
A discontinuous Galerkin method for inviscid1

low Mach number flows2

F. Bassi *, C. De Bartolo **, R. Hartmann ***, A. Nigro **3

* Dip. di Ingegneria Industriale, Università di Bergamo, viale Marconi 5 24044 -4
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Abstract10

In this work we extend the high-order Discontinuous Galerkin (DG) Finite element11

method to inviscid low Mach number flows. The method here presented is designed12

to improve the accuracy and efficiency of the solution at low Mach numbers using13

both explicit and implicit schemes for the temporal discretization of the compress-14

ible Euler equations. The algorithm is based on a classical preconditioning technique15

that in general entails modifying both the instationary term of the governing equa-16

tions and the dissipative term of the numerical flux function (full preconditioning17

approach). In the paper we show that full preconditioning is beneficial for explicit18

time integration while the implicit scheme turns out to be efficient and accurate us-19

ing just the modified numerical flux function. Thus the implicit scheme could also20

be used for time accurate computations. The performance of the method is demon-21

strated by solving an inviscid flow past a NACA0012 airfoil at different low Mach22

numbers using various degrees of polynomial approximations. Computations with23

and without preconditioning are performed on different grid topologies to analyze24

the influence of the spatial discretization on the accuracy of the DG solutions at25

low Mach numbers.26

Key words: Low Mach number Flows; Discontinuous Galerkin finite element27

method; Preconditioning; Euler Equations, Compressible Flows, Roe Scheme.28

1 Introduction29

The system of the compressible Euler equations gets increasingly stiff at low30

Mach numbers and this behaviour, physically due to the large disparity of31
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wave speeds, strongly influences the numerical solution of such equations.32

Well known, undesirable effects of low speed flow on most numerical schemes33

include low convergence speed and loss of accuracy, [1–3]. Two further issues34

related to the numerical solution of low speed flows concern the choice of35

proper sets of unknown variables (conservative variables are ill-conditioned36

at low Mach number, see [4]) and a careful implementation of non reflecting37

boundary conditions.38

Several preconditioning techniques, applied to the governing equations and to39

their discretization, have been developed in the past to cope with the stiffness40

and accuracy problems. These techniques basically modify the acoustic wave41

speeds premultiplying the time derivative terms of the governing equations by42

a preconditioning matrix. The resulting effect is that the condition number43

of the inviscid flux Jacobian matrices is drastically reduced, and hence the44

convergence speed of time-stepping or iterative procedures is significantly im-45

proved. For the large family of upwind schemes, preconditioning enters also in46

the formulation of numerical flux functions in order to properly balance the47

artificial dissipation implied by the numerical flux formulation, [2,3,5]. Some48

of the most recognized local preconditioners for inviscid and viscous flows were49

proposed by Choi and Merkle [6], Turkel [7,8], Lee and van Leer [9] and Weiss50

and Smith [10]. As the preconditioning destroys the time accuracy, it can be51

applied to steady-state simulations only. To overcome this limitation, dual52

time-stepping technique may be employed [10]. In the past, numerous stud-53

ies have been devoted to these topics; a complete review of preconditioning54

techniques is given in [7–9,11].55

As regards the set of dependent variables, it has been shown in [4] that the56

conservative incompressible formulation is well defined only for the entropy57

variables and the primitive variables including pressure. It has also been shown58

that these two sets of variables are best suited for solving practical problems,59

with the primitive variables being more accurate than the entropy variables60

for low speed and incompressible flow computations. For these reasons the61

primitive variables are often preferred for low Mach number computations62

[6,10,12,13] and they have also been used to develop numerical schemes well63

suited for both compressible and incompressible flows.64

In this context, we note that Schneider et al. [14] and Klein et al. [15], devised a65

numerical scheme for zero Mach number computations based on conservative66

variables. In view of this the issue of what is the best choice of dependent67

variables for solving flow problems ranging from very subsonic to supersonic68

speeds might not be considered as settled.69

Finally, as reported in [11,16,17], efficient and accurate implementations of70

preconditioning techniques also require to minimize spurious reflections at far71

field boundaries and this can be achieved by setting suitable combinations of72

2



variables at far field boundaries.73

In this paper we present a preconditioned DG discretization of the 2D com-74

pressible Euler equations suitable to compute low Mach number inviscid flows.75

The conservative Euler equations are written in terms of primitive variables76

and iterated to steady state using both explicit and implicit schemes. In the77

explicit case preconditioning affects both the time derivative terms of the gov-78

erning equations, through the action of the Weiss and Smith preconditioning79

matrix [10], and the numerical dissipation of the Roe’s Riemann solver used80

to compute the numerical flux (full preconditioning technique). In the im-81

plicit case we have found that preconditioning only needs to be applied to the82

numerical flux function (flux preconditioning technique). Thus the implicit83

scheme could directly be used to compute unsteady low Mach number flows84

without resorting to dual time stepping techniques.85

To the author’s knowledge a few papers have appeared in the literature de-86

scribing DG solutions of low Mach number flows and such papers do not report87

on using any form of preconditioning. Luo et al. [18] have performed numerical88

experiments up to a Mach number of 10−2 while Feistauer and Kucera [19]89

have extended the simulation of compressible inviscid flows to a Mach number90

of 10−4.91

This paper aims at giving more insight on employing DG discretizations for92

low Mach number flows. In particular, we consider the DG discretization of93

the Euler equations written in the most appropriate set of variables, we show94

that preconditioning clearly improves both the accuracy and efficiency of the95

DG solvers, and, finally, we examine in detail the accuracy of solutions for96

different topologies of computational grids.97

The outline of the paper is as follows. In Section 2 we present the precondi-98

tioned form of the compressible Euler equations using primitive variables. In99

Section 3 we describe the DG discretization of the governing equations, the100

boundary conditions and the preconditioned numerical flux function. In Sec-101

tion 4 we give some detail on the explicit and implicit time stepping schemes.102

The performance of the numerical scheme is then demonstrated in Section 5 by103

computing an inviscid flow around a NACA0012 airfoil for different low Mach104

numbers, grid topologies and degrees of polynomial approximation. Finally, a105

few conclusions are drawn in Section 6.106

2 Governing equations107

The compressible Euler equations describe the pure convection of flow quan-108

tities in an inviscid fluid. In two space dimension they are given in strong and109
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conservative form as follows110

∂w

∂t
+∇ · F = 0, (1)

where w is the state vector of conservative variables, and F = F (f ,g) is the111

inviscid flux vector given by112

w =



ρ

ρu

ρv

ρE


, f =



ρu

ρu2 + p

ρuv

ρuH


, g =



ρv

ρvu

ρv2 + p

ρvH


.

Here, ρ is the fluid density, u and v are velocity components, p is the pres-113

sure and E is the total internal energy per unit mass. The total enthalpy114

per unit mass, H, is given by H = E + p/ρ, and, assuming the fluid sat-115

isfies the equation of state of a perfect gas, the pressure is given by p =116

(γ − 1) ρ [E − (u2 + v2) /2], where γ is the ratio of specific heats of the fluid,117

given by γ = cp/cv.118

Transforming the compressible Euler equations given in Eq.(1) from conser-119

vative variable to primitive variables we obtain120

P
∂q

∂t
+∇ · F = 0, (2)

where the state vector q in primitive variables, and the transformation matrix121

P = ∂w
∂q

is given by122

q =



p

u

v

T


, P =



ρp 0 0 ρT

ρpu ρ 0 ρT u

ρpv 0 ρ ρT v

ρpH − 1 ρu ρv ρT H + ρcp


.

By assuming that the fluid obeys the perfect gas state equation, ρ can be123

calculated as ρ=p/T and the derivatives of ρ are given by124

ρp=
∂ρ

∂p

∣∣∣∣∣
T=const.

= 1/T, ρT =
∂ρ

∂T

∣∣∣∣∣
p=const.

= −ρ/T.
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In a second step the transformation matrix P in Eq. (2) is replaced by a pre-125

conditioning matrix Γ resulting in the following preconditioned compressible126

Euler equations,127

Γ
∂q

∂t
+∇ · F = 0. (3)

The matrix Γ used in the present work is the local preconditioning matrix of128

Weiss and Smith [10] written in the following form:129

Γ =



θ 0 0 ρT

θu ρ 0 ρT u

θv 0 ρ ρT v

θH − 1 ρu ρv ρT H + ρcp


, (4)

where Θ is given by130

Θ=

(
1

U2
r

− ρT

ρcp

)
.

Here, Ur is a reference velocity which, for an ideal gas, is defined as131

Ur=


εc, if |v| < εc,

|v| , if εc < |v| < c,

c, if |v| > c,

(5)

where c is the acoustic speed and ε is a small number included to prevent132

singularities at stagnation points. Choosing ε = O(M), the low Mach precon-133

ditioning ensures that the convective and acoustic wave speeds are of similar134

magnitude, proportional to the flow speed [20].135

In the next section we will show how preconditioning enters in the formulation136

of the numerical flux function in the normal direction at Gauss integration137

points on inter-element faces. Hence it is worthwhile introducing here the138

wave speeds of the preconditioned Euler equations in the direction of the unit139

vector n, which are given by the eigenvalues of Γ−1( ∂f
∂q

n1 + ∂g
∂q

n2), where ∂f
∂q

140

and ∂g
∂q

are the inviscid flux jacobians with respect to the primitive variables,141

and n1 and n2 are the components of the unit vector n = (n1, n2)
T . The142

propagation speeds in this direction are143
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λ1 = λ2 = un, λ3 = u′n + c′, λ4 = u′n − c′,

where144

un = v · n (6)

u′n = un(1− α),

c′ =
√

α2u2
n + U2

r ,

α =
1− βU2

r

2
, (7)

β =

(
ρp +

ρT

ρCp

)
,

ρp =
∂ρ

∂p

∣∣∣∣∣
T=const.

.

For an ideal gas β = 1/c2. At low speed as Ur → 0, α → 1/2, and all the145

eigenvalues become of the same order as un. For the non-preconditioned sys-146

tem (α = 0, u′n = un, c
′ = Ur = c), Γ reduces to the transformation matrix P147

between conservative and primitive variables, and Eq.(3) becomes the conser-148

vative formulation of the Euler equations in terms of primitive variables.149

We note, that all formulae above are given in non-dimensionalized variables150

based on the following reference values: the reference length lr, density ρr,151

pressure pr and constant gas Rr. Reference values for the other quantities are152

derived from these by dimensional relationships.153

3 The preconditioned DG discretization154

Multiplying Eq. (3) by a vector-valued test function v and integrating by155

parts, we obtain the weak formulation:156

∫
Ω
vTΓ

∂q

∂t
dx−

∫
Ω
∇vT · F dx +

∫
∂Ω

vTF · n ds = 0 ∀v ∈ H1 (Ω) (8)

where Ω is the domain with boundary ∂Ω, and n is the unit outward normal157

vector. To discretize in space, we define Vp
h to be the space of discontinuous158

vector-valued polynomials of degree p on a subdivision Th of the domain into159

non-overlapping elements such that Ω =
⋃

κ∈Th
κ. Thus, the solution and test160

function space is defined by161
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Vp
h =

{
v ∈ L2 (Ω) : v |κ∈ Pp, κ ∈ Th

}
,

where Pp is the space of polynomial functions of degree at most p. The discrete162

problem then takes the following form: find qh ∈ Vp
h such that163

∑
κεTh

{∫
κ
vT

h Γ
∂qh

∂t
dx−

∫
κ
∇vT

h · F dx

+
∫

∂κ\∂Ω
v+T

h Hi

(
q+

h ,q−h ,n
)

ds +
∫

∂κ∩∂Ω
v+T

h Hb

(
q+

h ,qb
h,n

)
ds

}
= 0 (9)

for all vh ∈ Vp
h, where Hi

(
q+

h ,q−h ,n
)

and Hb

(
q+

h ,qb
h,n

)
are numerical flux164

functions defined on interior and boundary faces, respectively. Hi takes into165

account the possible discontinuities of qh at element interfaces. On interior166

edges ∂κ\∂Ω, Hi depends on the elements interior state q+
h and on the neigh-167

bouring elements state q−h . On boundary edges ∂κ ∩ ∂Ω, Hb depends on the168

interior state q+
h and a consistent boundary state qb

h. We note that Hb may169

be different from Hi.170

We note that due to the quasi-linear form of the time derivative term of Eq. (2)171

and due to the preconditioning (4) applied an explicit time stepping scheme172

based on (9) is not time-accurate nor conservative in space-time. However,173

having reached a steady state solution the time derivatives vanish. In fact, for174

steady state solutions the numerical scheme (9) is conservative which can be175

seen by setting v+
h ≡ 1 in (9).176

The spatial DG discretization of Eq. (9) results in the following global system177

of equations:178

MΓ
dQ

dt
+ R = 0, (10)

where Q and R are the global vectors of degrees of freedom (dof) and of179

residuals respectively, and MΓ stands for the discretization of the first integral180

of Eq. (9). Hence, MΓ is a block diagonal matrix where the block corresponding181

to one element couples all the dof of all variables within the element (the182

coupling among dof of different variables is due to the action of Γ).183
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3.1 Boundary treatment184

In the following we give some details on the boundary treatment. In particular,185

an appropriate representation of the possibly curved boundary geometry and186

an appropriate discretization of boundary conditions employed are essential187

for preserving the numerical accuracy and improving the convergence speed188

of the solution process in the low Mach number limit.189

3.1.1 Geometry representation190

A high order accurate solution on relatively coarse grids can be obtained only191

if a corresponding high order approximation of the geometry is employed.192

In this work, the geometric continuity of the element edges belonging to the193

boundary ∂Ω is guaranteed by a mapping based on Lagrangian polynomial194

functions φj (ξ) and Lagrangian node coordinates x(j) and is given by195

x =
∑
j

x(j)φj (ξ) ∀ξ ∈ κ̂, (11)

where ξ is the independent variable on the reference element κ̂. Notice that196

the Lagrangian nodes are placed on the real geometry of the boundary.197

3.1.2 Boundary conditions198

When ∂κ belongs to ∂Ω the boundary fluxes, denoted by Hb

(
q+,qb,n

)
, are199

chosen to weakly prescribe the boundary conditions of the problem. Here, n200

is the unit outward normal vector, q+ is the interior state at the boundary201

and qb is computed according to the conditions that must be satisfied on the202

boundary.203

• Far-field204

205

At far-field a complete set of characteristic boundary conditions [21],206

and a set of simplified non-reflecting boundary conditions [11] are em-207

ployed for the non-preconditioned and the preconditioned DG scheme,208

respectively. In particular, for the preconditioned scheme, at the inflow209

boundary the state qb has the same pressure as q+, whereas the velocity210

vector and the temperature is prescribed based on the freestream values.211

Conversely, at the outflow boundary, the state qb has the same tempera-212

ture and velocity vector as q+, whereas the pressure is prescribed based213

on the freestream value. We remark that the simplified non-reflecting214

boundary conditions require a far-field boundary well far away from the215
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aerodynamic surface in order to get efficient and accurate solutions.216

217

• Slip wall218

219

The wall boundary condition employed is based on following boundary220

state:221

pb = p+,

ub = u+ − (v · n)+ n1, (12)

vb = v+ − (v · n)+ n2,

T b = T+,

where n1 and n2 are the components of the unit outward normal n =222

(n1, n2)
T . The conditions imposed on the velocity components ensure223

that the normal velocity component is zero on the boundary:224

(v · n)b = 0.

In this case the wall boundary fluxes are computed as follows:225

Hb

(
q+

h ,qb
h,n

)
= F

(
qb

h

)
· n.

This means that the fluxes on the wall boundary are computed in the226

same manner for both the preconditioned and the non-preconditioned227

DG schemes.228

3.2 Flux difference splitting229

The numerical flux Hi(q
+,q−,n) appearing in Eq. (9) is computed based on230

a preconditioning of the artificial dissipation term of the Roe’s approximate231

Riemann solver [22]. In terms of primitive quantities q, the value of Hi at each232

face is given by233

Hi

(
q+,q−,n

)
=

1

2

(
F(q+) · n + F(q−) · n− F̃Γ

(
q+,q−,n

))
, (13)

where F̃Γ is given by234

Γ̃|ÃΓ|∆q. (14)

Here, ∆q = q− − q+ and the matrix |ÃΓ| is defined in terms of the precondi-235

tioned eigenvalues and eigenvectors by236
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|ÃΓ| = T̃Γ|Λ̃Γ|T̃−1
Γ .

The symbol ˜ denotes that the matrices are computed using the Roe-averaged237

variables [23] and the subscript Γ that the diagonal matrix of eigenvalues and238

the modal matrix are derived from the preconditioned system, where Λ̃Γ is239

the diagonal matrix of the preconditioned eigenvalues, and T̃Γ diagonalizes the240

matrix ˜Γ−1(∂F
∂q
· n). We note, that for the non-preconditioned system, Eq.(13)241

reduces to the standard Roe’s flux difference splitting.242

4 Time discretization of the Euler equations243

4.1 Explicit time stepping scheme244

The semidiscrete system Eq.(10) is discretized in time based on an explicit245

multistage time-stepping method. In order to overcome the restrictive explicit246

CFL stability limit, both the local time–stepping and the preconditioning247

techniques have been used to improve the convergence speed to steady state248

solutions.249

The solution is advanced from time t to time t + ∆t with an s-stage SSP250

Runge-Kutta scheme [24], given by251

Q0 = Qt,

Qi =
i−1∑
k=0

αikQ
k + βik∆tM−1

Γ R(Qk) i = 1, 2, ..., s, (15)

Qt+∆t = Qs,

where i is the stage counter for the s-stage scheme and αik and βik are the252

multistage coefficients for the ith stage.253

The local time step ∆t on each element κ is computed by considering the254

CFL stability condition:255

∆t = CFL · |κ|
Λx

c + Λy
c
,

where the preconditioned convective spectral radii Λx
c and Λy

c are defined as256
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Λx
c = (|ū′|+ c̄′x) ∆Sx ,

Λy
c =

(
|v̄′|+ c̄′y

)
∆Sy.

The variables ∆Sx and ∆Sy represent the projections of the element κ onto257

the x and y axis, respectively, whereas ū′, c̄′x and v̄′, c̄′y are obtained applying258

Equations (7) along the x and y directions and using the mean values of the259

flow quantities on each element κ.260

4.2 Implicit time stepping scheme261

We have found that the implicit time stepping scheme can be used to com-262

pute efficiently and accurately low Mach number flows even in absence of263

time-derivative preconditioning. Hence, in Eq.(9) the matrix Γ reduces to the264

transformation matrix between conservative and primitive variables, P, and265

the DG space discretization results in the following global system of equations:266

MP
dQ

dt
+ R = 0. (16)

The implicit backward Euler time discretization of Eq. (16) can be written as267

[
MP

∆t
+

∂Rn

∂Q

]
︸ ︷︷ ︸

B

∆Qn = −Rn, (17)

268

where ∆Qn = Qn+1 −Qn, ∂Rn

∂Q
is the Jacobian matrix of the DG space dis-269

cretization and B denotes the global system matrix.270

The matrix B can be regarded as an Nκ×Nκ block sparse matrix where Nκ is271

the number of elements in Th and the rank of each block is M ×Nκ
dof , where272

Nκ
dof is the number of dof for each of the M primitive variables in the generic273

element κ. Thanks to the DG discretization here adopted the dof of a generic274

element κ are only coupled with those of the neighbouring elements and the275

number of nonzero blocks for each (block) row κ of the matrix B is therefore276

equal to the number of elements surrounding the element κ plus one.277

The Jacobian matrix of the DG discretization has been computed analytically278

(except for the computation of the dissipative part of the numerical flux that279

has been computed numerically) without any approximation and, using very280

large time steps, the method can therefore achieve quadratic convergence in281
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the computation of steady state solutions. For the backward Euler scheme and282

in the limit ∆t →∞ Equation (17) is in fact identical to one iteration of the283

Newton method applied to the steady discrete problem.284

Finally, we mention that to solve Equation (17) we can use either direct or285

iterative linear solvers. For all the computations presented below we have used286

the GMRES iterative solver available in the PETSc [25] library. By default this287

solver employs the ILU(0) preconditioning and in the following the GMRES288

solver is meant to be used with ILU(0) preconditioning for the computations289

performed with and without low Mach number preconditioning.290

5 Numerical results291

In this section, we present some numerical results demonstrating the per-292

formance of the proposed preconditioned DG discretization. To this end, we293

consider an inviscid flow past a NACA0012 airfoil at zero angle of attack com-294

paring the DG discretizations with and without preconditioning. DG solutions295

on different grids, for different low Mach numbers (M = 10−1, M = 10−2 and296

M = 10−3) and using linear (P1), quadratic (P2) and cubic (P3) elements297

are performed. Two grid topologies (quadrangular and triangular) are used298

in order to investigate the behavior of both the standard and the precondi-299

tioned DG method for different element shapes. Fig. 1 shows the computa-300

tional grids. The quadrangular grid is a C-type grid with 1792 elements, and301

the triangular grid consists of the triangles obtained by splitting each quad-302

rangle in two parts. The distance of the far-field boundary from the profile is303

about 55 chords. All computations are performed in double precision, storing304

16 significant digits.305

The computational results are organized in two subsections, one focusing on306

the convergence of the residuals and the other on the accuracy of the converged307

solutions. The convergence speed of the solution process is presented in terms308

of the normalized L2 norm of the residuals versus the number of iterations309

and versus the CPU time. The accuracy of the converged solutions is analyzed310

both qualitatively and quantitatively. First, the normalized pressure fields are311

presented for a qualitative comparison. Then, for the quantitative analysis,312

the scaling of computed pressure fluctuations as the Mach number reduces is313

compared with the M2 theoretical scaling, and the computed drag coefficients314

are compared with the theoretical one which is zero for the subsonic inviscid315

flow considered.316
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Quadrangular Triangular

Fig. 1. Computational Grids

5.1 Effects of preconditioning on convergence speed317

The convergence histories are shown only for the quadrangular grid as similar318

histories are obtained on the triangular grid. The results are presented first319

for the full preconditioning approach and then for the flux preconditioning320

technique.321

5.1.1 Explicit time stepping results322

In Fig. 2 we compare the residual histories with and without preconditioning.323

The plots show that the preconditioning technique leads to an acceleration324

of convergence in comparison to the non-preconditioned solution. For a given325

polynomial approximation, the convergence speed without preconditioning re-326

duces as the Mach number approaches zero, while it is independent of the327

Mach number with preconditioning. For a given Mach number, the efficiency328

of both the preconditioned and the non-preconditioned explicit methods re-329

duces due to the CFL stability condition. Considering the fully converged330

solutions, we see that, for a given polynomial degree, the lower the Mach331

number, the smaller the preconditioned residual decay. This is due to round-332

off errors and resulting cancellation errors that have a larger effect on the333

preconditioned scheme than on the non-preconditioned one as it is evident334

for M = 10−1 and quadratic elements, see also [26]. This behaviour can be335

explained considering that with preconditioning the settings used to compute336

the artificial dissipation of Roe’s flux cause truncation error to grow more than337

the corresponding non-preconditioned one. Notwithstanding, in all cases the338

preconditioned residual decays were sufficient enough to obtain accurate solu-339

tions. In addition, the oscillations that appear in the convergence histories are340

due to the vorticity produced at the leading and at the trailing edge during341
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the wave reflections [27].342

M = 10−1 M = 10−2 M = 10−3

Fig. 2. History of the nonlinear residuals vs. the number of iteration steps for the
quadrangular grid. M = 10−1 (left column), M = 10−2 (middle column) and
M = 10−3 (right column). Linear (P1 top row), quadratic (P2 middle row) and
cubic (P3 bottom row) elements.

The effectiveness of preconditioning in accelerating the convergence is illus-343

trated in Fig. 3 where we compare the convergence histories of a preconditioned344

computation at M = 10−3 and of a subsonic computation at M = 0.4 which345

does not require preconditioning. The results clearly show that precondition-346

ing effectively recovers the same (or even better) efficiency of a classical TVD347

Runge-Kutta scheme, subject to the typical CFL condition for high-order DG348

discretizations, applied to a well-conditioned problem.349
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5.1.2 Implicit time stepping results350

The Fig. 4 compares the history of residuals versus the number of ”Newton”351

iteration steps of Eq. (17) with and without flux preconditioning. We remark352

that the graphs of Fig. 4 merely show the effect of the fixed GMRES pa-353

rameters (number of Krylov-subspace vectors = 60, number of restarts = 1354

and relative tolerance to stop iterative solution= 10−6) on the convergence of355

the global ”Newton” iterations and if these parameters are enough to ensure356

quadratic convergence of residuals.357

The plots show that both the non-preconditioned and the preconditioned im-358

plicit schemes converge. Nevertheless, the use of non-preconditioned Jacobians359

shows a deterioration in the convergence rate at large Courant numbers as360

the Mach numbers gets smaller. We notice that the preconditioned scheme361

always displays quadratic convergence, whilst this is not the case for the non-362

preconditioned scheme with the same GMRES parameters. The effect is ap-363

preciable at M = 10−2 and more evident at M = 10−3. Hence, with the chosen364

GMRES parameters, the flux preconditioning technique allows to reduce the365

number of iterations needed to reach the full convergence of each variable as366

compared to the non-preconditioned solutions. This is due to the effect of367

preconditioning on the linear system matrix through the Jacobian of residu-368

als. In particular, with preconditioning the full convergence of the residuals369

was reached quadratically in about 10 iterations independently of both Mach370

number and polynomial degree.371

Finally, the comparison between the residual decay of each variable at M =372

10−1 and at M = 10−2 as well as at M = 10−2 and at M = 10−3 shows373

that, whereas all the residual decays of the non-preconditioned DG method374

reduce of O (M), the preconditioned residual decays of velocity components375

and thermodynamic variables reduce of O (M) and O (M2), respectively, when376

Mach number tends to zero, because of round-off errors. The round-off errors377

can be alleviated by introducing the gauge-pressure [6].378

Fig. 3. History of nonlinear residuals for M = 10−3 and M = 0.4 with and without
preconditioning, respectively. Linear (P1 left), quadratic (P2 middle) and cubic (P3

right) elements.
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M = 10−1 M = 10−2 M = 10−3

Fig. 4. History of residuals vs. number of iterations for the quadrangular grid.
M = 10−1 (left column), M = 10−2 (middle column) and M = 10−3 (right col-
umn). Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom row)
elements.

The Fig. 5 compares the history of residuals versus CPU time (seconds),379

computed on the quadrangular grid with and without flux preconditioning.380

Overall, the plots confirm that preconditioning improves the efficiency of the381

implicit solver. For a given polynomial approximation, the convergence rate382

without preconditioning reduces as the Mach number goes to zero, while it is383

almost independent of the Mach number with preconditioning. Furthermore,384

for a given Mach number, using the preconditioned Roe’s flux, the overhead, in385

terms of CPU time, significantly reduces as the polynomial degree increases386

in comparison to the non-preconditioned solution. This effect is greatest at387

lower Mach number and reduces as the Mach number gets larger.388
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M = 10−1 M = 10−2 M = 10−3

Fig. 5. History of residuals vs. CPU time for the quadrangular grid. M = 10−1 (left
column), M = 10−2 (middle column) and M = 10−3 (right column). Linear (P1 top
row), quadratic (P2 middle row) and cubic (P3 bottom row) elements.
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Fig. 6. Behaviour of GMRES solver with (right column) and without (left column)
low Mach number preconditioning.

The Fig. 6 summarizes the performance of the GMRES solver with (right389

column) and without (left column) low Mach number preconditioning. The390

graphs show the results for the P1, P2 and P3 solutions at M = 10−2. Similar391

results hold also for M = 10−1 and M = 10−3. The plots on the top row392

show the number of GMRES iterations (open symbols) and the logarithm of393

CFL number (solid symbols), while those on the bottom row show the ratio394

between the L2 norms of the last and the first residual of the GMRES iterative395

solution. The quantity on the X-axis is the number of non-linear iterations.396

The graphs of Fig. 6 suggest that (i) increasing the CFL number the compu-397

tations performed without low Mach number preconditioning rapidly use up398

the maximum number of GMRES iterations without satisfying the required399

six-order drop of residuals, and that (ii) the low Mach number preconditioned400

solutions require somewhat less than 120 GMRES iterations to solve the linear401

system within each time step, even for the highest CFL numbers. Moreover we402

notice that the different behaviour of the low Mach number preconditioned403

and non-preconditioned solutions is even more evident for the lowest Mach404

number. Finally, we mention that the cost to compute the analytical Jacobian405

with respect to the computational cost of a full time step using 120 GM-406
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RES iterations is around 20%, 28% and 35% for the P1, P2 and P3 solutions,407

respectively.408

5.2 Effects of preconditioning on the solution accuracy409

In this section we examine the accuracy of the (fully) converged solutions.410

We observe that, whilst the time-derivative preconditioning matrix Γ basi-411

cally improves the convergence speed of low Mach number computations, the412

solution accuracy is essentially determined by the preconditioning of the Rie-413

mann solver. The two preconditioning strategies here presented use the same414

flux difference splitting scheme, and thereby give the same results in terms of415

accuracy of solution.416

5.2.1 Normalized pressure417

In the following we present the contour plots of the normalized pressure, de-418

fined as pnorm = (p− pmin) / (pmax − pmin), computed on the quadrangular419

and triangular grids.420

We begin by showing the results on the quadrangular grid. Fig. 7 shows the421

normalized pressure isolines of the non-preconditioned solutions at M = 10−1,422

M = 10−2 and M = 10−3, for P1, P2 and P3 elements. Fig. 8 shows the423

corresponding results of the preconditioned solutions but only at M = 10−3 ,424

as the preconditioned results are independent of the Mach number, as will be425

shown in the next section.426

Overall, from Figs. 7 and 8 we see that the preconditioned solutions are more427

accurate than the corresponding non-preconditioned ones. In particular, at428

M = 10−1 (left column), the P1 solution is inaccurate without precondition-429

ing. This loss of accuracy is less evident using P2 elements, whereas for P3430

elements there are no visible differences in terms of normalized pressure iso-431

lines. At M = 10−2 (middle column) at least P3 elements are required to432

obtain an acceptable level of accuracy without preconditioning, whereas at433

M = 10−3 (left column) there is a clear difference between the preconditioned434

and the non-preconditioned solutions even if P3 elements are used. Hence, for435

a given polynomial degree, the quality of the non-preconditioned solution be-436

comes worse in comparison to the corresponding preconditioned one as the437

Mach number reduces. Furthermore, for a given Mach number, the higher the438

polynomial degree, the lower is the difference between the preconditioned and439

the non-preconditioned solutions. In such cases the preconditioning allows to440

significantly reduce the computational effort.441
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M = 10−1 M = 10−2 M = 10−3

Fig. 7. Contours of normalized pressure without preconditioning for the quadrangu-
lar grid. M = 10−1 (left column), M = 10−2 (middle column) and M = 10−3 (right
column). Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom
row) elements.

Fig. 8. Contours of normalized pressure with preconditioning for the quadrangular
grid at M = 10−3. Linear (P1 left), quadratic (P2 middle) and cubic (P3 right)
elements.
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M = 10−1 M = 10−2 M = 10−3

Fig. 9. Contours of normalized pressure without preconditioning for triangular grid.
M = 10−1 (left column), M = 10−2 (middle column) and M = 10−3 (right column).
Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom row) elements.

Fig. 10. Contours of normalized pressure with preconditioning for triangular grid at
M = 10−3. Linear (P1 left), quadratic (P2 middle) and cubic (P3 right) elements.
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Figs. 9 and 10 show the isolines of the normalized pressure for the triangular442

grid with and without preconditioning, respectively. Overall, it is worth not-443

ing that the DG discretization on triangular grid yields remarkably accurate444

solutions at low Mach even without preconditioning. In particular, the pre-445

conditioned and the non-preconditioned contours of normalized pressure are446

almost indistinguishable using P2 and P3 elements, whereas some differences447

can be seen in the P1 solutions. However, we see that the DG discretization448

on the triangular grid avoids the accuracy degradation of the solutions as the449

Mach number reduces even for the lowest order approximation.450

These results cannot be explained only by the doubled number of elements in451

the triangular grid. In fact in Fig. 11 we see that a computation at M = 10−3
452

on a globally refined quadrangular grid with 7168 elements produces results453

which are still far worse than the corresponding results on the triangular grid454

with half the number of elements, shown in Fig. 9 (right column). Nevertheless,455

the difference in accuracy between results computed on the two grid types456

reduces as the polynomial degree increases.457

The origin of the inaccuracy of the non-preconditioned solutions can be under-458

stood looking in detail at the normalized pressure contours around the leading459

edge of the airfoil. In Fig. 12 we compare the solutions for M = 10−3 computed460

on the refined quadrangular grid and the triangular grid, using P1, P2 and P3461

elements. This Figure clearly shows that approaching the stagnation point the462

solution degrades because in this region the poorly scaled dissipation term of463

the Roe’s Riemann solver is badly affected by the magnitude of inter-element464

jumps. This effect reduces by increasing the degree of polynomial approxima-465

tion. More importantly, and consistently with the results of Fig. 9, the loss of466

accuracy around the leading edge is much higher in the solutions on the quad-467

rangular grid. The marked influence of the geometrical shape of the elements468

on the accuracy of the Roe’s flux in the low Mach number limit is an issue469

that needs deeper investigation. The asympotic analysis recently performed470

by Rieper [28] for the first-order Roe scheme might indicate that low order471

DG schemes face the same problems as the standard finite volume upwind472

schemes: at low Mach number they only work on triangular elements.473
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Fig. 11. Contours of normalized pressure without preconditioning on the refined
quadrangular grid at M = 10−3. Linear (P1 left), quadratic (P2 middle) and cubic
(P3 right) elements.

Fig. 12. Contours of normalized pressure without preconditioning at M = 10−3.
Refined quadrangular grid (top row), triangular grid (bottom row). Linear (P1 left
column), quadratic (P2 middle column) and cubic (P3 right column) elements.

5.2.2 Pressure fluctuations474

Fig. 13 shows the pressure fluctuations (pmax − pmin)/pmax versus the Mach475

number for linear, quadratic and cubic elements on quadrangular (left) and tri-476

angular (right) grids without preconditioning. From the plots, we observe that477

the pressure fluctuations on the quadrangular grid do not scale with the square478

of the Mach number as they should do. The accuracy of solution deteriorates479

as the Mach number goes to zero. Nevertheless, the high order approximation480

allows to obtain more accurate results. In contrast to the lack of accuracy481

shown for the quadrangular grid, the pressure fluctuations on the triangular482
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grid (right) are proportional to the square of the Mach number. In particu-483

lar, there is a very good agreement between numerical and theoretical results484

using P2 and P3 elements, whereas the P1 pressure fluctuations are slightly485

less accurate. Fig. 14 shows the pressure fluctuations (pmax − pmin)/pmax ver-486

sus the Mach number with preconditioning. Comparing corresponding plots in487

Fig. 13 and Fig. 14 we see that the preconditioning improves the accuracy of488

the solutions, especially on the quadrangular grid. In perfect agreement with489

the theory, the pressure fluctuations scale exactly with the square of the Mach490

number for all spatial discretizations.491

Fig. 13. Pressure fluctuations vs. Mach number for linear (P1), quadratic (P2) and
cubic (P3) elements without preconditioning. Quadrangular grid (left), triangular
grid (right). For comparison, the theoretical behavior, M2, is represented by a solid
line.

Fig. 14. Pressure fluctuations vs. Mach number for linear (P1), quadratic (P2) and
cubic (P3) elements with preconditioning. Quadrangular grid (left), triangular grid
(right). For comparison, the theoretical behavior, M2, is represented by a solid line.
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5.2.3 Drag coefficients492

In this section we evaluate the accuracy of the preconditioned and non-precon-493

ditioned solutions in terms of computed drag coefficients. In Tables 1 and 2 we494

collect the drag coefficients computed at different Mach numbers (M = 10−1,495

10−2 and 10−3) for P1, P2 and P3 elements, using the preconditioned and non-496

preconditioned DG schemes. In particular, Table 1 refers to the quadrangular497

grid while Table 2 refers to the triangular grid.498

For both spatial discretizations the preconditioning always improves the accu-499

racy of solution, making the drag coefficients independent of the Mach num-500

ber. Some differences are present at M = 10−1 due to compressibility effects501

[29]. Furthermore the non-preconditioned drag coefficients show that in the502

low Mach number limit accurate solutions on a relatively coarse grid can be503

obtained only if a higher order polynomial discretization is employed.504

Finally, we observe that the improvement of the accuracy due to the precondi-505

tioning is more marked for the computations performed on the quadrangular506

grid. In this respect, it is worth noting that, according to results shown in507

the previous section, the DG discretization on the triangular grid yields drag508

coefficients remarkably accurate and almost independent of the Mach num-509

ber even without preconditioning. Notwithstanding, the computational effort510

needed for the convergence of the drag coefficient using the preconditioning511

algorithm is significantly lower than that without preconditioning.512

Quadrangular grid

M = 10−1 M = 10−2 M = 10−3

Non-Prec. Prec. Non-Prec. Prec. Non-Prec. Prec.

P1 4.667 · 10−3 1.302 · 10−3 2.494 · 10−2 1.302 · 10−3 1.270 · 10−1 1.301 · 10−3

P2 1.280 · 10−4 6.621 · 10−5 4.540 · 10−4 6.641 · 10−5 2.225 · 10−3 6.642 · 10−5

P3 2.763 · 10−5 1.658 · 10−5 3.759 · 10−5 1.662 · 10−5 6.809 · 10−5 1.662 · 10−5

Table 1
Drag-coefficients on the quadrangular grid.

513
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Triangular grid

M = 10−1 M = 10−2 M = 10−3

Non-Prec. Prec. Non-Prec. Prec. Non-Prec. Prec.

P1 7.183 · 10−4 4.979 · 10−4 8.026 · 10−4 4.988 · 10−4 8.130 · 10−4 4.988 · 10−4

P2 3.290 · 10−5 2.701 · 10−5 3.472 · 10−5 2.710 · 10−5 3.490 · 10−5 2.710 · 10−5

P3 1.038 · 10−5 7.511 · 10−6 1.102 · 10−5 7.519 · 10−6 1.108 · 10−5 7.519 · 10−6

Table 2
Drag-coefficients on the triangular grid.

514

6 Conclusions515

In this work we have presented the main features of a preconditioned DG dis-516

cretization for inviscid low Mach number computations. The method solves517

the conservative Euler equations in terms of primitive variables using both an518

explicit and an implicit scheme for the temporal discretization. The algorithm519

employs the low Mach number preconditioning of both the time-derivative520

term of the governing equations and of the numerical flux function using the521

explicit time integration, and the preconditioning of numerical flux function522

only for the implicit scheme. Numerical results have been presented solving the523

2D compressible Euler equations at low Mach numbers. Computations were524

performed at different low Mach numbers using linear, quadratic and cubic525

elements on quadrangular and triangular grids. In all cases, the method signif-526

icantly improves the speed of convergence. In particular, the implicit scheme527

turns out to be efficient using just the modified numerical flux function, and528

then it could also be used for time accurate computations. Furthermore, it has529

been shown that preconditioning enhances the accuracy of the numerical solu-530

tion. In particular, the computations indicate that the preconditioning of the531

upwind numerical flux function is mandatory to obtain accurate solutions on532

a relatively coarse quadrangular grid. In contrast to that, the DG discretiza-533

tion on the triangular grid yields remarkably accurate solutions even without534

preconditioning. A theoretical investigation of these results is the subject of535

ongoing work.536
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