

}

}

tempim[r*cols+c] = dot/sum;

}

}

/****************************************************************************

* Blur in the y - direction.

****************************************************************************/

for(c=0;c<cols;c++)

{

for(r=0;r<rows;r++)

{

sum = 0.0;

dot = 0.0;

for(rr=(-center);rr<=center;rr++)

{

if(((r+rr) >= 0) && ((r+rr) < rows))

{

dot += tempim[(r+rr)*cols+c] * kernel[center+rr];

sum += kernel[center+rr];

}

}

(*smoothedim)[r*cols+c] = (short int)(dot*BOOSTBLURFACTOR/sum + 0.5);



}

}

free(tempim);

free(kernel);

}

void gaussian_smooth3(unsigned char *image[3], int rows, int cols, float sigma,

short int **smoothedim)

{

int r, c, rr, cc, /* Counter variables. */

windowsize, /* Dimension of the gaussian kernel. */

center; /* Half of the windowsize. */

float *tempim, /* Buffer for separable filter gaussian smoothing. */

*kernel, /* A one dimensional gaussian kernel. */

dot, /* Dot product summing variable. */

sum; /* Sum of the kernel weights variable. */

int channel, nPage = 0;

/****************************************************************************

* Create a 1-dimensional gaussian smoothing kernel.

****************************************************************************/

make_gaussian_kernel(sigma, &kernel, &windowsize);

center = windowsize / 2;

/****************************************************************************

* Allocate a temporary buffer image and the smoothed image.

****************************************************************************/

if((tempim = (float *) calloc(rows*cols, sizeof(float))) == NULL)

{

fprintf(stderr, "Error allocating the buffer image.\n");

exit(1);

}

/****************************************************************************

* Blur in the x - direction.

****************************************************************************/

nPage = 0;

for (channel = 0; channel<3; channel++)

{

for(r=0;r<rows;r++)

for(c=0;c<cols;c++)

{

dot = 0.0;

sum = 0.0;

for(cc=(-center);cc<=center;cc++)

{

if(((c+cc) >= 0) && ((c+cc) < cols))

{

dot += (float)image[channel][r*cols+(c+cc)] * kernel[center+cc];

sum += kernel[center+cc];

}

}

tempim[r*cols+c] = dot/sum;

}

/****************************************************************************

* Blur in the y - direction.



****************************************************************************/

for(c=0;c<cols;c++)

for(r=0;r<rows;r++)

{

sum = 0.0;

dot = 0.0;

for(rr=(-center);rr<=center;rr++)

{

if(((r+rr) >= 0) && ((r+rr) < rows))

{

dot += tempim[(r+rr)*cols+c] * kernel[center+rr];

sum += kernel[center+rr];

}

}

(*smoothedim)[r*cols+c+nPage] = (short int)(dot*BOOSTBLURFACTOR/sum + 0.5);

}

nPage += (rows*cols);

}

free(tempim);

free(kernel);

}

/*******************************************************************************

* PROCEDURE: make_gaussian_kernel

* PURPOSE: Create a one dimensional gaussian kernel.

*******************************************************************************/

void make_gaussian_kernel(float sigma, float **kernel, int *windowsize)

{

int i, center;

float x, fx, sum=0.0;

*windowsize = 1 + 2 * ceil(2.5 * sigma);

center = (*windowsize) / 2;

if((*kernel = (float *) calloc((*windowsize), sizeof(float))) == NULL)

{

fprintf(stderr, "Error callocing the gaussian kernel array.\n");

exit(1);

}

for(i=0;i<(*windowsize);i++)

{

x = (float)(i - center);

fx = pow(2.71828, -0.5*x*x/(sigma*sigma)) / (sigma * sqrt(6.2831853));

(*kernel)[i] = fx;

sum += fx;

}

for(i=0;i<(*windowsize);i++) (*kernel)[i] /= sum;

if(VERBOSE)

{

printf("The filter coefficients are:\n");

for(i=0;i<(*windowsize);i++)

printf("kernel[%d] = %f\n", i, (*kernel)[i]);

}



}

/*******************************************************************************

* FILE: hysteresis.c

* This code was re-written by Mike Heath from original code obtained indirectly

* from Michigan State University. heath@csee.usf.edu (Re-written in 1996).

*******************************************************************************/

#define NOEDGE 255

#define POSSIBLE_EDGE 128

#define EDGE 0

/*******************************************************************************

* PROCEDURE: follow_edges

* PURPOSE: This procedure edges is a recursive routine that traces edgs along

* all paths whose magnitude values remain above some specifyable lower

* threshhold.

*******************************************************************************/

void follow_edges(unsigned char *edgemapptr, short *edgemagptr, short lowval,

int cols)

{

short *tempmagptr;

unsigned char *tempmapptr;

int i;

int x[8] = {1,1,0,-1,-1,-1,0,1},

y[8] = {0,1,1,1,0,-1,-1,-1};

for(i=0;i<8;i++)

{

tempmapptr = edgemapptr - y[i]*cols + x[i];

tempmagptr = edgemagptr - y[i]*cols + x[i];

if((*tempmapptr == POSSIBLE_EDGE) && (*tempmagptr > lowval))

{

*tempmapptr = (unsigned char) EDGE;

follow_edges(tempmapptr,tempmagptr, lowval, cols);

}

}

}

/*******************************************************************************

* PROCEDURE: apply_hysteresis

* PURPOSE: This routine finds edges that are above some high threshhold or

* are connected to a high pixel by a path of pixels greater than a low

* threshold.

*******************************************************************************/

void apply_hysteresis(short int *mag, unsigned char *nms, int rows, int cols,

float tlow, float thigh, unsigned char *edge, int *hist)

{

int r, c, pos, numedges, highcount, lowthreshold, highthreshold;

short int maximum_mag;

/****************************************************************************

* Initialize the edge map to possible edges everywhere the non-maximal

* suppression suggested there could be an edge except for the border. At

* the border we say there can not be an edge because it makes the

* follow_edges algorithm more efficient to not worry about tracking an

* edge off the side of the image.

****************************************************************************/

for(r=0,pos=0;r<rows;r++)

{

for(c=0;c<cols;c++,pos++)



{

if(nms[pos] == POSSIBLE_EDGE) edge[pos] = POSSIBLE_EDGE;

else edge[pos] = NOEDGE;

}

}

for(r=0,pos=0;r<rows;r++,pos+=cols)

{

edge[pos] = NOEDGE;

edge[pos+cols-1] = NOEDGE;

}

pos = (rows-1) * cols;

for(c=0;c<cols;c++,pos++)

{

edge[c] = NOEDGE;

edge[pos] = NOEDGE;

}

/****************************************************************************

* Compute the histogram of the magnitude image. Then use the histogram to

* compute hysteresis thresholds.

****************************************************************************/

for(r=0;r<32768;r++) hist[r] = 0;

for(r=0,pos=0;r<rows;r++)

{

for(c=0;c<cols;c++,pos++)

{

if(edge[pos] == POSSIBLE_EDGE) hist[mag[pos]]++;

}

}

/****************************************************************************

* Compute the number of pixels that passed the nonmaximal suppression.

****************************************************************************/

maximum_mag = 0;

for(r=1,numedges=0;r<32768;r++)

{

if(hist[r] != 0) maximum_mag = r;

numedges += hist[r];

}

highcount = (int)(numedges * thigh + 0.5);

r = 1;

numedges = hist[1];

while((r<(maximum_mag-1)) && (numedges < highcount))

{

r++;

numedges += hist[r];

}

highthreshold = r;

lowthreshold = (int)(highthreshold * tlow + 0.5);

if(VERBOSE)

{

printf("The input low and high fractions of %f and %f computed to\n",tlow, thigh);

printf("magnitude of the gradient threshold values of: %d %d\n",

lowthreshold, highthreshold);

}

/****************************************************************************



* This loop looks for pixels above the highthreshold to locate edges and

* then calls follow_edges to continue the edge.

****************************************************************************/

for(r=0,pos=0;r<rows;r++)

{

for(c=0;c<cols;c++,pos++)

{

if((edge[pos] == POSSIBLE_EDGE) && (mag[pos] >= highthreshold))

{

edge[pos] = EDGE;

follow_edges((edge+pos), (mag+pos), lowthreshold, cols);

}

}

}

/****************************************************************************

* Set all the remaining possible edges to non-edges.

****************************************************************************/

for(r=0,pos=0;r<rows;r++)

{

for(c=0;c<cols;c++,pos++) if(edge[pos] != EDGE) edge[pos] = NOEDGE;

}

}

/*******************************************************************************

* PROCEDURE: non_max_supp

* PURPOSE: This routine applies non-maximal suppression to the magnitude of

* the gradient image.

*******************************************************************************/

void non_max_supp(short *mag, short *gradx, short *grady, int nrows, int ncols,

unsigned char *result)

{

int rowcount, colcount,count;

short *magrowptr,*magptr;

short *gxrowptr,*gxptr;

short *gyrowptr,*gyptr,z1,z2;

short m00,gx=-10000,gy=-10000;

float mag1,mag2,xperp,yperp;

unsigned char *resultrowptr, *resultptr;

/****************************************************************************

* Zero the edges of the result image.

****************************************************************************/

for(count=0,resultrowptr=result,resultptr=result+ncols*(nrows-1);

count<ncols; resultptr++,resultrowptr++,count++)

{

*resultrowptr = *resultptr = (unsigned char) 0;

}

for(count=0,resultptr=result,resultrowptr=result+ncols-1;

count<nrows; count++,resultptr+=ncols,resultrowptr+=ncols)

{

*resultptr = *resultrowptr = (unsigned char) 0;

}

/****************************************************************************

* Suppress non-maximum points.

****************************************************************************/

for(rowcount=1,magrowptr=mag+ncols+1,gxrowptr=gradx+ncols+1,

gyrowptr=grady+ncols+1,resultrowptr=result+ncols+1;

rowcount<nrows-2;



rowcount++,magrowptr+=ncols,gyrowptr+=ncols,gxrowptr+=ncols,

resultrowptr+=ncols)

{

for(colcount=1,magptr=magrowptr,gxptr=gxrowptr,gyptr=gyrowptr,

resultptr=resultrowptr;colcount<ncols-2;

colcount++,magptr++,gxptr++,gyptr++,resultptr++)

{

m00 = *magptr;

if(m00 == 0)

{

*resultptr = (unsigned char) NOEDGE;

}

else

{

xperp = -(gx = *gxptr)/((float)m00);

yperp = (gy = *gyptr)/((float)m00);

}

if (gx == -10000 || gy == -10000) continue;

if(gx >= 0)

{

if(gy >= 0)

{

if (gx >= gy)

{

/* 111 */

/* Left point */

z1 = *(magptr - 1);

z2 = *(magptr - ncols - 1);

mag1 = (m00 - z1)*xperp + (z2 - z1)*yperp;

/* Right point */

z1 = *(magptr + 1);

z2 = *(magptr + ncols + 1);

mag2 = (m00 - z1)*xperp + (z2 - z1)*yperp;

}

else

{

/* 110 */

/* Left point */

z1 = *(magptr - ncols);

z2 = *(magptr - ncols - 1);

mag1 = (z1 - z2)*xperp + (z1 - m00)*yperp;

/* Right point */

z1 = *(magptr + ncols);

z2 = *(magptr + ncols + 1);

mag2 = (z1 - z2)*xperp + (z1 - m00)*yperp;

}

}

else if (gy!=-10000)

{

if (gx >= -gy)

{

/* 101 */

/* Left point */

z1 = *(magptr - 1);



z2 = *(magptr + ncols - 1);

mag1 = (m00 - z1)*xperp + (z1 - z2)*yperp;

/* Right point */

z1 = *(magptr + 1);

z2 = *(magptr - ncols + 1);

mag2 = (m00 - z1)*xperp + (z1 - z2)*yperp;

}

else

{

/* 100 */

/* Left point */

z1 = *(magptr + ncols);

z2 = *(magptr + ncols - 1);

mag1 = (z1 - z2)*xperp + (m00 - z1)*yperp;

/* Right point */

z1 = *(magptr - ncols);

z2 = *(magptr - ncols + 1);

mag2 = (z1 - z2)*xperp + (m00 - z1)*yperp;

}

}

}

else if (gx!=-10000)

{

if ((gy = *gyptr) >= 0)

{

if (-gx >= gy)

{

/* 011 */

/* Left point */

z1 = *(magptr + 1);

z2 = *(magptr - ncols + 1);

mag1 = (z1 - m00)*xperp + (z2 - z1)*yperp;

/* Right point */

z1 = *(magptr - 1);

z2 = *(magptr + ncols - 1);

mag2 = (z1 - m00)*xperp + (z2 - z1)*yperp;

}

else

{

/* 010 */

/* Left point */

z1 = *(magptr - ncols);

z2 = *(magptr - ncols + 1);

mag1 = (z2 - z1)*xperp + (z1 - m00)*yperp;

/* Right point */

z1 = *(magptr + ncols);

z2 = *(magptr + ncols - 1);

mag2 = (z2 - z1)*xperp + (z1 - m00)*yperp;

}

}



else

{

if (-gx > -gy)

{

/* 001 */

/* Left point */

z1 = *(magptr + 1);

z2 = *(magptr + ncols + 1);

mag1 = (z1 - m00)*xperp + (z1 - z2)*yperp;

/* Right point */

z1 = *(magptr - 1);

z2 = *(magptr - ncols - 1);

mag2 = (z1 - m00)*xperp + (z1 - z2)*yperp;

}

else

{

/* 000 */

/* Left point */

z1 = *(magptr + ncols);

z2 = *(magptr + ncols + 1);

mag1 = (z2 - z1)*xperp + (m00 - z1)*yperp;

/* Right point */

z1 = *(magptr - ncols);

z2 = *(magptr - ncols - 1);

mag2 = (z2 - z1)*xperp + (m00 - z1)*yperp;

}

}

}

/* Now determine if the current point is a maximum point */

if ((mag1 > 0.0) || (mag2 > 0.0))

{

*resultptr = (unsigned char) NOEDGE;

}

else

{

if (mag2 == 0.0)

*resultptr = (unsigned char) NOEDGE;

else

*resultptr = (unsigned char) POSSIBLE_EDGE;

}

}

}

}

Colour Edge Testing

#include <stdio.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <errno.h>

#include <stdarg.h>

#include <math.h>



//#include <stdopt.h>

/* some compilers call this getopt.h others stdopt.h */

#include <sys/timeb.h>

#include <time.h>

#include <ipl.h>

#include <cv.h>

#include <highgui.h>

#include "CVSSPCommonDef.h"

#include "image_rjc.h"

#define RawName "pentagon" //pentagon paris

#define SrcGrayFlag true

//#define SrcName

"g:/Images/%s/src_bmp/rgb8_%04d.bmp" //rgb8_%04d.bmp" for dance

//#define SrcName

"g:/Images/%s/src_bmp/rgb_%04d.png" //rgb8_%04d.bmp" for dance

//#define SrcName

"g:/Images/%s/src_bmp/rgb__frm%04d.png" //ina2 from frame 153 to 253

//#define SrcName

"g:/Images/%s/src_bmp/door%03d.bmp"

//door, surprise, from frame 153 to 253

//#define SrcName "g:/Images/%s/src%03dn.bmp"

//#define GrayName "g:/Images/%s/src%03d.bmp"

//#define GrayName "F:/standard_seq/Hoge/Img%d.png"

#define GrayName "c:/standard_seq/Yosi Code/%s.bmp"

#define NewSrcName "c:/standard_seq/Hoge/Img%d_%s_(M%.1f_S%.3f).png"

float offset_Paris[8][2] = { {0.5, -0.5},{0.25,0.5}, {-0.25,-0.5},{0,0.75},

{1.0/3,-2.0/3},{-2.0/3,0.25},{1.0/6,0.5},{-1.0/3,0}

};

float offset_Paris2[4][3] = { {1,-1,0.5},{1,2,0.25}, {-1,-2,0.25},{0,1,0.75}

};

float offset_Paris1[4][2] = { {0.0, -0.25},{0.0,0.5}, {-0.25,0.0},{0.75,0.0}

};

float offset_Pentagon[8][2] =

{ {1.0/6, -0.5},{2.0/3,0.25}, {-1.0/3,-1.0/6},{1.0/3,1.0/3},

{0.5, -0.5},{0.25,0.5}, {-0.25,-0.5},{0,0.75},

};

float offset_Pentagon2[4][3] =

{ {1,-3,1.0/6},{8,3,1.0/12}, {-2,-1,1.0/6},{1,1,1.0/3}

};

float offset_Pentagon1[4][2] =

{ {0.0, -0.5},{0.0,0.25}, {-0.25,0.0},{0.75,0.0}

};

#define iStartFrame 1

#define iEndFrame 5

#define myAddedNoise GaussianNoise //UniformNoise

#define fMean 0

#define VarianceLevel 5



#define DebugFlag false

#define SaveNewSrc false

#define ShearZoom false

#define CropFlag false

static unsigned char *pFeature = NULL;

static unsigned char *nms = NULL;

//* Points that are local maximal magnitude.

static short int *smoothedim = NULL;

//* The image after gaussian smoothing.

static short int *delta_x =NULL;

//* The first devivative image, x-direction.

static short int *delta_y = NULL;

//* The first derivative image, y-direction.

static short int *magnitude = NULL;

//* The magnitude of the gadient image.

extern void gaussian_smooth(unsigned char *image, int rows,

int cols, float sigma,

short int **smoothedim);

extern void derrivative_x_y(short int *smoothedim, int rows, int cols,

short int **delta_x, short int **delta_y);

extern void magnitude_x_y(short int *delta_x, short int *delta_y,

int rows, int cols,

short int **magnitude);

extern void apply_hysteresis(short int *mag, unsigned char *nms,

int rows, int cols,

float tlow, float thigh, unsigned char *edge, int *hist);

extern void non_max_supp(short *mag, short *gradx, short *grady,

int nrows, int ncols,

unsigned char *result);

/****************************************************************

**

**

**

**

*****************************************************************/

// source from: http://en.wikipedia.org/wiki/Eigenvalue_algorithm

/*

% Given symmetric 3x3 matrix M, compute the eigenvalues

m = trace(M)/3;

K = M-m*eye(3); //eye return identify matrix of 3*3

q = det(K)/2;

p = 0

for i=1:3

for j=1:3

p = p + K(i,j)^2;

end

end

p = p/6;

phi = 1/3*atan(sqrt(p^3-q^2)/q);

if(phi<0)

phi=phi+pi/3;



end

eig1 = m + 2*sqrt(p)*cos(phi)

eig2 = m - sqrt(p)*(cos(phi) + sqrt(3)*sin(phi))

eig3 = m - sqrt(p)*(cos(phi) - sqrt(3)*sin(phi))

*/

void Eigen3x3symmetric(float fMatrix[3][3], float *fNamda, float **fVector)

{

double fM3[3][3];

double Trace = fMatrix[0][0]+fMatrix[1][1]+fMatrix[2][2];

double m = Trace/3;

int x, y;

double p = 0;

for (y=0; y<3; y++)

for (x=0; x<3; x++)

{

fM3[y][x] = fMatrix[y][x];

if (x==y)

fM3[y][x] -= m;

p += fM3[y][x]*fM3[y][x];

}

p = p/6;

double det = fM3[0][0]*fM3[1][1]*fM3[2][2]-fM3[0][0]*fM3[2][1]*fM3[1][2]-

fM3[1][0]*fM3[0][1]*fM3[2][2]+fM3[1][0]*fM3[0][2]*fM3[2][1]+

fM3[2][0]*fM3[0][1]*fM3[1][2]-fM3[2][0]*fM3[0][2]*fM3[1][1];

double q = det/2;

double phi = atan(sqrt(p*p*p-q*q)/q)/3;

if (phi<0) phi+= 3.1415927/3;

fNamda[0] = m + 2*sqrt(p)*cos(phi);

fNamda[1] = m - sqrt(p)*(cos(phi) + sqrt(3.0)*sin(phi));

fNamda[2] = m - sqrt(p)*(cos(phi) - sqrt(3.0)*sin(phi));

}

void Eigen3x3(float fMatrix[3][3], float *fNamda, float **fVector)

{

double a,b,c,d,x,y,z, i,j,k,m,n,p;

/*for a 3x3 matrix fMatrix, its characteristic polynomical is obtained below

a 3x3 is more complicated and requires several helper equations

to accomplish due to the ęË3 term.

These steps should help you calculate eigen values for a matris

that has 3 REAL eigen values .

Eqn = -aęË3 + bęË2 + cęË + d = 0

*/



a = 1;

b = fMatrix[0][0]+fMatrix[1][1]+fMatrix[2][2];

c = fMatrix[0][1]*fMatrix[1][0]+fMatrix[0][2]*fMatrix[2][0]+

fMatrix[1][2]*fMatrix[2][1]-

fMatrix[0][0]*fMatrix[1][1]-fMatrix[0][0]*fMatrix[2][2]-

fMatrix[1][1]*fMatrix[2][2];

d = fMatrix[0][0]*fMatrix[1][1]*fMatrix[2][2]-fMatrix[0][0]*

fMatrix[2][1]*fMatrix[1][2]-

fMatrix[1][0]*fMatrix[0][1]*fMatrix[2][2]+fMatrix[1][0]*

fMatrix[0][2]*fMatrix[2][1]+

fMatrix[2][0]*fMatrix[0][1]*fMatrix[1][2]-fMatrix[2][0]*

fMatrix[0][2]*fMatrix[1][1];

/*

Define x,y,z //Use the equation from above to get your cubic equation

and combine all constant terms possible to

//give you a reduced equation we will use a, b, c and d to denote

the coefficients of this equation.

x = ((3c/a) ĺC (b2/a2))/3

y = ((2b3/a3) ĺC (9bc/a2) + (27d/a))/27

z = y2/4 + x3/27

*/

x = (3*c/a-b*b/a/a)/3;

y = (2*b*b*b/a/a/a-9*b*c/a/a+27*d/a)/27;

z = y*y/4+x*x*x/27;

//Define I, j, k, m, n, p (so equations are not so cluttered)

/*i = sqrt(y2/4 - z)

j = -i^(1/3)

k = arccos(-(y/2i))

m = cos(k/3)

n = sqrt(3)*sin(k/3)

p = -(b/3a)

*/

i = sqrt(y*y/4 - z);

j = -pow( i,1.0/3);

//k = acos(-(y/2/i)); //acos

k = atan(-(y/2/i)); //acos

if (k<0) k+= 3.1415927/3;

//double phi = atan(sqrt(p*p*p-q*q)/q)/3;

//if (phi<0) phi+= 3.1415927/3;

m = cos(k/3);

n = sqrt(3.0)*sin(k/3);

p = -(b/3/a);

//Define Eig1, Eig2, Eig3

/* Eig1 = -2j*m + p

Eig2 = j *(m + n) + p

Eig3 = j*(m - n) + p

*/

fNamda[0] = -2*j*m + p;

fNamda[1] = j *(m + n) + p;

fNamda[2] = j*(m - n) + p;



}

void ChrominanceEdgePreserveGreyTransform(IplImage *OriginalImage,

IplImage *DestGreyImage)

{

unsigned char ch4[4];

float fImgMean[3],fMatrix[3][3], fM[3][3], fTemp[3][3];

float fSum1, fSum2, fSum3;

float fV0[3], fV1[3],fV2[3], fV3[3];

float fNamda[3], fEigenVector[3][3];

float fTestVector[3][3] =

{

0.231, 0.022, -0.392,

0.408, -0.265, -0.333,

0.361, -0.713, -0.275

};

int x,y,k, m, n;

int height,width, iImageSize;

/*

fMatrix[0][0] = 0;

fMatrix[0][1] = 1;

fMatrix[0][2] = -1;

fMatrix[1][0] = 1;

fMatrix[1][1] = 1;

fMatrix[1][2] = 0;

fMatrix[2][0] = -1;

fMatrix[2][1] = 0;

fMatrix[2][2] = 1;

printf("Matrix\n(%.3f, %.3f, %.3f)\n",fMatrix[0][0],fMatrix[0][1],

fMatrix[0][2]);

printf("(%.3f, %.3f, %.3f)\n",fMatrix[1][0],fMatrix[1][1],

fMatrix[1][2]);

printf("(%.3f, %.3f, %.3f)\n",fMatrix[2][0],fMatrix[2][1],

fMatrix[2][2]);

Eigen3x3(fMatrix,(float *)&fNamda,(float **)&fEigenVector);

printf("Eigen Values: (%.3f,%.3f,%.3f)\n",fNamda[0],fNamda[1],

fNamda[2]);

Eigen3x3symmetric(fMatrix,(float *)&fNamda,(float **)&fEigenVector);

printf("Eigen Values: (%.3f,%.3f,%.3f)\n",fNamda[0],fNamda[1],fNamda[2]);

*/

if (OriginalImage->nChannels==1)

{

iplCopy(OriginalImage,DestGreyImage);

}

fImgMean[0] = fImgMean[1] = fImgMean[2] = 0;

memset(fMatrix,0,9*sizeof(float));

height = OriginalImage->height;

width = OriginalImage->width;



iImageSize = width*height;

for (y=0; y<height; y++)

for (x=0; x<width; x++)

{

iplGetPixel(OriginalImage,x,y,ch4);

fImgMean[0] += ch4[0];

fImgMean[1] += ch4[1];

fImgMean[2] += ch4[2];

}

for (k=0; k<3; k++)

fImgMean[k] = fImgMean[k]/iImageSize;

for (y=0; y<height; y++)

for (x=0; x<width; x++)

{

iplGetPixel(OriginalImage,x,y,ch4);

for (k=0; k<3; k++)

fMatrix[k][k] += (ch4[k]-fImgMean[k])*(ch4[k]-fImgMean[k]);

fMatrix[0][1] += (ch4[0]-fImgMean[0])*(ch4[1]-fImgMean[1]);

fMatrix[0][2] += (ch4[0]-fImgMean[0])*(ch4[2]-fImgMean[2]);

fMatrix[1][2] += (ch4[1]-fImgMean[1])*(ch4[2]-fImgMean[2]);

}

for (k=0; k<3; k++)

fMatrix[k][k] = fMatrix[k][k]/iImageSize;

fMatrix[0][1] = fMatrix[0][1]/iImageSize;

fMatrix[0][2] = fMatrix[0][2]/iImageSize;

fMatrix[1][2] = fMatrix[1][2]/iImageSize;

fSum1 = fMatrix[0][1]*2+fMatrix[0][2]*2+fMatrix[1][2]*2+fMatrix[0][0]

+fMatrix[1][1]+fMatrix[2][2];

fMatrix[0][0] = fMatrix[0][0]/fSum1;

fMatrix[0][1] = fMatrix[0][1]/fSum1;

fMatrix[0][2] = fMatrix[0][2]/fSum1;

fMatrix[1][1] = fMatrix[1][1]/fSum1;

fMatrix[1][2] = fMatrix[1][2]/fSum1;

fMatrix[2][2] = fMatrix[2][2]/fSum1;

fMatrix[1][0] = fMatrix[0][1];

fMatrix[2][0] = fMatrix[0][2];

fMatrix[2][1] = fMatrix[1][2];

//printf("Mean Vector: (%.3f,%.3f,%.3f)\n",fImgMean[0],fImgMean[1],

fImgMean[2]);

/* printf("Matrix\n(%.3f, %.3f, %.3f)\n",fMatrix[0][0],fMatrix[0][1],

fMatrix[0][2]);

printf("(%.3f, %.3f, %.3f)\n",fMatrix[1][0],fMatrix[1][1],

fMatrix[1][2]);

printf("(%.3f, %.3f, %.3f)\n",fMatrix[2][0],fMatrix[2][1],

fMatrix[2][2]);



Eigen3x3symmetric(fMatrix,(float *)&fNamda,(float **)&fEigenVector);

printf("Eigen Values: (%.3f,%.3f,%.3f)\n",fNamda[0],fNamda[1],fNamda[2]);

*/

/*

for (m=0; m<3; m++)

for (n=0; n<3; n++)

{

fTemp[m][n] = 0;

for (k=0; k<3; k++)

fTemp[m][n] += fMatrix[m][k]*fTestVector[k][n];

}

printf("Test Matrix\n(%.3f, %.3f, %.3f)\n",fTestVector[0][0],

fTestVector[0][1],fTestVector[0][2]);

printf("(%.3f, %.3f, %.3f)\n",fTestVector[1][0],fTestVector[1][1],

fTestVector[1][2]);

printf("(%.3f, %.3f, %.3f)\n",fTestVector[2][0],fTestVector[2][1],

fTestVector[2][2]);

printf("Multiply Matrix\n(%.3f, %.3f, %.3f)\n",fTemp[0][0],fTemp[0][1],

fTemp[0][2]);

printf("(%.3f, %.3f, %.3f)\n",fTemp[1][0],fTemp[1][1],fTemp[1][2]);

printf("(%.3f, %.3f, %.3f)\n",fTemp[2][0],fTemp[2][1],fTemp[2][2]);

*/

/*

fMatrix[0][0] = 0;

fMatrix[0][1] = 1;

fMatrix[0][2] = -1;

fMatrix[1][0] = 1;

fMatrix[1][1] = 1;

fMatrix[1][2] = 0;

fMatrix[2][0] = -1;

fMatrix[2][1] = 0;

fMatrix[2][2] = 1;

printf("Matrix\n(%.3f, %.3f, %.3f)\n",fMatrix[0][0],fMatrix[0][1],

fMatrix[0][2]);

printf("(%.3f, %.3f, %.3f)\n",fMatrix[1][0],fMatrix[1][1],fMatrix[1][2]);

printf("(%.3f, %.3f, %.3f)\n",fMatrix[2][0],fMatrix[2][1],fMatrix[2][2]);

Eigen3x3symmetric(fMatrix,(float *)&fNamda,(float **)&fEigenVector);

printf("Eigen Values: (%.3f,%.3f,%.3f)\n",fNamda[0],fNamda[1],fNamda[2]);

*/

//get the eigenvector and eigenvalue

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

//printf("Initial 1st Vector: (%.3f,%.3f,%.3f)\n",fV0[0],fV0[1],fV0[2]);

for (k=0; k<5; k++) //suggested three times of loop

{

fV1[0] = fV1[1] = fV1[2] = 0;



fSum1 = 0;

for (m=0; m<3; m++)

{

for (n=0; n<3; n++)

fV1[m] += fMatrix[m][n]*fV0[n];

fSum1 += fabs(fV1[m]);

}

fNamda[0] = (fV1[0]/fV0[0]+fV1[1]/fV0[1]+fV1[2]/fV0[2])/3;

for (x=0; x<3; x++)

fV0[x] = fV1[x]/fSum1;

// printf("New 1st Vector at Step %d: (%.3f,%.3f,%.3f) EigenValue:

%.3f\n",k, fV0[0],fV0[1],fV0[2],fNamda[0]);

}

//now, we get the eigenvalue below in fV1 and output it here:

iplSet(DestGreyImage,0);

for (y=0; y<height; y++)

for (x=0; x<width; x++)

{

iplGetPixel(OriginalImage,x,y,ch4);

fSum1 = 0;

for (k=0; k<3; k++)

fSum1 += ch4[k]*fV0[k];

k = round(fSum1);

DestGreyImage->imageData[y*DestGreyImage->widthStep+x] = (unsigned char) k;

}

return;

/*now try to recover the 2nd eigen vector*/

//get the 2nd eigenvector and eigenvalue

/*

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

printf("Initial 2nd Vector: (%.3f,%.3f,%.3f)\n",fV0[0],fV0[1],fV0[2]);

for (k=0; k<10; k++) //suggested three times of loop

{

fV1[0] = fV1[1] = fV1[2] = 0;

fSum = 0;



for (m=0; m<3; m++)

{

for (n=0; n<3; n++)

{

fV1[m] += fMatrix[m][n]*(fV0[n]-fEigenVector[n][0]);

}

fSum += fabs(fV1[m]);

}

fNamda[1] = (fV1[0]/fV0[0]+fV1[1]/fV0[1]+fV1[2]/fV0[2])/3;

for (x=0; x<3; x++)

fV0[x] = fV1[x]/fSum;

printf("New 2nd Vector at Step %d: (%.3f,%.3f,%.3f) EigenValue:

%.3f\n",k, fV0[0],fV0[1],fV0[2],fNamda[1]);

}

*/

/**/

for (m=0; m<3; m++)

for (n=0; n<3; n++)

fTemp[m][n] = fMatrix[m][n];

int iLevelK = 1;

//estimate a1 etc

for (k=0; k<10; k++)

{

iLevelK++;

for (m=0; m<3; m++)

for (n=0; n<3; n++)

{

fM[m][n] = 0;

for (int mn=0; mn<3; mn++)

fM[m][n] += fTemp[m][mn]*fMatrix[n][mn];

}

for (m=0; m<3; m++)

for (n=0; n<3; n++)

fTemp[m][n] = fM[m][n];

if (iLevelK <4)

{

// printf("Matrix level %d\n(%.3f, %.3f, %.3f)\n",iLevelK,

fM[0][0],fM[0][1],fM[0][2]);

// printf("(%.3f, %.3f, %.3f)\n",fM[1][0],fM[1][1],fM[1][2]);

// printf("(%.3f, %.3f, %.3f)\n",fM[2][0],fM[2][1],fM[2][2]);

}



//estimate the first

/*

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

fV1[0] = fV1[1] = fV1[2] = 0;

fSum1 = fSum2 = fSum3 = 0;

for (m=0; m<3; m++)

{

for (n=0; n<3; n++)

fV1[m] += fM[m][n]*fV0[n];

fV2[m] = fV1[m] - fNamda[0]*fEigenVector[m][0];

fV3[m] = fV2[m] - fNamda[1]*fEigenVector[m][1];

fSum1 += fabs(fV1[m]);

fSum2 += fabs(fV2[m]);

fSum3 += fabs(fV3[m]);

}

fNamda[0] = fSum1;

fNamda[1] = fSum2;

fNamda[2] = fSum3;

printf("New 1st Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV1[0]/fSum1,fV1[1]/fSum1,fV1[2]/fSu

printf("New 2nd Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV2[0]/fSum2,fV2[1]/fSum2,fV2[2]/fSu

printf("New 3rd Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV3[0]/fSum3,fV3[1]/fSum3,fV3[2]/fSu

fEigenVector[0][0] = fV1[0]/fSum1;

fEigenVector[1][0] = fV1[1]/fSum1;

fEigenVector[2][0] = fV1[2]/fSum1;

fEigenVector[0][1] = fV2[0]/fSum2;

fEigenVector[1][1] = fV2[1]/fSum2;

fEigenVector[2][1] = fV2[2]/fSum2;

fEigenVector[0][2] = fV3[0]/fSum3;

fEigenVector[1][2] = fV3[1]/fSum3;

fEigenVector[2][2] = fV3[2]/fSum3;

*/

}

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

fV1[0] = fV1[1] = fV1[2] = 0;

fSum1 = fSum2 = fSum3 = 0;

for (m=0; m<3; m++)

{

for (n=0; n<3; n++)

fV1[m] += fM[m][n]*fV0[n];

fSum1 += fabs(fV1[m]);

}



fNamda[0] = fSum1;

printf("New 1st Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV1[0]/fSum1,fV1[1]/fSum1,fV1[2]/fSu

fEigenVector[0][0] = fV1[0]/fSum1;

fEigenVector[1][0] = fV1[1]/fSum1;

fEigenVector[2][0] = fV1[2]/fSum1;

iLevelK *=2;

for (m=0; m<3; m++)

for (n=0; n<3; n++)

fTemp[m][n] = fM[m][n];

for (m=0; m<3; m++)

for (n=0; n<3; n++)

{

fM[m][n] = 0;

for (int mn=0; mn<3; mn++)

fM[m][n] += fTemp[m][mn]*fTemp[n][mn];

}

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

fV1[0] = fV1[1] = fV1[2] = 0;

fSum1 = fSum2 = fSum3 = 0;

for (m=0; m<3; m++)

{

for (n=0; n<3; n++)

fV1[m] += fM[m][n]*fV0[n];

fV2[m] = fV1[m] - fNamda[0]*fEigenVector[m][0];

fSum1 += fabs(fV1[m]);

fSum2 += fabs(fV2[m]);

}

fNamda[1] = fSum2;

printf("New 2nd Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV2[0]/fSum2,fV2[1]/fSum2,fV2[2]/fSu

fEigenVector[0][1] = fV2[0]/fSum2;

fEigenVector[1][1] = fV2[1]/fSum2;

fEigenVector[2][1] = fV2[2]/fSum2;

//

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

fV1[0] = fV1[1] = fV1[2] = 0;

fSum1 = fSum2 = fSum3 = 0;

for (m=0; m<3; m++)

{



for (n=0; n<3; n++)

fV1[m] += fM[m][n]*fV0[n];

fV2[m] = fV1[m] - fNamda[0]*fEigenVector[m][0];

fV3[m] = fV2[m] - fNamda[1]*fEigenVector[m][1];

fSum3 += fabs(fV3[m]);

}

fNamda[2] = fSum3;

printf("New 3rd Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV3[0]/fSum3,fV3[1]/fSum3,fV3[2]/fSu

fEigenVector[0][2] = fV3[0]/fSum3;

fEigenVector[1][2] = fV3[1]/fSum3;

fEigenVector[2][2] = fV3[2]/fSum3;

iLevelK *=2;

for (m=0; m<3; m++)

for (n=0; n<3; n++)

fTemp[m][n] = fM[m][n];

for (m=0; m<3; m++)

for (n=0; n<3; n++)

{

fM[m][n] = 0;

for (int mn=0; mn<3; mn++)

fM[m][n] += fTemp[m][mn]*fTemp[n][mn];

}

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

fV1[0] = fV1[1] = fV1[2] = 0;

fSum1 = fSum2 = fSum3 = 0;

for (m=0; m<3; m++)

{

for (n=0; n<3; n++)

fV1[m] += fM[m][n]*fV0[n];

fV2[m] = fV1[m] - fNamda[0]*fEigenVector[m][0];

fSum1 += fabs(fV1[m]);

fSum2 += fabs(fV2[m]);

}

fNamda[1] = fSum2;

printf("New 2nd Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV2[0]/fSum2,fV2[1]/fSum2,fV2[2]/fSu

fEigenVector[0][1] = fV2[0]/fSum2;

fEigenVector[1][1] = fV2[1]/fSum2;



fEigenVector[2][1] = fV2[2]/fSum2;

//

fV0[0] = 0.6; fV0[1] = 0.3; fV0[2] = 0.1;

fV1[0] = fV1[1] = fV1[2] = 0;

fSum1 = fSum2 = fSum3 = 0;

for (m=0; m<3; m++)

{

for (n=0; n<3; n++)

fV1[m] += fM[m][n]*fV0[n];

fV2[m] = fV1[m] - fNamda[0]*fEigenVector[m][0];

fV3[m] = fV2[m] - fNamda[1]*fEigenVector[m][1];

fSum3 += fabs(fV3[m]);

}

fNamda[2] = fSum3;

printf("New 3rd Vector at level %d: (%.3f,%.3f,%.3f) EigenValue: %.3f\n",iLevelK,fV3[0]/fSum3,fV3[1]/fSum3,fV3[2]/fSu

fEigenVector[0][2] = fV3[0]/fSum3;

fEigenVector[1][2] = fV3[1]/fSum3;

fEigenVector[2][2] = fV3[2]/fSum3;

}

void BlackBoundaryImage(IplImage *img, int iThick)

{

if (img == NULL || iThick<1)

return;

int x,y;

unsigned char ch4[4];

ch4[0] = ch4[1] = ch4[2] = ch4[3] = 0;

for (y=0; y<iThick; y++)

for (x=0; x<img->width; x++)

{

iplPutPixel(img,x,y,ch4);

iplPutPixel(img,x,img->height-1-y,ch4);

}

for (x=0; x<iThick; x++)

for (y=0; y<img->height; y++)

{

iplPutPixel(img,x,y,ch4);

iplPutPixel(img,img->width-1-x,y,ch4);

}

}

void LargeImage(IplImage *imgSrc, char *sFileName,

int *width2 = NULL, int *height2 = NULL)

{



if (imgSrc == NULL )

return;

int width1 = imgSrc->width;

int height1 = imgSrc->height;

int width=1,height=1;

for (;;)

{

if (width>=width1)

break;

width *= 2;

}

for (;;)

{

if (height>=height1)

break;

height *= 2;

}

IplImage *imgDest = cvCreateImage(cvSize(width,height),

IPL_DEPTH_8U,imgSrc->nChannels);

iplSet(imgDest,0);

int xOffset = (width-width1)/2;

int yOffset = (height-height1)/2;

unsigned char ch4[4];

for (int y=0; y<height1; y++)

for (int x=0; x<width1; x++)

{

iplGetPixel(imgSrc,x,y,ch4);

iplPutPixel(imgDest,x+xOffset,y+yOffset,ch4);

}

if (sFileName!=NULL)

cvSaveImage(sFileName,imgDest);

else

cvSaveImage("large.png",imgDest);

cvReleaseImage(&imgDest);

if (width2 != NULL)

*width2 = width;

if (height2 != NULL)

*height2 = height;

}

void CropImage(IplImage *imgSrc, char *sFileName,

int *w2 = NULL, int *h2 = NULL)

{

if (imgSrc == NULL )

return;



int width1 = imgSrc->width;

int height1 = imgSrc->height;

int width=1,height=1;

for (;;)

{

if (width>width1)

{

width = width/2;

break;

}

width *= 2;

}

for (;;)

{

if (height>height1)

{

height = height/2;

break;

}

height *= 2;

}

IplImage *imgDest1 = cvCreateImage(cvSize(width,height),

IPL_DEPTH_8U,imgSrc->nChannels);

int xOffset = (width1-width)/2;

int yOffset = (height1-height)/2;

unsigned char ch4[4];

for (int y=0; y<height; y++)

for (int x=0; x<width; x++)

{

iplGetPixel(imgSrc,x+xOffset,y+yOffset,ch4);

iplPutPixel(imgDest1,x,y,ch4);

}

if (sFileName!=NULL)

cvSaveImage(sFileName,imgDest1);

else

cvSaveImage("crop.png",imgDest1);

cvReleaseImage(&imgDest1);

if (w2 != NULL)

*w2 = width;

if (h2 != NULL)

*h2 = height;

}

void ZoomImage(IplImage *imgSrc, char *sFileName, float fScale,

int interpolate, IplImage **imgDest = NULL)

{

if (imgSrc == NULL )

return;

int width1 = imgSrc->width;



int height1 = imgSrc->height;

int width = (int)(width1*fScale+0.5);

int height = (int) (height1*fScale+0.5);

if (*imgDest == NULL)

{

*imgDest = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,

imgSrc->nChannels);

iplResize(imgSrc,*imgDest,width,width1,height,height1,interpolate);

if (sFileName!=NULL)

cvSaveImage(sFileName,*imgDest);

else

cvSaveImage("zoom.png",*imgDest);

//cvReleaseImage(&imgDest);

}

else

{

iplResize(imgSrc,*imgDest,width,width1,height,height1,interpolate);

if (sFileName!=NULL)

cvSaveImage(sFileName,*imgDest);

else

cvSaveImage("zoom.png",*imgDest);

}

}

int ColorMappingOld(IplImage* OriginalImage,IplImage* DestGreyImage,int w[3])

{

unsigned char ch[4];

short *image;

short *image2;

double ww[3];

if (OriginalImage->nChannels==1)

{

iplCopy(OriginalImage,DestGreyImage);

return 0;

}

image=new short[OriginalImage->height*OriginalImage->width];

if (image==NULL)

return -1;

image2=new short[OriginalImage->height*OriginalImage->width];

if (image2==NULL)

{

delete [] image;

return -1;

}

for (int n=0;n<4;n++)

ch[n]=0;



if (w==NULL)

{

for (n=0;n<3;n++)

ww[n]=1.0/3;

}

else

{

for (n=0;n<3;n++)

ww[n]=1.0*w[n]/(w[0]+w[1]+w[2]);

}

iplSet(DestGreyImage,0);

short maxv1=0;

short minv1=10000;

short maxv2=0;

short minv2=10000;

double sum1=0,sum2=0;

for( int j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

double count1,count2;

iplGetPixel(OriginalImage,i,j,ch);

count1=ch[0]*ww[0]+ch[1]*ww[1]+ch[2]*ww[2]+0.5;

maxv1=max((short)count1,maxv1);

minv1=min((short)count1,minv1);

sum1+=count1;

image[j*OriginalImage->width+i]=(short)count1;

count2=(abs(ch[0]-ch[1])/3+abs(ch[0]-ch[2])/3+abs(ch[2]-ch[1])/3);

//if (count2<count1/4) count2=count1;

maxv2=max((short)count2,maxv2);

minv2=min((short)count2,minv2);

sum2+=count2;

image2[j*OriginalImage->width+i]=(short)count2;

}

if (w!=NULL)

{

w[2]=maxv2*1000+minv2;

w[1]=maxv1*1000+minv1;

}

sum1=sum1/(OriginalImage->height*OriginalImage->width);

sum2=sum2/(OriginalImage->height*OriginalImage->width);

double std1=0,std2=0;



for( j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

double count1,count2;

count1=image[j*OriginalImage->width+i];

count2=image2[j*OriginalImage->width+i];

std1+=fabs(count1-sum1);

std2+=fabs(count2-sum2);

}

std1=std1/(OriginalImage->height*OriginalImage->width);

std2=std2/(OriginalImage->height*OriginalImage->width);

//sum1=sum1+std1+maxv1;

//sum2=sum2+std2+maxv2;

sum1=maxv1-minv1;

sum2=maxv2-minv2;

//sum1=1;

//sum2=0;

//sum1=sum1*1.5+std1+maxv1;

//sum2=sum2*1.5+std2+maxv2;

short maxv=0;

short minv=10000;

for( j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

double count,count1,count2;

count1=image[j*OriginalImage->width+i];

count2=image2[j*OriginalImage->width+i];

//count=(maxv2*count1+maxv1*count2)/(maxv2+maxv1);

count=(sum2*count1+sum1*count2)/(sum1+sum2);

//count=(sum1*count1+sum2*count2)/(sum1+sum2);

maxv=max((short)count,maxv);

minv=min((short)count,minv);

image[j*OriginalImage->width+i]=(short)count;

}

if (w!=NULL)

w[0]=maxv*1000+minv;

for( j = 0; j < OriginalImage->height; j++ )

{

int offset=j*DestGreyImage->widthStep;

for( int i = 0; i < OriginalImage->width; i++ )

{

float ff=255.0f*(image[j*OriginalImage->width+i]-minv)/(maxv-minv);



DestGreyImage->imageData[offset+i]=unsigned char(ff);

}

}

delete[] image;

delete[] image2;

return 0;

}

int ColorMapping(IplImage* OriginalImage,IplImage* DestGreyImage,int w[3])

{

unsigned char ch[4];

short *image;

short *image2;

double ww[3];

if (OriginalImage->nChannels==1)

{

iplCopy(OriginalImage,DestGreyImage);

return 0;

}

image=new short[OriginalImage->height*OriginalImage->width];

if (image==NULL)

return -1;

image2=new short[OriginalImage->height*OriginalImage->width];

if (image2==NULL)

{

delete [] image;

return -1;

}

for (int n=0;n<4;n++)

ch[n]=0;

if (w==NULL)

{

for (n=0;n<3;n++)

ww[n]=1.0/3;

}

else

{

for (n=0;n<3;n++)

ww[n]=1.0*w[n]/(w[0]+w[1]+w[2]);

}

iplSet(DestGreyImage,0);

short maxv1=0;

short minv1=10000;

short maxv2=0;

short minv2=10000;

double sum1=0,sum2=0;



for( int j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

double count1,count2;

iplGetPixel(OriginalImage,i,j,ch);

count1=ch[0]*ww[0]+ch[1]*ww[1]+ch[2]*ww[2]+0.5;

maxv1=max((short)count1,maxv1);

minv1=min((short)count1,minv1);

sum1+=count1;

image[j*OriginalImage->width+i]=(short)count1;

count2=(abs(ch[0]-ch[1])/3+abs(ch[0]-ch[2])/3+abs(ch[2]-ch[1])/3);

//count2=(abs(ch[2]-ch[1])/2+abs(ch[0]-count1)/2);

//if (count2<count1/4) count2=count1;

maxv2=max((short)count2,maxv2);

minv2=min((short)count2,minv2);

sum2+=count2;

image2[j*OriginalImage->width+i]=(short)count2;

}

if (w!=NULL)

{

w[2]=maxv2*1000+minv2;

w[1]=maxv1*1000+minv1;

}

sum1=sum1/(OriginalImage->height*OriginalImage->width);

sum2=sum2/(OriginalImage->height*OriginalImage->width);

double std1=0,std2=0;

int index = 0;

for( j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

std1+=fabs(image[index]-sum1);

std2+=fabs(image2[index++]-sum2);

}

std1=std1/(OriginalImage->height*OriginalImage->width);

std2=std2/(OriginalImage->height*OriginalImage->width);

//sum1=sum1+std1+maxv1;

//sum2=sum2+std2+maxv2;

sum1=maxv1-minv1;

sum2=maxv2-minv2;

//sum1=1;



//sum2=0;

//sum1=sum1*1.5+std1+maxv1;

//sum2=sum2*1.5+std2+maxv2;

sum1=sum1*1.5+std1;

sum2=sum2*1.5+std2;

short maxv=0;

short minv=10000;

index = 0;

for( j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

double count,count1,count2;

count1=image[index];

count2=image2[index++];

//count=(maxv2*count1+maxv1*count2)/(maxv2+maxv1);

count=(sum2*count1+sum1*count2)/(sum1+sum2);

//count=(sum1*count1+sum2*count2)/(sum1+sum2);

//count=(sum2*count1/2+sum1*(count2/2+127))/(sum1+sum2);

//count=count2*255/sum2; //+count1*255/sum1/2;

maxv=max((short)count,maxv);

minv=min((short)count,minv);

image[j*OriginalImage->width+i]=(short)count;

}

/*

for( j = 1; j < OriginalImage->height-1; j++ )

for( int i = 1; i < OriginalImage->width-1; i++ )

{

double count,count1,count2;

count1=image[j*OriginalImage->width+i];

count2=image2[j*OriginalImage->width+i];

//count=(maxv2*count1+maxv1*count2)/(maxv2+maxv1);

count=(sum2*count1+sum1*count2)/(sum1+sum2);

//count=(sum1*count1+sum2*count2)/(sum1+sum2);

//count=(sum2*count1/2+sum1*(count2/2+127))/(sum1+sum2);

count=count2*255/sum2; //+count1*255/sum1/2;

maxv=max((short)count,maxv);

minv=min((short)count,minv);

image[j*OriginalImage->width+i]=(short)count;

}*/

if (w!=NULL)

w[0]=maxv*1000+minv;

for( j = 0; j < OriginalImage->height; j++ )

{

int offset=j*DestGreyImage->widthStep;



for( int i = 0; i < OriginalImage->width; i++ )

{

float ff=255.0f*(image[j*OriginalImage->width+i]-minv)/(maxv-minv);

DestGreyImage->imageData[offset+i]=unsigned char(ff);

}

}

delete[] image;

delete[] image2;

return 0;

}

int ColorMappingFast(IplImage* OriginalImage,IplImage* DestGreyImage,

IplImage* GreyImage,int w[3], double stdGrey = -1)

{

unsigned char ch[4];

short *image;

short *image2;

double ww[3];

if (OriginalImage->nChannels==1)

{

iplCopy(OriginalImage,DestGreyImage);

return 0;

}

image=new short[OriginalImage->height*OriginalImage->width];

if (image==NULL)

return -1;

image2=new short[OriginalImage->height*OriginalImage->width];

if (image2==NULL)

{

delete [] image;

return -1;

}

for (int n=0;n<4;n++)

ch[n]=0;

if (w==NULL)

{

for (n=0;n<3;n++)

ww[n]=1.0/3;

}

else

{

for (n=0;n<3;n++)

ww[n]=1.0*w[n]/(w[0]+w[1]+w[2]);

}

iplSet(DestGreyImage,0);

short maxv1=0;

short minv1=10000;



short maxv2=0;

short minv2=10000;

double sum1=0,sum2=0;

int iOffset = 0;

int index = 0;

for( int j = 0; j < OriginalImage->height; j++ )

{

for( int i = 0; i < OriginalImage->width; i++ )

{

double count1,count2;

iplGetPixel(OriginalImage,i,j,ch);

count1=(unsigned char)GreyImage->imageData[iOffset+i];

if (count1>maxv1)

maxv1 = count1;

else if (count1<minv1)

minv1 = count1;

//maxv1 = max((short)count1,maxv1);

//minv1=min((short)count1,minv1);

//sum1+=count1;

image[index]=(short)count1;

count2=(abs(ch[0]-ch[1])+abs(ch[0]-ch[2])+abs(ch[2]-ch[1]))*0.333333333333333;

//count2=(abs(ch[2]-ch[1])/2+abs(ch[0]-count1)/2);

//if (count2<count1/4) count2=count1;

if (count2>maxv2)

maxv2 = count2;

else if (count2<minv2)

minv2 = count2;

//maxv2=max((short)count2,maxv2);

//minv2=min((short)count2,minv2);

sum2+=count2;

image2[index++]=(short)count2;

}

iOffset += DestGreyImage->widthStep;

}

if (w!=NULL)

{

w[2]=maxv2*1000+minv2;

w[1]=maxv1*1000+minv1;

}

// sum1=sum1/(OriginalImage->height*OriginalImage->width);

sum2=sum2/(OriginalImage->height*OriginalImage->width);



double std1=0,std2=0;

if (stdGrey>=0) std1 = stdGrey;

index = 0;

for( j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

double temp = image2[index++]-sum2;

if (temp>=0) std2 += temp;

else std2 -= temp;

//std1+=fabs(image[index]-sum1);

//std2+=fabs(-sum2);

}

//std1=std1/(OriginalImage->height*OriginalImage->width);

std2=std2/(OriginalImage->height*OriginalImage->width);

//sum1=sum1+std1+maxv1;

//sum2=sum2+std2+maxv2;

sum1=maxv1-minv1;

sum2=maxv2-minv2;

//sum1=1;

//sum2=0;

//sum1=sum1*1.5+std1+maxv1;

//sum2=sum2*1.5+std2+maxv2;

short maxv=0;

short minv=10000;

double sum = 1.0/(sum1+sum2);

index = 0;

for( j = 0; j < OriginalImage->height; j++ )

for( int i = 0; i < OriginalImage->width; i++ )

{

double count;

//count=(maxv2*count1+maxv1*count2)/(maxv2+maxv1);

count=(sum2*image[index]+sum1*image2[index])*sum;

//count=(sum1*count1+sum2*count2)/(sum1+sum2);

//count=(sum2*count1/2+sum1*(count2/2+127))/(sum1+sum2);

//count=count2*255/sum2; //+count1*255/sum1/2;

if (count>maxv)

maxv = count;

else if (count<minv)

minv = count;

//maxv=max((short)count,maxv);

//minv=min((short)count,minv);



image[index++]=(short)count;

}

/*

for( j = 1; j < OriginalImage->height-1; j++ )

for( int i = 1; i < OriginalImage->width-1; i++ )

{

double count,count1,count2;

count1=image[j*OriginalImage->width+i];

count2=image2[j*OriginalImage->width+i];

//count=(maxv2*count1+maxv1*count2)/(maxv2+maxv1);

count=(sum2*count1+sum1*count2)/(sum1+sum2);

//count=(sum1*count1+sum2*count2)/(sum1+sum2);

//count=(sum2*count1/2+sum1*(count2/2+127))/(sum1+sum2);

count=count2*255/sum2; //+count1*255/sum1/2;

maxv=max((short)count,maxv);

minv=min((short)count,minv);

image[j*OriginalImage->width+i]=(short)count;

}*/

if (w!=NULL)

w[0]=maxv*1000+minv;

iOffset = 0;

float fScale = 255.0f/(maxv-minv);

for( j = 0; j < OriginalImage->height; j++ )

{

for( int i = 0; i < OriginalImage->width; i++ )

{

//float ff=255.0f*(image[iOffset+i]-minv)*fScale;

DestGreyImage->imageData[iOffset+i]=unsigned char((image[iOffset+i]-minv)*fScale);

}

iOffset += DestGreyImage->widthStep;

}

delete[] image;

delete[] image2;

return 0;

}

int ExtractEntropy(unsigned char *cBuffer,IplImage* DestGreyImage)

{

double ww[3];

float f_e = log(2.718281828459);

float f_ni = log(9.0);

double sumEntropy;

int height = DestGreyImage->height,width=DestGreyImage->width;

float *fEntropyBuffer = new float[width*height];

unsigned char *cEntropyBuffer = new unsigned char[width*height];



int i,j,i1,j1, hist[32768];

if (cBuffer == NULL )

{

return -1;

}

float maxv1=0;

float minv1=10000;

double sum1=0,sum2=0;

sumEntropy = 0;

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

double count1,count2;

float fSum = 0;

int index = j*width+i;

float fEntropy;

fSum = cBuffer[index]+cBuffer[index-1]+cBuffer[index+1]+

cBuffer[index-width]+cBuffer[index+width]+

cBuffer[index-width+1]+cBuffer[index-width-1]+cBuffer[index+width-1]+

cBuffer[index+width+1];

if (fSum !=0)

{

fEntropy = 0;

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[index2]/fSum;

if (cBuffer[index2]!=0)

fEntropy += (-f1*log(f1));

//check entropy in each channel

}

fEntropy = 100*(f_ni - fEntropy);

}

else

{

fEntropy = 0;

}

minv1 = min(fEntropy,minv1);

maxv1 = max(fEntropy,maxv1);

fEntropyBuffer[index] = fEntropy;

sumEntropy += fEntropy;

}

sumEntropy = sumEntropy/(height*width-height*2-width*2+4);

double sigma = 0;



for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = fEntropyBuffer[j*width+i]-sumEntropy;

sigma += (fEntropy*fEntropy);

}

sigma = sqrt(sigma/(height*width-height*2-width*2+4));

printf("max %.5f min %.5f mean %.5f sigma %.5f\n",maxv1,minv1, sumEntropy, sigma);

/*

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = fEntropyBuffer[j*width+i];

if (fEntropy<sumEntropy+sigma/200)

fEntropyBuffer[j*width+i] = 0;

}

*/

minv1 = log(1+minv1);

maxv1 = log(1+maxv1);

printf("log max %.5f min %.5f mean %.5f\n",maxv1,minv1,log(1+sumEntropy));

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = fEntropyBuffer[j*width+i];

fEntropy = (log(1+fEntropy)-minv1)*255/(maxv1-minv1)+0.5;

//cEntropyBuffer[j*width+i] = (unsigned char)(fEntropy);

//magnitude[j*width+i] = (short) (fEntropy);

DestGreyImage->imageData[j*DestGreyImage->widthStep+i] = (unsigned char)(fEntropy);

}

/*gaussian_smooth(cEntropyBuffer, height, width, 0.7, &smoothedim);

derrivative_x_y(smoothedim, height, width, &delta_x, &delta_y);

magnitude_x_y(delta_x, delta_y, height, width, &magnitude);

non_max_supp(magnitude, delta_x, delta_y,height, width, nms);

apply_hysteresis(magnitude, nms, height, width, 0.2, 0.8, pFeature, hist);

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

DestGreyImage->imageData[j*DestGreyImage->widthStep+i] =

(unsigned char)(pFeature[j*width+i]);

}

*/

delete[] fEntropyBuffer;

delete [] cEntropyBuffer;

return 0;



}

int ExtractCrossEntropy(unsigned char *cBuffer,IplImage* DestGreyImage)

{

double ww[3];

float f_e = log(2.718281828459);

float f_ni = log(9.0);

double sumEntropy;

int height = DestGreyImage->height,width=DestGreyImage->width;

float *fEntropyBuffer = new float[width*height];

int i,j,i1,j1;

if (cBuffer == NULL )

{

return -1;

}

float maxv1=0;

float minv1=10000;

double sum1=0,sum2=0;

sumEntropy = 0;

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

double count1,count2;

float fSum = 0;

int index = j*width+i;

float fEntropy, f0;

fSum = cBuffer[index]+cBuffer[index-1]+cBuffer[index+1]+cBuffer[index-width]+

cBuffer[index+width]+

cBuffer[index-width+1]+cBuffer[index-width-1]+cBuffer[index+width-1]+

cBuffer[index+width+1];

if (fSum!=0)

f0 = cBuffer[index]/fSum;

else f0 = 0;

if (fSum !=0 && f0 !=0)

{

fEntropy = 0;

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[index2]/fSum;

if (cBuffer[index2]!=0)

{

if (f1>f0)



fEntropy += (f1*log(f1/f0));

else

fEntropy += (-f1*log(f1/f0));

}

//check entropy in each channel

}

fEntropy = 80* fEntropy;

}

else

{

fEntropy = 0;

}

minv1 = min(fEntropy,minv1);

maxv1 = max(fEntropy,maxv1);

fEntropyBuffer[index] = fEntropy;

sumEntropy += fEntropy;

}

sumEntropy = sumEntropy/(height*width-height*2-width*2+4);

double sigma = 0;

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = fEntropyBuffer[j*width+i]-sumEntropy;

sigma += (fEntropy*fEntropy);

}

sigma = sqrt(sigma/(height*width-height*2-width*2+4));

printf("max %.5f min %.5f mean %.5f sigma %.5f\n",maxv1,minv1,

sumEntropy, sigma);

/*

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = fEntropyBuffer[j*width+i];

if (fEntropy<sumEntropy+sigma/200)

fEntropyBuffer[j*width+i] = 0;

}

*/

minv1 = log(1+minv1);

maxv1 = log(1+maxv1);

printf("log max %.5f min %.5f mean %.5f\n",maxv1,minv1,log(1+sumEntropy));

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = fEntropyBuffer[j*width+i];

fEntropy = (log(1+fEntropy)-minv1)*255/(maxv1-minv1)+0.5;

// fEntropy = (fEntropy-minv1)*255/(maxv1-minv1)+0.5;



DestGreyImage->imageData[j*DestGreyImage->widthStep+i] = (unsigned char)(fEntropy);

}

delete[] fEntropyBuffer;

return 0;

}

int ColorMappingW3(unsigned char *cBuffer[3],IplImage* DestGreyImage)

{

float f_e = log(2.718281828459);

float f_ni = log(9.0);

int height = DestGreyImage->height,width=DestGreyImage->width;

float *entropyBuffer = new float[width*height];

int i,j, i1, j1;

if (cBuffer == NULL || cBuffer[0] == NULL || cBuffer[1] == NULL ||

cBuffer[2] == NULL)

{

return -1;

}

//iplSet(DestGreyImage,0);

float maxv1=0;

float minv1=10000;

double sum1 = 0;

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

double count1,count2;

double fEntropy[3];

float fSum = 0;

int index = j*width+i;

fSum = cBuffer[0][index]+cBuffer[0][index-1]+cBuffer[0][index+1]+

cBuffer[0][index-width]+cBuffer[0][index+width]+

cBuffer[0][index-width+1]+cBuffer[0][index-width-1]+cBuffer[0][index+width-1]+

cBuffer[0][index+width+1];

if (fSum !=0)

{

fEntropy[0] = 0;

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[0][index2]/fSum;

if (cBuffer[0][index2]!=0)

fEntropy[0] += (-f1*log(f1));

//check entropy in each channel

}



fEntropy[0] = (f_ni - fEntropy[0])/f_e;

}

else

{

fEntropy[0] = 0;

}

fSum = cBuffer[1][index]+cBuffer[1][index-1]+cBuffer[1][index+1]+

cBuffer[1][index-width]+cBuffer[1][index+width]+

cBuffer[1][index-width+1]+cBuffer[1][index-width-1]+cBuffer[1][index+width-1]+

cBuffer[1][index+width+1];

if (fSum !=0)

{

fEntropy[1] = 0;

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[1][index2]/fSum;

if (cBuffer[1][index2]!=0)

fEntropy[1] += (-f1*log(f1));

//check entropy in each channel

}

fEntropy[1] = (f_ni - fEntropy[1])/f_e;

}

else

{

fEntropy[1] = 0;

}

fSum = cBuffer[2][index]+cBuffer[2][index-1]+cBuffer[2][index+1]+

cBuffer[2][index-width]+cBuffer[2][index+width]+

cBuffer[2][index-width+1]+cBuffer[2][index-width-1]+cBuffer[2][index+width-1]+

cBuffer[2][index+width+1];

if (fSum !=0)

{

fEntropy[2] = 0;

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[2][index2]/fSum;

if (cBuffer[2][index2]!=0)

fEntropy[2] += (-f1*log(f1));

//check entropy in each channel

}

fEntropy[2] = (f_ni - fEntropy[2])/f_e;

}

else

{

fEntropy[2] = 0;

}



//iplGetPixel(OriginalImage,i,j,ch);

entropyBuffer[index] = 100*max(max(fEntropy[0],fEntropy[1]),fEntropy[2]);

maxv1=max(entropyBuffer[index],maxv1);

minv1=min(entropyBuffer[index],minv1);

sum1+=entropyBuffer[index];

}

minv1 = log(1+minv1);

maxv1 = log(1+maxv1);

sum1 = sum1/(width*height-2*height-2*width+4);

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = entropyBuffer[j*width+i];

DestGreyImage->imageData[j*DestGreyImage->widthStep+i] =

(unsigned char)((log(1+fEntropy)-minv1)*255/(maxv1-minv1)+0.5);

}

delete [] entropyBuffer;

return 0;

}

int ColorMappingW3Cross(unsigned char *cBuffer[3],IplImage* DestGreyImage)

{

float f_e = log(2.718281828459);

float f_ni = log(9.0);

int height = DestGreyImage->height,width=DestGreyImage->width;

float *entropyBuffer = new float[width*height];

int i,j, i1, j1;

if (cBuffer == NULL || cBuffer[0] == NULL || cBuffer[1] == NULL || cBuffer[2] == NULL)

{

return -1;

}

//iplSet(DestGreyImage,0);

float maxv1=0;

float minv1=10000;

double sum1 = 0;

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

double count1,count2;

double fEntropy[3];

float fSum = 0;

int index = j*width+i;



float f0;

fSum = cBuffer[0][index]+cBuffer[0][index-1]+cBuffer[0][index+1]+

cBuffer[0][index-width]+cBuffer[0][index+width]+

cBuffer[0][index-width+1]+cBuffer[0][index-width-1]+

cBuffer[0][index+width-1]+cBuffer[0][index+width+1];

if (fSum !=0)

{

fEntropy[0] = 0;

f0 = cBuffer[0][index]/fSum;

if (f0!=0)

{

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[0][index2]/fSum;

if (cBuffer[0][index2]!=0)

{

if (f1>f0) fEntropy[0] += (f1*log(f1/f0));

//else fEntropy[0] += (-f1*log(f1/f0));

}

//check entropy in each channel

}

fEntropy[0] = 80*fEntropy[0];

}

else fEntropy[0] = 0;

}

else

{

fEntropy[0] = 0;

}

fSum = cBuffer[1][index]+cBuffer[1][index-1]+cBuffer[1][index+1]+

cBuffer[1][index-width]+cBuffer[1][index+width]+

cBuffer[1][index-width+1]+cBuffer[1][index-width-1]+cBuffer[1][index+width-1]+

cBuffer[1][index+width+1];

if (fSum !=0)

{

fEntropy[1] = 0;

f0 = cBuffer[1][index]/fSum;

if (f0!=0)

{

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[1][index2]/fSum;

if (cBuffer[1][index2]!=0)



{

if (f1>f0) fEntropy[1] += (f1*log(f1/f0));

//else fEntropy[1] += (-f1*log(f1/f0));

}

//check entropy in each channel

}

fEntropy[1] = 80* fEntropy[1];

}

else fEntropy[1] = 0;

}

else

{

fEntropy[1] = 0;

}

fSum = cBuffer[2][index]+cBuffer[2][index-1]+cBuffer[2][index+1]+

cBuffer[2][index-width]+cBuffer[2][index+width]+

cBuffer[2][index-width+1]+cBuffer[2][index-width-1]+cBuffer[2][index+width-1]+

cBuffer[2][index+width+1];

if (fSum !=0)

{

fEntropy[2] = 0;

f0 = cBuffer[2][index]/fSum;

if (f0!=0)

{

for ( j1 = j-1; j1<=j+1; j1++)

for ( i1 = i-1; i1<=i+1; i1++)

{

int index2 = index+(j1-j)*width+i1-i;

float f1 = cBuffer[2][index2]/fSum;

if (cBuffer[2][index2]!=0)

{

if (f1>f0) fEntropy[2] += (f1*log(f1/f0));

//else fEntropy[2] += (-f1*log(f1/f0));

}

//check entropy in each channel

}

fEntropy[2] = 80* fEntropy[2];

}

else fEntropy[2] = 0;

}

else

{

fEntropy[2] = 0;

}

//iplGetPixel(OriginalImage,i,j,ch);

//entropyBuffer[index] = max(max(fEntropy[0],fEntropy[1]),fEntropy[2]);

entropyBuffer[index] = (fEntropy[0]+fEntropy[1]+fEntropy[2])/3;

maxv1=max(entropyBuffer[index],maxv1);

minv1=min(entropyBuffer[index],minv1);



sum1+=entropyBuffer[index];

}

minv1 = log(1+minv1);

maxv1 = log(1+maxv1);

sum1 = sum1/(width*height-2*height-2*width+4);

for( j = 1; j < height-1; j++ )

for( i = 1; i < width-1; i++ )

{

float fEntropy = entropyBuffer[j*width+i];

DestGreyImage->imageData[j*DestGreyImage->widthStep+i] = (unsigned char)((log(1+fEntropy)-minv1)*255/(maxv1-minv1)+0

}

delete [] entropyBuffer;

return 0;

}

int EvaluateEdgeResults(IplImage *ref, IplImage *test, double *recall,

double *precision)

{

int iTP = 0, iFP = 0, iMissing = 0, x,y;

if (ref == NULL || test == NULL)

return -1;

for (y=0; y<ref->height; y++)

for (x=0; x<ref->width; x++)

{

int index = y*ref->widthStep+x;

if ( ref->imageData[index] !=0 )

{

if (test->imageData[index] != 0) //correct

iTP ++;

else iMissing ++;

}

else

{

if (test->imageData[index] != 0) //correct

iFP ++;

}

}

*recall = 1.0*iTP/(iTP+iMissing);

*precision = 1.0*iTP/(iTP+iFP);

return 0;

}

char* cOriginalImageName[] = { "C:/standard_seq/images/pepper.bmp"};

//lena256.bmp green-girl.bmp pepper



char FirstName[]={"pepper"}; //green-girl lena256

char* cImageNameGT[] = { "C:/standard_seq/images/pepper-gt3.bmp"};

//"lena256.bmp" green-girl.bmp, house using Gt2 others using GT

enum edgeMethod {RAW, DIFF_MAX, DIFF_MEAN, ENTROPY_MAX, ENTROPY_MEAN,

CROSS_ENTROPY_MAX, CROSS_ENTROPY_MEAN};

extern void edgeTest(unsigned char *image[3], int rows, int cols,

float sigma,float tlow, float thigh, unsigned char *edge, int *hist,

unsigned char *nms, short int *smoothedim, short int *delta_x,

short int *delta_y, short int *magnitude, edgeMethod iFlag);

enum ResultEdges {Grey, RGB, YCbCr, mapE, MapS, Green, Rjc, Final,

HSV, EigenGrey};

#define DebugText true

int mainTest() //TestEigenEdges

{

int iResult;

int width, height;

IplImage* OriginalImage;

IplImage* OriginalImageGray, *EdgeImage;

OriginalImage= cvvLoadImage(cOriginalImageName[0]);

width = OriginalImage->width;

height = OriginalImage->height;

OriginalImageGray = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

EdgeImage = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

ChrominanceEdgePreserveGreyTransform(OriginalImage, OriginalImageGray);

// cvSaveImage("eigen.png",OriginalImageGray);

// ImageAdaptiveCanny(OriginalImageGray,EdgeImage);

// cvvSaveImage("eigen_edge.png",EdgeImage);

cvReleaseImage(&OriginalImage);

cvReleaseImage(&OriginalImageGray);

cvReleaseImage(&EdgeImage);

return 0;



}

int mainTestTime(); //test running time

int main()

{

int iResult;

IplImage* OriginalImage,*srcImgNew,*srcImgNew2;

IplImage* OriginalImageGray, *Edge0;

IplImage* OriginalImageMapping;

IplImage* OriginalImageMapping2;

IplImage* OriginalImageEdge[5];

int x,y,height,width, index1, index2;

float *srcArray, *destArray, fSigma;

char str[100];/*used for generate the file name using sprintf*/

unsigned char *cBuffer[3];

float sigma = 0.5;

int hist[32768];

double Mean=0,StdDev=0;

FILE *file = NULL;

double recall,precision;

char sFileName[40];

float Pre[VarianceLevel][10],Recall[VarianceLevel][10], f1PR[VarianceLevel][10];

//Grey, RGB, YCbCr, mapE, MapS, Green, Rjc, Final

float PreFiltered[VarianceLevel][4][10],RecallFiltered[VarianceLevel][4][10],

f1PRFiltered[VarianceLevel][4][10];

int iThresholdEdge = 6;

//return mainTestTime();

OriginalImage= cvvLoadImage(cOriginalImageName[0]);

width = OriginalImage->width;

height = OriginalImage->height;

OriginalImageGray=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

OriginalImageMapping=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

OriginalImageMapping2=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

pFeature = new unsigned char[(width+4)*(height+4)];



nms = new BYTE[width*height];

magnitude = new short[width*height];

delta_x = new short[width*height];

delta_y = new short[width*height];

smoothedim = new short[width*height*3]; //enable RGB three channels

for (int i=0;i<5;i++)

OriginalImageEdge[i]=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

cBuffer[0] = new unsigned char[width*height];

cBuffer[1] = new unsigned char[width*height];

cBuffer[2] = new unsigned char[width*height];

//iResult=GetStandardImageByThreshold( OriginalImage,OriginalImage);

/* gaussian_smooth(cBuffer[0], height, width, sigma, &smoothedim);

for (y=0; y<height; y++)

{

for (x=0; x<width; x++)

cBuffer[0][y*width+x] = smoothedim[y*width+x];

}

*/

int iImageSize = width*height*OriginalImage->nChannels;

srcArray = new float[iImageSize];

destArray = new float[iImageSize];

Image2Array(OriginalImage,srcArray);

srcImgNew = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,

OriginalImage->nChannels);

srcImgNew2 = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,

OriginalImage->nChannels);

//Edge0 = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,1);

Edge0 = cvLoadImage(cImageNameGT[0],0);

sprintf(sFileName,"%s.txt",FirstName);

if (DebugText)

file = fopen(sFileName,"wt");

else file = NULL;

StartAgain:

if (file!=NULL)

{

fprintf(file,"\n\nInput image %s EdgeThreshold %d\n\n",cOriginalImageName[0],

iThresholdEdge);

fprintf(file,"Noise Pre Recall Mean Stdev Method\n");

}

for (int m=0; m<VarianceLevel; m++)

{

printf("dealing with noise level %d\n",m);

//fSigma = 0.5f*(m+1)/VarianceLevel; //for uniform distribution



if (m!=0)

{

fSigma = 0.01f*m/VarianceLevel; //for Gaussian distribution

AddArrayNoise(srcArray, destArray,GaussianNoise, fMean, fSigma, width,

height, OriginalImage->nChannels, true); //normalised

Array2Image(destArray,srcImgNew2, 255.0); //scaled

sprintf(str,"%s_Src_n%d.bmp",FirstName,m);

cvvSaveImage( str, srcImgNew2);

iplMedianFilter(srcImgNew2,srcImgNew,3,3,1,1);

// iplCopy(srcImgNew2,srcImgNew);

//iplColorMedianFilter(srcImgNew2,srcImgNew,3,3,1,1);

}

else iplCopy(OriginalImage,srcImgNew);

index1 = 0;

index2 = 0;

for (y=0; y<height; y++)

{

for (x=0; x<width; x++)

{

cBuffer[0][index2] = (unsigned char) srcImgNew->imageData[index1+3*x+2];

cBuffer[1][index2] = (unsigned char) srcImgNew->imageData[index1+3*x+1];

cBuffer[2][index2] = (unsigned char) srcImgNew->imageData[index1+3*x];

index2++;

}

index1 += OriginalImage->widthStep;

}

/*

printf("dealing with buffer 0\n");

ExtractEntropy(cBuffer[0],OriginalImageEdge[0]);

//cvvNamedWindow( "Entropy Blue", 1);

//cvvShowImage( "Entropy Blue", OriginalImageEdge[0]);

sprintf(str,"%s_Entropy_n%dB.bmp",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[0]);

// SaveImageBMP(str,OriginalImageEdge[0],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

fprintf(file,"%d %.4f %.4f %.3f %.3f Entropy-B Edge result\n",

m,precision,recall,Mean,StdDev);

printf("dealing with buffer 1\n");

ExtractEntropy(cBuffer[1],OriginalImageEdge[1]);

//cvvNamedWindow( "Entropy Green", 1);

//cvvShowImage( "Entropy Green", OriginalImageEdge[1]);

sprintf(str,"%s_Entropy_n%dG.bmp",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[1]);

// SaveImageBMP(str,OriginalImageEdge[1],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[1], &recall, &precision);

fprintf(file,"%d %.4f %.4f %.3f %.3f Entropy-G Edge result\

n",m,precision,recall,Mean,StdDev);



printf("dealing with buffer 2\n");

ExtractEntropy(cBuffer[2],OriginalImageEdge[2]);

//cvvNamedWindow( "Entropy Red", 1);

//cvvShowImage( "Entropy Red", OriginalImageEdge[2]);

sprintf(str,"%s_Entropy_n%dR.bmp",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[2]);

// SaveImageBMP(str,OriginalImageEdge[2],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[2], &recall, &precision);

fprintf(file,"%d %.4f %.4f %.3f %.3f Entropy-R Edge result\n",

m,precision,recall,Mean,StdDev);

//cross entropy

printf("dealing with buffer 0\n");

ExtractCrossEntropy(cBuffer[0],OriginalImageEdge[0]);

//cvvNamedWindow( "CrossEntropy Blue", 1);

//cvvShowImage( "CrossEntropy Blue", OriginalImageEdge[0]);

sprintf(str,"%s_EntropyC_n%dB.bmp",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[0]);

// SaveImageBMP(str,OriginalImageEdge[0],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

fprintf(file,"%d %.4f %.4f %.3f %.3f CrossEntropy-B Edge result\n",

m,precision,recall,Mean,StdDev);

printf("dealing with buffer 1\n");

ExtractCrossEntropy(cBuffer[1],OriginalImageEdge[1]);

//cvvNamedWindow( "CrossEntropy Green", 1);

//cvvShowImage( "CrossEntropy Green", OriginalImageEdge[1]);

sprintf(str,"%s_EntropyC_n%dG.bmp",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[1]);

// SaveImageBMP(str,OriginalImageEdge[1],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[1], &recall, &precision);

fprintf(file,"%d %.4f %.4f %.3f %.3f CrossEntropy-G Edge result\n",

m,precision,recall,Mean,StdDev);

printf("dealing with buffer 2\n");

ExtractCrossEntropy(cBuffer[2],OriginalImageEdge[2]);

//cvvNamedWindow( "CrossEntropy Red", 1);

//cvvShowImage( "CrossEntropy Red", OriginalImageEdge[2]);

sprintf(str,"%s_EntropyC_n%dR.bmp",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[2]);

// SaveImageBMP(str,OriginalImageEdge[2],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[2], &recall, &precision);

fprintf(file,"%d %.4f %.4f %.3f %.3f CrossEntropy-R Edge result\n",

m,precision,recall,Mean,StdDev);

*/

//eigen-grey canny



ChrominanceEdgePreserveGreyTransform(srcImgNew, OriginalImageGray);

cvMean_StdDev(OriginalImageGray,&Mean,&StdDev,0);

printf("Original Gray Mean=%.3f, Std=%.3f\n",Mean,StdDev);

ImageAdaptiveCanny(OriginalImageGray,OriginalImageEdge[1]);

//cvvNamedWindow( "Original Edge G", 1);

//cvvShowImage( "Original Edge G", OriginalImageEdge[1]);

sprintf(str,"%s_Edge_eigeny%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[1]);

//SaveImageBMP(str,OriginalImageEdge[1],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[1], &recall, &precision);

Pre[m][EigenGrey] = precision;

Recall[m][EigenGrey] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f EigenGrey Edge result\n",

m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[1],OriginalImageEdge[4],iThresholdEdge);

sprintf(str,"%s_Edge_eigen%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[4],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[4], &recall, &precision);

PreFiltered[m][(iThresholdEdge-6)/3][EigenGrey] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][EigenGrey] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f Filtered EigenGrey Edge result\n"

,m,precision,recall,Mean,StdDev);

//gray canny

iplColorToGray(srcImgNew,OriginalImageGray);

//cvvNamedWindow( "Original Gray", 1);

//cvvShowImage( "Original Gray", OriginalImageGray);

cvMean_StdDev(OriginalImageGray,&Mean,&StdDev,0);

printf("Original Gray Mean=%.3f, Std=%.3f\n",Mean,StdDev);

ImageAdaptiveCanny(OriginalImageGray,OriginalImageEdge[1]);

//cvvNamedWindow( "Original Edge G", 1);

//cvvShowImage( "Original Edge G", OriginalImageEdge[1]);

sprintf(str,"%s_Edge_grey%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[1]);

//SaveImageBMP(str,OriginalImageEdge[1],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[1], &recall, &precision);

Pre[m][Grey] = precision;

Recall[m][Grey] = recall;



if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f Grey Edge result\n"

,m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[1],OriginalImageEdge[4],iThresholdEdge);

sprintf(str,"%s_Edge_grey%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[4],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[4], &recall, &precision);

PreFiltered[m][(iThresholdEdge-6)/3][Grey] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][Grey] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredGrey Edge result\n"

,m,precision,recall,Mean,StdDev);

//combined entropy maximum component

iResult=ColorMappingW3( cBuffer,OriginalImageEdge[3]);

if (iResult<0)

{

printf("Memory failure!\n");

goto finish;

}

sprintf(str,"%s_Entropy_RGB%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[3]);

//SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

// fprintf(file,"%d %.4f %.4f %.3f %.3f Mapping-Entropy

Edge result\n",m,precision,recall,Mean,StdDev);

//combined cross-entropy maximum component

iResult=ColorMappingW3Cross( cBuffer,OriginalImageEdge[3]);

if (iResult<0)

{

printf("Memory failure!\n");

goto finish;

}

sprintf(str,"%s_EntropyC_RGB%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[3]);

//SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

// fprintf(file,"%d %.4f %.4f %.3f %.3f EntropyRGB Edge result

\n",m,precision,recall,Mean,StdDev);

//enum edgeMethod {RAW, DIFF_MAX, DIFF_MEAN, ENTROPY_MAX, ENTROPY_MEAN,

CROSS_ENTROPY_MAX, CROSS_ENTROPY_MEAN};

/*



edgeTest(cBuffer, height, width, 0.7, 0.3, 0.8, pFeature, hist, nms,

smoothedim,delta_x,delta_y,magnitude,DIFF_MAX);

iplSet(OriginalImageEdge[3],0);

for (y=0; y<height; y++)

for (x=0; x<width; x++)

{

OriginalImageEdge[3]->imageData[y*OriginalImageEdge[3]->widthStep+x]

= pFeature[y*width+x];

}

cvvNamedWindow( "DiffMax", 1);

cvvShowImage( "DiffMax", OriginalImageEdge[3]);

sprintf(str,"%s_DiffMax.bmp",FirstName);

cvvSaveImage( str, OriginalImageEdge[3]);

SaveImageBMP(str,OriginalImageEdge[3],NULL);

edgeTest(cBuffer, height, width, 0.7, 0.3, 0.8, pFeature, hist, nms,

smoothedim,delta_x,delta_y,magnitude,DIFF_MEAN);

iplSet(OriginalImageEdge[3],0);

for (y=0; y<height; y++)

for (x=0; x<width; x++)

{

OriginalImageEdge[3]->imageData[y*OriginalImageEdge[3]->widthStep+x] =

pFeature[y*width+x];

}

cvvNamedWindow( "DiffMean", 1);

cvvShowImage( "DiffMean", OriginalImageEdge[3]);

sprintf(str,"%s_DiffMean.bmp",FirstName);

cvvSaveImage( str, OriginalImageEdge[3]);

SaveImageBMP(str,OriginalImageEdge[3],NULL);

*/

int w[3];

w[0]=1;

w[1]=1;

w[2]=1;

iResult=ColorMapping( srcImgNew,OriginalImageMapping,w);

if (iResult<0)

{

printf("Memory failure!\n");

goto finish;

}

printf("Map E, Gmaxv1=%d minv1=%d Dmaxv2=%d minv2=%d Tmaxv=%d minv=%d\n",w[1]/1000,w[1]%1000,w[2]/1000,w[2]%1000,w[0]

sprintf(str,"%s_Map_E%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageMapping);

//SaveImageBMP(str,OriginalImageMapping,NULL);

//cvvNamedWindow( "Original Map E", 1);

//cvvShowImage( "Original Map E", OriginalImageMapping);

w[0]=72;

w[1]=715;

w[2]=213;



//w[0]=299;

//w[1]=587;

//w[2]=114;

iResult=ColorMapping( srcImgNew,OriginalImageMapping2,w);

if (iResult<0)

{

printf("Memory failure!\n");

goto finish;

}

printf("Map S, Gmaxv1=%d minv1=%d Dmaxv2=%d minv2=%d Tmaxv=%d minv=%d\n",w[1]/1000,w[1]%1000,w[2]/1000,w[2]%1000,w[0]

sprintf(str,"%s_Map_S%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageMapping2);

//SaveImageBMP(str,OriginalImageMapping2,NULL);

//cvvNamedWindow( "Original Map S", 1);

//cvvShowImage( "Original Map S", OriginalImageMapping2);

printf("Color mapping Successfully!\n");

//edge

ImageAdaptiveCanny(srcImgNew,OriginalImageEdge[3]);

sprintf(str,"%s_Edge_C%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[3]);

//SaveImageBMP(str,OriginalImageEdge[0],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

Pre[m][RGB] = precision;

Recall[m][RGB] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f RGB Edge result\n"

,m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[2],iThresholdEdge);

sprintf(str,"%s_Edge_C%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[2],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[2], &recall, &precision);

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredRGB Edge

result\n",m,precision,recall,Mean,StdDev);

PreFiltered[m][(iThresholdEdge-6)/3][RGB] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][RGB] = recall;

//edge

ImageAdaptiveCanny(srcImgNew,OriginalImageEdge[0],1);

//cvvNamedWindow( "Original Edge C", 1);

//cvvShowImage( "Original Edge C", OriginalImageEdge[0]);

sprintf(str,"%s_Edge_Green%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[0]);



//SaveImageBMP(str,OriginalImageEdge[0],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

Pre[m][Green] = precision;

Recall[m][Green] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f Green Edge result\

n",m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[0],OriginalImageEdge[2],iThresholdEdge);

sprintf(str,"%s_Edge_Green%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[2],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[2], &recall, &precision);

PreFiltered[m][(iThresholdEdge-6)/3][Green] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][Green] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredG Edge result

\n",m,precision,recall,Mean,StdDev);

cvMean_StdDev(OriginalImageMapping,&Mean,&StdDev,0);

printf("Mapping E Gray Mean=%.3f, Std=%.3f\n",Mean,StdDev);

ImageAdaptiveCanny(OriginalImageMapping,OriginalImageEdge[2]);

//cvvNamedWindow( "Original Edge E", 1);

//cvvShowImage( "Original Edge E", OriginalImageEdge[2]);

sprintf(str,"%s_Edge_E%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[2]);

//SaveImageBMP(str,OriginalImageEdge[2],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[2], &recall, &precision);

Pre[m][mapE] = precision;

Recall[m][mapE] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f Mapping-Equal Edge result\

n",m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[2],OriginalImageEdge[3],iThresholdEdge);

sprintf(str,"%s_Edge_E%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

PreFiltered[m][(iThresholdEdge-6)/3][mapE] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][mapE] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredMapE Edge result

\n",m,precision,recall,Mean,StdDev);



cvMean_StdDev(OriginalImageMapping2,&Mean,&StdDev,0);

printf("Mapping S Gray Mean=%.3f, Std=%.3f\n",Mean,StdDev);

ImageAdaptiveCanny(OriginalImageMapping2,OriginalImageEdge[0]);

//cvvNamedWindow( "Original Edge S", 1);

//cvvShowImage( "Original Edge S", OriginalImageEdge[3]);

sprintf(str,"%s_Edge_S%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[0]);

//SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

Pre[m][MapS] = precision;

Recall[m][MapS] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f Mapping-Weight Edge

result\n",m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[0],OriginalImageEdge[3],iThresholdEdge);

sprintf(str,"%s_Edge_S%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

PreFiltered[m][(iThresholdEdge-6)/3][MapS] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][MapS] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredMapS Edge

result\n",m,precision,recall,Mean,StdDev);

iplOr(OriginalImageEdge[2],OriginalImageEdge[1],OriginalImageEdge[3]);

sprintf(str,"%s_Edge_OR%d.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[3]);

//SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

Pre[m][Rjc] = precision;

Recall[m][Rjc] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f Rjc Edge result\

n",m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[0],iThresholdEdge);

sprintf(str,"%s_Edge_OR%df.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[0]);

//SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

PreFiltered[m][(iThresholdEdge-6)/3][Rjc] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][Rjc] = recall;



if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredRjc Edge

result\n",m,precision,recall,Mean,StdDev);

iplOr(OriginalImageEdge[2],OriginalImageEdge[4],OriginalImageEdge[3]);

sprintf(str,"%s_Edge_OR%df2.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[3]);

//SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

Pre[m][Final] = precision;

Recall[m][Final] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f Rjc-GreyFiltered

Edge result\n",m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[0],iThresholdEdge);

sprintf(str,"%s_Edge_OR%dAll.png",FirstName,m);

cvvSaveImage( str, OriginalImageEdge[0]);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

PreFiltered[m][(iThresholdEdge-6)/3][Final] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][Final] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredRjc=

GreyFiltred Edge result\n",m,precision,recall,Mean,StdDev);

//YCbCr edge

iplRGB2YCrCb(srcImgNew,srcImgNew2);

iResult=ImageAdaptiveCanny( srcImgNew2,OriginalImageEdge[3]);

if (iResult==0)

{

sprintf(str,"%s_Edge_YCbCr%d.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

Pre[m][YCbCr] = precision;

Recall[m][YCbCr] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f YCbCr Edge result\

n",m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[0],iThresholdEdge);

sprintf(str,"%s_Edge_YCbCr%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[0],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

if (file!=NULL)



fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredYCbCr Edge

result\n",m,precision,recall,Mean,StdDev);

PreFiltered[m][(iThresholdEdge-6)/3][YCbCr] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][YCbCr] = recall;

}

iplRGB2HSV(srcImgNew,srcImgNew2);

for ( i=0;i<srcImgNew->height;i++)

{

for (int j=0;j<srcImgNew->width;j++)

{

unsigned char ch[4];

iplGetPixel(srcImgNew2,j,i,ch);

if (ch[0]>128)

ch[0]=(unsigned char)(255-ch[0]);

iplPutPixel(srcImgNew2,j,i,ch);

}

}

iResult=ImageAdaptiveCanny( srcImgNew2,OriginalImageEdge[3]);

if (iResult==0)

{

sprintf(str,"%s_Edge_HSV%d.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[3],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[3], &recall, &precision);

Pre[m][HSV] = precision;

Recall[m][HSV] = recall;

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f HSV Edge result\

n",m,precision,recall,Mean,StdDev);

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[0],iThresholdEdge);

sprintf(str,"%s_Edge_HSV%df.png",FirstName,m);

SaveImageBMP(str,OriginalImageEdge[0],NULL);

EvaluateEdgeResults(Edge0, OriginalImageEdge[0], &recall, &precision);

if (file!=NULL)

fprintf(file,"%d %.4f %.4f %.3f %.3f FilteredHSV Edge

result\n",m,precision,recall,Mean,StdDev);

PreFiltered[m][(iThresholdEdge-6)/3][HSV] = precision;

RecallFiltered[m][(iThresholdEdge-6)/3][HSV] = recall;

}

for (iResult = 0; iResult<10; iResult++)

{

float f1 = Pre[m][iResult]+Recall[m][iResult];

if (f1 !=0)

f1PR[m][iResult] = 2*Pre[m][iResult]*Recall[m][iResult]/f1;

else f1PR[m][iResult] = 0;



f1 = PreFiltered[m][(iThresholdEdge-6)/3][iResult]+RecallFiltered[m]

[(iThresholdEdge-6)/3][iResult];

if (f1 !=0)

f1PRFiltered[m][(iThresholdEdge-6)/3][iResult] = 2*PreFiltered[m]

[(iThresholdEdge-6)/3][iResult]*RecallFiltered[m]

[(iThresholdEdge-6)/3][iResult]/f1;

else f1PRFiltered[m][(iThresholdEdge-6)/3][iResult] = 0;

}

}

if (iThresholdEdge<15)

{

iThresholdEdge +=3;

goto StartAgain;

}

finish:

cvvWaitKey(0);

if (file!=NULL)

{

int n;

fprintf(file,"\n%d Grey RGB YCbCr mapE Maps

Green Rjc Final HSV Eigen Threshold\n",m);

for (m=0; m<VarianceLevel; m++)

{

fprintf(file,"NoiseLevel %.3f\n",0.01f*m);

fprintf(file,"%d %.4f %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f %d\n",m,

Pre[m][0],Recall[m][0],Pre[m][1],Recall[m][1],Pre[m][2],Recall[m][2],

Pre[m][3],Recall[m][3],

Pre[m][4],Recall[m][4],Pre[m][5],Recall[m][5],Pre[m][6],Recall[m][6],

Pre[m][7],Recall[m][7],Pre[m][8],Recall[m][8],

Pre[m][9],Recall[m][9],0);

for (n=0; n<4; n++) //threshold level

{

fprintf(file,"%d %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f %.4f %.4f %d\n",m,

PreFiltered[m][n][0],RecallFiltered[m][n][0],PreFiltered[m][n][1],

RecallFiltered[m][n][1],PreFiltered[m][n][2],

RecallFiltered[m][n][2],PreFiltered[m][n][3],RecallFiltered[m][n][3],

PreFiltered[m][n][4],RecallFiltered[m][n][4],

PreFiltered[m][n][5],RecallFiltered[m][n][5],PreFiltered[m][n][6],

RecallFiltered[m][n][6],PreFiltered[m][n][7],



RecallFiltered[m][n][7],PreFiltered[m][n][8],RecallFiltered[m][n][8],

PreFiltered[m][n][9],RecallFiltered[m][n][9], n*3+6);

}

fprintf(file,"\n");

}

fprintf(file,"\n%d Grey RGB YCbCr mapE Maps Green Rjc Final

HSV Eigen (F1)\n");

for (m=0; m<VarianceLevel; m++)

{

fprintf(file,"%d %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f %.4f f1-Original noise= %.3f\n",m,

f1PR[m][0],f1PR[m][1],f1PR[m][2],f1PR[m][3],f1PR[m][4],f1PR[m][5],f1PR[m]

[6],f1PR[m][7],f1PR[m][8], f1PR[m][9],0.01f*m);

}

for (n=0; n<4; n++) //threshold level

{

fprintf(file,"Threshold %d\n",n*3+6);

for (m=0; m<VarianceLevel; m++)

{

fprintf(file,"%d %.4f %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f f1-filtered noise= %.3f\n",m,

f1PRFiltered[m][n][0],f1PRFiltered[m][n][1],f1PRFiltered[m][n][2],

f1PRFiltered[m][n][3],f1PRFiltered[m][n][4],

f1PRFiltered[m][n][5],f1PRFiltered[m][n][6],f1PRFiltered[m][n][7],

f1PRFiltered[m][n][8],f1PRFiltered[m][n][9],0.01f*m);

}

}

for (m=0; m<VarianceLevel; m++)

{

fprintf(file,"NoiseLevel %.3f\n",0.01f*m);

fprintf(file,"%d %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f %.4f f1-Original th=%d\n",m,

f1PR[m][0],f1PR[m][1],f1PR[m][2],f1PR[m][3],f1PR[m][4],f1PR[m][5],

f1PR[m][6],f1PR[m][7],f1PR[m][8], f1PR[m][9],0);

for (n=0; n<4; n++) //threshold level

{

fprintf(file,"%d %.4f %.4f %.4f %.4f %.4f %.4f %.4f

%.4f %.4f %.4f f1-filtered th=%d\n",m,

f1PRFiltered[m][n][0],f1PRFiltered[m][n][1],f1PRFiltered[m][n][2],

f1PRFiltered[m][n][3],f1PRFiltered[m][n][4],

f1PRFiltered[m][n][5],f1PRFiltered[m][n][6],f1PRFiltered[m][n][7],

f1PRFiltered[m][n][8],f1PRFiltered[m][n][9],n*3+6);

}

}

fclose(file);

}



delete [] smoothedim;

delete [] delta_x;

delete [] delta_y;

delete [] magnitude;

delete [] nms;

delete [] pFeature;

delete [] cBuffer[0];

delete [] cBuffer[1];

delete [] cBuffer[2];

delete [] srcArray;

delete [] destArray;

cvReleaseImage(&OriginalImage);

cvReleaseImage(&Edge0);

cvReleaseImage(&srcImgNew);

cvReleaseImage(&srcImgNew2);

cvReleaseImage(&OriginalImageGray);

cvReleaseImage(&OriginalImageMapping);

cvReleaseImage(&OriginalImageMapping2);

for (i=0;i<5;i++)

cvReleaseImage(&OriginalImageEdge[i]);

return 0;

}

int mainNoise(void)

{

int i;

IplImage *srcImg = NULL;

IplImage *srcImgNew = NULL;

IplImage *dstImg = NULL;

int width=0, height=0, w2, h2;

char fileName[_MAX_PATH];

char strNoiseType[20];

int iImageSize = 0;

int nChannels;

float *srcArray, *destArray, fSigma;

if (myAddedNoise == GaussianNoise)

strcpy(strNoiseType,"Gaussian");

else if (myAddedNoise == UniformNoise)

strcpy(strNoiseType,"Uniform");

else if (myAddedNoise == SaltPepperNoise)

strcpy(strNoiseType,"Salt && Pepper");

else if (myAddedNoise == SpeckleNoise)

strcpy(strNoiseType,"Speckle");

FILE *file = fopen("static.txt","wt");



// for ( i=iStartFrame; i<=iEndFrame;i++)

{

// printf("Deal with image %03d of %03d\n",i-iStartFrame,

iEndFrame-iStartFrame+1);

/*if (!SrcGrayFlag)

sprintf(fileName,SrcName,RawName,i+1);//ImageName

else

sprintf(fileName,GrayName,RawName,i+1);//ImageName

*/

//sprintf(fileName,GrayName,i);//ImageName

sprintf(fileName,GrayName,RawName);//ImageName

myLoadImage(&srcImg,fileName, -1);

if (srcImg == NULL)

goto terminate;

//continue;

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_c0.pgm",RawName);

CropImage(srcImg, fileName, &w2, &h2);

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_c0.png",RawName);

CropImage(srcImg, fileName, &w2, &h2);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_c0.pgm",RawName);

LargeImage(srcImg, fileName,&w2,&h2);

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_c0.png",RawName);

LargeImage(srcImg, fileName,&w2,&h2);

}

if (w2 == srcImg->width && h2 == srcImg->height)

{

BlackBoundaryImage(srcImg,2);

cvSaveImage(fileName,srcImg);

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_c0.png",RawName);

cvSaveImage(fileName,srcImg);

}

myLoadImage(&srcImg,fileName, -1);

if (srcImgNew == NULL)

{

width = srcImg->width;

height = srcImg->height;

nChannels = srcImg->nChannels;

srcImgNew = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,nChannels);



iImageSize = width*height*nChannels;

srcArray = new float[iImageSize];

destArray = new float[iImageSize];

if ( srcImgNew == NULL|| srcArray == NULL || destArray == NULL )

return -CVSSP_OUT_OF_MEMORY;

}

/*

if (nChannels>1)

{

//iplColorToGray(srcImgNext,srcGrayNext);

//sprintf(fileName,GrayName,RawName,i+1);

//cvSaveImage(fileName,srcGray);

}

//continue;

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_c0.pgm",RawName);

CropImage(srcImg, fileName);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_c0.pgm",RawName);

LargeImage(srcImg, fileName);

}

for (int kk=0;kk<4; kk++)

{

//Image shear

float sx,sy,scale;

if (ShearZoom)

{

if (stricmp(RawName,"paris") == 0)

{

sx = offset_Paris2[kk][0];

sy = offset_Paris2[kk][1];

scale = offset_Paris2[kk][2];

}

else

{

sx = offset_Pentagon2[kk][0];

sy = offset_Pentagon2[kk][1];

scale = offset_Pentagon2[kk][2];

}

}

else

{

if (stricmp(RawName,"paris") == 0)



{

sx = offset_Paris2[kk][0]*offset_Paris2[kk][2];

sy = offset_Paris2[kk][1]*offset_Paris2[kk][2];

scale = 1.0;

}

else

{

sx = offset_Pentagon2[kk][0]*offset_Pentagon2[kk][2];

sy = offset_Pentagon2[kk][1]*offset_Pentagon2[kk][2];

scale = offset_Pentagon2[kk][2];

}

}

iplShear(srcImg,srcImgNew,0.0,0.0,sx,sy, IPL_INTER_LINEAR); //IPL_INTER_CUBIC

if (ShearZoom)

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_lz%d.png",RawName,kk+1);

ZoomImage(srcImgNew,fileName,scale,IPL_INTER_LINEAR,&dstImg);

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_lz%d_1.pgm",RawName,kk+1);

CropImage(dstImg, fileName);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_lz%d_1.pgm",RawName,kk+1);

LargeImage(dstImg, fileName);

}

ZoomImage(srcImg,NULL,scale,IPL_INTER_LINEAR,&dstImg);

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_lz%d_0.pgm",RawName,kk+1);

CropImage(dstImg, fileName);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_lz%d_0.pgm",RawName,kk+1);

LargeImage(dstImg, fileName);

}

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_l%d.png",RawName,kk+1);

cvSaveImage(fileName,srcImgNew);

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_l%d.pgm",RawName,kk+1);

CropImage(srcImgNew, fileName);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_l%d.pgm",RawName,kk+1);

LargeImage(srcImgNew, fileName);



}

}

//cvAbsDiff(srcImg,srcImgNew,srcImgNew);

//cvSaveImage("diff1.png",srcImgNew);

iplShear(srcImg,srcImgNew,0,0,sx,sy, IPL_INTER_CUBIC); //IPL_INTER_CUBIC

if (ShearZoom)

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_Cz%d.png",RawName,kk+1);

ZoomImage(srcImgNew,fileName,scale,IPL_INTER_CUBIC,&dstImg);

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_Cz%d_1.pgm",RawName,kk+1);

CropImage(dstImg, fileName);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_Cz%d_1.pgm",RawName,kk+1);

LargeImage(dstImg, fileName);

}

ZoomImage(srcImg,NULL,scale,IPL_INTER_CUBIC,&dstImg);

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_Cz%d_0.pgm",RawName,kk+1);

CropImage(dstImg, fileName);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_Cz%d_0.pgm",RawName,kk+1);

LargeImage(dstImg, fileName);

}

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_c%d.png",RawName,kk+1);

cvSaveImage(fileName,srcImgNew);

if (CropFlag )

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_C%d.pgm",RawName,kk+1);

CropImage(srcImgNew, fileName);

}

else

{

sprintf(fileName,"c:/standard_seq/Yosi Code/%s_big_C%d.pgm",RawName,kk+1);

LargeImage(srcImgNew, fileName);

}

}

cvReleaseImage(&dstImg);

dstImg = 0;

//cvAbsDiff(srcImg,srcImgNew,srcImgNew);



//cvSaveImage("diff2.png",srcImgNew);

}

*/

Image2Array(srcImg,srcArray);

for (int m=0; m<VarianceLevel; m++)

{

//fSigma = 0.5f*(m+1)/VarianceLevel; //for uniform distribution

fSigma = 0.05f*(m+1)/VarianceLevel; //for Gaussian distribution

AddArrayNoise(srcArray, destArray,GaussianNoise, fMean, fSigma, width,

height, nChannels, true); //normalised

Array2Image(destArray,srcImgNew, 255.0); //scaled

//save result

//sprintf(fileName,NewSrcName,i,strNoiseType,fMean,fSigma);

//cvSaveImage(fileName,srcImgNew);

//sprintf(fileName,"test%d_%d.pgm",i,m);

sprintf(fileName,"pentagon_n%d.png",m+1);

cvSaveImage(fileName,srcImgNew);

sprintf(fileName,"pentagon_n%d.pgm",m+1);

cvSaveImage(fileName,srcImgNew);

fSigma = 0.8f*(m+1)/VarianceLevel; //for uniform distribution

//fSigma = 0.05f*(m+1)/VarianceLevel; //for Gaussian distribution

AddArrayNoise(srcArray, destArray,UniformNoise, fMean, fSigma, width,

height, nChannels, true); //noamalised

Array2Image(destArray,srcImgNew, 255.0); //scaled

//save result

//sprintf(fileName,NewSrcName,i,strNoiseType,fMean,fSigma);

//cvSaveImage(fileName,srcImgNew);

//sprintf(fileName,"test%d_%d.pgm",i,m);

sprintf(fileName,"pentagon_u%d.png",m+1);

cvSaveImage(fileName,srcImgNew);

sprintf(fileName,"pentagon_u%d.pgm",m+1);

cvSaveImage(fileName,srcImgNew);

}

/*float mse, snr;

fprintf(file,"Source Image %i Address %s\n",i,fileName);

for (int m=0; m<VarianceLevel; m++)

{

mse = 0;

snr = 0;

sprintf(fileName,"F:/standard_seq/Hoge/Gaussian/test%d_%d.pgm",m+1,i);



myLoadImage(&srcImgNew,fileName, -1);

StatisticComparingImages(srcImg, srcImgNew, &mse , &snr );

fprintf(file," Noisy level %d Address %s \n",m+1,fileName);

fprintf(file," MSE %.5f SNR %.5f \n\n",mse, snr);

}*/

} /* for i*/

fclose(file);

terminate:

printf("End! \n Press any key for quit...\n");

cvvWaitKey(0);

cvDestroyAllWindows();

delete[] srcArray;

delete[] destArray;

cvReleaseImage( &srcImg );

cvReleaseImage( &srcImgNew );

return 0;

}

int mainTestTime() //test running time

{

struct _timeb timebuffer;

time_t timeStart, timeEnd;

unsigned short millitmStart,millitmEnd, stime,mtime;

int iResult;

IplImage* OriginalImage,*srcImgNew,*srcImgNew2;

IplImage* OriginalImageGray, *Edge0;

IplImage* OriginalImageMapping;

IplImage* OriginalImageMapping2;

IplImage* OriginalImageEdge[5];

int x,y,height,width, index1, index2;

float *srcArray, *destArray, fSigma;

char str[100];/*used for generate the file name using sprintf*/

unsigned char *cBuffer[3];



float sigma = 0.5;

int hist[32768];

double Mean=0,StdDev=0;

FILE *file = NULL;

double recall,precision;

char sFileName[40];

float Pre[VarianceLevel][10],Recall[VarianceLevel][10], f1PR[VarianceLevel][10];

//Grey, RGB, YCbCr, mapE, MapS, Green, Rjc, Final

float PreFiltered[VarianceLevel][4][10],RecallFiltered[VarianceLevel][4][10],

f1PRFiltered[VarianceLevel][4][10];

int iThresholdEdge = 12;

OriginalImage= cvvLoadImage(cOriginalImageName[0]);

width = OriginalImage->width;

height = OriginalImage->height;

OriginalImageGray=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

OriginalImageMapping=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

OriginalImageMapping2=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

pFeature = new unsigned char[(width+4)*(height+4)];

nms = new BYTE[width*height];

magnitude = new short[width*height];

delta_x = new short[width*height];

delta_y = new short[width*height];

smoothedim = new short[width*height*3]; //enable RGB three channels

for (int i=0;i<5;i++)

OriginalImageEdge[i]=cvCreateImage(cvSize(width,height),IPL_DEPTH_8U, 1);

cBuffer[0] = new unsigned char[width*height];

cBuffer[1] = new unsigned char[width*height];

cBuffer[2] = new unsigned char[width*height];

//iResult=GetStandardImageByThreshold( OriginalImage,OriginalImage);

/* gaussian_smooth(cBuffer[0], height, width, sigma, &smoothedim);

for (y=0; y<height; y++)

{

for (x=0; x<width; x++)

cBuffer[0][y*width+x] = smoothedim[y*width+x];

}

*/

int iImageSize = width*height*OriginalImage->nChannels;



srcArray = new float[iImageSize];

destArray = new float[iImageSize];

Image2Array(OriginalImage,srcArray);

srcImgNew = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,

OriginalImage->nChannels);

srcImgNew2 = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,

OriginalImage->nChannels);

//Edge0 = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,1);

Edge0 = cvLoadImage(cImageNameGT[0],0);

sprintf(sFileName,"%s_time.txt",FirstName);

if (DebugText)

file = fopen(sFileName,"wt");

else file = NULL;

int testEdge = 0; //0: RGB 1: YCbCr 2: eigen 3: Our

StartAgain:

_ftime( &timebuffer ); // C4996

timeStart = timebuffer.time;

millitmStart = timebuffer.millitm;

for (int m=0; m<100; m++)

{

iplCopy(OriginalImage,srcImgNew);

index1 = 0;

index2 = 0;

for (y=0; y<height; y++)

{

for (x=0; x<width; x++)

{

cBuffer[0][index2] = (unsigned char) srcImgNew->imageData[index1+3*x+2];

cBuffer[1][index2] = (unsigned char) srcImgNew->imageData[index1+3*x+1];

cBuffer[2][index2] = (unsigned char) srcImgNew->imageData[index1+3*x];

index2++;

}

index1 += OriginalImage->widthStep;

}

if (testEdge == 2) //eigen edge

{

//eigen-grey canny

ChrominanceEdgePreserveGreyTransform(srcImgNew, OriginalImageGray);

cvMean_StdDev(OriginalImageGray,&Mean,&StdDev,0);



ImageAdaptiveCanny(OriginalImageGray,OriginalImageEdge[1]);

TrackingRemoveNoise(OriginalImageEdge[1],OriginalImageEdge[4],iThresholdEdge);

}

else if (testEdge == 0) //RGB

{

ImageAdaptiveCanny(srcImgNew,OriginalImageEdge[3]);

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[2],iThresholdEdge);

}

else if (testEdge == 1) //YCbCr

{

iplRGB2YCrCb(srcImgNew,srcImgNew2);

iResult=ImageAdaptiveCanny( srcImgNew2,OriginalImageEdge[3]);

if (iResult==0)

{

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[0],iThresholdEdge);

}

}

else if (testEdge == 3) //our method

{

int w[3];

iplColorToGray(srcImgNew,OriginalImageGray);

cvMean_StdDev(OriginalImageGray,&Mean,&StdDev,0);

ImageAdaptiveCanny(OriginalImageGray,OriginalImageEdge[1]);

w[0]=72;

w[1]=715;

w[2]=213;

//iResult=ColorMapping( srcImgNew,OriginalImageMapping,w);

iResult=ColorMappingFast( srcImgNew,OriginalImageMapping,OriginalImageGray,

w,StdDev);

cvMean_StdDev(OriginalImageMapping,&Mean,&StdDev,0);

ImageAdaptiveCanny(OriginalImageMapping,OriginalImageEdge[2]);

iplOr(OriginalImageEdge[2],OriginalImageEdge[1],OriginalImageEdge[3]);

TrackingRemoveNoise(OriginalImageEdge[3],OriginalImageEdge[0],iThresholdEdge);

}

}



if (file!=NULL)

{

_ftime( &timebuffer ); // C4996

// Note: _ftime is deprecated; consider using _ftime_s instead

timeEnd = timebuffer.time;

millitmEnd = timebuffer.millitm;

if (millitmEnd>=millitmStart)

{

stime = (unsigned short)(timeEnd-timeStart);

mtime = millitmEnd-millitmStart;

}

else

{

stime = (unsigned short)(timeEnd-timeStart-1);

mtime = 1000+millitmEnd-millitmStart;

}

if (testEdge == 0)

fprintf(file,"\nProcessing time in running 100 times RGB edges %d.%03d

seconds\n",stime,mtime);

else if (testEdge == 1)

fprintf(file,"\nProcessing time in running 100 times YCbCr edges %d.%03d

seconds\n",stime,mtime);

else if (testEdge == 2)

fprintf(file,"\nProcessing time in running 100 times Eigen edges %d.%03d

seconds\n",stime,mtime);

else if (testEdge == 3)

fprintf(file,"\nProcessing time in running 100 times Our edges %d.%03d

seconds\n",stime,mtime);

}

testEdge ++;

if (testEdge<=3) goto StartAgain;

finish:

cvvWaitKey(0);

if (file!=NULL)

{

fclose(file);

}

delete [] smoothedim;

delete [] delta_x;

delete [] delta_y;

delete [] magnitude;

delete [] nms;

delete [] pFeature;



delete [] cBuffer[0];

delete [] cBuffer[1];

delete [] cBuffer[2];

delete [] srcArray;

delete [] destArray;

cvReleaseImage(&OriginalImage);

cvReleaseImage(&Edge0);

cvReleaseImage(&srcImgNew);

cvReleaseImage(&srcImgNew2);

cvReleaseImage(&OriginalImageGray);

cvReleaseImage(&OriginalImageMapping);

cvReleaseImage(&OriginalImageMapping2);

for (i=0;i<5;i++)

cvReleaseImage(&OriginalImageEdge[i]);

return 0;

}

Skin and Face Detection

#include "skin.h"

char* cOriginalImageName = "C:/map_movie/skin3.bmp";

//skin1 lena-color red-girl

char *FirstName="skin3";

char str[100];/*used for generate the file name using sprintf*/

#define PI 3.14159265359

//lena-color

//green-girl

//red-girl

//BABOON.bmp CAMERAM.BMP GIRL.BMP map.bmp Temp0001.bmp

//band7.bmp

int MyRGB2IHS(IplImage * OriginalImage, IplImage * OriginalImage2)

{

assert(OriginalImage->width==OriginalImage2->width);

assert(OriginalImage->height==OriginalImage2->height);

assert(OriginalImage->nChannels==3 && OriginalImage2->nChannels==3);

for (int i=0;i<OriginalImage->height;i++)

{

for (int j=0;j<OriginalImage->width;j++)

{

unsigned char ch[4];

iplGetPixel(OriginalImage,j,i,ch);

int r=ch[2];

int g=ch[1];

int b=ch[0];

int sum=r+g+b;

int I=(sum+2)/3;

int min_rgb=min(r,min(g,b));

double d_s=1-3.0*min_rgb/sum;

int S=(int)(255*d_s+0.5);

double H0=acos(0.5*(2*r-g-b)/sqrt(((r-g)*(r-g)+(r-b)*(g-b))));



//if (b>g) H0=2*PI-H0;

if (H0<0) H0=2*PI+H0;

else H0=2*PI-H0;

int H=(int)(H0/(2*PI)*255);

//int H=(int)(127*cos(H0)+127+0.5);

ch[0]=(unsigned char)S;

ch[1]=(unsigned char)H;

ch[2]=(unsigned char)I;

iplPutPixel(OriginalImage2,j,i,ch);

}

}

return 0;

}

void GetSkinMaskYCrCb(IplImage * srcImage, IplImage * mask_BW, int erosions,

int dilations)

{

//assert(srcImage->nChannels==3 && mask_BW->nChannels==3);

CvSize sz = cvSize( srcImage->width & -2, srcImage->height & -2);

//get the size of input_image (src_RGB)

IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );

//create 2 temp-images

IplImage* src = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

IplImage* src2 = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

cvCopyImage(srcImage, src);

cvPyrDown( src, pyr, 7 );

//remove noise from input

cvPyrUp( pyr, src2, 7 );

//cvCvtColor(src2 ,src , CV_RGB2YCrCb);//color conversion

// cvCvtColor(srcImage ,src , CV_RGB2YCrCb);//color conversion

//iplRGB2YCrCb(srcImage,src);

iplRGB2YCrCb(src2,src);

uchar Y;

uchar Cr;

uchar Cb;

iplSet(mask_BW,0);

for( int y=0;y<srcImage-> height; y++)

{

for (int x=0; x<srcImage->width; x++)

{

unsigned char ch[4];

iplGetPixel(src,x,y,ch);

Y = ch[0];

Cb= ch[1];



Cr= ch[2];

//iplGetPixel(srcImage,x,y,ch);

if( Cr > 138 && Cr < 178 &&Cb + 0.6 * Cr >189 && Cb + 0.6 * Cr <215)

{

//if ( Y>78 && Y<190 &&Cr/1.3>Cb && (Cr+Cb)/1.5>Y ) //1.345 //

if (Cr/1.3>Cb)

{

iplPutPixel(mask_BW,x,y,ch);

/*if ((Y>=Cb)||(Y>=Cr))

iplPutPixel(mask_BW,x,y,ch);

else if (Y*1.9>Cr)

iplPutPixel(mask_BW,x,y,ch);*/

}

//else if (Y>60 && Y<120 && Cr/1.45>Cb && (Cb+Cr)/3.5>Y)

// iplPutPixel(mask_BW,x,y,ch);

}

}

}

sprintf(str,"%s_YCbCr_Skin2.bmp",FirstName);

SaveImageBMP(str,mask_BW,NULL);

if(erosions>0)

cvErode(mask_BW,mask_BW,0,erosions);

if(dilations>0)

cvDilate(mask_BW,mask_BW,0,dilations);

if(dilations-erosions>0)

cvErode(mask_BW,mask_BW,0,dilations-erosions-1);

cvReleaseImage( &pyr );

cvReleaseImage( &src );

cvReleaseImage( &src2 );

}

void GetSkinMaskYCrCbNew(IplImage * srcImage, IplImage * mask_BW,

int erosions, int dilations)

{

//assert(srcImage->nChannels==3 && mask_BW->nChannels==3);

CvSize sz = cvSize( srcImage->width & -2, srcImage->height & -2);

//get the size of input_image (src_RGB)

IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );

//create 2 temp-images

IplImage* src = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

IplImage* src2 = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

cvCopyImage(srcImage, src);

cvPyrDown( src, pyr, 7 );



//remove noise from input

cvPyrUp( pyr, src2, 7 );

//cvCvtColor(src2 ,src , CV_RGB2YCrCb);//color conversion

// cvCvtColor(srcImage ,src , CV_RGB2YCrCb);//color conversion

//iplRGB2YCrCb(srcImage,src);

iplRGB2YCrCb(src2,src);

uchar Y;

char Cr;

char Cb;

iplSet(mask_BW,0);

for( int y=0;y<srcImage-> height; y++)

{

for (int x=0; x<srcImage->width; x++)

{

unsigned char ch[4];

iplGetPixel(src,x,y,ch);

Y = ch[0];

Cb= ch[1]-128;

Cr= ch[2]-128;

double th1,th2,th3,th4;

if (Y>128)

{

th1=-2+1.0*(256-Y)/16;

th2=-th1+18;

th3=6;

th4=-8;

}

else

{

th1=6;

th2=12;

th3=2+1.0*Y/32;

th4=-16+1.0*Y/16;

}

if (Cr<-2*(Cb+24)) continue;

if (Cr<-(Cb+17)) continue;

if (Cr<-4*(Cb+32)) continue;

if (Cr<2.5*(Cb+th1)) continue;

if (Cr<th3) continue;

if (Cr<0.5*(th4-Cb)) continue;

if (Cr>(220-Cb)/6) continue;

if (Cr>4*(th2-Cb)/3) continue;

iplPutPixel(mask_BW,x,y,ch);

}

}

if(erosions>0)

cvErode(mask_BW,mask_BW,0,erosions);



if(dilations>0)

cvDilate(mask_BW,mask_BW,0,dilations);

if(dilations-erosions>0)

cvErode(mask_BW,mask_BW,0,dilations-erosions-1);

cvReleaseImage( &pyr );

cvReleaseImage( &src );

cvReleaseImage( &src2 );

}

void GetSkinMaskIHS(IplImage * srcImage, IplImage * mask_BW, int erosions,

int dilations)

{

//assert(srcImage->nChannels==3 && mask_BW->nChannels==3);

CvSize sz = cvSize( srcImage->width & -2, srcImage->height & -2);

//get the size of input_image (src_RGB)

IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );

//create 2 temp-images

IplImage* src = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

IplImage* src2 = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

cvCopyImage(srcImage, src);

cvPyrDown( src, pyr, 7 );

//remove noise from input

cvPyrUp( pyr, src2, 7 );

MyRGB2IHS(src2,src);

//MyRGB2IHS(srcImage,src);

sprintf(str,"%s_IHS2.bmp",FirstName);

SaveImageBMP(str,src,NULL);

uchar I;

uchar H;

uchar S;

iplSet(mask_BW,0);

for( int y=0;y<srcImage-> height; y++)

{

for (int x=0; x<srcImage->width; x++)

{

unsigned char ch[4];

iplGetPixel(src,x,y,ch);

S = ch[0];

H= ch[1];

I= ch[2];

// iplGetPixel(srcImage,x,y,ch);

if (x==287 && y==167)

printf("Enter! S=%uc H=%uc I=%uc \n",S,H,I);



double kk=H-240; //H-240

if (kk<0) kk=0;

if (H<230 || S<H/10 || S+I<100) continue;

if( H+S<400 && S*5>I && S+I>105) //S>35 or S*5>I//&& H>380-S H+I<380

400 //&& I>S/(4.1+sqrt(kk)/3) S>H/6

{

//iplPutPixel(mask_BW,x,y,ch);

if (S+I> 180 && H>230 && S+I+H>460 && S+I+45>H+abs(S-I))

iplPutPixel(mask_BW,x,y,ch);

else if (S+I>135 && H>=236 && H+I+S>390 && S<120 && S<I*3)

iplPutPixel(mask_BW,x,y,ch);

else if ( H>=239 && S<I*5 && S+15>I) //S<(I+4*(250-H))*3 //H>=238 234

{

if (H<250)

iplPutPixel(mask_BW,x,y,ch);

else if (I*2>S)

iplPutPixel(mask_BW,x,y,ch);

}

}

else if (H+S>400 && S>H/6 && H>=237 && S+I>=H && S<180) //S<173 S+I-8>H

&& I>S/4.3 && I>S/3.6 //&& S<I*(4.1+sqrt(kk)/3) //

{

if (S+I> 180 && H>230 && S+I+H>460 )

iplPutPixel(mask_BW,x,y,ch);

else if (S+I>135 && H>=236 && H+I+S>390 && S<I*3 && S<120)

iplPutPixel(mask_BW,x,y,ch);

else if (H>240)

iplPutPixel(mask_BW,x,y,ch);

}

}

}

sprintf(str,"%s_IHS_Skin2.bmp",FirstName);

SaveImageBMP(str,mask_BW,NULL);

cvDilate(mask_BW,mask_BW,0,1);

if(erosions>0)

cvErode(mask_BW,mask_BW,0,erosions+1);

if(dilations>0)

cvDilate(mask_BW,mask_BW,0,dilations);

if(dilations-erosions>0)

cvErode(mask_BW,mask_BW,0,dilations-erosions);

for ( int i=0;i<mask_BW->height;i++)

{

for (int j=0;j<mask_BW->width;j++)

{

unsigned char ch[4];

iplGetPixel(mask_BW,j,i,ch);

int k=10*(ch[1]-248);

if (k<0) k=0;



if (ch[0]+ch[2]<106+k)

{

ch[0]=0;

ch[1]=0;

ch[2]=0;

iplPutPixel(mask_BW,j,i,ch);

}

}

}

cvErode(mask_BW,mask_BW,0,1);

cvDilate(mask_BW,mask_BW,0,1);

cvReleaseImage( &pyr );

cvReleaseImage( &src );

cvReleaseImage( &src2 );

}

int MyRGB2HSV(IplImage * OriginalImage, IplImage * OriginalImage2)

{

assert(OriginalImage->width==OriginalImage2->width);

assert(OriginalImage->height==OriginalImage2->height);

assert(OriginalImage->nChannels==3 && OriginalImage2->nChannels==3);

iplRGB2HSV(OriginalImage,OriginalImage2);

for (int i=0;i<OriginalImage2->height;i++)

{

for (int j=0;j<OriginalImage2->width;j++)

{

unsigned char ch[4];

iplGetPixel(OriginalImage2,j,i,ch);

if (ch[0]>128)

ch[0]=(unsigned char)(255-ch[0]);

iplPutPixel(OriginalImage2,j,i,ch);

}

}

return 0;

}

void GetSkinMaskHSV(IplImage * srcImage, IplImage * mask_BW, int erosions,

int dilations)

{

//assert(srcImage->nChannels==3 && mask_BW->nChannels==3);

CvSize sz = cvSize( srcImage->width & -2, srcImage->height & -2);

//get the size of input_image (src_RGB)

IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );

//create 2 temp-images

IplImage* src = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

IplImage* src2 = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);



cvCopyImage(srcImage, src);

cvPyrDown( src, pyr, 7 );

//remove noise from input

cvPyrUp( pyr, src2, 7 );

MyRGB2HSV(src2,src);

//MyRGB2IHS(srcImage,src);

sprintf(str,"%s_HSV2.bmp",FirstName);

SaveImageBMP(str,src,NULL);

uchar V;

uchar H;

uchar S;

iplSet(mask_BW,0);

for( int y=0;y<srcImage-> height; y++)

{

for (int x=0; x<srcImage->width; x++)

{

unsigned char ch[4];

iplGetPixel(src,x,y,ch);

S = ch[0];

H= ch[1];

V= ch[2];

// iplGetPixel(srcImage,x,y,ch);

if (x==330 && y==99)

printf("Entered!\n");

if( S<=21 && V>=S*2.5 && (S+1)*V>H && (H+V)>S*13 && S<25 && H+V>=158 &&

H+V<=400 && H*5>V && H>S*4 && 8.0*(2*S*S+abs(V-H))>V+H) // H>S*5 (H+V)>S*15

{

int kk=0;

//examples for hair, VHS=(53,149,19) or (48,164,17)

/*if ((H>200)&&(S<19)) kk=230-H;

else kk=208-H;

int kk2=kk/5; //kk2=0;

*/

if (x==38 && y==71)

kk=0;

if (S<9 && abs(V-H)>9*S && V+H>320)

continue;

if (S>=18 && V<H && V<S*7.2)

continue;

if (S>=17 && abs(H-V)>S*4.5 && H<200) //if (S>=16 && abs(H-V)>S*4) //18

continue;

if (H<200 ) kk=208-H;

else if (S<19 )

{



if (V<75 ) //&& S>=15

kk=230-H;

else

kk=213-H; //210-

}

int kk2=kk/5; //kk2=0;

if (H<180) //210 //160 //215

iplPutPixel(mask_BW,x,y,ch);

else if ( V+kk*5>=S*(6+kk2) && V+kk*5<S*30) //( kk*4>S) //( V+kk*(4-kk2)>=S*6)

iplPutPixel(mask_BW,x,y,ch);

/*if (V>40 && V< 228)

iplPutPixel(mask_BW,x,y,ch);

else if (V>228 && V<H*4.2)

iplPutPixel(mask_BW,x,y,ch);*/

}

}

}

sprintf(str,"%s_HSV_Skin2.bmp",FirstName);

SaveImageBMP(str,mask_BW,NULL);

if(erosions>0)

cvErode(mask_BW,mask_BW,0,erosions);

if(dilations>0)

cvDilate(mask_BW,mask_BW,0,dilations);

if(dilations-erosions>0)

cvErode(mask_BW,mask_BW,0,dilations-erosions);

cvReleaseImage( &pyr );

cvReleaseImage( &src );

cvReleaseImage( &src2 );

}

int MyRGB2HLS(IplImage * OriginalImage, IplImage * OriginalImage2)

{

assert(OriginalImage->width==OriginalImage2->width);

assert(OriginalImage->height==OriginalImage2->height);

assert(OriginalImage->nChannels==3 && OriginalImage2->nChannels==3);

iplRGB2HLS(OriginalImage,OriginalImage2);

for (int i=0;i<OriginalImage2->height;i++)

{

for (int j=0;j<OriginalImage2->width;j++)

{

unsigned char ch[4];

iplGetPixel(OriginalImage2,j,i,ch);

if (ch[0]>128)

ch[0]=(unsigned char)(255-ch[0]);



iplPutPixel(OriginalImage2,j,i,ch);

}

}

return 0;

}

void GetSkinMaskHLS(IplImage * srcImage, IplImage * mask_BW, int erosions,

int dilations)

{

//assert(srcImage->nChannels==3 && mask_BW->nChannels==3);

CvSize sz = cvSize( srcImage->width & -2, srcImage->height & -2);

//get the size of input_image (src_RGB)

IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );

//create 2 temp-images

IplImage* src = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

IplImage* src2 = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

cvCopyImage(srcImage, src);

cvPyrDown( src, pyr, 7 );

//remove noise from input

cvPyrUp( pyr, src2, 7 );

MyRGB2HLS(src2,src);

//MyRGB2IHS(srcImage,src);

sprintf(str,"%s_HLS2.bmp",FirstName);

SaveImageBMP(str,src,NULL);

uchar L,V;

uchar H;

uchar S;

iplSet(mask_BW,0);

for( int y=0;y<srcImage-> height; y++)

{

for (int x=0; x<srcImage->width; x++)

{

unsigned char ch[4];

iplGetPixel(src,x,y,ch);

S = ch[0];

H= (unsigned char)(ch[2]*1.35);

L= ch[1];

V=L;

if (S<13) V=(unsigned char)(1.4*V);

// iplGetPixel(srcImage,x,y,ch);

if( L>=S*3 && (S+1)*V>H && (H+V)>S*13 && S<25 && H+V>=158 && H+V<=400

&& H*5>V && H>S*4 && 8.0*(2*S*S+abs(V-H))>V+H) // H>S*5 (H+V)>S*15

{

int kk=0;



/*if ((H>200)&&(S<19)) kk=230-H;

else kk=208-H;

int kk2=kk/5; //kk2=0;

*/

if (H<200 ) kk=208-H;

else if (S<19 && H>=200)

{

if (V<75 ) //&& S>=15

kk=230-H;

else

kk=210-H;

}

int kk2=kk/5; //kk2=0;

if (H<180) //210 //160 //215

iplPutPixel(mask_BW,x,y,ch);

else if ( V+kk*5>=S*(6+kk2) && V+kk*5<S*30) //( kk*4>S) //( V+kk*(4-kk2)>=S*6)

iplPutPixel(mask_BW,x,y,ch);

/*if (V>40 && V< 228)

iplPutPixel(mask_BW,x,y,ch);

else if (V>228 && V<H*4.2)

iplPutPixel(mask_BW,x,y,ch);*/

}

}

}

sprintf(str,"%s_HLS_Skin2.bmp",FirstName);

SaveImageBMP(str,mask_BW,NULL);

if(erosions>0)

cvErode(mask_BW,mask_BW,0,erosions);

if(dilations>0)

cvDilate(mask_BW,mask_BW,0,dilations);

if(dilations-erosions>0)

cvErode(mask_BW,mask_BW,0,dilations-erosions);

cvReleaseImage( &pyr );

cvReleaseImage( &src );

cvReleaseImage( &src2 );

}

void GetSkinMaskYUV(IplImage * srcImage, IplImage * mask_BW, int erosions,

int dilations)

{

//assert(srcImage->nChannels==3 && mask_BW->nChannels==3);

CvSize sz = cvSize( srcImage->width & -2, srcImage->height & -2);

//get the size of input_image (src_RGB)

IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );



//create 2 temp-images

IplImage* src = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

IplImage* src2 = cvCreateImage( cvSize(srcImage->width,

srcImage->height),IPL_DEPTH_8U, 3);

cvCopyImage(srcImage, src);

cvPyrDown( src, pyr, 7 );

//remove noise from input

cvPyrUp( pyr, src2, 7 );

//cvCvtColor(src2 ,src , CV_RGB2YCrCb);//color conversion

// cvCvtColor(srcImage ,src , CV_RGB2YCrCb);//color conversion

//iplRGB2YCrCb(srcImage,src);

iplRGB2YUV(src2,src);

sprintf(str,"%s_YUV2.bmp",FirstName);

SaveImageBMP(str,src,NULL);

uchar Y;

uchar U;

uchar V;

iplSet(mask_BW,0);

for( int y=0;y<srcImage-> height; y++)

{

for (int x=0; x<srcImage->width; x++)

{

unsigned char ch[4];

iplGetPixel(src,x,y,ch);

Y = ch[0];

U= ch[1];

V= ch[2];

//iplGetPixel(srcImage,x,y,ch);

if (x==455 && y==283)

printf("Enter! Y=%uc U=%uc V=%uc \n",Y,U,V);

if ((V<148)||(V>185)) continue;

if(U + 0.6 * V >189 && U + 0.6 * V <215 )

{

if (Y>85)

iplPutPixel(mask_BW,x,y,ch);

else if (U>104 && Y+U-V>2)

iplPutPixel(mask_BW,x,y,ch);

}

}

}

sprintf(str,"%s_YUV_Skin2.bmp",FirstName);

SaveImageBMP(str,mask_BW,NULL);

if(erosions>0)



cvErode(mask_BW,mask_BW,0,erosions);

if(dilations>0)

cvDilate(mask_BW,mask_BW,0,dilations);

if(dilations-erosions>0)

cvErode(mask_BW,mask_BW,0,dilations-erosions-1);

cvReleaseImage( &pyr );

cvReleaseImage( &src );

cvReleaseImage( &src2 );

}

int FindShapeResults(IplImage* OriginalImage,IplImage* ResultImage8,IplImage*

ResultImage24,char *col_str)

{

int i,j,k;

IplImage* OriginalImage8;

IplImage* OriginalImage9;

IplImage* OriginalImage10;

IplImage* TempImage;

IplImage* TempImage24;

IplImage* RotatedImage;

IplImage* RotatedImage24;

IplImage* OriginalImage24;

OriginalImage8=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 1);

OriginalImage9=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 1);

OriginalImage10=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 1);

TempImage=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 1);

TempImage24=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 3);

RotatedImage=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 1);

RotatedImage24=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 3);

OriginalImage24=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 3);

//get the grey mask

unsigned char ch[4];

for (i=0;i<OriginalImage8->height;i++)

{

int nOffset=i*OriginalImage8->widthStep;

for (j=0;j<OriginalImage8->width;j++)

{

iplGetPixel(OriginalImage,j,i,ch);

if (ch[0]!=0 && ch[1]!=0 && ch[2]!=0)



OriginalImage8->imageData[nOffset+j]=(unsigned char)255;

}

}

//labeling and remove small regions

DetectedObjs objs1[100],objs2[100];

cvvNamedWindow( "Grey Image", 1);

cvvShowImage( "Grey Image", OriginalImage8); /*the original map image*/

int iCount1=FastImageLabeling(OriginalImage8,OriginalImage9,300,objs1,0);

//for (i=0;i<iCount1;i++)

// printf("Lable first, No %d x=%d y=%d\n",i,objs1[i].x,objs1[i].y);

printf("Labeled objects %d\n",iCount1);

//original momemnt

iplCopy(OriginalImage,OriginalImage24);

ch[0]=0;

ch[1]=0;

ch[2]=0;

ch[3]=0;

for (i=0;i<OriginalImage9->height;i++)

{

int nOffset=i*OriginalImage9->widthStep;

for (j=0;j<OriginalImage9->width;j++)

{

if (OriginalImage9->imageData[nOffset+j]==0)

iplPutPixel(OriginalImage24,j,i,ch);

}

}

//the original image without rotation

iplCopy(OriginalImage9,ResultImage8);

iplCopy(OriginalImage24,ResultImage24);

cvvNamedWindow( "Grey Image Label 300", 1);

cvvShowImage( "Grey Image Label 300", OriginalImage24); /*the original map image*/

sprintf(str,"%s_skin_th300%s.bmp",FirstName,col_str);

SaveImageBMP(str,OriginalImage24,NULL);

DrawObjMoments(objs1, OriginalImage24, iCount1);

cvvNamedWindow( "Moment", 1);

cvvShowImage( "Moment", OriginalImage24); /*the original map image*/

sprintf(str,"%s_skin_moment300%s.bmp",FirstName,col_str);

SaveImageBMP(str,OriginalImage24,NULL);

//rotate each regions

iplSet(RotatedImage,0);

iplSet(RotatedImage24,0);

for ( k=0;k<iCount1;k++)

{

iplSet(OriginalImage10,0);

for (i=0;i<OriginalImage9->height;i++)

{

int nOffset=i*OriginalImage9->widthStep;

for (j=0;j<OriginalImage9->width;j++)



{

if (OriginalImage9->imageData[nOffset+j]==k+1)

OriginalImage10->imageData[nOffset+j]=(unsigned char)255;

}

}

//rotate iplRotate()

iplRotateCenter(OriginalImage10,TempImage,objs1[k].angle/PI*180-90,

objs1[k].x,objs1[k].y,IPL_INTER_LINEAR);//311,217

iplRotateCenter(OriginalImage,OriginalImage24,objs1[k].angle/PI*180-90,

objs1[k].x,objs1[k].y,IPL_INTER_LINEAR);//311,217

for (i=0;i<TempImage->height;i++)

{

int nOffset=i*TempImage->widthStep;

for (j=0;j<TempImage->width;j++)

{

if ((unsigned char)TempImage->imageData[nOffset+j]>128)

{

RotatedImage->imageData[nOffset+j]=(unsigned char)255;

iplGetPixel(OriginalImage24,j,i,ch);

iplPutPixel(RotatedImage24,j,i,ch);

}

}

}

}

cvvNamedWindow( "Rotate Label", 1);

cvvShowImage( "Rotate Label", RotatedImage); /*the original map image*/

sprintf(str,"%s_skin_rotate_%s.bmp",FirstName,col_str);

SaveImageBMP(str,RotatedImage,NULL);

cvvNamedWindow( "Rotate24", 1);

cvvShowImage( "Rotate24", RotatedImage24); /*the original map image*/

sprintf(str,"%s_skin_rotate24_%s.bmp",FirstName,col_str);

SaveImageBMP(str,RotatedImage24,NULL);

//after rotation, find the ratio

int iCount2=FastImageLabeling(RotatedImage,OriginalImage10,300,objs2,0);

printf("Labeled objects after rotation%d\n",iCount2);

for (i=0;i<iCount2;i++)

printf("Lable second, No %d x=%d y=%d\n",i,objs2[i].x,objs2[i].y);

ch[0]=0;

ch[1]=0;

ch[2]=0;

ch[3]=0;

for (k=0;k<iCount2;k++)

{

double ratio;

int h=objs2[k].Lowright.y-objs2[k].Upleft.y;

int w=objs2[k].Lowright.x-objs2[k].Upleft.x;

ratio=1.0*h/w;

if (ratio>1) ratio=1/ratio;

//printf("Obj %d height=%d width=%d Ratio=%.3f\n",k,h,w,ratio);



if (ratio>0.55 && ratio<0.9) continue;

objs2[k].Pixels=-objs2[k].Pixels;

for (int m=0;m<iCount1;m++)

if (objs1[m].x==objs2[k].x && objs1[m].y==objs2[k].y) break;

for (i=0;i<OriginalImage10->height;i++)

{

int nOffset=i*OriginalImage10->widthStep;

for (j=0;j<OriginalImage10->width;j++)

{

if (OriginalImage10->imageData[nOffset+j]==k+1)

{

RotatedImage->imageData[nOffset+j]=(unsigned char)0;

iplPutPixel(RotatedImage24,j,i,ch);

}

if (OriginalImage9->imageData[nOffset+j]==m+1) //before rotation

{

ResultImage8->imageData[nOffset+j]=(unsigned char)0;

iplPutPixel(ResultImage24,j,i,ch);

}

}

}

}

cvvNamedWindow( "Rotate Label ratio", 1);

cvvShowImage( "Rotate Label ratio", RotatedImage); /*the original map image*/

sprintf(str,"%s_skin_rotate_ratio_%s.bmp",FirstName,col_str);

SaveImageBMP(str,RotatedImage,NULL);

cvvNamedWindow( "Rotate24 ratio", 1);

cvvShowImage( "Rotate24 ratio", RotatedImage24); /*the original map image*/

sprintf(str,"%s_skin_rotate24_ratio_%s.bmp",FirstName,col_str);

SaveImageBMP(str,RotatedImage24,NULL);

//recover the images before rotation

cvvNamedWindow( "Label ratio", 1);

cvvShowImage( "Label ratio", ResultImage8); /*the original map image*/

sprintf(str,"%s_skin_ratio_%s.bmp",FirstName,col_str);

SaveImageBMP(str,ResultImage8,NULL);

cvvNamedWindow( "ratio24", 1);

cvvShowImage( "ratio24", ResultImage24); /*the original map image*/

sprintf(str,"%s_skin_ratio24_%s.bmp",FirstName,col_str);

SaveImageBMP(str,ResultImage24,NULL);

//mark the ears and eyes

int hist[300]; //for the continuous width of each object

double MeanHSV[4];

for (int m=0;m<3;m++)

MeanHSV[m]=0;

iplSet(TempImage,0);



for (k=0;k<iCount2;k++)

{

if (objs2[k].Pixels<0) continue;

int h=objs2[k].Lowright.y-objs2[k].Upleft.y;

int w=objs2[k].Lowright.x-objs2[k].Upleft.x;

for (i=0;i<h;i++)

hist[i]=0;

for (i=objs2[k].Upleft.y;i<=objs2[k].Lowright.y;i++)

{

int nOffset=i*RotatedImage->widthStep;

for (j=objs2[k].Upleft.x;j<=objs2[k].Lowright.x;j++)

{

//find the mean HSV

iplGetPixel(RotatedImage24,j,i,ch);

for (int m=0;m<3;m++)

MeanHSV[m]+=(unsigned char)ch[m];

if (RotatedImage->imageData[nOffset+j]!=0)

hist[i-objs2[k].Upleft.y]++;

}

}

for (int m=0;m<3;m++)

MeanHSV[m]=MeanHSV[m]/objs2[k].Pixels;

double sum=MeanHSV[0]+MeanHSV[1]+MeanHSV[2];

printf("Mean =%.1f %.1f %.1f sum=%.1f\n",MeanHSV[0],MeanHSV[1],MeanHSV[2],sum);

for (i=objs2[k].Upleft.y;i<=objs2[k].Lowright.y;i++)

{

int nOffset=i*RotatedImage->widthStep;

for (j=objs2[k].Upleft.x;j<=objs2[k].Lowright.x;j++)

{

//find the mean HSV

iplGetPixel(RotatedImage24,j,i,ch);

int sum1=ch[0]+ch[1]+ch[2];

if (sum1<sum*0.85)

TempImage->imageData[nOffset+j]=(unsigned char)255; //see the holes

}

}

int ear_h=0,ear_hist=0;

for (i=h/4;i<h*3/4;i++)

if (hist[i]>ear_hist)

{

ear_h=i+objs2[k].Upleft.y;

ear_hist=hist[i];

}

printf("Obj %d Center=(%d,%d) ear_h=%d h=%d w=%d\n",k,objs2[k].x,objs2[k].

y,ear_h,h,w);

CvPoint p1= {objs2[k].Upleft.x,ear_h};

CvPoint p2= {objs2[k].Lowright.x,ear_h};



cvLine ( RotatedImage24, p1, p2, CV_RGB(255,255,255), 2 );

}

sprintf(str,"%s_hole_%s.bmp",FirstName,col_str);

cvvNamedWindow( str, 1);

cvvShowImage( str,TempImage); /*the original map image*/

SaveImageBMP(str,TempImage,NULL);

cvvNamedWindow( "Rotate24 ratio draw", 1);

cvvShowImage( "Rotate24 ratio draw", RotatedImage24); /*the original map image*/

sprintf(str,"%s_skin_rotate24_ratio_draw_%s.bmp",FirstName,col_str);

SaveImageBMP(str,RotatedImage24,NULL);

cvReleaseImage(&OriginalImage8);

cvReleaseImage(&OriginalImage9);

cvReleaseImage(&OriginalImage10);

cvReleaseImage(&TempImage);

cvReleaseImage(&TempImage24);

cvReleaseImage(&RotatedImage);

cvReleaseImage(&RotatedImage24);

cvReleaseImage(&OriginalImage24);

return 0;

}

int FindRGBSkinRegions(IplImage* RGBImage,IplImage* RefImage,IplImage* ResultImage)

{

unsigned char chRGB[4];

unsigned char chRef[4];

iplSet(ResultImage,0);

for ( int i=0;i<ResultImage->height;i++)

{

for (int j=0;j<ResultImage->width;j++)

{

iplGetPixel(RefImage,j,i,chRef);

iplGetPixel(RGBImage,j,i,chRGB);

if (chRef[0]!=0 || chRef[1]!=0 ||chRef[2]!=0)

iplPutPixel(ResultImage,j,i,chRGB);

}

}

return 0;

}

int main()

{

int iResult;

int i=0;

IplImage* OriginalImage;

IplImage* OriginalImage2; //converted image

IplImage* OriginalImage8;

IplImage* OriginalImage24;

OriginalImage= cvvLoadImage(cOriginalImageName);

cvvNamedWindow( "RGB Image", 1);

cvvShowImage( "RGB Image", OriginalImage); /*the original map image*/



OriginalImage2=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 3);

OriginalImage8=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 1);

OriginalImage24=cvCreateImage( cvSize(OriginalImage->width,

OriginalImage->height),IPL_DEPTH_8U, 3);

GetSkinMaskYCrCb(OriginalImage,OriginalImage2,2,3);

cvvNamedWindow( "YCbCr Skin", 2);

cvvShowImage( "YCbCr Skin", OriginalImage2);

sprintf(str,"%s_YCbCr_skin.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

iplCopy(OriginalImage2,OriginalImage24);

FindRGBSkinRegions(OriginalImage,OriginalImage24,OriginalImage2);

cvvNamedWindow( "YCbCr Skin RGB", 2);

cvvShowImage( "YCbCr Skin RGB", OriginalImage2);

sprintf(str,"%s_YCbCr_skin_RGB.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

/*GetSkinMaskYCrCbNew(OriginalImage,OriginalImage2,2,6);

cvvNamedWindow( "YCbCr Skin2", 2);

cvvShowImage( "YCbCr Skin2", OriginalImage2);

sprintf(str,"%s_YCbCr_skin_new.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);*/

GetSkinMaskIHS(OriginalImage,OriginalImage2,3,4);

cvvNamedWindow( "IHS Skin", 2);

cvvShowImage( "IHS Skin", OriginalImage2);

sprintf(str,"%s_IHS_skin.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

iplCopy(OriginalImage2,OriginalImage24);

FindRGBSkinRegions(OriginalImage,OriginalImage24,OriginalImage2);

cvvNamedWindow( "HIS Skin RGB", 2);

cvvShowImage( "HIS Skin RGB", OriginalImage2);

sprintf(str,"%s_HIS_skin_RGB.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

//iplRGB2HSV(OriginalImage,OriginalImage2);

GetSkinMaskHSV(OriginalImage,OriginalImage2,2,4);

cvvNamedWindow( "HSV Skin", 2);

cvvShowImage( "HSV Skin", OriginalImage2);

sprintf(str,"%s_HSV_skin.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

//FindShapeResults(OriginalImage2,OriginalImage8,OriginalImage24,"HSV");

iplCopy(OriginalImage2,OriginalImage24);

//find the RGB face candidates

FindRGBSkinRegions(OriginalImage,OriginalImage24,OriginalImage2);

cvvNamedWindow( "HSV Skin RGB", 2);

cvvShowImage( "HSV Skin RGB", OriginalImage2);

sprintf(str,"%s_HSV_skin_RGB.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);



//iplRGB2HLS(OriginalImage,OriginalImage2);

/*GetSkinMaskHLS(OriginalImage,OriginalImage2,3,5);

cvvNamedWindow( "HLS Skin", 2);

cvvShowImage( "HLS Skin", OriginalImage2);

sprintf(str,"%s_HLS_skin.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

*/

GetSkinMaskYUV(OriginalImage,OriginalImage2,2,4);

cvvNamedWindow( "YUV Skin", 2);

cvvShowImage( "YUV Skin", OriginalImage2);

sprintf(str,"%s_YUV_skin.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

iplCopy(OriginalImage2,OriginalImage24);

//FindShapeResults(OriginalImage2,OriginalImage8,OriginalImage24,"YUV");

//find the RGB face candidates

FindRGBSkinRegions(OriginalImage,OriginalImage24,OriginalImage2);

cvvNamedWindow( "YUV Skin RGB", 2);

cvvShowImage( "YUV Skin RGB", OriginalImage2);

sprintf(str,"%s_YUV_skin_RGB.bmp",FirstName);

SaveImageBMP(str,OriginalImage2,NULL);

cvvWaitKey(0);

cvReleaseImage(&OriginalImage);

cvReleaseImage(&OriginalImage2);

cvReleaseImage(&OriginalImage8);

cvReleaseImage(&OriginalImage24);

return iResult;

}

Gaussian Mixture Model

function [Weights, Mu, Variances] = GMM(Input, No_of_Clusters,Limit)

% Initialize_the_Cluster_Centroid

[IDX, Initial_Centroids] = kmeans(Input’,No_of_Clusters);

Mu = Initial_Centroids’;

Limit = 10;

for Iterations = 1:Limit

[No_of_Features_within_Data,No_of_Data_Points] = size(Input);

Probability_of_Cluster_given_Point(1:No_of_Clusters,1:No_of_Data_Points) = 0.0;

[PC,Weights] = Cluster_Probability(Input,Mu);

%Initialize Cluster Covariances

COVAR(1:No_of_Features_within_Data,1:No_of_Clusters) = 0.0;

for i=1:No_of_Clusters

COVAR(:,i) = Cluster_Covariance(Input(:,IDX==i));

end

%Initialize the probability matrix P(Cluster/Point)

Variances = COVAR;

for i=1:No_of_Clusters



for j=1:No_of_Data_Points

Probability_of_Cluster_given_Point(i,j) = Probability_of_Cluster_given_X(Input(:,j),

Mu,Variances,PC,i);

end;

end;

% New Means

Mu1(1:No_of_Clusters,1:No_of_Features_within_Data) = 0.0;

for i=1:No_of_Clusters

Mu1(i,:) = Compute_Mean_for_Cluster(Input,Mu,Variances,PC,i);

end;

%disp(Iterations);

%disp(Mu1);

Mu = Mu1’;

end;

%Co-variance Computation for a Cluster

function [COVAR] = Cluster_Covariance(Data)

[r,c] = size(Data);

for i=1:r

COVAR(i) = var(Data(i,:));

end;

end;

% Function to compute the Cluster Probablity

function [PC,INDEX] = Cluster_Probability(Data,Mu)

[No_of_Features_within_Data,No_of_Data_Points] = size(Data);

[No_of_Features_within_Mu,No_of_Mu_Points] = size(Mu);

PC(1:No_of_Mu_Points) = 0;

INDEX(1:No_of_Data_Points) = 0;

Distance(1:No_of_Data_Points,1:No_of_Mu_Points) = 0.0;

for i=1:No_of_Data_Points

for j = 1:No_of_Mu_Points

Distance(i,j) = sqrt(dot(Data(:,i)-Mu(:,j),Data(:,i)-Mu(:,j)));

end

end

for i=1:No_of_Data_Points

[value,idx] = min(Distance(i,:));

PC(idx) = PC(idx)+1;

INDEX(i) = idx;

end

PC = PC/No_of_Data_Points;

function mu = Compute_Mean_for_Cluster(X,Means,Variances,PC,Label_of_Cluster)

[r,c] = size(X);

mu = 0.0;

Numerator = 0.0;

Denominator = 0.0;

for i=1:c

Numerator = Numerator+ Probability_of_Cluster_given_X(X(:,i),Means,

Variances,PC,Label_of_Cluster)*X(:,i);

Denominator = Denominator + Probability_of_Cluster_given_X(X(:,i),

Means,Variances,PC,Label_of_Cluster);

end;

mu = Numerator/Denominator;

function MC = Mixing_Coefficient(X,MU,SIGMA)

M = normpdf(X,MU,SIGMA);

[r,c] = size(M);



MC = 0.0;

for i=1:c

MC = MC + M(i);

end

MC = MC/c;

function PY = Probability_of_Cluster_given_X(X,Means,Variances,PC,

Label_of_Cluster)

PY = PC(Label_of_Cluster)*Mixing_Coefficient(X,Means(:,Label_of_Cluster),

Variances(:,Label_of_Cluster));

PY = PY/Probability_of_X(X,Means,Variances,PC);

function [res]=gather_point(xx,yy,zz)

[m,n]=size(xx);

res=ones(n,3);

for i=1:1:n

for i1=1:1:3

if i1==1

res(i,i1)=xx(i);

elseif i1==2

res(i,i1)=yy(i);

else

res(i,i1)=zz(i);

end

end

end

clear all; close all; clc;

i=imread(’E:\MATLAB6p5\work\ÖśÏ�ÔÚÆäÖÐ.bmp’);

[row,range]=size(i);

p=row*range;a=0;Y=zeros(1,p);Q=zeros(1,p);

for k1=1:1:row

for k2=1:1:range

if i(k1,k2)==0

a=a+1;

XXX=k2-1;YYY=row+1-k1;

Y(a)=YYY;Q(a)=YYY-XXX;

end

end

end

% for t=1:1:a

% o=[Y(t) Q(t)]

% end

X1=[0 1];Y1=[Y(1) Q(1)];

plot(X1,Y1,’r’);hold on;

YY=zeros(1,a-1);QQ=zeros(1,a-1);

for t=2:1:a

X2=[0 1];Y2=[Y(t) Q(t)];

plot(X2,Y2);

[YY(t-1),QQ(t-1)]=pll(X1,Y1,X2,Y2);

% yyy=YY(t-1)

% qqq=QQ(t-1)%£ť¡żţã

plot(YY(t-1),QQ(t-1),’ko’);

end

% [res]=gather_point(YY,QQ,QQ);nn=0;res



% [m,n3]=size(YY);

% for no1=1:1:n3

% n=0;

% for no2=(no1+1):1:n3

% if (abs(res(no2,1)-res(no1,1))<=0.0001&abs(res(no2,2)-res(no1,2))

<=0.0001&abs(res(no2,2)-res(no1,2))<=0.0001)

% n=n+1;hao=res(no1,:);

% end

% end

% if nn>=n3/5

% rhao=hao;break;

% elseif nn<n

% rhao=hao;nn=n;

% end

% end

[rhao]=the_max1(YY,QQ,QQ);

% yyy=YY

% qqq=QQ

% t2=0;t3=0;

% for t1=2:1:t

% t2=YY(t1)+t2;

% t3=t3+QQ(t1);

% end

% t2=t2/(t1-1)

% t3=t3/(t1-1)%t2=m,t3=b

% i1=ones(row,range);

% t2=2;t3=0;

i1=ones(row,range);

rhao

t2=rhao(1);t3=rhao(2);

t2=round(t2);t3=round(t3);

% t2=1.5;t3=1.5;

for k1=1:1:row

for k2=1:1:range

XXX=k2-1;YYY=row+1-k1;

if abs(YYY-(t2*XXX+t3))<=1%YYY==t2*XXX+t3

i1(k1,k2)=0;

end

end

end

imwrite(i1,’E:\MATLAB6p5\work\ÕÒşöţÄÖśÏ�.bmp’,’bmp’);

i2=imread(’E:\MATLAB6p5\work\ÕÒşöţÄÖśÏ�.bmp’);

figure;

subplot(2,1,1);

imshow(i);

subplot(2,1,2);

imshow(i2);

RGB=imread(’001.gif’);

YCbCr=rgb2ycbcr(RGB);

Y=YCbCr(:,:,1);

Cb=YCbCr(:,:,2);

Cr=YCbCr(:,:,3);

imshow(RGB);title(’RGB’);

figure,imshow(YCbCr);title(’YCbCr’);

I=RGB;

rows=size(YCbCr,1);

columns=size(YCbCr,2);



k=(2.53/180)*pi;

m=sin(k);n=cos(k);

cx=109.38;cy=152.02;ecx=1.60;ecy=2.41;a=25.39;b=14.03;

for i=1:rows

for j=1:columns

if Y(i,j)<80

I(i,j,:)=0;

elseif (Y(i,j)<=230&&Y(i,j)>=80)

x=(double(Cb(i,j))-cx)*n+(double(Cr(i,j))-cy)*m;

y=(double(Cr(i,j))-cy)*n-(double(Cb(i,j))-cx)*m;

if((x-ecx)^2/a^2+(y-ecy)^2/b^2)<=1

I(i,j,:)=255;

else I(i,j,:)=0;

end

elseif Y(i,j)>230

x=(double(Cb(i,j))-cx)*n+(double(Cr(i,j))-cy)*m;

y=(double(Cr(i,j))-cy)*n-(double(Cb(i,j))-cx)*m;

if ((x-ecx)^2/(1.1*a)^2+(y-ecy)^2/(1.1*b)^2)<=1

I(i,j,:)=255;

else I(i,j,:)=0;

end

end

end

end

figure,imshow(I);

function [W,M,V,L] = EM_GM_fast(X,k,ltol,maxiter,pflag,Init)

%%%% Validate inputs %%%%

if nargin <= 1,

disp(’EM_GM must have at least 2 inputs: X,k!/n’)

return

elseif nargin == 2,

ltol = 0.1; maxiter = 1000; pflag = 0; Init = [];

err_X = Verify_X(X);

err_k = Verify_k(k);

if err_X | err_k, return; end

elseif nargin == 3,

maxiter = 1000; pflag = 0; Init = [];

err_X = Verify_X(X);

err_k = Verify_k(k);

[ltol,err_ltol] = Verify_ltol(ltol);

if err_X | err_k | err_ltol, return; end

elseif nargin == 4,

pflag = 0; Init = [];

err_X = Verify_X(X);

err_k = Verify_k(k);

[ltol,err_ltol] = Verify_ltol(ltol);

[maxiter,err_maxiter] = Verify_maxiter(maxiter);

if err_X | err_k | err_ltol | err_maxiter, return; end

elseif nargin == 5,

Init = [];

err_X = Verify_X(X);

err_k = Verify_k(k);

[ltol,err_ltol] = Verify_ltol(ltol);

[maxiter,err_maxiter] = Verify_maxiter(maxiter);

[pflag,err_pflag] = Verify_pflag(pflag);

if err_X | err_k | err_ltol | err_maxiter | err_pflag, return; end

elseif nargin == 6,

err_X = Verify_X(X);

err_k = Verify_k(k);



[ltol,err_ltol] = Verify_ltol(ltol);

[maxiter,err_maxiter] = Verify_maxiter(maxiter);

[pflag,err_pflag] = Verify_pflag(pflag);

[Init,err_Init]=Verify_Init(Init);

if err_X | err_k | err_ltol | err_maxiter | err_pflag | err_Init, return; end

else

disp(’EM_GM must have 2 to 6 inputs!’);

return

end

%%%% Initialize W, M, V,L %%%%

t = cputime;

if isempty(Init),

[W,M,V] = Init_EM(X,k); L = 0;

else

W = Init.W;

M = Init.M;

V = Init.V;

end

Ln = Likelihood(X,k,W,M,V); % Initialize log likelihood

Lo = 2*Ln;

%%%% EM algorithm %%%%

niter = 0;

while (abs(100*(Ln-Lo)/Lo)>ltol) & (niter<=maxiter),

E = Expectation(X,k,W,M,V); % E-step

[W,M,V] = Maximization(X,k,E); % M-step

Lo = Ln;

Ln = Likelihood(X,k,W,M,V);

niter = niter + 1;

end

L = Ln;

%%%% Plot 1D or 2D %%%%

if pflag==1,

[n,d] = size(X);

if d>2,

disp(’Can only plot 1 or 2 dimensional applications!/n’);

else

Plot_GM(X,k,W,M,V);

end

elapsed_time = sprintf(’CPU time used for EM_GM: %5.2fs’,cputime-t);

disp(elapsed_time);

disp(sprintf(’Number of iterations: %d’,niter-1));

end

%%%%%%%%%%%%%%%%%%%%%%

%%%% End of EM_GM %%%%

%%%%%%%%%%%%%%%%%%%%%%

function E = Expectation(X,k,W,M,V)

% This function is the modification of ’Expectation’ in EM_GM made by

% Mr. Michael Boedigheimer to enchance computational speed.

% Note: this modification requires more memory to execute.

% If EM_GM_fast does not provide any speed gain or is slower than EM_GM,

% more memory is needed or EM_GM should be used instead.

[n,d] = size(X);

E = zeros(n,k);

for j = 1:k,

if V(:,:,j)==zeros(d,d), V(:,:,j)=ones(d,d)*eps; end

E(:,j) = W(j).*mvnpdf( X, M(:,j)’, V(:,:,j));

end

total = repmat(sum(E,2),1,j);



E = E./total;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Expectation %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [W,M,V] = Maximization(X,k,E)

% This function is the modification of ’Maximization’ in EM_GM made by

% Mr. Michael Boedigheimer to enchance computational speed.

% Note: this modification requires more memory to execute.

% If EM_GM_fast does not provide any speed gain or is slower than EM_GM,

% more memory is needed or EM_GM should be used instead.

[n,d] = size(X);

W = sum(E);

M = X’*E./repmat(W,d,1);

for i=1:k,

dXM = X - repmat(M(:,i)’,n,1);

Wsp = spdiags(E(:,i),0,n,n);

V(:,:,i) = dXM’*Wsp*dXM/W(i);

end

W = W/n;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Maximization %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function L = Likelihood(X,k,W,M,V)

% Compute L based on K. V. Mardia, "Multivariate Analysis", Academic

% Press, 1979, PP. 96-97

% to enchance computational speed

[n,d] = size(X);

U = mean(X)’;

S = cov(X);

L = 0;

for i=1:k,

iV = inv(V(:,:,i));

L = L + W(i)*(-0.5*n*log(det(2*pi*V(:,:,i))) ...

-0.5*(n-1)*(trace(iV*S)+(U-M(:,i))’*iV*(U-M(:,i))));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Likelihood %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function err_X = Verify_X(X)

err_X = 1;

[n,d] = size(X);

if n<d,

disp(’Input data must be n x d!/n’);

return

end

err_X = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Verify_X %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%

function err_k = Verify_k(k)

err_k = 1;

if ~isnumeric(k) | ~isreal(k) | k<1,

disp(’k must be a real integer >= 1!/n’);

return

end

err_k = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Verify_k %%%%



%%%%%%%%%%%%%%%%%%%%%%%%%

function [ltol,err_ltol] = Verify_ltol(ltol)

err_ltol = 1;

if isempty(ltol),

ltol = 0.1;

elseif ~isreal(ltol) | ltol<=0,

disp(’ltol must be a positive real number!’);

return

end

err_ltol = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Verify_ltol %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [maxiter,err_maxiter] = Verify_maxiter(maxiter)

err_maxiter = 1;

if isempty(maxiter),

maxiter = 1000;

elseif ~isreal(maxiter) | maxiter<=0,

disp(’ltol must be a positive real number!’);

return

end

err_maxiter = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Verify_maxiter %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [pflag,err_pflag] = Verify_pflag(pflag)

err_pflag = 1;

if isempty(pflag),

pflag = 0;

elseif pflag~=0 & pflag~=1,

disp(’Plot flag must be either 0 or 1!/n’);

return

end

err_pflag = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Verify_pflag %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Init,err_Init] = Verify_Init(Init)

err_Init = 1;

if isempty(Init),

% Do nothing;

elseif isstruct(Init),

[Wd,Wk] = size(Init.W);

[Md,Mk] = size(Init.M);

[Vd1,Vd2,Vk] = size(Init.V);

if Wk~=Mk | Wk~=Vk | Mk~=Vk,

disp(’k in Init.W(1,k), Init.M(d,k) and Init.V(d,d,k) must equal!/n’)

return

end

if Md~=Vd1 | Md~=Vd2 | Vd1~=Vd2,

disp(’d in Init.W(1,k), Init.M(d,k) and Init.V(d,d,k) must equal!/n’)

return

end

else

disp(’Init must be a structure: W(1,k), M(d,k), V(d,d,k) or []!’);

return

end

err_Init = 0;



%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Verify_Init %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [W,M,V] = Init_EM(X,k)

[n,d] = size(X);

[Ci,C] = kmeans(X,k,’Start’,’cluster’, ...

’Maxiter’,100, ...

’EmptyAction’,’drop’, ...

’Display’,’off’); % Ci(nx1) - cluster indeices; C(k,d) - cluster centroid

(i.e. mean)

while sum(isnan(C))>0,

[Ci,C] = kmeans(X,k,’Start’,’cluster’, ...

’Maxiter’,100, ...

’EmptyAction’,’drop’, ...

’Display’,’off’);

end

M = C’;

Vp = repmat(struct(’count’,0,’X’,zeros(n,d)),1,k);

for i=1:n, % Separate cluster points

Vp(Ci(i)).count = Vp(Ci(i)).count + 1;

Vp(Ci(i)).X(Vp(Ci(i)).count,:) = X(i,:);

end

V = zeros(d,d,k);

for i=1:k,

W(i) = Vp(i).count/n;

V(:,:,i) = cov(Vp(i).X(1:Vp(i).count,:));

end

%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Init_EM %%%%

%%%%%%%%%%%%%%%%%%%%%%%%

function Plot_GM(X,k,W,M,V)

[n,d] = size(X);

if d>2,

disp(’Can only plot 1 or 2 dimensional applications!/n’);

return

end

S = zeros(d,k);

R1 = zeros(d,k);

R2 = zeros(d,k);

for i=1:k, % Determine plot range as 4 x standard deviations

S(:,i) = sqrt(diag(V(:,:,i)));

R1(:,i) = M(:,i)-4*S(:,i);

R2(:,i) = M(:,i)+4*S(:,i);

end

Rmin = min(min(R1));

Rmax = max(max(R2));

R = [Rmin:0.001*(Rmax-Rmin):Rmax];

clf, hold on

if d==1,

Q = zeros(size(R));

for i=1:k,

P = W(i)*normpdf(R,M(:,i),sqrt(V(:,:,i)));

Q = Q + P;

plot(R,P,’r-’); grid on,

end

plot(R,Q,’k-’);

xlabel(’X’);

ylabel(’Probability density’);

else % d==2

plot(X(:,1),X(:,2),’r.’);



for i=1:k,

Plot_Std_Ellipse(M(:,i),V(:,:,i));

end

xlabel(’1^{st} dimension’);

ylabel(’2^{nd} dimension’);

axis([Rmin Rmax Rmin Rmax])

end

title(’Gaussian Mixture estimated by EM’);

%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Plot_GM %%%%

%%%%%%%%%%%%%%%%%%%%%%%%

function Plot_Std_Ellipse(M,V)

[Ev,D] = eig(V);

d = length(M);

if V(:,:)==zeros(d,d),

V(:,:) = ones(d,d)*eps;

end

iV = inv(V);

% Find the larger projection

P = [1,0;0,0]; % X-axis projection operator

P1 = P * 2*sqrt(D(1,1)) * Ev(:,1);

P2 = P * 2*sqrt(D(2,2)) * Ev(:,2);

if abs(P1(1)) >= abs(P2(1)),

Plen = P1(1);

else

Plen = P2(1);

end

count = 1;

step = 0.001*Plen;

Contour1 = zeros(2001,2);

Contour2 = zeros(2001,2);

for x = -Plen:step:Plen,

a = iV(2,2);

b = x * (iV(1,2)+iV(2,1));

c = (x^2) * iV(1,1) - 1;

Root1 = (-b + sqrt(b^2 - 4*a*c))/(2*a);

Root2 = (-b - sqrt(b^2 - 4*a*c))/(2*a);

if isreal(Root1),

Contour1(count,:) = [x,Root1] + M’;

Contour2(count,:) = [x,Root2] + M’;

count = count + 1;

end

end

Contour1 = Contour1(1:count-1,:);

Contour2 = [Contour1(1,:);Contour2(1:count-1,:);Contour1(count-1,:)];

plot(M(1),M(2),’k+’);

plot(Contour1(:,1),Contour1(:,2),’k-’);

plot(Contour2(:,1),Contour2(:,2),’k-’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% End of Plot_Std_Ellipse %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ANN and SVM

clear

format long e;

load I;

% I = radbas(I);

% make the original data between 0 and 1

I1 = I’;

n = 1;



while n <= 39

M1(1,n) = min(I1(:,n));

n = n+1;

end

for n = 1:39

if M1(1,n) < 0

I1(:,n) = I1(:,n) + (-M1(1,n));

n = n+1;

end

end

n = 1;

while n <= 39

M2(1,n) = max(I1(:,n));

I1(:,n) = I1(:,n)/M2(1,n);

n = n+1;

end

I = I1’

% Mine

I2(1,:) = I(15,:);

I2(2,:) = I(2,:);

I2(3,:) = I(39,:);

I2(4,:) = I(16,:);

I2(5,:) = I(17,:);

I2(6,:) = I(33,:);

I2(7,:) = I(18,:);

I2(8,:) = I(34,:);

I2(9,:) = I(19,:);

I2(10,:) = I(29,:);

I2(11,:) = I(7,:);

I2(12,:) = I(31,:);

I2(13,:) = I(21,:);

I2(14,:) = I(23,:);

I2(15,:) = I(5,:);

I2(16,:) = I(20,:);

I2(17,:) = I(27,:);

I2(18,:) = I(1,:);

I2(19,:) = I(25,:);

I2(20,:) = I(30,:);

I2(21,:) = I(22,:);

I2(22,:) = I(12,:);

I2(23,:) = I(14,:);

I2(24,:) = I(28,:);

I2(25,:) = I(38,:);

% I2(26,:) = I(35,:);

% I2(27,:) = I(8,:);

% I2(28,:) = I(26,:);

% I2(29,:) = I(24,:);

% I2(30,:) = I(3,:);

% I2(31,:) = I(13,:);

% I2(32,:) = I(37,:);

% I2(33,:) = I(4,:);

% I2(34,:) = I(32,:);

% I2(35,:) = I(36,:);

% I2(36,:) = I(11,:);

% I2(37,:) = I(10,:);

% I2(38,:) = I(9,:);

% I2(39,:) = I(6,:);



% search the target 1 and 0

[r,w] = find(T == 1);

[r1,w1] = find(T == 0);

[r2,w2] = size(w);

[r3,w3] = size(w1);

n = 1; % Target is 1

while n <= w2

Input1(:,n) = I2(:,w(n));

Target1(:,n) = T(:,w(n));

n = n+1;

end

n = 1 % Target is 0

while n<= w3

Input2(:,n) = I2(:,w1(n));

Target2(:,n) = T(:,w1(n));

n = n+1;

end

% Divided data

[trainV1,valV1,testV1] = dividevec(Input1,Target1,0,0.2); % target is 1

[trainV2,valV2,testV2] = dividevec(Input2,Target2,0,0.2); % target is 0

a1 = trainV1.P;

a2 = trainV2.P;

a3 = trainV1.indices;

a4 = trainV2.indices;

[ra1,wa1] = size(a1);

[ra2,wa2] = size(a2);

[RA1,WA1] = size(Input1);

[RA2,WA2] = size(Input2);

W1 = wa1/WA1;

W2 = wa2/WA2;

A = [a1 a2]; % A = trainV.P

b1 = trainV1.T;

b2 = trainV2.T;

[rb1,wb1] = size(b1);

[rb2,wb2] = size(b2);

[RB1,WB1] = size(Input1);

[RB2,WB2] = size(Input2);

W3 = wb1/WB1;

W4 = wb2/WB2;

B = [b1 b2]; % B = trainV.T

% Build the structure of testV

f1 = testV1.P; % Target is 1

f2 = testV2.P; % Target is 0

g1 = testV1.T;

g2 = testV2.T;

h1 = testV1.indices;

h2 = testV2.indices;

F = [f1 f2];

G = [g1 g2];

H = [h1 h2];

testV = struct(’P’,{F},’T’,{G},’indices’,{H});

b3 = zeros(1,104);

b4 = ones(1,570);



B1 = [b3 b4];

net1 = newff(minmax(A),[30 16 1],{’logsig’ ’logsig’ ’purelin’},’trainlm’);

% net1 = newff(minmax(A),[30 1],{’logsig’ ’purelin’},’trainlm’);

% net1 = newff(minmax(I2),[25 1],{’radbas’ ’logsig’},’trainlm’);

% net1 = newff(minmax(I2),[25 1],{’logsig’ ’satlin’},’trainlm’);

% net1.IW{1,1} = net1.IW{1,1}*0.5;

% net1.LW{2,1} = net1.LW{2,1}*0.01;

% net1.inputConnect(3,1) = 0;

net1.inputConnect(2,1) = 1;

net1.biasConnect(1) = 1;

% net1.biasConnect(3) = 0;

net1.trainParam.goal = 1e-10;

net1.trainParam.epochs = 100;

net1.trainParam.mu_max = 1e400;

net1.trainParam.min_grad = 1e-15;

net1.trainParam.lr = 0.5;

[net1,tr1,Y1,E1,Pf1,Af1] = train(net1,A,B);

% net2 = newff(minmax(Y1),[30 1],{’logsig’ ’purelin’},’trainlm’);

% net2.trainParam.goal = 1e-2;

% net2.trainParam.epochs = 1000;

% net2.trainParam.min_grad = 1e-20;

% [net2,tr2,Y2,E2,Pf2,Af2] = train(net2,Y1,B);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CHECKING THE RESULT OF TRAINING DATA ARE 90% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y1 = Y1(:,1:104); % Target is 1, result of training data

% y2 = Y1(:,105:674); % Target is 0, reuslt of training data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CHECKING THE RESULT OF TRAINING DATA ARE 80% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y1 = Y1(:,1:92); % Target is 1, result of training data

% y2 = Y1(:,93:599); % Target is 0, reuslt of training data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CHECKING THE RESULT OF TRAINING DATA ARE 70% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y1 = Y1(:,1:81); % Target is 1, result of training data

% y2 = Y1(:,82:525); % Target is 0, reuslt of training data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CHECKING THE RESULT OF TRAINING DATA ARE 60% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y1 = Y1(:,1:69); % Target is 1, result of training data

% y2 = Y1(:,70:449); % Target is 0, result of training data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CHECKING THE RESULT OF TRAINING DATA ARE 50% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y1 = Y1(:,1:57); % Target is 1, result of training data

% y2 = Y1(:,58:373); % Target is 0, result of training data

% s1 = min(y1);

% s2 = max(y1);

% s3 = min(y2);



% s4 = max(y2);

save net1

clear

format long e

load I

% make the original data between 0 and 1

I1 = I’

n = 1;

while n <= 39

M1(1,n) = min(I1(:,n));

n = n+1;

end

for n = 1:39

if M1(1,n) < 0

I1(:,n) = I1(:,n) + (-M1(1,n));

n = n+1;

end

end

n = 1;

while n <= 39

M2(1,n) = max(I1(:,n));

I1(:,n) = I1(:,n)/M2(1,n);

n = n+1;

end

I = I1’

% Extract features

I2(1,:) = I(15,:);

I2(2,:) = I(2,:);

I2(3,:) = I(39,:);

I2(4,:) = I(16,:);

I2(5,:) = I(17,:);

I2(6,:) = I(33,:);

I2(7,:) = I(18,:);

I2(8,:) = I(34,:);

I2(9,:) = I(19,:);

I2(10,:) = I(29,:);

I2(11,:) = I(7,:);

I2(12,:) = I(31,:);

I2(13,:) = I(21,:);

I2(14,:) = I(23,:);

I2(15,:) = I(5,:);

I2(16,:) = I(20,:);

I2(17,:) = I(27,:);

I2(18,:) = I(1,:);

I2(19,:) = I(25,:);

I2(20,:) = I(30,:);

I2(21,:) = I(22,:);

I2(22,:) = I(12,:);

I2(23,:) = I(14,:);

I2(24,:) = I(28,:);

I2(25,:) = I(38,:);

% I2(26,:) = I(35,:);

% I2(27,:) = I(8,:);

% I2(28,:) = I(26,:);

% I2(29,:) = I(24,:);



% I2(30,:) = I(3,:);

% I2(31,:) = I(13,:);

% I2(32,:) = I(37,:);

% I2(33,:) = I(4,:);

% I2(34,:) = I(32,:);

% I2(35,:) = I(36,:);

% I2(36,:) = I(11,:);

% I2(37,:) = I(10,:);

% I2(38,:) = I(9,:);

% I2(39,:) = I(6,:);

% find out how many Target is 1 and Target is 0

[r,w] = find(T == 1);

[r1,w1] = find(T == 0);

[r2,w2] = size(w);

[r3,w3] = size(w1);

n = 1; % Target is 1

while n <= w2

Input1(:,n) = I2(:,w(n));

Target1(:,n) = T(:,w(n));

n = n+1;

end

n = 1 % Target is 0

while n<= w3

Input0(:,n) = I2(:,w1(n));

Target0(:,n) = T(:,w1(n));

n = n+1;

end

Input = [Input1 Input0];

Input = Input’;

Target = [Target1 Target0];

Target = Target’;

%%%%%%%

% SVM %

%%%%%%%

[train, test] = crossvalind(’holdOut’,Target,0.2); % 0.1 is test data

cp = classperf(Target);

options = optimset(’MaxIter’,10000);

svmstruct = svmtrain(Input(train,:),Target(train),’kernel_function’,’rbf’);

classes = svmclassify(svmstruct,Input(test,:));

classperf(cp,classes,test);

IT = Input(test,:);

It = Input(train,:);

TT = Target(test,:);

[r4,w4] = find(TT == 1);

[r5,w5] = size(r4);

n = 1;

while n <= r5

IT1(n,:) = IT(r4(n),:);



n = n+1;

end

save IT1

Compare ANN and SVM

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <time.h>

typedef int BOOL;

typedef int INT;

typedef double REAL;

#define FALSE 0

#define TRUE 1

#define NOT !

#define AND &&

#define OR ||

#define MIN_REAL -HUGE_VAL

#define MAX_REAL +HUGE_VAL

#define MIN(x,y) ((x)<(y) ? (x) : (y))

#define MAX(x,y) ((x)>(y) ? (x) : (y))

#define LO 0.1

#define HI 0.9

#define BIAS 1

#define sqr(x) ((x)*(x))

typedef struct { /* A LAYER OF A NET: */

INT Units; /* - number of units in this layer */

REAL* Output; /* - output of ith unit */

REAL* Error; /* - error term of ith unit */

REAL** Weight; /* - connection weights to ith unit */

REAL** WeightSave; /* - saved weights for stopped training */

REAL** dWeight; /* - last weight deltas for momentum */

} LAYER;

typedef struct { /* A NET: */

LAYER** Layer; /* - layers of this net */

LAYER* InputLayer; /* - input layer */

LAYER* OutputLayer; /* - output layer */

REAL Alpha; /* - momentum factor */

REAL Eta; /* - learning rate */

REAL Gain; /* - gain of sigmoid function */

REAL Error; /* - total net error */

} NET;

/******************************************************************************

R A N D O M S D R A W N F R O M D I S T R I B U T I O N S



******************************************************************************/

INT iRandomStart;

REAL ThOptimal = 0.5;

void InitializeRandoms()

{

time_t time1;

time(&time1);

iRandomStart = time1%4712;

iRandomStart = 4237; //4133; 4711; 4237 1082 3721

srand(iRandomStart);

}

INT RandomEqualINT(INT Low, INT High)

{

return rand() % (High-Low+1) + Low;

}

REAL RandomEqualREAL(REAL Low, REAL High)

{

return ((REAL) rand() / RAND_MAX) * (High-Low) + Low;

}

/******************************************************************************

A P P L I C A T I O N - S P E C I F I C C O D E

******************************************************************************/

#define UsingOriginalSamples 1

#define BALANCED_SAMPLES 1265

#define UNBALANCED_SAMPLES 748

#define NUM_SAMPLES ((UsingOriginalSamples == 0)? BALANCED_SAMPLES:

UNBALANCED_SAMPLES)

#define TrainingRate 0.8

#define FEATURE_DIM 23

int FeatureList[FEATURE_DIM] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,25,26,39};

REAL InputFeatures[NUM_SAMPLES][FEATURE_DIM];

REAL LabelResult[NUM_SAMPLES]; // 0 or 1 to indicate negative or positive samples

REAL OutputResults[NUM_SAMPLES]; //0-1 as predictable output

unsigned char Duplicated[NUM_SAMPLES]; // 0 or 1 to indicate if the sample

is duplicated or not

unsigned char TrainingLabel[NUM_SAMPLES]; //0 or 1 to indicate if the

sample is used for training or not



#define NUM_LAYERS 3

#define N FEATURE_DIM //input layer

#define H 15

#define M 1 //output layer

INT Units[NUM_LAYERS] = {N, H, M}; //intermediate

layer with 10 nodes, 15 nodes seems the best

REAL Mean;

REAL TrainError;

REAL TrainErrorPredictingMean=0;

REAL TestError;

REAL TestErrorPredictingMean=0;

FILE* f;

INT iIndexTraining;

void NormalizeFeature(REAL *feature, int num)

{

int i;

REAL Min, Max;

Min = MAX_REAL;

Max = MIN_REAL;

for (i=0; i<num; i++) {

Min = MIN(Min, feature[i]);

Max = MAX(Max, feature[i]);

}

Mean = 0;

for (i=0; i<num; i++)

{

feature[i] = ((feature[i]-Min) / (Max-Min)) * (HI-LO) + LO;

Mean += feature[i] / num;

}

}

void InitializeApplication(NET* Net)

{

int i,j;

REAL Out, Err;

char str[100];

Net->Alpha = 0.5;

Net->Eta = 0.05;

Net->Gain = 1;

iIndexTraining = 0;

//NormalizeSunspots();

TrainErrorPredictingMean = 0;

for (j=0; j<=NUM_SAMPLES; j++)

{

if (TrainingLabel[j]!=0)

{

for (i=0; i<M; i++)



{

Out = LabelResult[j+i];

Err = Mean - Out;

TrainErrorPredictingMean += 0.5 * sqr(Err);

}

}

}

TestErrorPredictingMean = 0;

for (j=0; j<=NUM_SAMPLES; j++)

{

if (TrainingLabel[j]==0)

{

for (i=0; i<M; i++)

{

Out = LabelResult[j+i];

Err = Mean - Out;

TestErrorPredictingMean += 0.5 * sqr(Err);

}

}

}

sprintf(str,"BPN_h%d_t%dc_b%d_r%dblc.txt",H,(int)(100*TrainingRate),

1-UsingOriginalSamples,iRandomStart);

f = fopen(str, "wt");

}

void FinalizeApplication(NET* Net)

{

fclose(f);

}

/******************************************************************************

I N I T I A L I Z A T I O N

******************************************************************************/

void GenerateNetwork(NET* Net)

{

INT l,i;

Net->Layer = (LAYER**) calloc(NUM_LAYERS, sizeof(LAYER*));

for (l=0; l<NUM_LAYERS; l++) {

Net->Layer[l] = (LAYER*) malloc(sizeof(LAYER));

Net->Layer[l]->Units = Units[l];

Net->Layer[l]->Output = (REAL*) calloc(Units[l]+1, sizeof(REAL));

Net->Layer[l]->Error = (REAL*) calloc(Units[l]+1, sizeof(REAL));

Net->Layer[l]->Weight = (REAL**) calloc(Units[l]+1, sizeof(REAL*));

Net->Layer[l]->WeightSave = (REAL**) calloc(Units[l]+1, sizeof(REAL*));

Net->Layer[l]->dWeight = (REAL**) calloc(Units[l]+1, sizeof(REAL*));

Net->Layer[l]->Output[0] = BIAS;

if (l != 0) {

for (i=1; i<=Units[l]; i++) {

Net->Layer[l]->Weight[i] = (REAL*) calloc(Units[l-1]+1, sizeof(REAL));



Net->Layer[l]->WeightSave[i] = (REAL*) calloc(Units[l-1]+1, sizeof(REAL));

Net->Layer[l]->dWeight[i] = (REAL*) calloc(Units[l-1]+1, sizeof(REAL));

}

}

}

Net->InputLayer = Net->Layer[0];

Net->OutputLayer = Net->Layer[NUM_LAYERS - 1];

Net->Alpha = 0.9;

Net->Eta = 0.25;

Net->Gain = 1;

}

void RandomWeights(NET* Net)

{

INT l,i,j;

for (l=1; l<NUM_LAYERS; l++) {

for (i=1; i<=Net->Layer[l]->Units; i++) {

for (j=0; j<=Net->Layer[l-1]->Units; j++) {

Net->Layer[l]->Weight[i][j] = RandomEqualREAL(-0.5, 0.5);

}

}

}

}

void SetInput(NET* Net, REAL* Input)

{

INT i;

for (i=1; i<=Net->InputLayer->Units; i++)

{

Net->InputLayer->Output[i] = Input[i-1];

}

}

void GetOutput(NET* Net, REAL* Output)

{

INT i;

for (i=1; i<=Net->OutputLayer->Units; i++)

{

Output[i-1] = Net->OutputLayer->Output[i];

}

}

/******************************************************************************

S U P P O R T F O R S T O P P E D T R A I N I N G

******************************************************************************/

void SaveWeights(NET* Net)

{

INT l,i,j;

for (l=1; l<NUM_LAYERS; l++)

{

for (i=1; i<=Net->Layer[l]->Units; i++)

{



for (j=0; j<=Net->Layer[l-1]->Units; j++)

{

Net->Layer[l]->WeightSave[i][j] = Net->Layer[l]->Weight[i][j];

}

}

}

}

void RestoreWeights(NET* Net)

{

INT l,i,j;

for (l=1; l<NUM_LAYERS; l++) {

for (i=1; i<=Net->Layer[l]->Units; i++) {

for (j=0; j<=Net->Layer[l-1]->Units; j++) {

Net->Layer[l]->Weight[i][j] = Net->Layer[l]->WeightSave[i][j];

}

}

}

}

/******************************************************************************

P R O P A G A T I N G S I G N A L S

******************************************************************************/

void PropagateLayer(NET* Net, LAYER* Lower, LAYER* Upper)

{

INT i,j;

REAL Sum;

for (i=1; i<=Upper->Units; i++) {

Sum = 0;

for (j=0; j<=Lower->Units; j++) {

Sum += Upper->Weight[i][j] * Lower->Output[j];

}

Upper->Output[i] = 1 / (1 + exp(-Net->Gain * Sum));

}

}

void PropagateNet(NET* Net)

{

INT l;

for (l=0; l<NUM_LAYERS-1; l++) {

PropagateLayer(Net, Net->Layer[l], Net->Layer[l+1]);

}

}

/******************************************************************************

B A C K P R O P A G A T I N G E R R O R S

******************************************************************************/

void ComputeOutputError(NET* Net, REAL* Target)

{

INT i;

REAL Out, Err;



Net->Error = 0;

for (i=1; i<=Net->OutputLayer->Units; i++) {

Out = Net->OutputLayer->Output[i];

Err = Target[i-1]-Out;

Net->OutputLayer->Error[i] = Net->Gain * Out * (1-Out) * Err;

Net->Error += 0.5 * sqr(Err);

}

}

void BackpropagateLayer(NET* Net, LAYER* Upper, LAYER* Lower)

{

INT i,j;

REAL Out, Err;

for (i=1; i<=Lower->Units; i++) {

Out = Lower->Output[i];

Err = 0;

for (j=1; j<=Upper->Units; j++) {

Err += Upper->Weight[j][i] * Upper->Error[j];

}

Lower->Error[i] = Net->Gain * Out * (1-Out) * Err;

}

}

void BackpropagateNet(NET* Net)

{

INT l;

for (l=NUM_LAYERS-1; l>1; l--) {

BackpropagateLayer(Net, Net->Layer[l], Net->Layer[l-1]);

}

}

void AdjustWeights(NET* Net)

{

INT l,i,j;

REAL Out, Err, dWeight;

for (l=1; l<NUM_LAYERS; l++) {

for (i=1; i<=Net->Layer[l]->Units; i++) {

for (j=0; j<=Net->Layer[l-1]->Units; j++) {

Out = Net->Layer[l-1]->Output[j];

Err = Net->Layer[l]->Error[i];

dWeight = Net->Layer[l]->dWeight[i][j];

Net->Layer[l]->Weight[i][j] += Net->Eta * Err * Out + Net->Alpha * dWeight;

Net->Layer[l]->dWeight[i][j] = Net->Eta * Err * Out;

}

}

}

}

/******************************************************************************

S I M U L A T I N G T H E N E T

******************************************************************************/

void SimulateNet(NET* Net, REAL* Input, REAL* Output, REAL* Target, BOOL Training)



{

SetInput(Net, Input);

PropagateNet(Net);

GetOutput(Net, Output);

ComputeOutputError(Net, Target);

if (Training)

{

BackpropagateNet(Net);

AdjustWeights(Net);

}

}

void TrainNet(NET* Net, INT Epochs)

{

INT p, n,k,m;

REAL Output[M];

for (n=0; n<Epochs; n++) //n<Epochs*NUM_SAMPLES

{

m = -1;

for (p=0; p<NUM_SAMPLES; p++)

{

if (TrainingLabel[p]!=0)

{

// m++;

//if (m>NUM_SAMPLES*TrainingRate*0.7) continue;

// Year = RandomEqualINT(TRAIN_LWB, TRAIN_UPB);

//SimulateNet(Net, &(Sunspots[Year-N]), Output, &(Sunspots[Year]), TRUE);

SimulateNet(Net, &(InputFeatures[p][0]),Output, &(LabelResult[p]), TRUE);

}

}

}

}

void TestNet(NET* Net,INT flag, REAL *fTraining, REAL *fTest)

{

INT n,p,kk,m;

REAL Output[M];

INT Hist0[1002],Hist1[1002]; //first 0/1 is GT, next 0/1 is detected

REAL SUM1=0,SUM0=0, DIFF=1, fTr, fTe;

float threshold;

int iGT_pos = 0, iGT_neg = 0;

int iTp =0, iFp = 0, iMissed = 0, iTn = 0;

//Need determine a threshold for class 1, i.e. large than a threshold

is 1 otherwise is 0, certainly the threshold

//should more than 0.5 to remove false alarms or less than 0.5 to

recover missed samples. Finally, three thresholds

//need to be set using the training data hence better statistics!!!

//statistics as histogram: 0.25-0.75 500 levels each level represent 0.001



memset(Hist0,0,1002*sizeof(INT));

memset(Hist1,0,1002*sizeof(INT));

if (flag!=0)

{

n = 0;

}

TrainError = 0;

fprintf(f, "\n\nTraining Result index %d\n",iIndexTraining);

m = -1;

for (p=0; p<NUM_SAMPLES; p++)

{

if (TrainingLabel[p]!=0)

{

//m++;

//if (m>NUM_SAMPLES*TrainingRate*0.7)

// continue;

SimulateNet(Net, &(InputFeatures[p][0]),Output, &(LabelResult[p]), FALSE);

//SimulateNet(Net, &(Sunspots[Year-N]), Output, &(Sunspots[Year]), FALSE);

TrainError += Net->Error;

if (LabelResult[p] == 1)

{

iGT_pos++;

//memset(Hist00,0,1000*sizeof(INT));

//memset(Hist01,0,1000*sizeof(INT));

//memset(Hist10,0,1000*sizeof(INT));

//memset(Hist11,0,1000*sizeof(INT));

kk= (int)(Output[0]*1000+0.5);

//for (;kk<1000;kk++) // //accumulated histogram?

Hist1[kk]++;

SUM1+=Output [0];

if (Output [0]>0.5)

{

iTp ++;

if (flag!=0)

fprintf(f, "%d %0.3f %0.3 %s\n",p, LabelResult[p], Output [0],"1");

}

else

{

iMissed++;

if (flag!=0)

fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"1==>0");

}



}

else

{

iGT_neg++;

kk= (int)(Output[0]*1000+0.5);

//for (;kk<1000;kk++) // //accumulated histogram?

Hist0[kk]++;

SUM0+=Output [0];

if (Output [0]>0.5)

{

iFp++;

if (flag!=0)

fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"0==>1");

}

else

{

if (flag!=0)

fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"0");

iTn++;

}

}

}

}

if (flag!=0)

{

//output the histogram

fprintf(f, "\n\n Histogram of output\n");

fprintf(f, "\nIndex Th Pos-s Neg-s Pos-a Neg-a\n");

SUM1=0; SUM0=1;

for (kk=0; kk<1000; kk++)

{

fprintf(f, "%d %.3f %.5f %.5f %.5f %.5f\n",

kk, 0.001*kk, 1.0*Hist1[kk]/iGT_pos,

1.0*Hist0[kk]/iGT_neg,SUM1,SUM0);

SUM1 += 1.0*Hist1[kk]/iGT_pos;

SUM0 -= 1.0*Hist0[kk]/iGT_neg;

if (fabs(SUM1-SUM0)<=DIFF)

{

ThOptimal = 0.001*(kk+1);

DIFF = fabs(SUM1-SUM0);

}

}

fprintf(f,"Optimal Threshold %.5f\n",ThOptimal);



}

fprintf(f, "\n GT-Pos GT-Neg Sum\n");

fprintf(f, "Pos %d %d %d\n",iTp,iFp,iTp+iFp);

fprintf(f, "Neg %d %d %d\n",iMissed,iTn,iMissed+iTn);

fprintf(f, "Sum %d %d %d\n",iTp+iMissed,iFp+iTn,iMissed+iTn+iTp+iFp);

fprintf(f, "Overall accuracy: %.3f\n",1.0*(iTp+iTn)/(iGT_pos+iGT_neg));

if (iTp+iFp !=0)

fprintf(f, "Sensitivity: %.3f specificity: %.3f False Alarm Rate: %.3f\n",

1.0*iTp/iGT_pos,1.0*iTp/(iTp+iFp),1.0*iFp/iGT_neg);

else

fprintf(f, "Sensitivity: %.3f specificity: %.3f False Alarm Rate: %.3f\n",

1.0*iTp/iGT_pos,0,1.0*iFp/iGT_neg)

if (fTraining!=NULL)

*fTraining = 2*1.0*iTp/iGT_pos*1.0*iTn/iGT_neg/(1.0*iTp/iGT_pos+1.0*iTn/iGT_neg);

if (flag!=0)

fprintf(f, "\n Test Result Th=0.5\n");

else fprintf(f, "\n Test Result\n");

TestError = 0;

iGT_pos = 0; iGT_neg = 0;

iTp =0; iFp = 0; iMissed = 0; iTn = 0;

m = -1;

for (p=0; p<NUM_SAMPLES; p++)

{

/*

if (TrainingLabel[p]!=0 && flag == 0)

{

m++;

if (m<=NUM_SAMPLES*TrainingRate*0.7)

continue;

if (Duplicated[p] == 1 ) continue;

SimulateNet(Net, &(InputFeatures[p][0]),Output, &(LabelResult[p]), FALSE);//

SimulateNet(Net, &(Sunspots[Year-N]), Output, &(Sunspots[Year]), FALSE);

TestError += Net->Error;

if (LabelResult[p] == 1)

{

iGT_pos++;

if (Output [0]>0.5)

{

iTp ++;

// fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"True Positive");

}

else

{

iMissed++;

// fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"Missed Positive");

}



}

else

{

iGT_neg++;

if (Output [0]>0.5)

{

iFp ++;

// fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"False Positive");

}

else

{

// fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"True Negative");

iTn++;

}

}

}*/

if (TrainingLabel[p]==0)

{

if (Duplicated[p] == 1 && flag ==1) continue;

SimulateNet(Net, &(InputFeatures[p][0]),Output, &(LabelResult[p]),

FALSE);// SimulateNet(Net, &(Sunspots[Year-N]), Output, &(Sunspots[Year]), FALSE);

TestError += Net->Error;

if (LabelResult[p] == 1)

{

iGT_pos++;

if (Output [0]>0.5)

{

iTp ++;

// fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p],Output [0],"True Positive");

}

else

{

iMissed++;

// fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p],Output [0],"Missed Positive");

}

}

else

{

iGT_neg++;

if (Output [0]>0.5)

{

iFp ++;

// fprintf(f, "%d %0.3f %0.3f %s\n",p, LabelResult[p], Output [0],"False Positive");

}

else

{

// fprintf(f, "%d %0.3f %0.3 %s\n",p, LabelResult[p], Output [0],"True Negative");

iTn++;

}



}

}

}

fprintf(f, "\n GT-Pos GT-Neg Sum\n");

fprintf(f, "Pos %d %d %d\n",iTp,iFp,iTp+iFp);

fprintf(f, "Neg %d %d %d\n",iMissed,iTn,iMissed+iTn);

fprintf(f, "Sum %d %d %d\n",iTp+iMissed,iFp+iTn,iMissed+iTn+iTp+iFp);

fprintf(f, "Overall accuracy: %.3f\n",1.0*(iTp+iTn)/(iGT_pos+iGT_neg));

if (iTp+iFp != 0)

fprintf(f, "Sensitivity: %.3f specificity: %.3f False Alarm Rate: %.3f\n",

1.0*iTp/iGT_pos,1.0*iTp/(iTp+iFp),1.0*iFp/iGT_neg);

else

fprintf(f, "Sensitivity: %.3f specificity: %.3f False Alarm Rate: %.3f\n",

1.0*iTp/iGT_pos,0,1.0*iFp/iGT_neg);

fprintf(f, "\nNMSE is %0.3f on Training Set and %0.3f on Test Set",

TrainError / TrainErrorPredictingMean,

TestError / TestErrorPredictingMean);

if (fTest!=NULL)

*fTest = 2*1.0*iTp/iGT_pos*1.0*iFp/iGT_neg/(1.0*iTp/iGT_pos+1.0*iFp/iGT_neg);

iIndexTraining++;

}

void EvaluateNet(NET* Net)

{

INT p;

REAL Output [M];

REAL Output_[M];

INT index = 1;

int iGT_pos = 0, iGT_neg = 0;

int iTp =0, iFp = 0, iMissed = 0, iTn = 0;

float threshold;

fprintf(f, "\n\n\n");

fprintf(f, "index Sample Class Output Result\n");

for (p=0; p<NUM_SAMPLES; p++)

{

if (TrainingLabel[p]==0 && Duplicated[p] == 0)

{

//SimulateNet(Net, &(Sunspots [Year-N]), Output, &(Sunspots [Year]), FALSE);

SimulateNet(Net, &(InputFeatures[p][0]),Output, &(LabelResult[p]), FALSE);

/*SimulateNet(Net, &(Sunspots_[Year-N]), Output_, &(Sunspots_[Year]), FALSE);

Sunspots_[Year] = Output_[0];

fprintf(f, "%d %0.3f %0.3f %0.3f\n",

FIRST_YEAR + Year,

Sunspots[Year],

Output [0],

Output_[0]);



*/

if (LabelResult[p] == 1)

{

iGT_pos++;

if (Output [0]>ThOptimal)

{

iTp ++;

fprintf(f, "%d %d %0.3f %0.3f %s\n",index, p, LabelResult[p],Output [0],"1");

}

else

{

iMissed++;

fprintf(f, "%d %d %0.3f %0.3f %s\n",index,p, LabelResult[p], Output [0],"1-->0");

}

}

else

{

iGT_neg++;

if (Output [0]>ThOptimal)

{

iFp ++;

fprintf(f, "%d %d %0.3f %0.3f %s\n",index, p, LabelResult[p],Output [0],"0-->1");

}

else

{

fprintf(f, "%d %d %0.3f %0.3f %s\n",index, p, LabelResult[p],Output [0],"0");

iTn++;

}

}

index++;

}

}

/*output confusion matrix and overall correction rate*/

fprintf(f, "\n GT-Pos GT-Neg Sum\n");

fprintf(f, "Pos %d %d %d\n",iTp,iFp,iTp+iFp);

fprintf(f, "Neg %d %d %d\n",iMissed,iTn,iMissed+iTn);

fprintf(f, "Sum %d %d %d\n",iTp+iMissed,iFp+iTn,iMissed+iTn+iTp+iFp);

fprintf(f, "Overall accuracy: %.3f\n",1.0*(iTp+iTn)/(iGT_pos+iGT_neg));

if (iGT_pos == 0)

iGT_pos = 1;

if (iTp+iFp!=0)

fprintf(f, "Sensitivity: %.3f specificity: %.3f False Alarm Rate: %.3f\n",

1.0*iTp/iGT_pos,1.0*iTp/(iTp+iFp),1.0*iFp/iGT_neg);

else

fprintf(f, "Sensitivity: %.3f specificity: %.3f False Alarm Rate: %.3f\n",

1.0*iTp/iGT_pos,0,1.0*iFp/iGT_neg);



/*To test ROC results*/

threshold = 0;

fprintf(f, "\n\nTesting ROC\n");

fprintf(f, "Thresh Recall Prec FAR Accuracy\n");

loopROC:

iGT_pos = 0; iGT_neg = 0;

iTp =0;

iFp = 0;

iMissed = 0;

iTn = 0;

for (p=0; p<NUM_SAMPLES; p++)

{

if (TrainingLabel[p]==0 && Duplicated[p] == 0) //if (TrainingLabel[p]==0

&& Duplicated[p] == 0) this refers to testing performance!

{

//SimulateNet(Net, &(Sunspots [Year-N]), Output, &(Sunspots [Year]), FALSE);

SimulateNet(Net, &(InputFeatures[p][0]),Output, &(LabelResult[p]), FALSE);

/*SimulateNet(Net, &(Sunspots_[Year-N]), Output_, &(Sunspots_[Year]), FALSE);

Sunspots_[Year] = Output_[0];

fprintf(f, "%d %0.3f %0.3f %0.3f\n",

FIRST_YEAR + Year,

Sunspots[Year],

Output [0],

Output_[0]);

*/

if (LabelResult[p] == 1)

{

iGT_pos++;

if (Output [0]>=threshold)

iTp ++;

else iMissed++;

}

else

{

iGT_neg++;

if (Output [0]>=threshold)

iFp ++;

else iTn++;

}

index++;

}

}

/*output confusion matrix and overall correction rate*/

if (iGT_pos == 0)

iGT_pos = 1;



if (iTp+iFp!=0)

fprintf(f, "%.5f %.5f %.5f %.5f %.5f\n",threshold,

1.0*iTp/iGT_pos,1.0*iTp/(iTp+iFp),

1.0*iFp/iGT_neg,1.0*(iTp+iTn)/(iGT_pos+iGT_neg));

else

fprintf(f, "%.5f %.5f %.5f %.5f %.5f\n",threshold,

1.0*iTp/iGT_pos,0,1.0*iFp/iGT_neg,1.0*(iTp+iTn)/(iGT_pos+iGT_neg));

if (threshold<0.001 || threshold>0.999)

threshold += 0.00002;

else

threshold += 0.001;

if (threshold<1) goto loopROC;

/*To test training ROC results*/

threshold = 0;

fprintf(f, "\n\nTraning ROC\n");

fprintf(f, "index Sample Class Output Result\n");

fprintf(f, "Thresh Recall Prec FAR Accuracy\n");

loopROC2:

iGT_pos = 0; iGT_neg = 0;

iTp =0;

iFp = 0;

iMissed = 0;

iTn = 0;

for (p=0; p<NUM_SAMPLES; p++)

{

if (TrainingLabel[p]!=0) //if (TrainingLabel[p]==0 && Duplicated[p] == 0)

this refers to testing performance!

{

//SimulateNet(Net, &(Sunspots [Year-N]), Output, &(Sunspots [Year]), FALSE);

SimulateNet(Net, &(InputFeatures[p][0]),Output, &(LabelResult[p]), FALSE);

/*SimulateNet(Net, &(Sunspots_[Year-N]), Output_, &(Sunspots_[Year]), FALSE);

Sunspots_[Year] = Output_[0];

fprintf(f, "%d %0.3f %0.3f %0.3f\n",

FIRST_YEAR + Year,

Sunspots[Year],

Output [0],

Output_[0]);

*/

if (LabelResult[p] == 1)

{

iGT_pos++;

if (Output [0]>=threshold)

iTp ++;

else iMissed++;



}

else

{

iGT_neg++;

if (Output [0]>=threshold)

iFp ++;

else iTn++;

}

index++;

}

}

/*output confusion matrix and overall correction rate*/

if (iGT_pos == 0)

iGT_pos = 1;

if (iTp+iFp!=0)

fprintf(f, "%.5f %.5f %.5f %.5f %.5f\n",threshold,

1.0*iTp/iGT_pos,1.0*iTp/(iTp+iFp),

1.0*iFp/iGT_neg,1.0*(iTp+iTn)/(iGT_pos+iGT_neg));

else

fprintf(f, "%.5f %.5f %.5f %.5f %.5f\n",threshold,

1.0*iTp/iGT_pos,0,1.0*iFp/iGT_neg,1.0*(iTp+iTn)/(iGT_pos+iGT_neg));

if (threshold<0.001 || threshold>0.999)

threshold += 0.00002;

else

threshold += 0.001;

if (threshold<1) goto loopROC2;

}

#define MaxFeature 1024

void my_load_dataNew(char *oldFileName) //feature will be loaded to InputFeatures

// loads the same format as LIBSVM

{

#define IgnoreComments 1

double fMaxRemain=0; /*maximum remain when fLabels is changed as an integer*/

double fSamples[NUM_SAMPLES][40]; /*full matrix in vector format, size: m*max_index */

double fLables[NUM_SAMPLES]; /*label vector size: m */

int index;

double value;

int elements, i,lineSize, indexSample, j, k;

FILE *fp = NULL;

fp = fopen(oldFileName,"rt"); //



//FILE *fNewBin = NULL;

int splitpos=0;

char lineBuffer[4096],str[300];

long int fpos1,fpos2;

int FullCommentsOn, CommentsOn;

double label;

int msz = 0;

int max_index = 0;

int m; //

float fMaxFeature[MaxFeature]; /*40960 features*/

for (k=0; k<MaxFeature; k++)

fMaxFeature[k] = 0;

if(fp == NULL)

{

fprintf(stderr,"Can’t open input file \"%s\"\n",oldFileName);

return;

}

else

printf("\"%s\".. ",oldFileName);

elements = 0;

lineSize = 0;

FullCommentsOn = 0;

CommentsOn = 0;

while(1)

{

int c = fgetc(fp);

switch(c)

{

case ’#’:

if (lineSize==0)

{

FullCommentsOn = 1;

break;

}

else

{

CommentsOn = 1;

lineSize ++;

}

break;

case ’\n’:

if (FullCommentsOn !=1)

++msz;

//printf("%d\n",m);

elements=0;

FullCommentsOn = 0;

CommentsOn = 0;

lineSize = 0;

break;



case ’:’:

if (CommentsOn!=1)

++elements;

break;

case EOF:

goto out;

default:

if (FullCommentsOn+CommentsOn!=0)

break;

fscanf(fp,"%lf",&label);

while(1)

{

int c;

do {

c = getc(fp);

if(c==’\n’) goto out2;

} while((char)(c)==’ ’); //(isspace(c));

ungetc(c,fp);

fscanf(fp,"%d:%lf",&index,&value);

if (index>max_index) max_index=index;

if (index<MaxFeature)

fMaxFeature[index] = MAX(fMaxFeature[index],fabs(value));

else

{

printf("Feature vector too large than the buffer size %d!\n",MaxFeature);

}

}

out2:

if (FullCommentsOn !=1)

++msz;

//printf("%d\n",m);

elements=0;

FullCommentsOn = 0;

CommentsOn = 0;

lineSize = 0;

break;

}

}

out:

rewind(fp);

m = msz;

printf("examples: %d features: %d\n",msz,max_index);

//fSamples = InputFeatures; /*full matrix in vector format, size: m*max_index */

//fLables = LabelResult; //new double[msz]; /*label vector size: m */

memset(fSamples,0,msz*max_index*sizeof(float));

FullCommentsOn = 0;

CommentsOn = 0;

lineSize = 0;

indexSample = 0;



while(1)

{

int c = fgetc(fp);

switch(c)

{

case ’#’:

if (lineSize==0)

FullCommentsOn = 1;

else

CommentsOn = 1;

if (IgnoreComments == 0)

lineBuffer[lineSize++] = c;

break;

case ’\n’:

lineBuffer[lineSize++] = c;

lineBuffer[lineSize] = 0;

elements=0;

FullCommentsOn = 0;

CommentsOn = 0;

lineSize = 0;

break;

case EOF:

if (lineSize>0)

{

// lineBuffer[lineSize++] = c;

lineBuffer[lineSize] = 0;

}

goto out4;

default:

if (FullCommentsOn+CommentsOn!=0)

{

lineBuffer[lineSize++] = c;

break;

}

ungetc(c,fp);

fpos1 = ftell(fp);

fscanf(fp,"%lf",&label);

fMaxRemain = MAX(fMaxRemain,fabs(label-(int)(label)));

if (label<0)

{

k = 1;

}

fpos2 = ftell(fp);

fseek(fp,fpos1,SEEK_SET);

for (j=fpos1;j<fpos2;j++)

lineBuffer[lineSize++] = getc(fp);

if (label<0) label = 1; /*added for ANN, Jinchang 02/06/09*/

else label = 0;

fLables[indexSample] = label;



while(1)

{

int c;

do {

c = getc(fp);

lineBuffer[lineSize++] = (char)(c);

if(c==’\n’) goto out3;

} while((char)(c)==’ ’); //(isspace(c));

lineSize--;

ungetc(c,fp);

fscanf(fp,"%d:%lf",&index,&value);

if (index>max_index) max_index=index;

if (index<MaxFeature && fMaxFeature[index]!=0)

{

value = value/fMaxFeature[index]; // = max(fMaxFeature[index],fabs(value));

fSamples[indexSample][index-1] = value;

}

else

{

printf("Feature %d underflow in normalisation for sample %d!\n",index,indexSample);

}

sprintf(str,"%d:%lf",index,value);

for (k=0; k<strlen(str); k++)

lineBuffer[lineSize++] = str[k];

}

out3:

lineBuffer[lineSize] = 0;

//printf("%d\n",m);

elements=0;

FullCommentsOn = 0;

CommentsOn = 0;

lineSize = 0;

indexSample++;

break;

}

}

out4:

fclose(fp);

//copy the features to our buffer



for (j=0; j<NUM_SAMPLES; j++)

{

if (fLables[j]>0.5)

LabelResult[j] = 1;

else

LabelResult[j] = 0;

k = 0;

for (m=0; m<39; m++)

{

if (m<20 || m==24 || m==25 || m==38)

{

InputFeatures[j][k] = fSamples[j][m];

k++;

}

}

}

}

/******************************************************************************

M A I N

******************************************************************************/

void main()

{

NET Net;

BOOL Stop;

REAL MinTestError, Error;

int m,n,k,pp;

FILE *fileTraining = NULL;

FILE *fileTesting = NULL;

//FILE *fileTesting = NULL;

char str[40];

REAL fSTopCriteria=1000, fTrain,fTest;

int iLoopIndex=0;

int iLoopApps = 0;

startapp:

fSTopCriteria=0;

fileTraining = NULL;

fileTesting = NULL;

iLoopIndex=0;

ThOptimal = 0.5;

//initialize the apps



InitializeRandoms();

GenerateNetwork(&Net);

RandomWeights(&Net);

InitializeApplication(&Net);

// Read input data

if (UsingOriginalSamples==1)

my_load_dataNew("Samples.dat");

else

my_load_dataNew("SamplesBalanced.dat");

memset(Duplicated,0 ,NUM_SAMPLES);

n = -1;

for (m=0; m<NUM_SAMPLES; m++)

{

if (LabelResult[m]<0.5)

{

n = -1;

continue;

}

if (n<0) n = m;

else

{

pp = 0;

for (k=0; k<FEATURE_DIM; k++)

if (100000*InputFeatures[m][k]!=100000*InputFeatures[n][k]) pp++;

if (pp<=1)

Duplicated[m] = 1;

else n = m;

}

}

//select training data

m = 0;

memset(TrainingLabel, 0,NUM_SAMPLES);

for (;;)

{

n = rand() % NUM_SAMPLES;

if (TrainingLabel[n] == 0)

{

m++;

TrainingLabel[n] = 1;

if (m>=NUM_SAMPLES*TrainingRate)

break;

}

}

/*save index of training samples*/



sprintf(str,"training%db%d_t%d.dat",iRandomStart,1-UsingOriginalSamples,

(int)(TrainingRate*100));

fileTraining = fopen(str,"wt");

sprintf(str,"testing%db%d_t%d.dat",iRandomStart,1-UsingOriginalSamples,

(int)(TrainingRate*100));

fileTesting = fopen(str,"wt");

for (n=0; n<NUM_SAMPLES; n++)

{

m = TrainingLabel[n];

if (m==1)

{

//output to training file

if (LabelResult[n] >0)

fprintf(fileTraining,"+1");

else

fprintf(fileTraining,"-1");

for (k=0; k<FEATURE_DIM; k++)

{

fprintf(fileTraining," %d:%f",k+1,InputFeatures[n][k]);

}

fprintf(fileTraining," #%d\n",n+1);

}

else

{

if (Duplicated[n] == 1) continue;

//output to test file

if (LabelResult[n] >0)

fprintf(fileTesting,"+1");

else

fprintf(fileTesting,"-1");

for (k=0; k<FEATURE_DIM; k++)

{

fprintf(fileTesting," %d:%f",k+1,InputFeatures[n][k]);

}

fprintf(fileTesting," #%d\n",n+1);

}

}

fclose(fileTraining);

fclose(fileTesting);

/*end of save index of training samples*/

//goto end;

//training the data



Stop = FALSE;

MinTestError = MAX_REAL;

Error = MAX_REAL;

do {

TrainNet(&Net, 10);

TestNet(&Net,FALSE,&fTrain,&fTest);

if (TrainError>= Error*1.2) //from Jichang 0.9999

{

fprintf(f, " - stopping Training and restoring Weights ...");

Stop = TRUE;

RestoreWeights(&Net);

}

else

{

fprintf(f, " - saving Weights ...");

MinTestError = TestError;

Error = TrainError;

if (fSTopCriteria<fTrain) // && iIndexTraining>200

{

fSTopCriteria = fTrain;

iLoopIndex = iIndexTraining;

SaveWeights(&Net);

}

else if (iIndexTraining-iLoopIndex>200+300*(1+UsingOriginalSamples))

{

fprintf(f, " - stopping Training and restoring Weights ...");

Stop = TRUE;

SaveWeights(&Net);

//RestoreWeights(&Net);

}

//

}

/*

if (TestError < MinTestError)

{

fprintf(f, " - saving Weights ...");

MinTestError = TestError;

SaveWeights(&Net);

}

else if (TestError > 1.2 * MinTestError)

{

//if (TestError<TrainError*1.2)

{

fprintf(f, " - stopping Training and restoring Weights ...");

Stop = TRUE;

RestoreWeights(&Net);

}

}

*/



} while (NOT Stop);

//test the network

TestNet(&Net,TRUE,NULL,NULL);

EvaluateNet(&Net);

end:

FinalizeApplication(&Net);

iLoopApps++;

// if (iLoopApps<10)

// goto startapp;

}
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Abstract. Skin and face detection has many important applications in 

intelligent human-machine interfaces, reliable video surveillance and visual 

understanding of human activities. In this paper, we propose an efficient and 

effective method for frontal-view face detection based on skin detection and 

knowledge-based modeling. Firstly, skin pixels are modeled by using 

supervised training, and boundary conditions are then extracted for skin 

segmentation. Faces are further detected by shape filtering and knowledge-

based modeling. Skin results from different color spaces are compared. In 

addition, experimental results have demonstrated our method robust in 

successful detection of skin and face regions even with variant lighting 

conditions and poses.  

Keywords: Skin detection, face detection, performance evaluation, semantic 

image indexing and retrieval. 

1   Introduction 

Automatic detection of skin and face plays very important roles in many vision 

applications, such as face and gesture recognition in intelligent human-machine 

intelligence and visual surveillance [1,2,4], naked adult image detection [3,8], video 

phone or sign language recognition [14, 15] as well as content-based multimedia 

retrieval [5, 13].  

Usually, skins regions are segmented or detected by histogram matching, statistical 

classification and pixel-based thresholding or clustering. In [8], Jones and Rehg 

developed a general color model from color histograms in R, G and B channels and 

adopted supervised learning by manually labeling skin pixels in 4675 images to 

acquire the probability that a given color belonged a skin and non-skin classes. Then, 

they tested the method in another 8965 images to detect skins and judge naked images. 

Saber and Tekalp employed a YES model to detect skins from color images by linear 

weighting of R, G and B values like YUV space did [9]. In [10], Hsu etc used YCbCr 

space for skin detection in their face detection system and found after lighting 

compensation their algorithm could detect more accurate skin pixels.  In [11], Garcia 

and Tziritas compared skin detection results obtained from color clustering, and found 

the results in YCbCr and HSV spaces are quite equivalent. They also concluded that 

the cluster of skin colors is less compact in HSV space than in YCbCr space, and 
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HSV space is more sensitive to lighting variations. In addition, some adaptive models 

are also proposed for skin detection [16-19]. 

After skin detection, faces can be detected by shape constraints, template matching, 

knowledge conducting and statistical classifications by Neural Network (NN), 

Hidden-Markov Model (HMM) or Support Vector Machine (SVM) [6, 9-11]. As 

statistical or neural classification is always implemented by supervised or 

unsupervised learning, in which many face features are applied internally, therefore, 

face features and knowledge of facial distribution is more important in face detection. 

Saber and Tekalp introduced an interesting algorithm to detect face by locating the 

eyes, nose and mouth [9]. At the same time, they took an ellipse to simulate the shape 

of a face just as many other people adopted [6, 10]. In [10], Hsu etc also detected 

faces from skin regions based on the spatial arrangement of skin patches like eyes, 

mouth and boundary maps and could attain the face ellipse and triangle feature points 

of eyes and mouth. In [11], Garcia and Tziritas presented another face detection 

method based on skin detection, region merging and constraints of shape, size and 

intensity texture analyzed by wavelet-packet decomposition, and they utilized 

rectangle shapes to mark the detected faces. In [12], face is detected by using a fuzzy 

pattern matching scheme. In [20], merging skin regions for face detection by using 

wavelet analysis is proposed. 

From skin detection to face detection, we have quite a few algorithms with 

different results and conclusions [8-12], and some of them are quite different and 

even disagreed with each other. Therefore, we will comparatively investigate skin 

detection and employ same methodology in different color spaces during the 

comparisons before our knowledge-based face modeling and detection.  

2   Color Space Transform 

Both linear and nonlinear color spaces are examined in our paper for comparisons. To 

provide some direct information about these color spaces, we summarize below how 

typical color space transforms, including linear and nonlinear ones, are defined.  

From RGB to YCbCr or YUV color spaces are linear transforms, in which the 

three components in both new spaces are defined simply by linear weighting of R, G 

and B values, and Y refers to illumination intensity defined in (1), 

0,1,,,     wwBGRwY  
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As hue is more effective in distinguishing different colors than illumination 

intensity, HSV (Hue, Saturation, Value) and HIS (Hue, Intensity, Saturation) 

transforms are taken as suitable color spaces that correspond to human visual 

perceptions and have been widely utilized in color clustering for image segmentation 

and coding.  

The RGB to HSV transform can be defined as [7]: 
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3   Skin Segmentation 

Since skin detection is a classification problem defined on color similarity, supervised 

clustering is applied to achieve the exact rules for effective skin color clustering and 

pixel classification. Through manually specifying representative skin and non-skin 

pixels, we can learn linear relationships between different components in the new 

color spaces. Finally, we obtain several main boundary conditions for skin pixels 

classification in different color spaces. 

Firstly, skin pixels are modeled by using the histogram-based approach, in which 

the probability or likelihood that each color represents skin is estimated by checking 

its occurrence ratio in the training data. In (5), skinV  indicates volumes or total 

occurrences of all skin colors in manual ground truth of training data.  

 

skinVskincolorsumskincolorp /)/()/(  . (5) 

Then, boundary conditions in the skin model are extracted to allow more than 98% 

of skin pixels covered. Using the boundary conditions, test images are segmented into 

skin and nonskin regions accordingly. For different color spaces, these boundary 

conditions are found as follows.  

As for YUV space, the boundary conditions are found as: 
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Considering the illumination intensity variation, we have boundary conditions as  
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In HSV space, we scale the H into [0,255] and let HH  255 if 128H . We 

also find several boundary conditions for skin pixels in HSV space and given in (8): 















SHVH

SVHVH

SVS

4,2.0

13,400158

5.2,21

. 

(8) 

Fig 1 gives skin results from YUV and HSV spaces, where we can find three 

people in the background, which can be clearly found in the histogram-equalized 

image. However, the skin regions can be successfully in HSV space from the original 

image while they cannot be found in YUV space.  

 

 
(a) Original image         (b) histogram equation     (c) YUV skin results     (d) HSV 

skin results 

Fig. 1. Comparison of skin regions detected from YUV and HSV color spaces.  

4   Knowledge-based Face Modeling and Detection  

After skin detection, we need to locate faces in candidate skin regions. Again we 

detect faces of nearly frontal view, but there are no constraints on their leaning angles. 

Knowledge about the size, size ratio, locations of ears and mouth is used. 

Firstly, the detected skin regions are labeled to obtain the outer boundary rectangle 

and pixel number of every region. Then, small regions that have pixels less than a 

given threshold, i.e. 300, will be removed. Finally, the skin regions are filtered by a 

SR parameter (Width/Height ratio) defined as, 
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In (10), the width and height of the regions are determined by the rectangle 

bounding box of each region, and we find the valid SR for candidate face regions 

should lie in [0.55,0.90]. To acquire more reasonable width and height of the regions, 

the main axis is extracted by moment calculation of each region.  Then, the skin 

regions are rotated by the main axis angle to make the final main axis in vertical 

direction.  

 

 
(a) Thresholded by size            (b) Main axis detection      (c) Rotation by main axis       

 
    (d) Thresholded by W/H ratio  (e) Face candidates                     (f) Face in 

original image 

Fig. 2. Face filtering from skin regions in Fig 2(b) by thresholding of size and W/H ratio. 

 

Fig 2(a) is the filtering result by thresholding using the size of 300. In Fig 2(b), the 

main axis of each labeled region is marked with white line, and the angle and region 

number are also given. From Fig 2(d) to 2(e), we give the candidate face regions in 

rotated skin results and the skin regions before rotation in HSV space. Besides, Fig 

2(f) gives the face candidates in RGB space for comparison. 

 

 
(a) Ears location            (b) Feature holes            (c) detected face            

(d) mapped back  

Fig. 3. Ears location with white line (a) and feature holes detection (b) for face detection 

 



Three basic rules are used in further face modeling and detection: First, there are 

one or two ears near the half height of every candidate face region which makes the 

width of the skin regions bigger than other lines. Second, there are one or two eyes 

over the height of the ear line which forms one or two dark holes. Third, an open 

mouth will form a dark hole near the middle of eyes below the ear line. Following is 

our algorithm for face detection and the results are given in Fig 3.  

1) Detect the ear line by extracting of local maximum width near the center of 

the candidate face regions, see Fig 3(a); 

2) Detect the holes by the illumination intensity difference. Holes contain those 

pixels that have lower intensity than the average intensity of the candidate 

regions, say, less than 80% of the average intensity, see Fig 3(b);  

3) Judge the relative positions of the holes and ear line and determine the 

candidate region is a valid face or not. 

5   Results and Discussions 

In our experiments, statistical models of skin colors are estimated through histogram 

based approach using a subset of ECU database [5], in which 500 images are used for 

training. Afterwards, we generate 100 test images in the office environments for 

evaluation. Results on skin detection from both the training images and our own 

images are summarized in Table 1 below. Although the results from different color 

spaces are very comparable, HSV and YUV seem yield slightly better performance in 

linear and nonlinear color spaces, respectively. More results on skin and face 

detection are also given in Fig. 4, along with discussions in details.  

Table 1. Skin detection results from different color spaces.  

         

Results 

Test  

data 

Linear color space Nonlinear color space 

YUV YCbCr HSV HSI 

TPR FPR skin bk skin bk skin bk 

trained 93.7% 8.1% 93.5% 7.9% 94.1% 8.2 93.9% 8.3% 

Non-trained 91.2% 10.2% 91.1% 9.9% 93.0% 10.1 92.7% 10.1% 

Overall 93.3% 9.3% 92.9% 9.2% 93.6% 9.5 93.5% 9.6% 

 

 
   (a) Original image         (b) YUV skins             (c) HSV skins                

(d) Final face detected  

Fig. 4. Skin and face detection using image of Peter and Tommy.  

 



As for skin detection, we can still find that skin regions detected from HSV space 

are more accurate and robust than that from YUV space, and the skin regions in 

background can also be detected easily in HSV spaces (see the face in Fig 1 and hand 

near the middle head in Fig 4, which means HSV space is less sensitive to variations 

of illumination intensity. 

Thresholding by size and ratio is very effective in non-face regions removal. 

Moreover, the face model composed by the rules on the relative positions of ears and 

holes of eyes or mouth is also very practical in face detection, as ears can be found in 

almost every face image, which are more robust for detection even when the face is 

rotated and eyes are difficult to be detected. 

Though our face detection algorithm can achieve quite satisfied results even there 

are pose variations, there are several additional strategies can be further applied for 

more robust face detection in our model, such as how to obtain the W/H ratio more 

accurately if there are connected skin regions and holes, and how to detect eyes and 

mouth if there are no holes can be found, especially for the face in the background. 

With detected regions of skin and face, semantic indexing and retrieval of images 

are achieved as follows: 

1) According to whether skin and face regions can be detected, all the images 

are automatically annotated as with or without skin/face regions respectively;   

2) For those with skin or face regions, size and number of regions are also 

recorded; 

3) For images with face regions, the estimated positions of ears, etc. are also 

taken in semantic indexing, which can be further used to estimate pose of 

faces; 

4) Finally, these indexes are utilized in semantic retrieval of images. 

6   Conclusions 

By comparative study of skin detection from different color spaces, we find nonlinear 

color spaces, such as HSV, can obtain more accurate and robust skin results, 

especially in detecting of background faces. Moreover, we find the shape filtering and 

knowledge-based modeling very useful in face detection. Besides, these detected skin 

and face regions can be further utilized for semantic indexing and retrieval of images. 

How to improve quantitative analysis of the shape filters and face modeling for more 

accurate and robust face detection, especially on separation of connected faces and 

detection of background faces, will be investigated as the next step in the near further. 
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Abstract 

Edge detection, especially from colour images, plays very 

important roles in many applications for image analysis, 

segmentation and recognition. In this paper, a new colour-

gray mapping method for effective colour edge detection is 

proposed. From any given colour image C, a gray image D is 

defined as the accumulative differences between each of its 

two colour channels, and another gray image R is then 

obtained by weighting of D and gray intensity image G. 

Fusion of edges extracted from R and G forms the final 

results. Comparing with edges detected from traditional 

colour spaces like RGB, YCbCr and HSV, all using same 
Canny operator, it seems the proposed method can achieve 

more effective results from different test images. 

1 Introduction 

Since physical edges usually correspond to apparent 

variations in the illumination and colors, edge detection is 

very useful and important in many low-level vision 

applications as to provide essential visual information for 

feature extraction, segmentation and scene understanding [1,  

5, 7, 10, 13]. In general, edge detection usually has three main 

stages, namely preprocessing or smoothing, image difference 

and gradient detection for edge pixel judgment, and 

continuous edge extraction. Gradient-based methods are 

almost the earliest edge detector which only uses convolution 

templates to obtain local difference for edge detection, and 
then Canny introduced a well defined edge detector with good 

performance, high precision and unique response [1].  

From convolution templates to Canny edge detector, 

traditional edge detection methods are usually defined on grey 

images, and some improvements or new methods are 

necessary for edge detection from colour images according to 

human colour perceptions. A simple idea is to convert <r,g,b> 

colour image to its luminance intensity image G, from which 

traditional edge detectors are applied to extract colour edges. 

As the conversion from colour to grey is multiple to one 

mapping, edges detected from G-image are less accurate and 

usually edge pixels with obvious colour difference but less 

intensity variation are missing.  
Another simple idea for colour edge detection is to apply the 

edge detectors to each colour channel and the final edges will 

be the combined results of the edges from different channel 

images. Although the combined edges have more accuracy 

and detail information than the edges from the intensity 
image, they are still not accurate enough for effective object 

detection and image segmentation because of missing of 

certain edges.  

Colour vision is a synthetic perception of R, G and B 

channels, people can determine edge pixels easily from 3D 

<r,g,b> space. The combined edges extracted from multiple 

single channels have intrinsic limitations according to human 

visual perceptions. To acquire more reasonable and accurate 

edges, people have tried a lot of colour spaces and colour 

models [3, 8, 14], such as HLS (hue-lightness-saturation), 

HSV (hue-saturation-value), YUV, XYZ, YCbCr, etc. When 

<r,g,b> colour images are converted to specified colour space, 
edges will be extracted from the components of the new 

space. Since different components are independent each 

other, the final edges are also combination of the edges from 

each component including colour and luminance information 

[4]. Alternatively, some other efforts have been make on edge 

detection from colour images, such as the compass operator in 

[9], direction information measurement in [6], cluster analysis 

in [11], and invariance analysis [4, 12]. However, choosing a 

suitable colour space is still a very fundamental task in such a 

context on which the above operators or processing can then 

be applied. 

In this paper, we present a colour edge detection method 
based on a new colour space transform. At first, amplitude 

differences between different two colour channels are 

accumulated to generate a grey D -image. Then, another grey 

R -image is obtained by weighting of D -image and 

luminance intensity image G . Final edges will be 

combination of edges extracted from the R -image and G -

image. Compared with edges from three colour channels and 

YCbCr model, the proposed method can achieve more 

effective and robust edges from different standard colour 

images.  

2 Colour Space Transform 

Comparing to texture and shape, colour is the chief 
discrimination attribute in human visual system [2, 4]. 

Therefore, colour edge detection is more important in scene 

analysis and understanding. Although many colour transforms 

and colour space models have been developed, they can be 

converted between each other by mapping from and to RGB 
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space. In general, luminance and the differences or 

proportions between luminance and different colour 

components from RGB space compose the new components 

in the transformed space. Following is an example transform 

from RGB space to YUV space: 

bwgwrwy bgr                   (1) 

yrvandybu     (2) 

In (1) and (2), y is the luminance and over all measurement 

of the three colour channels, and vu, are the chrominance 

and detail representation by colour channel differences.  
YIQ and YCbCb have similar transforms like YUV in (1), and 

HSV and HLS spaces have more complex transform formulas 

[8]. Although some of these transforms can achieve coherent 

distance measurement with human perceptions, they are not 

effective in accurate edge detection, because they have not 

taken full consideration of the colour differences between 

different colour channels.  

Suppose f is the original 3 channel colour image (see Fig. 

1), and we define the one channel D -image as: 

),(),(

),(),(),(),(),(

3

21

jigjib

jibjirjigjirjiD


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


  (3) 

where D -image gives the total colour differences between 

different colour channels. Currently we simply have same 
weights for three channels. 

 

  
(a)                                          (b) 

Fig. 1. Original colour image (left) and its D -image (right). 

For grey pixels in image f , they have same values in three 

colour channels, and we cannot distinguish them from D -

image. Therefore, another one channel image R  is obtained 

by weighting of D  image and luminance intensity image G  

as follows: 

gd

gd

ww

jiDwjiGw
kjiR






),(),(
),(           (4) 

where dw and gw are the weights and determined by the 

statistical properties of D -image and G -image given in (5) 

and (6), and parameter k is taken to scale the final image 

within 256 grey levels. 

)()(*5.1 DDRangewd           (5) 

)()(*5.1 GGRangewg           (6) 

Range  is a function to get the intensity range of the given 

image, and   is the standard derivation. Generally, we have 

255)( GRange but 255)( DRange . Therefore, (4) 

is used to make the weighted values, ),( jiGwd  and 

),( jiDwg , more comparable to get more robust edges. 

 

  

Fig. 2. G-image (left) and R-image (right) of the colour image 
in Fig. 1(a).  

3 Colour Edge Detection 

Canny operator is a typical edge detection method with good 

performance. Taken )(xf   and ],[   as impulse 

response and bandwidth of Canny operator, the corresponded 

filter should make formula (7) maximum: 


















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)0(

)(
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2'

'

2

0

            (7) 

Edges detected by Canny operator are all local extremums to 

ensure the detection precision. Firstly, the image is smoothed 

by a Gauss function. Then, normalized gradient image is 

obtained from the smoothed image to detect edge pixels. Two 

thresholds hT and lT are used to get more continuous and 

robust results. If a pixel has a gradient more than hT , it 

belongs to the edge. If the gradient is less than lT , it is not 

edge pixels. Otherwise, the pixel will be carefully examined 

and determined as edge pixels if there are edge pixels in its 
neighbourhood and the determination helps to find more 

continuous edges. 

hT  and lT  are two very important parameters in Canny 

operator, because different thresholds will lead to quite 

different edge results. For the G -image in Fig 2, we give the 

detected edges using different thresholds in Fig 3. For a given 
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hT , small lT  can achieve more detail edges, but too small lT  

may cause noise (see the girl’s face in Fig 3). Therefore, how 

to automatic select suitable thresholds is a basic problem for 

effective edge detection of Canny operator.  

In our experiments, we use the OpenCV package for Canny 

edge detection. Assume  and   are the mean and standard 

derivation of a given gray image g , then we determine hT  

and lT  as follows to cope with some adaptivity: 

),2/max(  hT     (8) 

2/)(  lT                  (9) 

For G -image in Fig. 2, it has 97.138 and 75.28 , 

then we can find 208hT and 55lT , and the detected 

edges is given in Fig 3b, which is better than Fig 3a and Fig 

3c.  

 

   
(a)                        (b)                            (c) 

Fig. 3. Extracted edges using Canny with 208hT  and 
lT  

changes from 100, 55 to 10, respectively.  

   

Fig. 4. RE  (left) and finalE (right) of colour image in Fig 1.  

 

For a given colour image, we can firstly get its G -image and 

R -image. Then, edges GE and RE can be extracted from 

G -image and R -image using the adaptive Canny given 

above, respectively. The final edges finalE  can be obtained 

by combination of edges GE and RE  as: 

GRfinal EEE                                  (10) 

As for the colour image in Fig 1 and GE  in Fig 3, we give its 

RE  and finalE  in Fig 4. Note that GE  is useful to recover 

edges from grey part (no channel difference) of images.  

4 Results and Discussions 

In order to evaluate our method, we take edges from RGB and 

YCbCr space for comparison. The reason for choosing YCbCr 

space is that YCbCr is very close to human colour perceptions 

and has direct applications in image and video representation, 

compression, analysis and segmentation.  
Edges from RGB space are acquired as follows: Firstly, we 

extract edges from single channels of R, G and B by self-

adaptive Canny; then, the final edge image will be 

combination of the three channels edges.  

Edges from YCbCr space is extracted similarly with the edges 

from RGB space, which means the final edges are also 

combination of edges from each of the components. After 

transform from RGB to YUV (see section 2), Cb and Cr can be 

further determined by: 

2/)1(  UCb , )6.1/(VroundCr            (11) 

Finally, we linearly normalize the range of Y, Cb and Cr 

within 0 to 255 before edge detection.  

In Fig 5, we give edge comparisons from RGB, YCbCr and 

combined results by our colour-grey mapping, and the 

original colour image is shown in Fig 1. All the edges are 

extracted by the adaptive Canny in section 3, and edges from 

multiple colour channels will be combined to obtain the final 
edge results. From Fig 5 we can see, our method has more 

continuous (see closed face contour) and accurate edges than 

edges from RGB and YCbCr space, and edges from RGB is 

much better than those from YCbCr space. 

  

   

Fig. 5. Edges extracted from RGB space (left), YCbCr and our 

method (right).  

 
Fig. 6. Two well-known test images (lena & pepper). 
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In order to evaluate our method, two well-known test images, 
the lena and the pepper(as showed in Fig 6), are adopted, and 

the comparative results extracted from RGB, YCbCr, HSV 

and our method are given in Fig 7 and Fig 8, respectively.  

In Fig 5 and Fig 7, our method can produce much better 

results, though few edges are found missing in Fig 8.  From 

Fig 7 and Fig 8 we can see, edges from YCbCr spaces have 

least detail compared with edges from other spaces. Although 

edge images from HSV space have more detail, they also 

contain substantial noise. Therefore, edges from RGB space 

and our method are more comparable. 

In Fig 7, our method produces more continuous and 
meaningful edges (see lines in the left of the image, and also 

edges in Lena’s face). However, we lost part of edges of the 

big green pepper in Fig 8 due to limited channel difference 

and low intensity, though our result has less noise than the 

edges from RGB space. Hence, we can say, our method has 

less noise and comparable edge results with those from RGB 

space.  

5 Conclusions 

A new colour-gray mapping is proposed for effective edge 
detection from colour images. Compared with those results 

from RGB and other typical colour spaces, it seems combined 

edges extracted from the mapped image can well compensate 

the edges from the intensity image, especially when the 

colour distribution is limited, for more effective and robust 

colour edge detection.  The proposed scheme on colour to 

grey transform and colour edge detection will be further 

investigated on image segmentation and content-based 

retrieval applications. 
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ABSTRACT 

 

This paper presents a new method for gesture recognition of 

Human beings’ hand. This method integrates the features of 

shape, color and orientation histograms, which are extracted 

from images, and estimate the comparability with all the 

different types of gestures by a proposed Expectation-

Maximization algorithm in Gaussian Mixture Model. The 

classification results were presented based on the values of 

likelihood compared with all the types of pre-assigned 

images, and the performance of this approach in an 

experiment is shown that the proposed method works well. 

 

 

1. INTRODUCTION 

 

Human gesture has its specific meanings and is widely used 

for communications between deaf people. It is considered as 

a very important function in many practical communication 

applications. Recently, hand gesture recognition has gained 

a lot of interests, which plays a crucial role in a wide range 

of applications, such as automatic sign language 

understanding, entertainment, and human computer 

interaction (HCI). Because hand gestures are natural and 

intuitive in providing rich information to computers without 

extra cumbersome devices, they can offer a great potential 

for next generation user interfaces, being especially suitable 

for large scale displays, 3D volumetric displays or wearable 

devices. 

In addition, there has recently been a growing interest 

in gesture-recognition systems by a number of researchers, 

providing some novel approaches since early nineties. 

Chaitanya Gurrapu [1] adopts GMM to classify the human 

body’s gestures and track its changes through time using 

HMM. The key features extracted from body images are 

polygonal vertices obtained from body shapes. Accordingly, 

GMM is trained on the vertices feature and the relationship 

between vertices which is represented in the form of 

gradient of the line joining two vertices. The final accuracy 

is close to 98%. Yang Liu [2] used a method integrating 

shape and depth information for robust hand tracking. 

Shape is the primary measurement which builds an 

important function describing areas of state-space and 

contains critical information about the posterior. 

Recognition rate is between 70% and 92% under various 

numbers of samples. Sebastien Marcel [3] presented a hand 

gesture recognition algorithm based on input/output Hidden 

Markov Models. This approach achieves a recognition rate 

between 90% and 100% of the sequence. 

In our system, we addressed the core issue of gesture 

recognition in extracting robust features, leading to a more 

accurate estimation. The new approach we propose is 

different from existing efforts reported in the literature. It 

focuses on estimating the gesture contained in an image by 

analyzing different complex features including shape, color 

and orientation histogram quantized in Gaussian Mixture 

Model (GMM). 

GMM is a widely used statistical model in many 

applications of pattern recognition, which is often regarded 

as a versatile modeling tool as it can be used to approximate 

any probability density function (PDF) given a sufficient 

number of components, and impose only minimal 

assumptions about the modeled random variables. The 

advantage is including a rigorous statistical basis, the 

possibility of encoding spatial, color, texture and motion 

features in a unified system, and the ability to trade off 

accuracy of representation against data volume. Due to such 

advantages, our proposed technique builds upon the GMM 

to estimate the mutative meaning of human gestures in a 

compact and precise manner. 

The rest of this paper is organized as follows. An 

overview of principle of Gaussian Mixture Model is 

described in Section 2. The method of training and 

parameter estimation is covered in Section 3. While Section 

4 is dedicated to description of how images are tested, 

Section 5 is devoted to the experiments. Finally, concluding 

remarks and further area of research are provided in Section 

6.  

 

2. DESCRIPTION OF PRINCIPLE OF GAUSSIAN 

MIXTURE MODEL (GMM) 

 

GMM is one of the most widely used mixture modeling 

techniques. It’s a simple model and is reasonably accurate 

when data are generated from a set of Gaussian distributions 

[4, 5]. Let  iti TtxX  1, , denote the feature vectors 

for data points from the i-th class. They are modeled by a 

total number of J Gaussians as follows: 
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where D is the dimension of the feature vector tx . Usually, 

j  is set to be a diagonal matrix as 

 Dddiag jd 1:2  in order to reduce the size of 

parameter space. 

It can be seen from Equation (1) that the data points of 

a specific class are generated from multiple Gaussian 

models with an identical weight )( jzP . We define 

)( jj zP . 

In other words, an integrated Gaussian mixture model 

contains three basic parameters: Mixture weight, Mean 

vector and Covariance matrix, which can be represented as: 

 
jjj  ,,                               (3) 

where j  is the mixture weight, j  is the mean vector, 

and j  is the covariance matrix. We use   to stand for 

every single image. Additionally, we use 

 jjtzj xPxb
j

 ,)(   and 



J

j

j

1

1 . 

 

3. TRAINING METHODS AND PARAMETER 

ESTIMATION 

 

For training purposes, our primary work is to find the 

parameter   which can stand for the feature vector of 

every certain image. A normal method is the maximum 

likelihood (ML) estimation via expectation-maximization 

algorithm [4, 6, 7]. The ML means attempting to find the 

certain   from the image which is used for training 

purposes in order to get the maximum likelihood. 

For example, we extract the feature vectors 

 TxxX ,,1   from an image by selecting the feature 

where the T is the number of features and the likelihood of 

GMM is defined as: 
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 ,                     (4)  

According to the fact that the  XP  is nonlinear 

function, we should use the way of ML to estimate the 

parameter of GMM until the  XP  is convergent. 

The method of algorithm estimation starts from an 

initial guess   for the new model parameters   to be 

estimated, in order to get a relationship of 

    XPXP  . Then transform the   into the initial 

model parameter  . This step will be repeated until 

 XP  is convergent. During the iteration, the following 

estimation ensures that the approximation of GMM is 

achieved via the nature of monotonic increase: 
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Where the estimation of mixture weight is 
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The estimation of mean vector is: 
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The estimation of covariance is: 
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4. METHODS OF TESTING 

 

We use the maximum of a posterior criterion to differentiate 

all images, which means that the likelihood between testing 

images and pre-assigned images of each different type are 

calculated in order to compare the results and select the 

maximum numerical value. Accordingly, the testing image 

is ranged to a certain type, in which it has the maximum 

numerical value of likelihood compared with other images. 

In this way, we can use the equation below to describe the 

proposed process: 

)Pr(maxargˆ
1

XS k
Sk




                      (9) 

where S is the total of all pre-assigned different types, Ŝ  is 

the certain type which the testing image is classified to, k  

is the model of pre-assigned type K, and X is the vector of 

features of the testing image. 

 



 

              (a) 

(b) 

   (c) 

                (d) 
Fig.1. Classification of Hand Gesture: (a) Three basic classes of hand gesture; (b) colour extraction of each class of hand gesture; (c) 

shape extraction of each class of hand gesture; (d) orientation histogram of each class of hand gesture 

 
This equation can be transformed to another by Bayesian 

rule: 
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calculating their logarithms, we have: 
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5. EXPERIMENTS 

 

To evaluate the proposed algorithm, we collected a group of 

Hand-gestures as the test data set, and then classified all of 

them into 3 basic classes as shown in Fig. 1 (a). The first 

one is a hand with all fingers outstretched. The second one 

is considered as a fist, and the third one involves only 2 

outstretched fingers (forefinger and middle finger) 

symbolizing a victory. 

Following the described algorithm, three significant 

features are extracted, which include color, shape, and 

orientation histogram from all the image. The feature of 

color is extracted in the YCbCr Color Space. Fig.1 (b) 

shows the results of the color extraction of every image in 

Fig.1. The feature of shape is extracted by Canny Edge 

Detector. The results are shown in Fig.1 (c). Orientation 

histogram [8, 9] is one of useful features which offers 

robustness to lighting changes and give translational 

invariance. The orientation histograms for each gesture are 

illustrated in Fig.1 (d). 

We evaluate the performance by using a total number 

of 450 gesture images, which were derived from the 

“Sebastien Marcel Static Hand Posture Database” [10]. As 

these images are captured against different backgrounds, it 

would help to test the robustness of the proposed algorithm 

if the order of images is randomized in the data set. Trained 

by 8 images from the database for each gesture, the 

proposed technique is evaluated by extensive experiments 



and their results are measured by error rate, which are 

summarized in Table-I: 

 

Table-I: Summary of Experimental Results 

Total Number 450 

Images for Training 24 

 Amount of testing images 426 

Error rate (%) 5.37% 

 

6. CONCLUSION AND SUMMARY 

 

In this paper, we described a proposed algorithm for human 

gesture recognition and demonstrated its discriminative 

ability for recognition of gestures on a large database of 

images. By using Gaussian Mixture Model, we have shown 

that multiple features extracted from gesture images could 

be organized and controlled by GMM to formulate new 

discriminating vector for classification and recognition of 

human gestures. The application of Gaussian Mixture 

Model illustrates the advantage that it provides improved 

performance over other existing methods, yet requiring only 

modest computational cost to complete the gesture 

recognition. Further research can be identified to focus on 

the issue of extendibility and selection of primary features 

as such that other pattern recognitions can be achieved, 

especially inside digital videos. 
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Abstract 

Edge detection, especially from colour images, plays very important roles in many applications for image analysis, 

segmentation and recognition. Most existing methods extract colour edges via fusing edges detected from each colour 

components or detecting from the intensity image where inter-component information is ignored. In this paper, an improved 

method on colour edge detection is proposed in which the significant advantage is the use of inter-component difference 

information for effective colour edge detection. For any given colour image C, a grey D-image is defined as the accumulative 

differences between each of its two colour components, and another grey R-image is then obtained by weighting of D-image 

and the grey intensity image G. The final edges are determined through fusion of edges extracted from R-image and G-image. 

Quantitative evaluations under various levels of Gaussian noise are achieved for further comparisons. Comprehensive results 

from different test images have proved that our approach outperforms edges detected from traditional colour spaces like RGB, 

YCbCr and HSV in terms of effectiveness and robustness.  

 

Keywords: edge detection, image segmentation, colour space transform, inter-component difference. 

 

1 Introduction 

Since physical edges usually correspond to apparent variations in the illumination and colours, edge detection is very useful 

and important in many low-level vision applications as to provide essential visual information for feature extraction, 

segmentation and scene understanding [1, 5, 7, 10, 13]. In general, edge detection contains three main stages, namely 

preprocessing or smoothing, image difference and gradient detection for edge pixel judgment, and continuous edge extraction. 

Gradient-based methods are almost the earliest edge detector which only uses convolution templates to obtain local difference 

for edge detection, and then Canny introduced a well defined edge detector with good performance, high precision and unique 

response [1].  

From convolution templates to Canny edge detector, traditional edge detection methods are usually defined on grey images, 

and some improvements or new methods are necessary for edge detection from colour images according to human colour 

perceptions. A simple idea is to convert <r,g,b> colour image to its luminance intensity image G, from which traditional edge 



detectors are applied to extract colour edges. As the conversion from colour to grey is multiple to one mapping, edges detected 

from G-image are less accurate and usually edge pixels with obvious colour difference but less intensity variation are missing. 

Another simple idea for colour edge detection is to apply the edge detectors to each colour component and the final edges will 

be the combined results of the edges from different component images. Although the combined edges have more accuracy and 

detail information than the edges from G-image, they are still not accurate enough and have missing edges due to the fact that 

inter-component information is ignored in the process of edge detection.  

Since colour vision is synthetic perception of R, G and B components, the combined edges extracted from multiple single 

components have intrinsic limitations according to human visual perception. To acquire more reasonable and accurate edges, 

quite a few colour spaces and colour models have been investigated [3, 8, 14], such as HLS (hue-lightness-saturation), HSV 

(hue-saturation-value), YUV, XYZ, YCbCr, etc. When <r,g,b> colour images are converted to specified colour space, edges 

will be extracted from the components of the new space. Since different components are independent each other, the final 

edges are also combination of the edges from each component including colour and luminance information [4]. Alternatively, 

some other efforts have been made on edge detection from colour images, such as the compass operator in [9], direction 

information measurement in [6], cluster analysis in [11], and invariance analysis [4, 12]. However, choosing a suitable colour 

space is still a very fundamental task in such a context on which the above operators or processing can then be applied [16]. In 

addition, quite a few combined approaches have been proposed for colour edge detection, such as morphological gradient 

followed by outlier rejection [17], statistical analysis of R-G and B-Y colour components [18], clustering of pixels using the 

minimal spanning tree [19], combination of self-organising map (SOM) and a grayscale edge detector [20], and neighbourhood 

hypergraph and validation of hyperedge [10].  

In this paper, we present an improved method for colour edge detection via fusion of intensity and chromatic difference. At 

first, amplitude differences between different two colour components are accumulated to generate a grey D -image. Then, 

another grey R -image is obtained by weighting of D -image and G -image of luminance intensity. Final edges will be 

combination of edges extracted from the R -image and G -image. In comparison with the edges extracted from three colour 

components and other colour spaces, the proposed method can achieve more effective and robust results from different 

standard colour images even with attached Gaussian noise.  

2 Colour Space Transform 

Comparing to texture and shape, colour is the chief discrimination attribute in human visual system [2, 4]. Therefore, colour 

edge detection is more important in scene analysis and understanding. Although many colour transforms and colour space 

models have been developed, they can be converted between each other by mapping from and to RGB space. In general, 



luminance and the differences or proportions between luminance and different colour components from RGB space compose 

the new components in the transformed space. Following is an example transform from RGB space to YUV space: 

bwgwrwy bgr                (1) 

yrvybu  ,             (2) 

In (1) and (2), y  refers to the luminance as an overall measurement of the three colour components, and vu, are the 

chrominance and detail representation by colour component differences.  

YIQ and YCbCb have similar transforms like YUV above, and HSV and HLS spaces have more complex transform 

formulas [8]. Although some of these transforms can achieve coherent distance measurement with human perceptions, they are 

not effective in accurate edge detection due to the fact that inter-component information has not been fully considered.  

Let f  be the original three component colour image, and we define the one component D -image as: 

),(),(),(),(),(),(),( 321 jigjibjibjirjigjirjiD         (3) 

where D -image gives the total colour differences between different colour components. Currently we simply set same weight 

of one-third for three components. 

 

   

Figure 1. One original colour image (left) and its corresponding three single channel images including 

D -image, G-image and R-image, respectively.  

 

Since the D -image has too much noise, it is smoothed by weighting with G -image of luminance intensity to generate a 

new one component R -image as follows:  
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where dw  and gw  are the weights and determined in (5) and (6) by the statistical properties of D -image and G -image, and 

the parameter k  is used to scale the determined values of R -image within [0,255].  



)()(*5.1 DDRangewd               (5) 

)()(*5.1 GGRangewg               (6) 

Range  is a function to get the intensity range of the given image, i.e. difference of the maximum and the minimum 

intensity values, and   is the standard derivation. In comparison with [15], our solution can obtain a new pseudo-grey image 

without PCA analysis. For a given colour image, its corresponding D -image, G-image and R-image are all illustrated in Fig. 1 

for comparisons.  

 

3 Colour Edge Detection 

Since our main focus is the fusion scheme for improved colour edge detection, we intend to use standard edge detectors for 

consistent measurements and evaluations. To this end, the well-known Canny operator is used for its relative good 

performance. Taken )(xf   and ],[   as impulse response and bandwidth of the Canny operator, the corresponded filter 

should make formula (7) maximum: 
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Edges detected by the Canny operator are all local extrema to ensure the precision of detection. Firstly, the grey image is 

smoothed by a Gauss function. Then, normalized gradient image is obtained from the smoothed image to determine possible 

edge pixels. Two thresholds hT  and lT  are used to get continuous and robust results. If a pixel has a gradient more than hT , it 

belongs to the edge. If the gradient is less than lT , it is not edge pixel. Otherwise, the pixel will be determined as edge pixels if 

there are edge pixels in its neighbourhood and this process helps to improve the continuity of detected edges. 

In our experiments, the implementation of the Canny operator in the OpenCV package is adopted for edge detection. As 

seen, hT  and lT  are two important parameters in the Canny operator and different thresholds will lead to quite different edge 

results. For the G -image in Fig 1, we give the detected edges using different thresholds in Fig 2. For a given hT , small lT  

can achieve more detail edges, but too small lT  may cause noise (see the girl‟s face in Fig 2). Therefore, how to automatic 

select suitable thresholds is a basic problem for effective edge detection of Canny operator.  

For consistency in evaluations, in our method hT  and lT  are automatically determined as follows:  

),2/max(  hT           (8) 



2/||  lT                        (9) 

where   and   are the mean and standard derivation of any  given grey image. For G -image in Fig. 1, we can find 

208hT  and 55lT , and the corresponding edges is given in Fig 2(b), which is better than Fig 2(a) and Fig 2(c). 

 

   
(a) 100lT                     (b)  55lT                              (c) 10lT  

Figure 2. Extracted edges using the Canny edge detector with 208hT  and 
lT  changes from 100, 55 to 10, respectively. 

 

 For a given colour image, its edges are then extracted as follows. Firstly, the associate G -image and R -image are 

obtained. Secondly, using the Canny operator with automatically determined parameters, edges are detected from these two 

images as GE  and RE , respectively. Finally, edges for the colour image finalE  are determined as follows.  

GRfinal EEE                                      (10) 

As for the colour image in Fig. 1 and GE  in Fig. 2, we give its RE  and finalE  in Fig. 3. Note that GE  is useful to recover 

edges from grey part (no component difference) of images, as grey pixels in image f  with same values in three colour 

components will appear as zero and cannot be distinguished from both the D -image and R -image. 

 

 

   

Fig. 3. RE  (left) and finalE (right) of colour image in Fig 1. 

4 Results and Discussions 

In order to evaluate our fusion scheme in improved colour edge detection, we take edges from RGB, YCbCr and HSV spaces 

for comparisons. RGB space has been selected because it is widely used for colour representation especially in computer 



graphics. On the other hand, we choose YCbCr and HSV spaces for two reasons: i) both of them reflect certain human 

perceptions of colour, ii) either of them represents one group of similar colour spaces, such as YCbCr can represent YUV, and 

HSV can also represent HSL or HSI etc.  

For the three colour spaces above, corresponding edges are extracted as follows: Firstly, all the colour components have 

their values normalized within [0,255]. Secondly, edges are extracted from each colour component using the Canny operator 

with automatically determined parameters. Thirdly, the final edge for each image is obtained as the union of edges extracted 

from each colour component. For the original colour image “green girl” in Fig. 1, Fig. 4 illustrates edges extracted from RGB, 

YCbCr, HSV spaces and our fusion scheme for comparisons. As seen, our method has more continuous (see closed face 

contour) and accurate edges than edges from RGB and YCbCr spaces, and RGB edges is much better than YCbCr edges. In 

addition, edges extracted from HSV space have too much noise.  

4.1 Effectiveness Evaluation  

To further evaluate the effectiveness of our proposed algorithm, edges extracted from both synthetic and real images are 

further compared. Three standard test images, “lena”, “pepper” and “house”, as shown in Fig. 5, are used in this group of 

experiments. For quantitative evaluation, ground truth of edge images are defined as reference images. These ground truth 

images are produced in a semi-manual way containing two steps: i) Extracting edges for each image using the logical OR of 

the results from RGB and YCbCR spaces, and ii) manual refinement of the extracted results to remove ghost edges and noise, 

etc. Basically, the precision rate p  and recall rate detected r  are defined for such evaluations as follows.  
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Figure 4. Comparing extracted edges: from left to right, the images are edges detected from RGB, 

YCbCr, HSV spaces and our method from the original colour image in Fig. 1.  



where refE  and detE  denote reference (as ground truth) and detected edge results; tp  and fp  refer respectively to true 

positive (correct detected) and false positive (false alarm) samples, and fn  denotes false negative (missing in detection) 

samples. The samples are counted as number of edge pixels in the images accordingly. 

 

Figure 5. Three test images (top) and associated ground truth images of edges (bottom). 

 

                 Table 1. Quantitative evaluations of edges detected from the test images.  

images 

edges 

“lena” “pepper” “house” Average 

p  
r  F1 p  

r  F1 p  
r  F1 p  

r  F1 

RGB 63.77% 85.09% 72.90% 37.12% 84.44% 51.57% 55.86% 85.41% 67.54% 73.92% 63.96% 51.75% 

YCbCr 90.92% 75.85% 82.70% 66.75% 85.45% 74.95% 71.92% 80.68% 76.05% 83.15% 77.44% 73.06% 

HSV 40.60% 83.09% 54.54% 41.72% 82.27% 55.36% 18.15% 89.17% 30.16% 59.41% 51.93% 56.84% 

Grey  93.47% 72.87% 81.89% 78.75% 67.37% 72.61% 73.51% 72.00% 72.75% 82.74% 71.17% 75.22% 

Green 72.5% 73.34% 72.92% 58.22% 64.00% 60.97% 65.95% 69.37% 67.61% 72.92% 63.64% 63.31% 

Eigen [15] 94.15% 63.88% 76.12% 67.57% 64.01% 65.74% 74.03% 65.21% 69.34% 78.05% 67.93% 66.37% 

Our 91.15% 92.97% 92.05% 78.59% 84.98% 81.66% 71.91% 91.53% 80.54% 92.06% 79.52% 84.57% 

 

According to the three test images in Fig. 5, the results of quantitative evaluations are given in Table 1. For each test image, 

seven edge results are compared including those extracted from colour spaces of RGB, YCbCr and HSV, single component of 

the grey image, the green channel and a pseudo-grey channel [15] as well as our fusion scheme. Since this pseudo-grey 

component is attained via principle component analysis of the three colour channels, we simply namely its results as eigen 

edges. For visual comparisons, all the relevant edge images are also shown in Figure 6. As can be seen, our method yield quite 

high values of precision and recall rate in all the test images, followed by the edges extracted from YCbCr space, and the 



similarity here is due to the fact that channel difference information has been successfully employed in the detection of edges. 

While the other algorithms generate at least one poor value in terms of precision and recall measurements. Edges extracted 

from both RGB and HSV spaces suffer from massive false alarms, and HSV edge is even worse. Edges extracted from the grey 

image or the pseudo-grey channel is better than those from the green component, this is because grey image contains more 

information from other colour components which makes it more accurate in detection edges. However, the results from these 

three single components are worse than those from YCbCr space and our method. In addition, it is worth noting that the 

precision rate for the “house” image and the “pepper” image is less than that of the “lena” image. The reason behind is that 

there are fake edges in the previous two images caused by shadows or lighting, which has inevitably led to more false alarms 

and lower precision values.  

4.2 Robustness Evaluation  

For robustness evaluation, edges extracted from colour images with attached Gaussian noise are compared. Firstly, the 

intensity values from each colour component are normalized within [0, 1]. Secondly, zero-mean Gaussian noise is added to the 

normalized intensity values with the variance value of v  changes from 0.002 to 0.008 where larger variance value indicates 

higher level of noise. Thirdly, the normalized image with attached noise is converted back so that its intensity in each 

component is within [0, 255]. For the original test images in Fig. 5, their corresponding noisy test samples under the variance 

value of 0.006 are given in Fig. 7. Noting that before applying the Canny operator for colour edge detection, median filtering in 

a 3*3 rectangle window is employed to remove noise. In addition, a post-processing step is used to remove false edges whose 

length is below a given threshold eT . 

      

       

       

Figure 6. Comparing edges extracted from the three test images in Fig. 5. From left to right, the edges images are detected 

from RGB, YCbCr, HSV spaces, grey image, green component, eigen grey [15] and our method, respectively.  



    

Figure 7. Three noisy test samples with additive Gaussian noise where the variance value is 0.006. 

 

To achieve an overall evaluation of both the precision rate and evaluation rate, a 1F  measurement is defined below as  
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In the following, edges extracted from noisy images after length thresholding are compared. For simplificity, our method is 

only compared with the edges extracted from the pseudo-grey component [15] as well as RGB and YCbCr spaces, and all 

others are ignored for their poor performance in Table 1. Please note that only the additive Gaussian noise is tested, and more 

complex noise models like multiplicative noise are not considered as they are not popular in natural scenes. For each test 

image, three curves are plotted and shown in Fig. 8 to illustrate the change of 1F  value vs. the variance values of additive 

Gaussian noise. As can be seen, the  1F  values degrade significantly with increasing variance values of additive Gaussian 

noise, while our fusion scheme performs the best over all the test images. Edges extracted from RGB space are the worst which 

indicates that they are more sensitive to the added noise. Besides, it seems that edges extracted from the pseudo-grey 

component [15] are less sensitive to noise especially when the variance value is high. Furthermore, in our implementation the 

threshold eT  is empirically determined as 12. As shown in Fig. 8, it is found that our results are insensitive to the threshold eT  

which is used to remove short edges.  

    

Figure 8. Comparison of 1F  values (y-axis) vs. the variance values of additive Gaussian noise (x-axis, the left three images 

and three plots respectively correspond to the test images “lena”, “pepper” and “house”) and various threshold values (x-axis) 

(right). The results labelled with “eigen” is extracted from the pseudo-grey image in [15]. 



In addition, visual comparisons over the edges extracted from noisy samples are also shown in Fig. 9, in which two groups 

of noisy samples are used and the variance values of the Gaussian noise are 0.002 and 0.006, respectively. Again, we can 

easily find that RGB edges are extremely sensitive to noise. Although both our results and YCbCr edges exhibit some 

robustness to the noise, the false alarms caused in the corresponding images are different. In general, false alarms in YCbCr 

edges are adjacent to real edges, but in our results these false alarms are separated. Therefore, it is possible to further improve 

the accuracy of our algorithm by introducing more powerful post-processing to reduce these separated fake edges. In addition, 

edges extracted from pseudo-grey component has fewer false alarms though more missing edges. 

 

The computing complexity of the proposed algorithm contains three main parts including i) extraction of G -image and 

R -image, ii) detection edges using Canny detector on the two single-component images, and iii) post-processing. In general, 

the first step takes most of the running time, i.e. more than 60% of the total time of our method. Since the complexity of edge 

detection algorithms rely on image contents, especially for the Canny detector where tracing of edges is employed, the 

complexity of our method is compared with others in a relative way as follows. For one test image, different edge detection 

        

        

        

        

Figure 9. Visual comparison of edges extracted from noisy samples. In each row, two groups of edges images are displayed 

which are results from noisy samples with the variance values at 0.002 (the left) and 0.006 (the right), respectively. From 

top to bottom, the four rows correspond to edge results detected from RGB, YCbCr, pseudo-grey[15] and our scheme.  



methods are applied for 100 times on the same machine and the executive times are taken as a good indicator to evaluate the 

corresponding complexity of the approaches. Executive times obtained in edge extraction from the three test images in Fig. 5, 

using RGB and YCbCr colour spaces, pseudo-grey component, and our scheme, are listed in Table II for comparisons. As can 

be seen, the executive time for the “pepper” image is the longest as it contains the most edges. The overall complexity of 

YCbCr edges are the minimum, followed by RGB edges and eigen edges, and our scheme is the most complex one. However, 

our method is only 23% more complex than YCbCr edges, and the additional cost is quite limited for the good performance 

achieved in our tests.  

 

Table 2. Comparison of complexity by executive time (in seconds) via running  

                     100 times of the test in extracting edges from the images in Fig. 5. 

images 

methods 
“lena” “pepper” “house” 

Average 

Time Ratio 

RGB edges 3.203 4.719 3.125 3.682 107% 

YCbCr edges 3.188 4.188 2.985 3.454 100% 

Eigen [15] edges 3.265 4.532 3.150 3.649 106% 

Our edges 3.797 5.219 3.688 4.235 123% 

5 Conclusions 

We have proposed an improved method on colour edge detection. We have found that inter-component information in colour 

images is very important for accurate edge detection, though it has been ignored in many existing approaches. Through the 

fusion of intensity and chromatic difference, the proposed scheme is found very useful in generate better colour edges. In terms 

of effectiveness and robustness under attached Gaussian noise, both visual and quantitative evaluations are achieved. 

Comprehensive results from several standard test images have fully verified both the effectiveness and robustness of our 

proposed approach, which is found outperforming edges extracted from RGB, YCbCr and HSV spaces. Further investigation 

will be to apply the fusion scheme on image segmentation and content-based retrieval applications as well as to introduce more 

powerful post-processing to remove separated false alarms. 
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Abstract. Classification of benign and malignant microcalcification clusters (MCC) in 

mammograms plays an essential role for early detection of breast cancer in computer aided 

diagnosis (CAD) systems, where feature selection is desirable to improve both the efficiency 

and robustness of the classifiers. In this paper, three approaches are applied for this task, 

including feature selection using a neural classifier, a clustering criterion and a combined 

scheme. To evaluate the performance of these feature selection approaches, a same neural 

classifier is then applied using the selected features and the classification results are then 

compared. In our dataset in total 748 MCC samples are detained from the well-known DDSM 

database, where 39 features are extracted for each sample. Comprehensive experiments with 

quantitative evaluations have demonstrated that the best classification rate can be achieved 

using 15-20 selected features. Also it is found that applying features selected from clustering 

rules can yield better performance in separate and combined scheme.  

1   Introduction 

Breast cancer comprises over 10% of all cancer incidences among women, which 

is the second most common type of non-skin cancer (after lung cancer) and one of the 

most common causes of cancer deaths. In every year, about 1 million women 

worldwide have been diagnosed with breast cancer [1]. According to a report from 

National Cancer Institute, about 1 in 8 women have breast cancer in US, whilst this 

ratio becomes 1 in 11 in Australia and one in nine in UK and Canada. In 2007, there 

were about 1.15 million women had found having breast cancer in the world and 

about 36% of them died because of it. 

As breast cancer becomes the most threat to women’s health, many scientists and 

researchers have been focusing on how to solve it efficiently [11].  It is found that 

early detection of breast cancer will help reducing the death rate. Since digital 

mammogram has the major role for early detection of breast cancer, detection of 

benign and malignant samples in mammogram images become a bottleneck for 

radiologists and researchers towards automatic diagnosis. The main problem that 

makes it difficult here is that there is no unique pattern for individual benign and 

malignant samples, i.e. variety in their appearances [6]. In the work reported in [7][9], 

the CAD systems can increase the detection rate of breast cancer at about 5-15%. The 

flowchart of a typical CAD system is shown in Figure 1, where feature extraction and 

feature selection is the core of the whole system.  

After decades of research, many relevant works have been reported in the detection 

and classification of breast abnormalities of mammograms in the literatures. The most 

popular methods used in this context include the artificial neural network (ANN) [6, 
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8], fuzzy logic [2, 9], statistical approaches [4] and several combined solutions [3, 

12]. It is our aim to apply feature selection approaches in breast cancer detection, 

especially in classification of MCCs in mammograms, where neural classifier and 

statistical clustering principles are employed for their well-known good performance 

in this field [1, 4, 11].  

 

 

 

    

 

                 Fig 1: Flowchart of a typical CAD system. 

 

In our dataset, there are 748 MCC samples in the database, where 633 are benign 

and 115 are malignant. All the sample data are from the University of South Florida’s 

DDSM database (The Digital Database for Screening Mammography) [13, 14]. 

Before applying classification, in total 39 different features have been extracted for 

each sample and indexed from 1 to 39 [15]. For more effective and robust 

classification, feature selection approaches are employed in order to reduce data 

redundancy and improve the classification performance. Further details are discussed 

in the next sections.  

2   Feature Selection Schemes 

Feature selection is to choose the most representative components among the 

feature set, and the principle is based on the fact that these selected features should be 

most discriminative in classifying the training samples. This discriminative ability is 

determined using two basic classifiers, including neural network and statistical 

clustering.  

2.1. Feature Selection using Neural Network  

The basic criterion here is to correctly detect as many malignant samples as 

possible, and of course, to reduce the occurrence of wrongly detected malignant 

samples. A back propagation (BP) neural network, which contains an input layer, one 

hidden layer and one output layer, as shown in Fig. 2, is employed. The number of 

nodes for input layer and hidden layer is 32 and 16, respectively. The features 

inputted can be single ones or combined ones and through changing hidden units, 

learning rates and momentums the best detection results can be achieved. The output 

value is normalized within [0.1, 0.9]. Those lying within the range (0.5, 0.9] are taken 

as benign and those lying within the range [0.1, 0.5] are taken as malignant. 

Each of the 39 features is applied as input to the designed neural classifier to 

determine its performance. At this stage, 90% of the test samples are used for training 

and the remaining 10% for testing. Then, each separate feature is ranked according to 

its recognition rate and taken as discriminative ability. 

Digital  

Mammogram 
Preprocessing 
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Selection 
Classification 



 

 

   

 

 

 

 

 

 
 

              Figure 2:  Outline of Neural Network structure used for feature selection 

2.2. Feature Selection using Clustering Rules 

In probability and statistics, the standard deviation of a probability distribution, 

random variable, or population of values is a measure of the spread of its values. The 

standard deviation is usually denoted by the letter σ (lower case sigma), and is defined 

as the square root of the variance. As for variance, large or small variance values refer 

to important or unimportant dynamics in Clustering rules analysis. To this end, 

standard deviation can be also considered as a kind of measurement of dynamics. As a 

result, we intend to use the standard deviation to rank each feature in several steps as 

follows.  

 

1) For each feature, the mean value of all its samples in target 1 (malignant) group 

and target 0 (benign)  group are respectively determined as 1u  and 0u .  

2) Accordingly, 1  and 0  are also obtained as standard deviation for all samples 

in two groups corresponding to target 1 and target 0; 

3) Based on extracted mean and standard derivation, an overall rank of each feature 

is defined below:  

          

)((.) 0101   uurank

                              

(1)
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           Figure 3. Illustration of the relationships among 1 , 
0

 , 1  and 0 . 
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The relationships among 1 , 
0

 , 1 and 0  are illustrated in Fig. 3, in which 

two groups of samples are represented by hollow circle and circle inside cross, 

respectively. The centroids in each group are denoted as 1  and 
0

 , and 

parameters 1 and 0  are used to denote the compactness of samples in each group.  

The basic criterion in ranking the features is to measure if it is easily to separate two 

groups of samples. If the distance between the two centriods is far enough, say larger 

than 1 + 0 , it will be ranked high as more likely the samples can be split into two 

groups. 

2.3. Feature Selection using Combined Approach  

Based on the results of feature selection from neural network and clustering rules, 

a combined scheme is then proposed as follows. Firstly, for the features selected using 

neural network and clustering rules, we sequentially assign a score within [1, 39] to 

each feature according to its decreasing discriminative ability. Then, for each feature 

an overall rank is obtained as the sum of two scores assigned, and the feature of lower 

overall rank will be selected of first priority in further classification.  

3. RESULTS AND DISCUSSIONS 

In this section, results in feature selection using neural network, clustering rules 

and combined scheme are compared and analyzed. For quantitative evaluation, three 

recognition rate 1C , 0C  and allC  are defined as follows.  

SADAC /1                            (2) 

SNDNC /0          (3) 

)/()( SASNDADNCall                 (4) 

where DA  and SA  respectively refer to corrected detected abnormal samples and 

the sum of abnormal samples; DN  and SN  denote corrected detected normal 

samples and the sum of normal samples.  

In our experiments, we set the number of iterations in the neural classifier as 

10000. Each separate experiment is tested for 20 times in which data used for training 

and testing can be randomly selected for a wide coverage of all cases. Finally, the 

quantitative evaluations are achieved as an average measurement over all the 20 tests. 

Details of the results and analysis are presented below. 



3.1. Results of Feature Selection via NN  

In Table 1, features are listed with their associated discriminative ability in 

decreasing order which is determined using the neural classifier. 

Table 1.  List of features indexed from 1 to 39 and their discriminative ability (rank) decided 

using the NN.  

Index Rank Index Rank Index Rank Index Rank 

#15 0.2333 #33 0.1280 #8 0.0631 #37 0.0438 

#1 0.1912 #23 0.1210 #35 0.0543 #26 0.0403 

#2 0.1877 #19 0.1035 #38 0.0543 #32 0.0385 

#16 0.1666 #20 0.0929 #22 0.0526 #36 0.0385 

#39 0.1526 #7 0.0877 #27 0.0526 #13 0.0385 

#18 0.1491 #29 0.0842 #28 0.0491 #10 0.0368 

#5 0.1473 #14 0.0842 #25 0.0491 #11 0.0350 

#17 0.1421 #12 0.0701 #24 0.0456 #9 0.0350 

#31 0.1403 #21 0.0666 #3 0.0456 #6 0.0315 

#34 0.1368 #30 0.0666 #4 0.0438   

 

From Table 1 we can see, discriminative ability differs much over all features 

where the maximum and the minimum ones are 0.2333 and 0.0315, respectively, and 

this has clearly demonstrates the potential for feature selection. In our experiments, 

features of higher discriminative ability are selected with first priority for further 

training and testing.  Under different numbers of selected features, the classification 

results are compared in Figure 4.   

  

 

 
Figure 4.  Classification results with the same NN using different number of features  

selected via neural network.  

 

In Figure 4, some facts can be summarized below: i) When the number of selected 

features changes from 5 to 20, the correcting rates of 1C , 0C  and allC  stably 



increase; ii) When the increasing number of selected features becomes more than 20, 

the correcting rate begin to decrease; iii) It is suggested that the first 15 to 20 features 

will yield particular good performance with highest correcting rate in terms of 

1C , 0C  and allC  .  

3.2. Results of Feature Selection via Clustering  

Using our ranking function in (1), we can determine ranks for each of the 39 

features on the basis of clustering rules and the results are given in Table 3.  

According to the ranking results in Table 3, again we choose some features for 

classification whilst features of high rank values are to be selected first. The same 

neural classifier is applied in our test where 90% of the samples are used for training 

and 10% for testing. The testing results are reported in Figure 5. 

Table 3.  List of features indexed from 1 to 39 and their discriminative rank decided using 

clustering rules.  

Index Rank Index Rank Index Rank Index Rank 

#39 0.9743 #7 0.4510 #28 0.2321 #1 0.065 

#15 0.8506 #19 0.4192 #13 0.2072 #37 0.0652 

#2 0.7187 #18 0.3874 #5 0.1963 #11 0.0608 

#16 0.7026 #34 0.3797 #3 0.1765 #36 0.0573 

#17 0.6867 #22 0.3386 #38 0.1572 #32 0.0433 

#33 0.6627 #23 0.3384 #24 0.1501 #4 0.0405 

#27 0.6252 #20 0.3104 #35 0.1306 #10 0.0390 

#25 0.6109 #31 0.2931 #12 0.1073 #9 0.0287 

#21 0.5856 #30 0.2812 #14 0.1003 #6 0.0046 

#29 0.5286 #26 0.2623 #8 0.0765   

 

 

 
Figure 5.  Classification results with the same NN using different number of features selected 

via clustering rules.  



In Figure 5, we can see that with the increasing number of selected features used in 

classification the correcting rate will firstly increase and then decrease. Again the 

correcting rates achieve their maximum (peaks) when the number of selected features 

lies between 15 and 20. 

If we compare the results in Figure 4 and Figure 5, we can easily find that the 

results in Figure 5 yield an overall better correcting rate in terms of allC  and also 

much higher correcting rate of 0C  than that of Figure 4. On the contrary, the 

correcting rate 1C  in Figure 5 is much lower than that of Figure 4.  

3.3. Results of Combined Feature Selection  

Using our combined feature selection scheme, the final rank determined for each of 

the 39 features is listed in Table 5. Again, the correcting rate under various numbers 

of selected features are compared and shown in Figure 6. 

Table 5.  Combined rank for each feature while lower rank refers to high priority.  

Index Rank Index Rank Index Rank Index Rank 

#15 3 #7 26 #22 39 #13 57 

#2 6 #31 27 #12 46 #37 63 

#39 6 #21 28 #14 46 #4 66 

#16 8 #23 28 #28 47 #32 68 

#17 13 #5 30 #38 48 #36 68 

#33 17 #20 31 #35 49 #11 70 

#18 19 #27 32 #8 51 #10 73 

#34 24 #1 33 #26 52 #9 76 

#19 25 #25 35 #24 54 #6 78 

#29 26 #30 39 #3 53   
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Figure 6. Classification results with the same NN using different features selected via 

combined approach. 



From Figure 6, we can see that the correcting rate of class 1 (malignant) is quite 

impressive, especially when 15 to 20 features are selected and the 1C  value 

achieved is nearly 100%. Meanwhile, the correcting rate of class 0 (benign), 0C , 

becomes relative low in a range of 76-80%. This means that quite a few false alarms 

are detected this it needs to be further improved. 

4. CONCLUSIONS  

In this paper, we have employed three approaches for feature selection in 

classification of MCCs in mammograms for breast cancer detection and their 

performances are compared using quantitative evaluations. Based on our results, it is 

found that the combined approach is useful in successfully detecting malignant 

samples. Also it is found that only about half of the all 39 features are useful in 

generate better results. This has not only reduced the complexity of the problem, it 

also reveals a potential for more robust classification. Further investigations will be to 

apply combined classifiers to further reduce false alarms, plus a strategy to deal with 

the problem of unbalanced data. 
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Abstract 

Classification of microcalcification clusters from mammograms plays essential roles in computer-aided 

diagnosis for early detection of breast cancer, where support vector machine (SVM) and artificial neural 

network (ANN) are two commonly used techniques. Although SVM is found performing better than ANN, 

the average accuracy achieved is only around 80% in terms of the area under the receiver operating 

characteristic curve Az. This performance may become much worse when the training samples are 

imbalanced. As a result, a new strategy namely balanced learning with optimized decision making is 

proposed to enable effective learning from imbalanced samples. When the proposed learning strategy is 

applied to individual classifiers, the results on the DDSM database have demonstrated that the performance 

from both ANN and SVM has been significantly improved. Under the improved learning scheme, ANN 

surprisingly outperforms SVM in both training and testing. These are in contrast to the results in reported 

[20], which suggested that similar strategy could not improve the classification performance. An average 

improvement of more than 10% in the measurements of F1 and Az has fully validated the effectiveness of our 

proposed method for the successful classification of clustered microcalcifications.   

 

 

 

Index Terms—microcalification clusters (MCC), balanced learning, optimized decision making, 

neural network, support vector machine, mammography, computer-aided diagnosis. 
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I. INTRODUCTION 

Breast cancer is the most common diagnosed cancer among woman. In the United Kingdom, every year there are about 45000 

cases are diagnosed, and more than 1100 women die from this cancer every month [1]. In the United States, about 182500 cases 

were diagnosed in 2008, and nearly 40500 women die from this disease annually [2]. Since the reasons behind are still uncertain, 

early detection and diagnosis is the key for improving breast cancer prognosis [3, 4]. Among many available techniques, x-ray 

mammogram has been one of the most reliable methods for early detection of such disease [11]. Generally, it can increase the 

survival ratio by 20% to about 80% for patients. In England alone, around 1400 lives are saved each year via the NHS breast 

screening [1]. Other popular means for breast cancer detection include magnetic resonance imaging (MRI) [5], electrical 

impedance spectroscopy (EIS) [6], ultrasound [7], and infrared imaging [8].    

Although mammogram contains useful information for the early detection of breast cancer, it is difficult for radiologists to make 

accurate and consistent judgments due to the huge amount of data and widespread screening. Consequently, about 10-30% cases 

are missed during the routine check [3]. With the assistance of computer-aided diagnosis (CAD), the overall sensitivity from 

human observers can be improved by 10% on average, which provides a promising solution in such a context. 

Detection and classification of microclacification clusters (MCCs) from mammograms plays important roles in early diagnosis 

of breast cancer. In early detected cases, MCCs can be found in 30-50% of the screened mammograms. This will increase to 

60-80% if histological examinations of cancer cases are considered. The difficulty for the detection of MCCs is due to i) small size 

but various shapes, ii) low contrast and unclear boundary from surrounding normal tissue, etc. [3, 23].  

To solve such problems, a typical CAD system contains at least four stages including preprocessing, feature-based extraction of 

regions of interest (ROI), detection of MCCs, and classification. The preprocessing covers noise suppression and contrast 

enhancement, including histogram equalization etc. [35], which is useful for robust extraction of features and ROIs. The features 

include local statistics and texture modeling [10, 13], wavelets [12, 15, 18, 23], and morphological features [34]. From the 

segmented ROIs, MCCs can be detected using heuristics [14,23], fuzzy sets [11,16], sub-image decomposition and filtering [27], 

and machine learning algorithms [19, 25, 36], where shape features such as linear structure is widely used [24, 27, 29, 32]. 

Regarding classification of MCCs, a number of techniques have been presented using machine learning approaches to classify 

samples as malignant and benign, and this is also the focus of this paper. Among these techniques, two main streams are those using 

artificial neural networks (ANN) [17, 25-26, 28-30, 34, 36] and support vector machines (SVM) [9, 20-22, 30], along with other 

approaches like linear discriminant analysis (LDA) [29], Bayes classifiers [27], K-nearest-neighbor (KNN) clustering [15], genetic 

algorithms (GA) [14, 15] and decision-rules [11, 30]. According to the evaluation work in [20], SVM and other kernel based 

approaches including relevance vector machine and kernel Fisher discriminant (KFD) outperform ANN classifier in classification 
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of MCCs. However, the area under the ROC curve 
zA  achieved by SVM is only 0.85 in comparison with 0.80 from ANN, which 

apparently has space for further improvement. 

The reasons for the classification accuracy in terms of 
zA  above is not only the complexity of the problem, i.e. containing cases 

that cannot be judged even by radiologists as analyzed in [20], but also the shortcomings of single classifiers, especially the 

difficulty in dealing with imbalanced training set in machine learning. The imbalance here refers to the fact that one class is more 

heavily represented than the other. This is a common problem in real-world domains in detecting rare but important cases from 

large suspiciously normal samples [41]. Most existing machine learning algorithms fail in dealing with imbalanced data set as their 

predictions are biased to the class of majority samples [42].  

In this paper, an improved over-sampling based balanced learning strategy is proposed for the classification of MCCs, which can 

avoid drawbacks of existing techniques. The performance along with the proposed optimized decision making has been fully 

validated using two individual classifiers including SVM and ANN. The proposed method is found effective in improving both the 

sensitivity and specificity rate while maintaining the computing complexity of the classifier.  

The remaining part of this paper is organised as follows. Section II contains introductory concepts related to the SVM and ANN 

classifiers. In Section III, the proposed balanced learning and optimized decision making is presented. Section IV discusses the 

evaluation criteria and implementation details including the data set and extracted features. Experimental results are given and 

analyzed in Section V to fully validate the proposed methodology. Finally, brief conclusions are drawn in Section VI.  

 

II. REVIEW OF SVM AND ANN LEARNING TECHNIQUES  

In this paper, the classification of MCCs is treated as a two-class pattern classification problem, and the two classes are referred 

to as “malignant” and “benign”. If we denote 
dx  as an input vector or pattern to be classified, and let scalar y  denote its 

class label, i.e. }1,1{y  for SVM and }1,0{y  for ANN. The training set L contains M  samples, i.e. )},{( ii yxL   

and ],1[ Mi . The problem here is how to determine a classifier )(xf  which can make correct decision and classify the input 

pattern into suitable classes. In this section, brief introductions to SVM and ANN are presented, which forms the base of our 

proposed improved classifier as presented in the next section. 

A. The SVM Classifier 

In general, a SVM classifier can be formed as follows, 

bfSVM  )()( T
xwx                  (1) 

where parameters w and b respectively denote a weight vector and a bias that can be determined in the training process through 

minimizing the cost function below, and )(  refers to a nonlinear mapping to map the input vector x  into a higher dimensional 



 5 

space for easily separated by a linear hyperplane as illustrated in Fig. 1.  

A training sample ),( ii yx is a support vector if it holds 1)( iSVMi fy x . Let us denote ks  as extracted support vectors, 

],1[ Kk  , Ls }{ k  is a small subset of the training set. Hence, the SVM function becomes 










 

)()(),(

),()(

T

1

kk

K

k kSVM

K

bKf

sxsx

sxx


                 

(2) 

where ),( K  is denoted as a kernel function to represent the effect of the nonlinear mapping )(  in classification.  

 

 

Figure 1. Illustration the concept of SVM to map a nonlinear problem to a linear separable one. 

 

Some common used kernel functions are summarized below, including linear and two nonlinear functions. If the training 

samples are not linear separable, non-linear kernel functions are better choice. In addition, the associated parameters p  and   

are determined automatically during the training process.   

1) Linear kernel  jijiK xxxx
T),(      

2) Polynomial kernel 
p

jijiK )1(),( T  xxxx  

3) RBF kernel  
)2/( 22

),(
jieK ji

xx
xx


      

B. The ANN Classifier 

Although there is no precise definition, ANN can be considered as an information processing system which is composed of a 

network of interconnected simple processing elements, i.e. neurons. Determined by the connections between these neurons and the 

associated parameters, ANN can exhibit complex global behavior to generate expected outputs via supervised or unsupervised 

learning. Inspired by the biological nervous system, the learning process is to adjust the connection strength or weights between the 

neurons. Each neuron forms a node in the whole network and after training each node is assigned with a determined bias or 

threshold. For each interconnection between two nodes, a weight is also assigned to represent the link-strength between the 

neurons. 
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For a given input vector 
T

21 ),...,,( dxxxx  and weight vector 
T

21 ),...,,( dwwww , the output of a single neuron z  in 

Fig. 2 is determined as 

)()(
1

T  


d

i ii bxwgbgz xw             (3) 

where )(g  is namely an activation function to decide whether the perceptron should fire or not. The sigmoid function 

1)1()(  xexSig  is the most popular used activation function, others include tanh and step functions, etc. 

Using the same process as to compute the output of a single neuron, the output of the whole network can be also calculated in a 

topological manner. This means that for each neuron its inputs from other neurons need to be computed before determining its 

output. As seen, the weight vector and the bias associated to each connection and each node will influence the outputted results, and 

they can be determined in training or learning process as follows. 

 

 

Figure 2. Illustration the effect of a single neuron. 

 

First of all, the topology of the ANN needs to be specified, and feed-forward ANN is adopted as it has been widely applied for 

the classification of MCCs [17, 25, 28, 34]. A feed-forward ANN is a multi-layer perceptron (MLP) which contains three or more 

layers of neurons, i.e. one input layer, one output layer and at least one hidden layer. With a given training set, a specified activation 

function and a learning ratio   where )1,0( , the learning process for supervised training using the well-known 

back-propagation algorithm can be described in the following three stages. 

Firstly, the initial weights and bias are set randomly between ]1,1[  to attain a group of outputs 
)(t

z  at 1t  referring to the 

first round of iteration. Then, an error function is decided as 2/)()(
1

2)( 


M

i

t

ii zyt
 
using the sum squared error between the 

estimated output z  and the target output y . Finally, the error signal at the output units is propagated backwards through the whole 

network to update the weights using the gradient descent rule  

ij

ij
w

t
tw






)(
)(


                 (4) 
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where ijw  refers to a weight between the 
thj  node in a given layer and the 

thi  node in the following layer. With updated weights, 

we can set 1 tt  to start a new iteration until the network becomes convergence. This can be measured by using a small change 

ratio of )(  or a given number of iterations.   

C. Comparisons between SVM and ANN  

As two different algorithms, SVM and ANN share the same concept using linear learning model for pattern recognition. The 

difference is mainly on how non-linear data is classified. Basically, SVM utilizes nonlinear mapping to make the data linear 

separable, hence the kernel function is the key. However, ANN employs multi-layer connection and various activation functions to 

deal with nonlinear problems. In fact, single layer ANN can only generates linear boundary, and the 2
nd

 layer can combine the 

linear boundary together; while at least three layers are required to produce boundary of arbitrary shapes.  

Using the gradient descent learning algorithm, ANN intends to converge to local minima. As a result, it suffers from the 

over-fitting problem. On the other hand, SVM tends to find a global solution during the training as the model complexity has been 

taken into consideration as a structural risk in SVM training. In other words, ANN minimizes only the empirical risk learnt from the 

training samples, but SVM considers both this risk and the structural risk. Consequently, the training results from SVM have better 

generalization capability than those from ANN. Therefore, SVM and ANN are two typical classifiers which are used to validate our 

balanced learning strategy as discussed in the next sections.  

 

III. BALANCED LEARNING 

Despite the good generalization capability of SVM achieved for pattern recognition, the performance on classification of MCCs 

remains unsatisfied at around 80% in terms of 
zA  [9, 20-21, 30]. This accuracy may degrade further if the distribution of the 

samples is severely imbalanced [20]. Unfortunately, such imbalance distribution is widely found for MCCs classification, as 

usually there are much more (>4 times) benign samples than malignant ones in the training sets [20, 32]. Therefore, the 

performance of a single classifier may bias to the majority class and fails for correct detection of MCCs. For this purpose, we have 

proposed an improved strategy, namely balanced learning, to overcome this problem.   

A. Strategy in Balanced Learning 

To achieve balanced learning, there are two main technical streams, i.e. data level and algorithm level methods [37, 44]. At the 

data level, the former refer to many re-sampling solutions to balance the training data [39]. On the other hand, algorithm level 

solutions intend to adjust the cost function, decision threshold or the learnt probability for refined learning, such as the work 

reported in [40-42]. Using Bayes optimal classifier theory, it is found that individual classifier has a fundamental performance limit 

which makes it little better than that of the majority class [37-39]. Consequently, data-level solutions are preferred for balanced 

training in our paper.  
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Regarding data level solutions, there are two strategies in data re-sampling which include over-sampling of the minority class or 

under-sampling of majority class. Straightforward over- and under- sampling refer to random replication in the minority class and 

discarding samples in the majority class. Although under-sampling may reduce the size of the training set for efficiency, it may lead 

to serious problems in accurate modeling the majority class as most of data are ignored. On the contrary, random over-sampling 

seems to be a better solution despite of the increased training set.  

Since random over-sampling may increase the likelihood of over-fitting in dealing with the duplicated samples, several smart 

sampling techniques have been presented such as synthetic over-sampling (SMOTE) [39]. In SMOTE, synthetic minority samples 

are generated via interpolation of one random sample and its nearest neighbors. Some other smart sampling techniques include 

one-sided selection, cluster-based over- sampling and Wilson’s editing etc., and details of which can be referred to the work in [43]. 

B. Proposed Balanced Learning Strategy  

According to the extensive experiments in [43], it is found that random sampling outperforms several smart sampling techniques 

and unaltered data set. However, the evaluation in [20] indicates that random over-sampling seems not improving the performance 

in classification of MCCs, and similar finding is concluded in detecting sentence boundaries in [44]. Besides, it is indicated that 

SMOTE may outperform down-sampling in certain cases [44]. These inconsistent results need to be further clarified before 

applying any sampling strategies to classify MCCs for improved performance.  

Fig. 3 illustrates a typical two-class classification problem which contains combined linear decision boundaries. This is very 

common in machine learning domain and the segment of the decision boundary can also be nonlinear. For the two classes marked 

as circle and star shapes, two pairs of same-class samples are extracted satisfying minimum neighboring distance and marked as 

A-B and C-D. According to the rules of smart sampling in SMOTE, synthetic samples can be generated for balanced learning. 

Unfortunately, the generated samples in these cases are unreliable noisy ones which may inevitably degrade the performance of 

training and classification.  

 

 

Figure 3. Illustrating a two-class problem with combined linear decision boundaries where the  

interpolation using SMOTE may fail for the sample pairs of A-B and C-D.   

 

To some degree, the analysis above can explain why smart sampling behaves well in some cases. The more complex the decision 
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boundary is, the more noisy samples may be introduced via smart sampling, and hence the worse performance may be achieved. On 

the other hand, smart sampling like SMOTE may work well in simpler cases such as the linear problem in detection of sentence 

boundary in [44].  

For the classification of MCCs, it is found that associated complexity is very high with the number of support vectors above 30% 

of the training samples. Consequently, random over-sampling is selected. Since there are much more negative samples than 

positive ones, the strategy here is for each positive sample in the training set to introduce additional samples. These newly 

introduced samples are almost replications of the original one with minor changes (increasing or decreasing at less than 1% after 

normalizing the range of the feature values within [-1,1]) to one item of the feature values which is randomly determined. This 

helps to keep consistency between generated samples and the original ones for balanced learning and avoiding the problem caused 

by smart sampling as discussed above. Please note that it is assumed that the samples in our test set contain no noise instances thus 

the over-fitting caused by over-sampling in training can be avoided.  

C. Optimized Decision Making 

In our implemented ANN and SVM classifiers, the outputs are continuous values rather than binary symbols. Conventional 

methods use simple thresholding in decision making. If the outputs are larger than the chosen threshold, a positive sample is 

detected. Otherwise, it is decided as negative. However, this simple thresholding suffers uneven distribution of the training outputs 

and leads to poor performance. To overcome this drawback, on the contrary, optimized decision making using optimal thresholding 

is proposed and described as follows.   

The optimal thresholding is achieved through statistical analysis of the output of the classifiers, where SVM is taken to show its 

principles. Let iz  denote the predicted output for a given input sample ix  with a target label iy , }1,1{iy , where 

),( 10 aazi   and the parameters 0a  and 1a  represent respectively the lowest and the highest boundary of the output from the 

classifier. Then, two conditional probabilities )1|( ii yzp  and )1|( ii yzp  are obtained. For a given threshold 

),( 10 aaT  , the sum of error classification rate Err  is determined as  

     i iiii iii TzyzpwTzyzpwTErr ),1|(),1|()( 11           (5) 

where the weights 1w  and 1w  are simply set as ½. Then, an optimal threshold svmT  can be determined when the minimum cost of 

error classification is achieved, i.e.  

  ))(min(arg TErrTsvm 
         

    (6) 

Similarly, an optimal threshold 
ANNT  can be determined for the ANN classifier via statistical analysis of its outputs. 

Consequently, these two optimal thresholds can be used to obtain another group of classification results. The effectiveness of the 
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proposed optimized decision making has been fully validated using the improved results as presented in Section V.  

 

IV. IMPLEMENTATION AND EVALUATION STUDY 

The data set and feature set as well as evaluation strategy are discussed in this section, along with some implementation details. 

These are essential for consistent evaluation of our proposed methodology to compare with others.  

A. Data Set 

To evaluation the performance of the classifiers, in total 748 suspicious MCCs are collected, which contain 633 benign and 115 

malignant samples where the ratio between them is nearly 5.5. These MCCs are extracted from 295 full-field mammograms in the 

well-known DDSM database, where the mammography data from more than 2600 patients are scanned at 50 microns using 

LUMISYS [45-46]. The collected MCCs are then randomly divided into two dataset for training and testing purposes, receptively.  

To detect suspicious MCC regions, optimal filtering using texture measurements is employed [32, 47]. Firstly, some pre- 

processing is applied to remove the influence of background and several artefacts like white/black spots and scratches. Then, 

optimal filtering is employed using local frequencies in terms of energy distribution extracted from mammograms. Finally, 

adaptive thresholding is utilized as post-processing for further robustness. Relevant details can be found in [47]. 

B. Feature Set 

Breast microcalcifications appear as small white specks in various patterns on the mammogram [3]. Whether their clusters are 

malignant or benign depends on the size, shape and geographic distribution of all microcalcification regions in a cluster, i.e. if they 

are tightly clustered and has certain linear structure, etc. Therefore, the extracted features need to measure these properties 

accordingly which include the area, the scattered degree and brightness of the regions in the cluster.  

In total 23 features are extracted from each of the segmented microcalcification clusters, and a list of them is summarized in 

Table 1. As seen, except the three single measures #1 to #3, the other 20 features in the feature set are composed of the mean and 

standard deviation values of ten measures. Among these 20 features, they can be categorized into three classes including i) intensity 

statistics (#4-#5), ii) shape features (#6-#17), and iii) linear structure features (#18-#23). Introductions to most of these features can 

be found in [3, 29-36]. 

Since about 80% of the diagnosed breast cancer cases are for women over 50 years old [1], age is a good indicator and has been 

widely used in the classification of MCCs [3, 32, 34]. A MCC is defined as a group of at least three microcalcifications within 1 

cm
2
, and the number of microcalcifications in a cluster is also an important feature [9, 32, 34-35].  The mean of the least distance of 

all regions in a cluster refers to the average value of inter-distance between each region and its neighboring ones [9], which can be 

also used to measure the scattered degree of the distribution of the microcalcifications in a cluster. In addition, the intensity 

measures are also useful as high intensity is expected for the white specks in MCCs [3, 30].  

Table 1. List of features used for the classification of MCCs where std. means standard deviation. 
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No. Meanings Notes 

1 Patients’ age [3, 32, 34]  

2 The number of regions in a cluster  

3 Least inter-distance of all regions in a cluster mean 

4 
The average intensities of all regions in a cluster 

mean 

5 std. 

6 
The areas of all regions in a cluster 

mean 

7 std. 

8 
The compactness of all regions in a cluster 

mean 

9 std. 

10 
The measure Fourier description FF of all regions in a cluster 

mean 

11 std. 

12 
The moment-based measure M of al regions in a cluster 

mean 

13 std. 

14 
The eccentricity of all regions in a cluster 

mean 

15 std. 

16 
The spread of all regions in a cluster 

mean 

17 std. 

18 
The average minimum std. of ),( lr   of all regions in a cluster 

mean 

19 std. 

20 
Average std. of the minimum std. of ),( lr   at various directions in all regions in a cluster 

mean 

21 std. 

22 
Average std. of the string of length l , starting from each point in a region at direction   

mean 

23 std. 

 

Shape features are very important indicators in this field, in which the area (size), the compactness, Fourier descriptors, 

moments, eccentricity, and the spread are commonly used. The definitions of these shape features can be referred to [3, 30, 32, 34, 

35]. Please note that these measures can be extracted from each microclacification region within a candidate MCC, and the mean 

and standard derivation values over all regions are then determined for classification purpose. 

Linear structure features form another important feature set which has been widely used in detection and classification of MCCs 

[24, 27, 29, 32]. Linear structure here means a string of pixels (representing a line) with similar intensity along a certain direction, 

which can be denoted as ),( lr   where   and l  refer respectively to the direction and the length in the linear structure. In 

addition, the pixel intensities on the line are higher than that of their surrounding pixels, and also the length of the line should be 

larger than its width. To measure the consistency of the intensities along the linear structures in a MCC, six features are extracted as 

summarized in Table 1 using the mean and standard deviation values of three measurements [32]. 

C. Evaluation Criteria 

As mentioned before, all 748 MCC samples are randomly partitioned into two subsets for training and test, respectively. All the 

positive samples in the training set are over-sampled to enable balanced learning using SVM and ANN. The models determined are 

then used to classify samples in the test set. This process is repeated 10 times to overcome any bias in data partition. The average 

performance over these 10 times is taken as a final result for evaluations. 

For a two-class problem, let us denote TP  and TN  as correctly classified positive and negative samples, FP  and FN  for 

incorrectly classified positive and negative samples, i.e. false alarms and missed positives. Several metrics can be determined for 
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quantitative evaluations as follows. 

 )/( FNTPTPRecallTPrate               (7) 

)/( FPTPTPPrecision                    (8) 

)/(1 FPTNFPySpecificitFPrate            (9) 

To enable a single measure of performance, a 1F  measurement is also popularly used as defined below.  

PrecisionRecall

PrecisionRecall
F




*2
1              (10) 

Receiver operating characteristic (ROC) analysis and its variants are commonly used for quantitative evaluations of classifiers, 

especially for the detection and classification of MCCs [3]. In ROC analysis, TP vs. FP  rates are adopted. Under ROC analysis, 

the area under the ROC curve Az  is also used as an important evaluation criterion [3], where 1Az  indicates an ideal case with 

%100rateTP  and 0rateFP . 

For the ANN classifier, the number of nodes in the hidden layer is empirically set as 15 for the better results achieved. The 

training process stops when the training performance keeps unchanged over a long time, say more than 4000 iterations. The 

performance is measured using the 1F , and the parameters which yield the highest 1F  value is stored and used for testing. In 

addition, the RBF kernel has been adopted in our SVM implementation as it can generate particular good results.  

 

V. RESULTS AND DISCUSSIONS 

In this section, comprehensive experimental results from ANN and SVM classifiers are presented for the classification of benign 

and malignant MCCs. Quantitative evaluations are used to validate the effectiveness of our proposed method including balanced 

learning and optimal decision making.  

A. Performance of Balanced Learning 

First of all, the performance of balanced learning is compared with those training with the original data, and we set the training 

ratio as 80%, i.e. 80% of the samples for training and 20% for testing. The ROC curves are plotted in Fig. 4 to show the 

performances in training and testing of SVM and ANN with or without balanced learning, respectively, where several facts can be 

summarized as follows.  

Firstly, in general training results are much better than testing ones, especially for the results from ANN, which has validated our 

analysis that ANN tends to produce minimum errors. Secondly, it is surprisingly to see that ANN outperforms SVM in both 

training and testing. Thirdly, balanced learning indeed can yield better results despite of a little higher false positive rate. Regarding 

training, it has generated significant higher recall rate for SVM and slightly higher recall rate for ANN though its recall rate without 

balanced learning is already high enough. For testing, balanced learning produces much improved results for ANN but limited 
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improvements for SVM. Finally, it is worth noting that balanced learning seems inferior to unbalanced learning only if the false 

positive rate is less than 3%, although the testing results for the two classifiers are different. In fact, the results for ANN have no 

much change, but the false positive rate becomes more than 20% for ANN to enable balanced learning to achieve a better recall 

rate. As a higher recall rate is always desirable in such applications, balanced learning still proves to be better than unbalanced 

ones. 

 

   

Figure 4. ROC curves of training and testing performances from SVM and ANN with or without balanced learning.  

 

 

Quantitative comparisons of the results from ANN and SVM are respectively reported in Table 2 and Table 3, and no optimized 

decision making is applied in the testing. First of all, with balanced learning, the testing performance in terms of 1F  and Az  can 

be significantly improved. This conclusion is different from the work in [20], which has validated the effectiveness of balanced 

learning. In addition, it is worth noting that both the training and testing performance from ANN are much better than those from 

SVM, and further analysis is presented below.  

 

Table 2. Training and testing results from ANN with or without balanced learning. 
 No balanced learning Balanced learning 

Training Testing Training Testing 

Recall  0.957 0.727 0.990 1.000 

Precision  1.000 0.696 0.981 0.722 

ySpecificit  1.000 0.945 0.980 0.928 

1F  0.978 0.711 0.985 0.839 

Az  0.979 0.836 0.985 0.964 

 

In Table 2, it is found that the training performance is high in terms of all the five measures no matter balanced training is used or 

not. This has indicated that ANN is capable of model the problem accurately. However, the testing performance under balanced 

training is much better, in which an improvement of 12.8% are achieved in both 1F  and Az  measurements. Although in training 
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almost the same values of 1F  and Az  are obtained, smaller 1F  values in testing are yielded. This is caused by lower Precision  

values due to false positives. Due to the severe imbalancement of the data used for testing, a high ySpecificit  value is still 

achieved under these false alarms to yield a higher Az  measurement. In other words, the ratio between the number of false alarms 

to the number of malignant samples is much larger than the ratio between it to the number of benign samples, and this has led to 

lower 1F  but higher Az  values. 

In Table 3, the results from SVM is some different. Firstly, the training results from balanced learning are much better than those 

without balanced learning, and the improvements in terms of 1F  and Az  are about 46% and 21%, respectively. Secondly, the 

testing results from balanced learning are about 20% better in 1F  and Az  measurements than those without balanced learning. 

Thirdly, balanced learning has improved the Recall  rate by about 60%, which means massively reduction of missing detection 

although more false alarms are introduced to degrade the Precision  value from 1 to 0.479. 

 

Table 3. Training and testing results from SVM with or without balanced learning. 
 No balanced learning Balanced learning 

Training Testing Training Testing 

Recall  0.301 0.273 0.899 0.885 

Precision  0.966 1.000 0.947 0.479 

ySpecificit  0.998 1.000 0.830 0.819 

1F  0.459 0.429 0.922 0.622 

Az  0.650 0.637 0.865 0.852 

B. Performance of Optimized Decision Making 

In Table 4, the results using our proposed optimized decision making in both ANN and SVM classifiers are given. Again, we 

select 80% of samples for training and 20% for testing. By comparing these results with those in Table 2 and Table 3, we can 

clearly find several facts which are summarized as follows. 

 Without balanced learning, optimized decision making contributes for the ANN about 1% in 1F  and 3.4% in Az  

measurements. For the SVM, the contributions are 22.4% and 18.3%, respectively.  

 Regarding balanced learning, the improvements for ANN are 4.2% in 1F  and 1.1% in Az  even the original Az  value is as 

high as 96.4%. However, SVM gains 4.5% in 1F  but 0.6% degradation in Az  measurements. 

 

This on one hand has fully validated the effectiveness of the proposed strategy for optimized decision making in terms of an 

improved 1F . On the other hand, significant improvements have achieved for the SVM classifier when balanced learning is not 

employed. Nevertheless, the results from ANN remain better than those from SVM in both 1F  and Az  measurements.  
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Table 4. Testing results from ANN and SVM under optimized  

decision making with or without balanced learning. 
 No balanced learning Balanced learning 

ANN SVM ANN SVM 

Recall  0.818 0.727 1.000 0.808 

Precision  0.643 0.593 0.788 0.568 

ySpecificit  0.921 0.913 0.949 0.884 

1F  0.720 0.653 0.881 0.667 

Az  0.870 0.820 0.975 0.846 

C. Performance under Various Training Ratios 

In the tests above, the training ratio is fixed at 80%. In this group of tests, the performance under various training ratios is 

compared. Under various training ratios, the training results and two testing results with or without optimized decision making are 

evaluated in terms of 1F  and Az  measurements. These results are illustrated in Fig. 5 and Fig. 6, where Test2 denotes results 

using optimal decision making. In total there are three pair of curves in each figure in which one is from training and the other two 

from testing without or with optimal decision making. Each pair of curves is plotted using the training ratio (changed from 50% to 

90%) vs. performance of 1F  and Az  measurements and they are further discussed as follows.  

 

   

Figure 5. Training and testing results from ANN using plots of training ratio (x-axis) vs. 1F  and Az  measurements, where the top 

and the bottom plots refer respectively to results without or with balanced learning. 

 

 

In Fig. 5,  the training and testing rersults from ANN are illustrated. Firstly, the 1F  and Az  measurements from training with or 

without balanced learning are very close to each other and appear insensitive to the training ratio, which again shows that ANN is 

capable in accurate modelling the problem. Secondly, the testing results using balanced learning are much better that those without 

balanced learning. Thirdly, in most cases optimized decision making produces better results in 1F  and Az  measurements when 

balanced learning is employed, except the result at the training ratio of 60%. When balanced learning is not used, however, better 

1F  measurement can be only yielded when the training ratio is between 70% and 80%. In addition, better Az  measurement can 

always be achieved from optimized decision making even the balanced learning is skipped. 
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Figure 6. Training and testing results from SVM using plots of training ratio (x-axis) vs. 1F  and Az  measurements, where the top 

and the bottom plots refer respectively to results without or with balanced learning. 

 

 

The results from SVM as illustrated in Fig. 6 show some different facts. Firstly, the training performance from SVM is not 

superior to the testing results as shown from ANN. One possible reason is the so-called high generalization capacity as it tends to 

avoid overfitting hence the relative poorer trainuing performance. Secondly, balanced learning is useful in yielding better training 

and testing results, especially when the training ratio is around 75%. Thirdly, under balanced learning optimized decision making 

can significantly improve 1F  measurement but such improvement on Az  measurement is quite limited and can only be found 

when the training ratio is between 55% and 70%. In addition, optimized decision making helps to gain apparent improvements in 

both 1F  and Az  measurement when balanced learning is not used. This is because that balanced learning has reduced the 

diversity degree of the training samples. As a result, there is very limited space for optimized decision making for further 

improvement. On the contrary, there is much large space for optimized decision making in improving the results from high diverse 

data when balanced learning is not used. 

D. Computational Complexity  

In comparison with conventional ANN and SVM, the proposed balanced learning and optimized decision making do need 

additional computations. As optimized decision making does not involve in the training iterations, it can be simply ignored. In the 

following, we will analyze the effect of balanced learning in such a context. 

Since more training samples are introduced in balanced learning, it costs more time in learning the model. Let 10 NNN   

be the total samples, where  0N  and 1N  denote respectively the number of negative and positive samples satisfying 

2,10  KKNN . After oversampling, 1)1( NK   new positive samples are produced and in total we have 02N  training 

samples. This equals to )1/(2 KNK  and less than N2 , which has indicated that the number of samples under balanced 

learning is less than twice of the number of the original samples. Under same number of iterations, the training time should no more 

double of the one without balanced learning. 
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In addition, it is found that balanced learning needs less number of iterations to converge, which is about 77% of the one required 

for training without balanced learning. This fast converging might due to the improved distributions of training samples from our 

balanced learning. Consequently, the increased complexity under balanced learning is  

)1/(54.154.01%77*)1/(2  KKK               (11) 

This indicates a maximum of 54% additional computing burden, which is totally acceptable for the benefit of much improved 

performance. 

 

VI. CONCLUSIONS 

In this paper, balanced learning with optimized decision making is proposed for classification of benign and malignant MCCs in 

mammograms. The proposed methodology has been tested on two common used machine learning approaches including ANN and 

SVM. The experiments are conducted on 748 samples extracted from the well-known DDSM database, and the main findings can 

be summarised as follows.  

Firstly, balanced learning indeed has significantly improved the classification accuracy, and an average gain of more than 10% 

can be achieved for the two classifiers in terms of both 
1F  and Az  measurements. Secondly, optimized decision making produces 

improved results in 
1F  and Az  for ANN no matter balanced learning is used or not. For SVM, however, more than 18% of 

improvements in 
1F  and Az  can only be found without balanced learning. Otherwise, improved  

1F  but slightly degraded Az  are 

produced. Thirdly, the overall results from ANN are much better than those from SVM, which is some different from the work 

reported [9, 20-22, 30]. Fourthly, a training ratio between 70% and 80% is suggested due to the various performances under 

different training ratios. Finally, it is found that the suggested balanced training will only bring up to 54% of additional 

computation load, a tolerable cost for the much improved performance. Further investigations include introducing feature selection 

approaches for improved efficiency as well as reducing false alarms for more robustness.  
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