
Atmos. Meas. Tech., 3, 457–474, 2010
www.atmos-meas-tech.net/3/457/2010/
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Measurement

Techniques

Minimizing light absorption measurement artifacts of the
Aethalometer: evaluation of five correction algorithms

M. Collaud Coen1, E. Weingartner2, A. Apituley3, D. Ceburnis4, R. Fierz-Schmidhauser2, H. Flentje5, J. S. Henzing6,
S. G. Jennings4, M. Moerman3, A. Petzold7, O. Schmid8,9,*, and U. Baltensperger2

1MeteoSwiss, Aerological Station, Les Invuardes, 1530 Payerne, Switzerland
2Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
3National Institute for Public Health and the Environment, Bilthoven, The Netherlands
4School of Physics / Environmental Change Institute, National University of Ireland, Galway; Ireland
5Deutscher Wetterdienst (DWD), Meteorologisches Observatorium (MOHP), Albin-Schwaiger-Weg 10, 82383
Hohenpeissenberg, Germany
6Netherlands Organisation for Applied Scientific Research, TNO, 80015 Utrecht, The Netherlands
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Abstract. The aerosol light absorption coefficient is an es-
sential parameter involved in atmospheric radiation budget
calculations. The Aethalometer (AE) has the great advantage
of measuring the aerosol light absorption coefficient at sev-
eral wavelengths, but the derived absorption coefficients are
systematically too high when compared to reference meth-
ods. Up to now, four different correction algorithms of the
AE absorption coefficients have been proposed by several
authors. A new correction scheme based on these previously
published methods has been developed, which accounts for
the optical properties of the aerosol particles embedded in
the filter. All the corrections have been tested on six datasets
representing different aerosol types and loadings and include
multi-wavelength AE and white-light AE. All the corrections
have also been evaluated through comparison with a Multi-
Angle Absorption Photometer (MAAP) for four datasets last-
ing between 6 months and five years. The modification of the
wavelength dependence by the different corrections is ana-
lyzed in detail. The performances and the limits of all AE
corrections are determined and recommendations are given.
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(martine.collaud@meteoswiss.ch)

1 Introduction

The single scattering albedoω0 and the extinction̊Angstr̈om
exponent of atmospheric aerosol particles are needed in mod-
els calculating aerosol radiative forcing. These parameters
can be determined from concomitant multi-wavelength mea-
surements of aerosol scattering and absorption coefficients.
Instruments and methods to measure the light absorption by
atmospheric particles have been described in detail elsewhere
(Bohren and Huffman, 1983; Horvath, 1993; Heintzenberg
et al., 1997; Moosm̈uller et al., 1997; Bond and Bergstrom,
2006). Among the direct measurement methods, filter-based
instruments have been widely used both at ground sites and
on airborne platforms due to their ease of operation. How-
ever, most of the filter-based absorption techniques, which
determine the aerosol absorption coefficient from the atten-
uation of light passing through an aerosol-laden filter, suffer
from various systematic errors that need to be corrected (Li-
ousse et al., 1993; Petzold et al., 1997; Bond et al., 1999):
firstly, attenuation is enhanced by multiple scattering by the
filter fibers which increases the optical path (multiple scat-
tering correction); secondly, light attenuation is further en-
hanced due to scattering of aerosols embedded in the filter
(scattering correction); and thirdly, attenuation is gradually
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increased by the light absorbing particles accumulating in the
filter thus reducing the optical path for a loaded filter (filter-
loading correction).

The most frequently used filter-based commercial instru-
ments to measure real-time black carbon (BC) mass con-
centrations are the Aethalometer (AE) and the Particle Soot
Absorption Photometer (PSAP). The multi-wavelength AE
measures at seven wavelengths covering the ultra-violet to
the near-infrared wavelength range (the AE-31 measures
in the range fromλ=370 to 950 nm), the multi-wavelength
PSAP has only recently become commercially available and
measures at three wavelengths (λ=467 to 660 nm). The ab-
sorption data from both instruments need to be corrected for
the above mentioned artifacts in the filter matrix and these
corrections require concomitant scattering measurements. In
contrast to the AE and PSAP, the more recently developed
Multi-Angle Absorption Photometer (MAAP) detects not
only the transmitted, but also the backscattered light at two
angles to resolve the influence of light-scattering aerosol
components on the angular distribution of the backscattered
radiation. The absorption coefficient atλ=630 nm is there-
after obtained from a radiative transfer scheme (Petzold and
Scḧonlinner, 2004; Petzold et al., 2005). This technique
treats the multiple scattering in the filter and the scattering
effect of the particles embedded on the filter. Hence, the
MAAP instrument does not use any empirically determined,
aerosol-related correction factors. The instrumental artifacts
are reduced for the MAAP in comparison with AE or PSAP,
so that the absorption coefficients measured with a MAAP
should be closer to the true ones. Even if the MAAP is not
an absolute reference method, it is however used as a refer-
ence for AE in this paper.

Various correction schemes have been published for the
PSAP (Bond et al., 1999; Virkkula et al., 2005a) taking into
account the above mentioned artifacts, and particularly the
scattering correction. Similarly, AE correction methods pre-
sented in the literature also take these effects into account
(Weingartner et al., 2003; Arnott et al, 2005; Schmid et al.,
2006; Virkkula et al., 2007).

Using the above mentioned correction methods, high
instrument correlation but with highly variable regression
slopes were found for intercomparison measurements with
various absorption instruments both in the laboratory and un-
der atmospheric conditions (Arnott et al., 2005; Saathoff et
al., 2003; Schmid et al., 2006; Wallace, 2005; Rice, 2004;
Petzold et al., 2005; Virkkula et al., 2005a, b; Schnaiter et al.,
2005; Park et al., 2006; Slowik et al., 2007). For example,
the intercomparison of continuously operated Aethalome-
ters, MAAPs and Photoacoustic spectrometers (PAS) at the
Fresno Supersite (Park et al., 2006) resulted in regression
slopes between 0.2 and 2. The intercomparison also pointed
out differences between winter and summer measurements
indicating that the aerosol composition also plays an impor-
tant role for instrument correlation.

It is widely accepted (Arnott et al., 2005; Schmid et al,
2006; Rice, 2004) that the uncorrected AE measures too high
absorption coefficients. Weingartner et al. (2003), Arnott et
al. (2005) and Schmid et al. (2006) published AE correc-
tions, taking into account either results of chamber exper-
iments involving extinction and scattering coefficient mea-
surements or comparison with a PAS. The ability to correct
the AE and/or PSAP for all of the above mentioned instru-
mental artifacts is important: firstly, to derive climatically
important aerosol parameters more accurately from a sim-
ple instrument; secondly, to take advantage of already exist-
ing long-term data sets (such as the 13-year AE dataset from
the Jungfraujoch (JFJ), or the 15-year AE dataset from Mace
Head (MHD, see Junker et al., 2006)); and thirdly, to perform
multi-wavelength measurements providing spectral informa-
tion on absorption and single scattering albedo, which is not
yet available from more reliable instruments.

Two new AE corrections are developed in this paper, us-
ing already published AE corrections schemes. These new
corrections as well as all the previously published ones were
tested on six datasets from different sites, of which four also
included a MAAP (Table 1). The analyzed absorption coeffi-
cients include aerosol measured in the Alps (Jungfraujoch,
Hohenpeissenberg, HOP), in a flat region near populated
and industrialized areas (Cabauw, CAB), at a coastal site
(Mace Head), on a pasture site affected by biomass burning
(Amazon Basin, AMA) and in a city (Thessaloniki, THE).
Therefore these sites represent free tropospheric, continen-
tal, maritime, biomass burning and heavily polluted environ-
ments and are characterized by a annual mean single scatter-
ing albedo (ω0) between 0.65 and 0.90 (atλ=660–840 nm).
Comparisons with a MAAP have been performed on datasets
lasting between six months and five years, so that the cor-
relation between both absorption measurements can be es-
tablished on real atmospheric aerosols during a time period
long enough to study the performance of MAAP and AE in-
struments and associated corrections in long-term monitor-
ing programs.

2 Experimental

2.1 Measurement sites and instrumentation

Table 1 gives the main characteristics of the used datasets.
All measurement sites use the same Nephelometer and
MAAP types. The three kinds of AE (AE-31, AE-16 and
AE-10, AE-30 being the prototype of AE-31) work with sim-
ilar filter tapes (Pallflex Q250F) consisting of non-woven
polyester backed quartz filter material. The main differ-
ence in the instrumentation concerns the inlet types that
sample different aerosol size fractions (PM1, PM10 or TSP)
at different relative humidities (from dry to ambient condi-
tions) leading to different aerosol patterns. However, at each
measuring site, all three used instruments (AE, MAAP and
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Table 1. Description of the used datasets, including the measuring sites, the instruments, time periods and brief site characteristics.

ID Site description inlet AE MAAP/PAS Neph Period,
project

Reference

JFJ Jungfraujoch
46◦ N, 8◦ E
3580 m a.s.l.

Alps,
free troposphere,
PBL influence

Dried TSP AE-31
λ: 370–950 nm
Filter: Pallflex Q250F

MAAP
λ: 630 nm

TSI 3563
λ: 450–700 nm

3.2003–
12.2007
GAW aerosol
monitoring
program

Baltensperger
et al., 1997
Lugauer et al.,
1998

CAB Cabauw
51◦ N, 4◦ E
−0.7 m a.s.l.

Plane, moderate
maritime, near
populated and
industrialized areas

Before March 2008,
ambient air PM10
inlet placed near the
instruments on a
platform at 60 m.
After March 2008,
60 m inlet pipe,
PM10, followed by
a bundle of nafion
dryers.

AE-31
λ: 370–950 nm
Filter: Pallflex Q250F

MAAP
λ: 630 nm

TSI 3563
λ: 450–700 nm

2.2008–
7.2008
CESAR

Schaap et al.,
2009
Russchenberg
et al.,
2005

MHD Mace Head
53◦ N, 10◦ W
5 m a.s.l.

Coastal site, with
prevailing marine
(North Atlantic) air
masses>50% of the
time

PM1, 15 m sampling
line with inlet at 10 m

AE-16
White light
Filter: Pallflex Q250F

MAAP
λ: 630 nm

TSI 3563
λ: 450–700 nm

1.2007–
12.2007

Jennings et
al., 2003
Junker et
al., 2006

HOP Hohenpeissenberg
48◦ N, 11◦ E
985 m a.s.l.

Alpine Foothill, PBL
influenced, rural
background

PM10, heated 2◦C
above ambient air

AE-10-IM
λ: white light
Filter: Pallflex Q250F

MAAP
λ: 630 nm

TSI 3563
λ: 450–700 nm

1.2005–
12.2005

Kaminski et
al., 2006

AMA Amazon basin
11◦ S, 62◦ W
235 m a.s.l.

pasture site frequently
affected by biomass
burning haze from
fire-assisted land
clearing

5 m inlet tubing,
Non-dried PM10 for
AE, and dried PM1.5
for PAS

AE-30
λ: 370–950 nm
Filter: Pallflex Q250F

PAS
λ: 532 nm

TSI 3563
λ: 450–700 nm

9.2002–
11.2002
LBA-
SMOCC

Andreae et
al., 2004
Schmid et
al., 2006

THE Thessaloniki
40◦ N, 22◦ W
25 m a.s.l.

City, polluted Ambient TSP AE-31
λ: 370–950 nm
Filter: Pallflex Q250F

not available TSI 3563
λ: 450–700 nm

7.2006
SCOUT-O3

Nephelometer) sampled aerosol from the same inlet, so that
comparisons are always performed for the same size fraction
and relative humidity.

The scattering and backscattering coefficients of all sta-
tions were measured by Integrating Nephelometers and cor-
rected for the truncation error and for the non-idealities in
the angular intensity distribution of the light inside the instru-
ment according to Anderson and Ogren (1998) and Nessler
et al. (2005). All the data were aggregated to hourly means.

The multi-wavelength AE’s cover the 370–950 nm wave-
length range, and the white-light AE’s have a broad spec-
tral range from 500 nm to 1100 nm with a peak sensitivity
in the near IR at about 840 nm (Weingartner et al., 2003).
All the AE’s undergo a filter-preconditioning cycle after each
tape change that exposes the filter to sampled air before the
measurement starts. In rack mounted Aethalometers (AE16,
AE21, AE22, AE31) the sample flows through the filter tape
for a part of the preconditioning cycle only (about 3 min),
and the flow is diverted through a by-pass cartridge filter dur-
ing most of the preconditioning cycle (G. Mocnik, Aerosol
d.o.o., Magee Scientific, personal communication, 2009).
This preconditioning cycle can modify the zero point of the

light intensityI0 (see Eq. 1 below) and consequently the at-
tenuation ATN. The ATN modification will change the filter
loading correction and induce a lower calibration constant
Cref for the multiple scattering correction that was estimated
to less than 5% for the studied datasets. As also stated in
Arnott et al. (2005), this is normally not an issue for ambi-
ent measurements as reported in this study, but it could be an
issue when sampling from highly polluted sources. A better
quantification of this effect is however not possible since the
shift of the zero point of the filter transmittance is presently
not known.

2.2 Aethalometer corrections

All the already published corrections are summarized in this
section and the mentioned equations report only the final ap-
plied corrections. To enable a better comprehension of all
corrections proposed, Table 2 lists all the used parameters,
their units, a brief description and the corresponding parame-
ters used in the previously published correction schemes, and
Fig. 1 schematically describes the new correction scheme. In
the following, some formal definitions are first given.
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Table 2. Symbols, units, description of the parameters used in this paper as well as the corresponding symbols used in the papers describing
the previously published correction schemes. The used nomenclature follows symbols commonly used by Seinfeld and Pandis (1998).

Symbol Units Name and function Corresponding symbols in
other papers

α Parameter for the Arnott scattering correction α in Arnott
ms in Schmid
s in Virkkula

αnew Parameter for the new scattering correction

åabs AbsorptionÅngstr̈om exponent. It describes the wavelength dependence ofbabs. α in Weingartner
αa in Schmid

åscat ScatteringÅngstr̈om exponent. It describes the wavelength dependence ofbscat. αs in Schmid

åscat,non−abs ScatteringÅngstr̈om exponent for Arnott ammonium sulfate aerosol experiment b in Arnott
¯̊ascat,s,n åscatmean over the n first measurements since a filter spot (s) change

A m2 Area of the sample spot A in Weingartner,
Arnott, Schmid and Virkkula

ATN Filter attenuation measured and recorded by AE ATN in Weingartner,
Arnott, Schmid and Virkkula

βscat m−1 Proportionality constant of the wavelength power law dependence ofbscat A in Arnott

βscat,non−abs m−1 Proportionality constant of the wavelength power law dependence ofbscat
for Arnott ammonium sulfate aerosol experiment

β̄scat,s,n m−1 βscatmean over the n first measurements since a filter spot (s) change

babs m−1 Absorption coefficient babs in Weingartner
Babs in Arnott
σaeth in Schmid
σabs in Virkkula

bATN m−1 Attenuation coefficient measured and recorded by AE bATN in Weingartner
Baeth in Arnott
σATN in Schmid
σ0 in Virkkula

bATN,R corrected m−1 Attenuationcoefficient corrected only for the filter-loading artifactR.

babs,refMAAP m−1 Referenceabsorption coefficient from MAAP babs in Weingartner

BC0 g m−3 Black carbon concentration measured and recorded by AE BC0 in Virkkula

bscat m−1 Scattering coefficient bs in Weingartner
Bsca in Arnott
σs in Schmid
σSP in Virkkula

b̄scat,s,n m−1 bscatmean over the n first measurements since a filter spot (s) change

c m−1 Proportionality constant of the power-law dependence ofbATN c in Arnott
andbscatfor Arnott non-absorbing aerosol experiment

Cref Multiple scattering correction constant C in Weingartner
M in Arnott
C in Schmid

Cscat Scattering correction in the Schmid method

d exponent of the power-law dependence ofbATN andbscatfor Arnott non-absorbing d in Arnott
aerosol experiment

f Parameter estimating the slope of thebATN versus ATN curve. It parameterizes thef in Weingartner and Schmid
Weingartner filter-loading correction

i Counter for theith number of filter spots.

I0 Light intensity through a pristine portion of the filter I0 in Weingartner, Schmid
and Virkkula

I Light intensity through the loaded filter I in Weingartner, Schmid
and Virkkula
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Table 2. Continued.

Symbol Units Name and function Corresponding symbols in
other papers

k Variable defining the proportionality between the last point of a filter spot and the k in Virkkula
points of the next filter spot. It parameterizes the Virkkula filter-loading correction

m Slope of the f versus 1−ω0 curve. It parameterizes the new filter-loading correction a in Weingartner

n Counter for thenth measurement since a filter change
RA Arnott filter-loading correction

Rnew New filter-loading correction

RV Virkkula filter-loading correction

RW Weingartner filter-loading correction, with a fixed chosenf value chosen for the R in Weingartner and Schmid
whole dataset.

SG m2 g−1 Spectral mass specific attenuation cross-section proposed by the manufacturer σabs in Weingartner
SG in Arnott
αATN in Schmid

t s Time t in Weingartner, Arnott,
Schmid and Virkkula

τa,fx Filter absorption optical depth for the filter fractionx that has particles embedded in it.τa,fx in Arnott

V m3 s−1 Volumetric flow rate Q in Weingartner, Schmid
and Virkkula
V in Arnott

ω0 Single scattering albedo ω0 in Weingartner and Schmid
ω in Arnott

ω0,ref Single scattering albedo at a chosen reference wavelengthλref ω0,ref in Schmid

ω̄0,s,n ω0 mean over the n first measurements since a filter spot change

λ nm Wavelength λ in Weingartner, Arnott,
Schmid and Virkkula

Thelight attenuation (ATN) through the aerosol-laden sec-
tion of a filter spot is defined as

ATN = ln

(
I0

I

)
(1)

whereI0 is the intensity of light passing through a pristine
portion of the filter andI the intensity passing through the
loaded filter. The particles embedded in the filter during a
time interval1t will increase ATN, so that thenth measure
of the aerosol attenuation coefficient (bATN,n) of the filtered
aerosol particles is obtained from

bATN,n (λ) =
(ATNn(λ)−ATNn−1(λ))

1t
·
A

V
(2)

whereA is the area of the sample spot andV the volumetric
flow rate. The corrections discussed below are then applied
to infer the true aerosol absorption coefficientbabs,n of air-
borne particles frombATN,n .

Both the absorption̊Angstr̈om exponent̊aabsand the scat-
tering Ångstr̈om exponentåscat, which refer to the wave-
length dependence of the respective coefficients, were deter-
mined by fitting the measured absorption or scattering coef-
ficients with a wavelength power-law dependence (b∼ λ−å).
TheseÅngstr̈om exponents were used to calculate coeffi-

cients at other wavelengths, such as the absorption coefficient
atλ=630 nm to allow comparison with the MAAP.

2.2.1 The Weingartner correction

Weingartner et al. (2003) proposed an empirical correction
RW for the attenuation effect due to the filter-loading and
determined the calibration constantCref for different aerosol
types produced in the AIDA aerosol chamber (at FZ Karl-
sruhe, Germany) to correct for the multiple scattering in the
filter matrix. The resultingnth absorption coefficientbabs,n

is given by:

babs,n=
bATN,n

Cref ·Rw,n

=
bATN,n

Cref ·

[(
1
f

−1
)
·

lnATNn−ln(10%)
ln(50%)−ln(10%)

+1
] (3)

where Cref is determined by first correctingbATN for the
filter-loading correction and then comparing it with the ab-
sorption coefficient measured simultaneously with a ref-
erence instrument (babs,ref). Since the Weingartner filter-
loading correctionRW takes ATN=10% as a reference point,
Cref relates in this case to ATN=10%:

Cref =
bATN

RW ·babs,ref
(4)
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Concomitant measurement 
of reference babs ? 

yes no 

Application of the filter-loading correction: 
Calculation of bATN,R_corrected = bATN / Rnew  

(Eq. 13) 
 
Needed parameters:,m, ATN, bATN, ns,,0ω  

Determination of  
Cref = bATN,R_corrected / babs,ref_MAAP   (Eq. 4)  

Estimation of Cref from 
Fig. 3 

Application of the total correction: 
1. Calculation of the variables needed for the complete correction 

(βscat, åscat, åabs, ω0,ref, ω0(λ)) 
2. Determination of filter spot changes 
3. Calculation of the variables averaged since the last filter spot 

change ( ns,,0ω , nsscat ,,å , nsscat ,,β , nsscatb ,, ) 

4. Calculation of babs (Eq. 14a-b) 
 

Needed constants: c, d, m, Cref 

Fig. 1. Description of the sequence of steps to apply the new cor-
rection scheme.

A parameterf (λ) is introduced which characterizes the slope
betweenbATN,n and ln(ATNn) and parameterizes the filter-
loading correctionRW . A clear dependence off on 1−ω0
was also observed for pure, internally and externally mixed
diesel soot particles, which leads to the following quasi-
linear relation

f = m ·(1−ωo)+1, (5)

where m is nearly constant (0.87 to 0.85) forλ=470 to
660 nm.

The Weingartner correction parameterRW can depend on
the light wavelength, butCref does not. Therefore, a constant
Cref value over the wide spectral range (370–950 nm) was
chosen. Weingartner et al. (2003) also determinedf values
for different aerosol types. In this paper,RW will always
correspond to the Weingartner correction with fixedf values
chosen for each dataset depending on the aerosol type, as it
is presently applied by most users, so that theRW correction
does not need concomitantbscat measurements oncef has
been determined. It is evident from Eqs. 3 through 5 that if
ω0=1, bothf andRW are equal to unity. Since the aerosol
measured at the high alpine site JFJ was aged aerosol with
ω0 values mostly close to unity,RW can be taken as unity.

2.2.2 The Arnott correction

Arnott et al. (2005) proposed a theoretically well docu-
mented correction, which includes an explicit scattering cor-
rection similarly to the correction commonly applied to the

PSAP (Bond et al., 1999). The form of this scattering correc-
tion (−α ·bscat) was deduced from the non-zerobATN mea-
sured by an AE with a purely scattering aerosol. The scat-
tering coefficientbscat weighted by theα values was there-
fore subtracted frombATN to correct for the scattering arti-
fact (Eq. 6). The Arnott filter-loading correctionRA was de-
rived from multiple scattering theory, which shows that the
exponential behavior of light absorption in the strong multi-
ple scattering limit scales as the square root of the total ab-
sorption optical depth. The correctedbabs,n is given by :

babs,n=
bATN,n −α ·bscat,n

Cref ·RA,n

=
bATN,n −α ·bscat,n

Cref

√
1+

(V ·1t
A

) ·
∑n−1

i=1 babs,i

τa,f x

(6)

α(λ) = βd−1
scat,non−abs·c ·λ−åscat,non−abs·(d−1) (7)

wheren, V , 1t , andA were introduced in Eq. 2,βscat,non−abs
andåscat,non−absare obtained from measurements of ammo-
nium sulfate aerosol and correspond to the power-law fit of
the wavelength dependence ofbscat,non−abs:

bscat,non−abs= βscat,non−abs·λ
−åscat,non−abs (8)

c andd are also obtained from the measured non-zerobATN
in the presence of a non-absorbing aerosol and correspond to
the relation betweenbscat,non−absandbATN :

bATN = c ·bd
scat,non−abs (9)

andτa,f x(λ) is the filter absorption optical depth for the fil-
ter fractionx that has particles embedded in it, andCref is
obtained by comparison between AE and PAS absorption
coefficients. τa,f x(λ) and Cref (λ) were determined from
kerosene soot measurements during the Reno Aerosol Op-
tics Experiment, under the condition thatbabs(λ), when ex-
trapolated toλ=532 nm withåabs=1, were all equal to PAS
measurements atλ=532 nm. In this Arnott correction, all
the reported calibration constants depend on the wavelength
of the light. Six weeks of ambient measurements at an ur-
ban site allowed testing of the proposed correction, which
showed that different values of the above described parame-
ters are needed for ambient and laboratory generated aerosol.
Arnott et al. (2005) also hypothesized that the variation in
these parameters is related to the AE pre-conditioning cycles
that blackened the filters before the measurement began.

2.2.3 The Schmid correction

Schmid et al. (2006) proposed a correction that includes
firstly the filter-loading correctionRW with constant values
of f and the multiple scattering correctionCref developed
by Weingartner et al. (2003). Secondly, comparing Arnott
and Weingartner methods, they derived a new scattering cor-
rection depending onω0 and theα(λ) constants derived by
Arnott, which replaces the scattering correction introduced
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by Arnott. Instead of subtracting a part ofbscat in the nom-
inator like Arnott, the Schmid scattering correction adds a
termCscat to Cref, leading to a correction that includes both
the multiple scattering and the scattering corrections in the
denominator:

babs,n(λ)=
bATN,n(

Cref+Cscat,n
)
·RW,n

(10)

=
bATN,n(

Cref+α·
ω0,n

1−ω0,n

)
·

[(
1
f
−1

)
·

lnATNn−ln(10%)
ln(50%)−ln(10%)

+1
]

The correctedbabsmeasured either by an AE or a PSAP were
compared to thebabs measured by a PAS atλ=532 nm for
some days of measurements in AMA, leading to high corre-
lations and ratios between AE and PASbabsof between 0.94
and 1.03.

2.2.4 Virkkula filter-loading correction

Virkkula et al. (2007) proposed a filter-loading correctionRV

very close to that of the PSAP, assuming that the three last
values measured on the filter spoti and the three first values
measured on the next filter spoti+1 should be equal, and that
the values measured on lightly loaded filters are the closest
to the real concentration:

bATN,R corrected,n=
bATN,n

RV

= (1+ki ·ATN) ·bATN,n (11)

ki=
BC0(ti+1,first)−BC0(ti,last)

ATN(ti,last)·BC0(ti,last)−ATN(ti+1,first)·BC0(ti+1,first)
(12)

whereti,last is the time of the last measurement on the filter
spot i and ti+1,first is the time of the first measurement on
the next filter spoti +1. A ki value is therefore determined
for each filter spot and applied to alln measurements on the
ith filter spot. The correction was validated by a compar-
ison with simultaneous aerosol volume concentration mea-
surements at three sites with different aerosol types.

Virkkula et al. (2007) chose to set the scattering correction
to zero, since a lot of AE users do not have concomitant scat-
tering measurements. In addition, they did not introduce a
multiple scattering correction. Henceforth, the Virkkula cor-
rection will be considered as a filter-loading correction only
and not as a total correction of the attenuation coefficient,
since the multiple scattering correction is not negligible as
will be shown below.

2.2.5 The new correction

The necessity of a further development of the above de-
scribed corrections became obvious when the corrections
were applied to the JFJ dataset (see Sects. 3 and 4).
Firstly, the Weingartner filter-loading correctionRW results
in 1/RW <1 for ATN<10%. Considering that a pristine fil-
ter should produce no artifact, 1/RW should be equal to 1

for ATN=0. The subtraction of ln(10%) was therefore re-
moved for the new filter-loading correction. Weingartner
et al. (2003) found a linear relationship betweenbATN and
ln(ATN), which leads to am value (Eq. 5) independent of
the wavelength. Recent experiments with aged diesel soot
showed a linear relationship betweenbATN and ATN (Steiger,
2008). Investigations of the JFJ and THE datasets show that
the regressions betweenbATN and ATN are statistically better
than betweenbATN and ln(ATN). The direct proportionality is
therefore chosen for the modified Weingartner filter-loading
correction (Eq. 13). A newm value was consequently calcu-
lated similarly to that of Weingartner et al. (2003) and with
the same datasets from the AIDA chamber experiment but
by fitting a linear relationship betweenbATN and ATN. This
m value has a mean valuem=0.74 when averaged over the
experiments and the wavelengths, but is wavelength depen-
dent. It was verified for all datasets that a change of them

value induces a change in the calculatedCref but insignifi-
cant changes in the finalbabs values. The new filter-loading
correction is:

Rnew,s,n=

(
1

m ·(1− ω̄0,s,n)+1
−1

)
·
ATNn

50%
+1 (13)

whereATN is given in %, ω̄0,s,n is the mean of then sin-
gle scattering albedo measured since the filter spot change,
where the subscripts indicates that the mean optical proper-
ties of the aerosol particles embedded in the filter spot and
not only of thenth measurement are taken into account.

Secondly, the new corrections take explicitly into account
the fact that the AE measures a non-zerobabs when loaded
with non-absorbing aerosol. Either the Arnott or the Schmid
scattering correction schemes can be applied. Both correc-
tions use the Arnottα(λ) parameters to weight the scatter-
ing correction. Following the Arnott assumption ofα be-
ing constant for a definedλ, the ratiobabs/bscat for non-
absorbing aerosols should be constant, independently of the
value of bscat. The 2007 EUSAAR intercomparison cam-
paign in Leipzig showed however that the ratio between
the absorption and scattering optical depth increased with
decreasing scattering optical depth for all filter-based in-
struments (PSAP, MAAP and AE) (M̈uller et al., 2008).
The scattering coefficient and its wavelength dependence
(Eq. 8) should therefore match the measured aerosol and
not the ammonium sulfate experiment involving highω0
and highåscat(åscat,non−abs=3). The Arnottβscat,non−absand
åscat,non−absconstants have therefore to correspond toβscat
andåscatof the aerosol particles embedded in the filter spot.
Therefore, the main modification introduced by the new cor-
rection is that the constantβscat,non−absand åscat,non−absof
Eq. 8 are replaced by a mean scattering coefficientβ̄scat,s,n
and a mean scattering̊Angstr̈om exponent̄̊ascat,s,nof the total
aerosol load in the filter spot. The power-law regression be-
tweenbATN andbscat for non-absorbing aerosols (Eq. 9) can
on the other hand be considered to be universal, so that the
constantsc andd can be taken from Arnott et al. (2005). This
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newαnew,n(λ) (see Eq. 15 below) allows one to take the real
scattering properties of the measured aerosol into account
and is therefore applied to both the Arnott and Schmid scat-
tering correction schemes, leading to two new corrections.
Similarly, instead of usingbscat,nor ω0,n measured simulta-
neously with thenth absorption measurementbabs,n since a
filter spot change, the mean scattering coefficientb̄scat,s,nor
the mean single scattering albedoω̄0,s,n of the total aerosol
loading in the filter spot are used for the Arnott scattering and
for the Schmid scattering corrections, respectively.

Finally the new AE correction is described in Fig. 1 and
by Eqs. 14a or 14b depending if the Arnott or the Schmid
scattering correction is applied:

babs,n(λ)=
bATN,n−αnew,s,n·b̄scat,s,n

Cref·Rnew,s,n

(14a)

similar to Arnott

babs,n(λ) =
bATN,n(

Cref+Cscat,s,n
)
·Rnew,s,n

=
bATN,n(

Cref+αnew,s,n·
ω̄0,s,n

1−ω̄0,s,n

)
·Rnew,s,n

(14b)

similar to Schmid

with the newαnew,s,n(λ) given by

αnew,s,n= β̄d−1
scat,s,n·c ·λ−¯̊ascat,s,n·(d−1) (15)

with d = 0.564

andc = 0.797·10(−6d)
= 0.32910−3,bscat[m

−1
]

TheCref is determined by comparing thebATN already cor-
rected for the filter-loading with the newRnew correction to
babs,refmeasured by a reference instrument, as described in
Eq. 4.

The wavelength dependentω0(λ) (Eq. 16) is obtained from
ω0,ref that can be calculated with the scattering coefficient
taken at one of the AE wavelengthsλref and the first estima-
tion of babs= bATN /SG (Schmid et al., 2006), where SG is
the mass specific attenuation cross-section proposed by the
manufacturer (14625/λ[m2 g−1], λ in [nm]). It was verified
with the JFJ and THE datasets that the choice of the initial
wavelengthλref is not important for the final result:

ω0(λ)=
ω0,ref·

(
λ

λref

)−åscat

ω0,ref·

(
λ

λref

)−åscat
+(1−ω0,ref)·

(
λ

λref

)−åabs
(16)

Fig. 2. 1/R for the four filter-loading corrections as a function of
time for about one month measured at the JFJ atλ=370 nm.

3 Results

3.1 Effects of each partial correction corresponding to
a systematic artifact

3.1.1 The filter-loading correction

Figure 2 shows 1/Rcalculated by the methods by Wein-
gartner et al. (2003), Arnott et al. (2005), and Virkkula et
al. (2007) as well as the new one described under 2.2.5 for
one month of measurements at the JFJ, and Table 3 sum-
marizes the results of the fourR corrections applied to all
the datasets. The constantf of the Weingartner 1/RW cor-
rection was estimated from Weingartner et al. (2003), with
f =1.025 corresponding to aged mixed aerosols (JFJ, HOP)
andf =1.2 for aerosols near pollution sources (THE), while
intermediate values off=1.05 andf =1.10 were taken for
MHD and CAB, respectively. The form of the Weingartner
filter-loading correction results in 1/RW <1 for ATN<10%,
which leads to minimal 1/RW values of 0.77<1/RW <0.93
depending on the station and consequently to an increase of
babs measured on lightly loaded filters. For all the analyzed
datasets, the maximum of 1/RW amounts to 1.06, whereas
the mean of 1/RW varies between 1.01 and 1.03. The Arnott
filter-loading correction leads to 1/RA values between 1 and
1.81 with mean values between 1.00 and 1.08. The new
correction has a minimum 1/Rnew value of 1 similar to the
Arnott correction and a maximum value of 2.56. The mean
1/Rnew values vary between 1.05 and 1.37. The Weingart-
ner, Arnott and the new filter-loading corrections have a clear
wavelength dependence with a greater 1/Rat lower wave-
lengths, following the wavelength dependence of ATN and
babs. The Virkkula filter-loading correction is highly non-
stable, leading to large negative and positive 1/RV outliers.
Moreover, its wavelength dependence varies. The difficulty
of applying the Virkkula correction is due to the natural high
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Table 3. Use of the scattering coefficient, minimum, maximum and mean of 1/Rvalues, for all four filter-loading corrections and for the
four measuring stations. For the Weingartner correctionf =1.025,f =1.1,f =1.05,f =1.025,f =1.025 andf =1.2 were taken for JFJ, CAB,
MHD, HOP, AMA and THE datasets, respectively.R values were taken atλ=660 nm for multi-wavelength AE (JFJ, CAB, AMA and THE).

JFJ CAB MHD HOP AMA THE

Filter-loading Use of Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean
correction bscat (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R) (1/R)

WeingartnerRW no 0.87 1.02 1.01 0.77 1.06 1.01 0.84 1.06 1.03 0.91 1.02 1.01 0.93 1.03 1.01 0.94 1.02 1.01

Arnott RA no 1.00 1.07 1.00 1.00 1.15 1.01 1.00 1.40 1.03 1.00 1.22 1.03 1.00 1.81 1.08 1.00 1.30 1.03

Virkkula RV no −250 1803 2.23 −3.60 6.99 1.05 −1.18 10.08 1.14 −87 223 1.31 −1.61 8.73 1.07 −134 182 0.92

New correctionRnew yes 1.00 1.36 1.05 1.00 1.23 1.05 1.00 2.56 1.12 1.00 1.37 1.09 1.00 2.05 1.29 1.00 1.27 1.09

Fig. 3. Effect of the filter-loading (•) and of the scattering (N) par-
tial corrections [(total correction – total correction without one par-
tial correction)/total correction] as a function of the attenuation of
light through the filter for 5 stations. At MHD and HOP the max-
imum of the wavelength is found at 840 nm, whereλ=370 nm is
reported for multi-wavelength AE (JFJ, CAB, THE). For the THE
dataset, aCref=4.26 similar to the one of CAB was applied.

variability of bATN as a function of time, which is for most
of the time greater than thebATN decrease induced by filter
changes.

The filter-loading artifact can be clearly visualized after a
filter change in a distinct step inbATN during chamber stud-
ies, when the aerosol type and concentration remains fairly
constant. In an ambient environment however, steps inbATN
are not only due to the filter-loading artifact but also due to
the natural variability of the aerosol properties. The efficacy
of the four filter-loading corrections to smooth steps inbATN
due to the filter-loading artifact was tested on the THE and
JFJ datasets, leading to no significant differences between the
filter-loading corrections.

The averaged effect of the filter-loading correction is plot-
ted in Fig. 3 as a function of ATN for the various datasets. At
ATN=60% the filter loading correction increasesbabs by 7
to 25% depending on the station. The greatest filter-loading
corrections are found for MHD and for the most polluted en-
vironments (THE, CAB).

Fig. 4. Cref calculated frombabs corresponding to a defined ATN
as a function of ATN for the four filter-loading corrections and for
the JFJ, CAB, MHD and HOP datasets as well as for thebabs AE
output calculated as recommended by the manufacturer. For JFJ and
CAB, babsatλ=660 nm are represented. For JFJ, the Virkkula filter-
loading correction leads to too highCref values varying between 3.7
and 17, and for HOP, the AEbabs calculated as recommended by
the manufacturer leads to around 0.6; these extreme values are not
shown for clarity purpose.

Since the filter-loading correction minimizes the at-
tenuation effect due to the filter-loading, the ratio
bATN,R corrected/babs,refMAAP between the filter-loading cor-
rected absorption and a reference absorption measurement
should no longer depend on ATN. Taking the MAAP
as a reference absorption measurement instrument, these
bATN,R corrected/babs,refMAAP ratios for all filter-loading cor-
rections are plotted as a function of ATN in Fig. 4 for JFJ,
CAB, MHD and HOP datasets, and the mean and the stan-
dard deviation ofCref are given in Table 4. At JFJ and HOP,
the new correction leads to the flattest curve between the ra-
tio bATN,R corrected/babs,refMAAP versus ATN, leading to the
lowest standard deviations in Table 4. At CAB, the Arnott
correction leads to the flattest curve, the new correction
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Table 4. MeanCref constants with standard deviations for all four filter-loading corrections for JFJ, CAB, MHD and HOP stations. The
correlation with the MAAP was done withλ=660 nm at JFJ and CAB.

JFJ CAB MHD HOP

WeingartnerRW 2.81±0.11 4.09±0.12 3.05±0.10 2.81±0.10

Arnott RA 2.80±0.13 4.12±0.06 3.08±0.11 2.78±0.09

Virkkula RV 7.77±4.15 4.57±0.49 3.83±0.41 3.16±0.43

New correctionRnew 2.88±0.08 4.26±0.11 3.51±0.23 2.89±0.03

Fig. 5. Cref as a function of the single scattering albedoω0 for the
JFJ, CAB, MHD and HOP datasets. For the JFJ and CAB datasets,
Cref andω0 are also separated between summer (S) and winter (W).

having however the smallest variability with ATN for the
smallest ATN. At MHD, the Weingartner and Arnott correc-
tions are the flattest ones, the new correction becoming too
large at high ATN.

3.1.2 The multiple scattering correction

For the evaluation ofCref of the multi-wavelength AE, the
wavelength ofλ=660 nm, which is nearest to the MAAP
wavelength (λ=630 m), was chosen. The comparison of the
AE and MAAP for the four datasets leads to averageCref val-
ues between 2.9 and 4.3 (Table 4) with the new filter-loading
correction algorithm, while the results found with the Arnott
and Weingartner filter-loading corrections are lower. Due
to the particularly strong seasonal cycle of aerosol optical
properties at the JFJ, an estimation ofCref for each month
was also performed.Cref is lower from April to September
with a mean value of 2.83, and higher during the October-
March period with a mean of 3.24. The CAB dataset is too
short to analyze a complete seasonal cycle. However,Cref
is clearly higher during the May–July period than for the
rest of the dataset, either because of seasonal variation of
the aerosol composition or due to a modification of the inlet
during March 2008 (see Table 1). HOP and MHD have less
distinct seasonal cycles. Figure 5 showsCref as a function of

ω0 for the four complete datasets (squares) as well as for the
JFJ and CAB datasets divided into 2 seasons. A clear cor-
relation betweenCref andω0 exists,Cref becoming greater
for lowerω0. Figure 5 showsCref for datasets withω0 >0.7.
Further analysis with other ambient aerosol types, particu-
larly in very polluted environments with lowerω0 (< 0.7)
such as big cities, should enable an extension of the results
to a more universalCref(ω0) curve. It is very important to
establish such correlation, since the multiple scattering cor-
rection is the most important one to ensure good agreement
with a referencebabsas will be discussed later.

According to the correction schemes, the multiple scat-
tering artifact should depend only on the filter properties
and not on the embedded aerosol. However, the calculated
Cref is not always constant, even at the same station. This
variation of Cref could be caused by semi-volatile organic
compounds (VOCs) and water vapor condensing on the filter
fibers (Weingartner et al., 2003) or to other similar phenom-
ena such as organic particles emitted from low-temperature
biomass burning that have a liquid, bead-like appearance
when collected on fibrous filters (Subramenian et al., 2007).
Firstly, the scattering of the filter fibers can be enhanced by
these compounds, leading to a longer optical path length;
secondly, the scattering phase function can also be modi-
fied leading to a modification of the mean filter reflectance;
thirdly, the sticking coefficient (probability to stick on a sur-
face) of the aerosol on the fiber and the possible change of
the inter-fiber spacing can change the depth of aerosol depo-
sition in the filter, leading to a change in its optical properties.
The experimental setup used in this study does not allow us
to further investigate these potential influences.

3.1.3 The scattering correction

The loading of the filter with scattering aerosol leads to two
different artifacts: the aerosol particles scatter light in all di-
rections, leading firstly to an increase of backscattered light
and consequently to an apparent greater reflectance of the fil-
ter, and secondly to an increased light optical path and con-
sequently to a higher probability of encountering an embed-
ded absorbing particle. Due to its form, the applied scatter-
ing correction (subtraction of an amount proportional to the
scattering coefficient) clearly corrects for an increase in the
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reflectance. The reflectance depends on the aerosol asym-
metry parameter, which is lower for longer wavelengths, so
that the proportionality factorα should increase with increas-
ing wavelength. The second scattering artifact, as described
above, leads to a higher probability of encountering an em-
bedded particle, which is presently not compensated by any
correction. The MAAP measurement technique does not cor-
rect for this second artifact either, but shows close agreement
with a reference absorption measurement through the differ-
ence between light extinction and scattering (Petzold et al.,
2005). This second scattering effect is therefore probably not
very pronounced.

Contrary to the Arnott scattering correction, but according
to recent results (M̈uller et al., 2008) (see Sect. 2.2.5), the
new correction introduces anαnew(λ) that depends on̄βscat
and ¯̊ascat (Eq. 15). Figure 6a showsαnew at λ=660 nm as a
function ofbscat for the JFJ, CAB, AMA and THE datasets.
αnew(λ) is lower than about 0.08 for the CAB, AMA and
THE datasets. When applied to the JFJ dataset,αnew(λ)
ranges between 0 and 0.20, but the great majority ofαnew(λ)
values are smaller than 0.1. As expected from the wavelength
dependence of the asymmetry parameter,αnew is greater at
longer wavelengths. Since̊ascatat AMA and THE are always
near 2 (standard deviation<0.15 for the two stations),αnew
clearly increases with decreasingbscat. åscathas a lower mean
for the JFJ and CAB datasets (1.64±1.25 and 1.56±0.72, re-
spectively), and is much more variable, particularly at the
JFJ, due firstly to the longer dataset and secondly to the pres-
ence of aged accumulation mode aerosol (Weingartner et al.,
1999), which are coarser and lead to lowåscatand sometimes
even to negative̊ascatin presence of mineral particles.αnew is
therefore not always increasing withbscat, but tends towards
zero for very lowåscat.

Figure 6b shows theCscat dependence onω0 for the JFJ,
CAB, AMA and THE datasets. As can be deduced from
Eq. 14b,Cscat increases with increasingω0. While theCscat
dependence onω0 is well defined for the high aerosol load-
ing at Thessaloniki, it becomes less sharp at lower aerosol
concentrations, particularly at the JFJ, due firstly to a greater
uncertainty in the measurement of very lowbabs and bscat
and secondly to a broader range ofαnew values (see Fig. 5a).
Cscat maximum values can be equal to 2 forω0 near one at
the JFJ, but remains normally below 0.5 for most values of
ω0 <0.95. TheCscat correction is usually greater at longer
wavelengths, but inversion of this wavelength dependence is
also observed.

Figure 3 shows that the new scattering correction de-
creasesbabson average by 2 to 12% depending on the station.
The greatest scattering correction is obtained for the high al-
titude stations (JFJ, HOP) where aged aerosols are measured.
Since the new scattering correction takes into account the
mean scattering of all the aerosol embedded into the filter,
this correction tends to be more constant with higher filter
loading.

Fig. 6. Dependence(a) αnew at λ=660 nm as a function of scat-
tering coefficient atλ=550 nm and(b) Cscat as a function ofω0
at λ=660 nm for the four datasets.αnew andCscat, were calculated
with the new correction scheme and represent the multiplying factor
of the scattering correction (Eq. 14a), and the scattering correction
in Schmid method (Eq. 14b), respectively.

3.2 Applicability of the AE corrections

The very low aerosol concentrations, particularly at the JFJ
and MHD, induce some instrumental difficulties. Due to the
fact that the measurements result from the difference be-
tween the last and the last before the last measured light
attenuation through a loaded filter, very low concentrations
sometimes induce negativebabsdue to electronic noise in the
raw signals (Petzold and Schönlinner, 2004). Even if nega-
tive babs are not real, these values have to be kept, because
they are necessary to avoid a bias in the calculated averages.
The amount of negativebabscan be lowered by use of larger
flow rates or by longer integrating times. Long-term mon-
itoring sites may however have constraints in not allowing
variable integrating times. In addition, long integrating times
may induce a loss of information such as, for example, di-
urnal cycles. Correction algorithms that can be applied to
negative values are therefore necessary.

Since the Weingartner correction consists of a simple mul-
tiplication with constant factors, it can be applied to the neg-
ative values ofbabs, it does not create new negative values as
other algorithms do (see below), and has no impact onåabs
(the difference between the measured and the Weingartner
correctedåabs is less than 0.01%), as long asf is taken as a
constant for a given dataset.

The Arnott correction is able to treat negative values of
babs. Due to the subtraction of the scattering correction, the
Arnott correction often creates new negative values ofbabs.
This artifact is found to be small for the shorter wavelengths
(2.9% and 0.3% atλ=370 nm), but the created negative val-
ues reach up to 9.6% and 3.4% atλ=950 nm at JFJ and CAB,
respectively. The given constantsCref(λ) also yield too high

www.atmos-meas-tech.net/3/457/2010/ Atmos. Meas. Tech., 3, 457–474,2010



468 M. Collaud Coen et al.: Correction algorithms for Aethalometer light absorption coefficient

Fig. 7. Histogram of the relative change (in percent) of AE de-
rived åabs values using Arnott, Schmid and the new corrections,
the method similar to Schmid being represented here. The JFJ and
CAB datasets are presented in light and dark colors, respectively.
The numbers of cases represented for±100% correspond to̊aabs

changes equal or greater than±100%, with values reaching some-
times up to±200% or greater.

values ofbabs. Finally, the Arnott correction has a broad im-
pact onåabs. As can be seen in Fig. 7, the Arnott correction
produces values of̊aabs that are on average 25% higher than
the initially measured ones for both datasets.

The Schmid correction depends onω0; negative values of
babslead toω0 values greater than 1 and therefore to negative
Cscat values for the scattering correction. The use ofåabs to
calculateω0 prevents its application to negativebabs. This
produces new missing values ofbabs (2.3% and 0.9% at JFJ
and CAB, respectively) and a few new negative values ofbabs
(< 0.1% for both datasets). The absorption wavelength de-
pendence is also clearly modified, leading toåabson average
10–15% higher than the initially measured ones (Fig. 6) for
both datasets.

The new AE corrections cannot be used for negativebabs,
similarly to the Schmid correction. They therefore generate
missing values unless̊aabs values are averaged in the case
of negativebabs. If the new correction similar to the Arnott
method (Eq. 14a) is used, new negativebabs values are gen-
erated (2.1% and<0.1% atλ=370 nm and 2.8% and<0.1%
at λ=950 nm at JFJ and CAB, respectively) due to the scat-
tering correction subtraction, which is rather less than use of
the Arnott correction at high wavelength values. It also in-
troduces more outliers than the new method, similar to the
Schmid method. Finally this new correction mainly pre-
servesåabs (Fig. 6) with 58% and 46% of the exponents re-
maining constant, with 18% and 42% of the exponents hav-
ing a difference of only 5%, and 7% and finally 1% of the
exponents having a 10% difference from the initially mea-
sured exponent at JFJ and CAB, respectively.

Fig. 8. Monthly regression slopes between the absorption coef-
ficients atλ=630 nm from the MAAP and the AE (interpolated
to λ=630 nm) at the four stations for all the different correction
schemes as well as between the absorption coefficients given by
the MAAP and those measured by the MAAP in transmission only
(black dashed line). For all the corrections schemes, theCref values
from Table 4 are applied. The lack of measurements from Septem-
ber 2005 to March 2006 at the JFJ is due to a leak in the MAAP
inlet.

3.2.1 Correlation ofbabs values derived from AE and
MAAP

As already stated in the introduction, the MAAP is not an
absolute reference method for the absorption coefficient, but
it has reduced the AE artifacts by using a sophisticated ra-
diative transfer scheme. Due to its better measuring proce-
dure and to its availability at various measurement sites for
several years, the MAAP will be taken in the following as a
reference to evaluate the AE corrections. The slopes of the
linear regression between the corrected and the MAAPbabs
values are reported in Fig. 8 for each month of simultaneous
AE and MAAP measurements at the four stations. The av-
erages of the monthly slopes with their standard deviations
are given in Table 5. As already mentioned the Arnott cor-
rection produces a lot of outliers and has consequently very
large mean slopes and is therefore not reported in Fig. 8. As
can be seen in Table 5, the new correction like the Arnott and
like the Schmid methods both lead to very similar results for
all the stations but for JFJ, so that only the new correction
like the Schmid method is reported in Fig. 7. Finally, the er-
rors on the slope determination are always far smaller than
the slope fluctuation between months, so that they have not
been reported for clarity purposes.

At the JFJ, the Weingartner correction leads to higher
slopes and the Schmid correction to lower slopes than the
new correction. At CAB and MHD, similar slopes are found
for the Weingartner, the Schmid and the new corrections. At
HOP the Weingartner correction leads to the slope nearest to
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Table 5. Averages and standard deviations of the monthly slopes between MAAP (λ=630 nm) and AE (reported atλ=630 nm) absorption
coefficients measured at the four stations for manufacturer estimation and each AE correction.

AE manufacturer Weingartner Arnott Schmid New correction similar to
Arnott (Eq. 14a) Schmid (Eq. 14b)

JFJ 2.73±0.41 1.00±0.15 −inf 0.90±0.14 1.09±1.35 0.97±0.19

CAB 3.64±0.93 0.84±0.34 1.77±0.59 0.88±0.26 0.85±0.35 0.84±0.24

MHD 2.85±0.24 0.97±0.08 15.2±43.7 1.04±0.11 0.98±0.15 0.99±0.15

HOP 2.40±0.20 0.85±0.24 2.48±0.71 0.67±0.21 0.78±0.23 0.76±0.23

one,followed by the new corrections and finally the Schmid
correction. At HOP and JFJ, the Weingartner, the Schmid
and the new correction similar to Schmid provide similar
standard deviations. At MHD, the Weingartner correction
leads to the lowest standard deviation of the slopes, and the
new correction to greatest ones. At CAB, the Schmid cor-
rection and the new correction similar to Schmid have the
lowest standard deviations. The new correction similar to
Arnott leads sometimes to higher standard deviations due to
the presence of outliers.

None of the tested AE corrections are able to get rid of
some time dependence of the monthly slopes such as the in-
crease from October 2006 to February 2007 at the JFJ or the
decrease in April 2008 at CAB and in October 2005 at HOP.
Monthly slopes between the MAAPbabsoutput and thebabs
measured by the MAAP in transmission only (thus using the
MAAP in a similar way as the AE, i.e. without the backscat-
tering measurements and the radiative transfer scheme, and
then treated similarly to AE measurements), are also plotted
in Fig. 8 (black dashed line) for the JFJ dataset. Some fea-
tures such as the slope increase at the end of 2006 followed
by a sharp decrease at the beginning of 2007 are also present.
The variability of the monthly slopes as a function of time is
therefore not only due to AE instrumental non-idealities, but
also due to variations in aerosol properties. Parts of this vari-
ability might also be attributed to the condensation of VOCs,
water vapor or liquid organic particles as described above.
Since Arnott et al. (2005) give a prediction for a scattering
correction based on aerosol scattering and asymmetry param-
eters, some unsuccessful attempts were performed to weight
the scattering correction with the asymmetry parameters. It
was also checked that monthly slopes are not correlated with
the asymmetry parameter or withω0.

To evaluate the influence of the filter-loading, the scatter-
ing and the multiple scattering corrections individually, the
new correction was applied to the four datasets while remov-
ing successively the different components of the correction.
It was found that less than three percents of the total cor-
rection is due to the filter-loading correctionR, which was
expected due to the very low mean values of 1/R(Table 3).
The greatest part of the correction is due to the multiple scat-
tering correction, so that theCref determination is the most

important one to ensure a slope near unity when compared
with a reference method. The difference between the Wein-
gartner, the Schmid and the new corrections can be mainly at-
tributed to the scattering correction. For all the four stations,
the scattering correction does not have a great impact on the
slope between AE and MAAPbabs. Even if the multiple scat-
tering correction is the largest one (150% to 330% depending
on Cref) to correct for the too highbabs value measured by
AE, the filter-loading and the scattering corrections remain
necessary since they minimize real measurable artifacts and
can modifybabsby up to 25% on average (see Fig. 3).

4 Discussion

4.1 Criteria for a good correction

Before recommendations are formulated on the best way to
correct the AE data, criteria for a good correction proce-
dure should be stated. Firstly, the correction has to take into
account all known artifacts occurring during measurements.
Secondly, the correction should be applicable to all kind of
datasets. Thirdly, the correction should introduce few out-
liers, or new missing or negative values. Fourthly, the cor-
rection should lead to the bestbabs correlation with a “true”
reference method. Fifthly, the correction should also lead to
a real wavelength dependence of thebabs that is realåabs.
Finally, the ease of use of the correction may also be a con-
sideration for choosing a correction method.

4.2 Modification of the absorptionÅngström exponent
by AE corrections

The lack of a reference measurement foråabs requires us to
develop some considerations on the effects of each part of the
correction on the absorption wavelength dependence. Firstly,
the light absorption by aerosol loading in a filter decreases
the optical path length. Since aerosol light absorption in-
creases with decreasing wavelength, the filter-loading arti-
fact is expected to be larger at shorter wavelengths and will
decrease the absorption wavelength dependence. Secondly,
the aerosol light scattering increases but the backscattered
fraction decreases with decreasing wavelength. This results
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in a greater scattering coefficient but a lower reflectance at
shorter wavelengths. It is therefore difficult to determine
if the scattering correction for increased reflectance should
modify the absorption wavelength dependence or not, and,
in case of modification, if the̊aabs will be increased or de-
creased. Thirdly, due to increasing scattering from the par-
ticles with decreasing wavelength, the increase of the ab-
sorption due to increased probability of encountering an em-
bedded aerosol particle should lead to an increased absorp-
tion wavelength dependence. Fourthly, since the filter fibers
are non-absorbing and large (typically 1 micrometer for the
quartz fiber and 10 micrometer for the cellulose fiber, Arnott
et al., 2005), geometric scattering occurs from the cylindri-
cal fibers, so that the multiple scattering correction can be
expected in a first approximation to be wavelength indepen-
dent and to induce no change in the absorption wavelength
dependence. Weingartner et al. (2003) concluded similarly.
Considering the effects of all parts of the correction on the
absorption wavelength dependence, it is not possible to make
precise conclusions on the expected changes ofåabs induced
by the AE correction.

Weingartner et al. (2003) show a high correlation between
AE åabs and a reference method (measurement of the dif-
ference between extinction and scattering) for “pure” Diesel
and Palas soot particles as well as soot particles externally
mixed with secondary organic aerosol or ammonium sul-
fate; a lower correlation was found for coated soot particles.
Virkkula et al. (2005a) showed a high agreement between
åabs from a 3λ-PSAP calculated with the Virkkula method
and a reference value foråabsbetween 1.0 and 1.3. However
Virkkula et al. (2005b) also concluded that the correction al-
gorithm could still be improved regarding the wavelength
dependence. A. Petzold (personal communication, 2009)
showed that the 3λ-PSAP Virkkula correction (Virkkula et
al., 2005b) leads to minor modification ofåabs for values
around 1 but to up to 2.5 times largeråabs for values around
4 corresponding to desert dust. The wavelength dependence
of the PSAP filter transmission is far greater than that of
the AE filter, which has a low wavelength dependence (see
Fig. 6 in Arnott et al., 2005). Since the reflectance of an AE
filter is greater than of a PSAP filter (Arnott et al., 2005),
its dependence on the scattering artifact is lower (Lindberg
et al., 1999). The discrepancy between real and measured
åabs is therefore probably smaller for an AE than for PSAP
measurements. Reviewing literature and taking into account
all considerations about the modification of the absorption
wavelength dependence induced by measurement artifacts,
an AE correction that minimizes modifications ofåabs is pre-
ferred.

Both the Arnott and the Schmid corrections induce impor-
tant åabsmodifications. A finer analysis of these wavelength
dependent modifications shows that they are present mostly
for low åscatand are greater for low positive̊aabs. They are in
fact due to the wavelength dependence of the scattering cor-
rection constantsα(λ): since theα wavelength dependence

is fixed for both Arnott and Schmid corrections (α∼ λ+1.3),
the subtracted amount of the scattering correction increases
with increasing wavelength for loẘascat. The largeåabs in-
crease (Fig. 6) is therefore determined by the scattering prop-
erties of both non-absorbing and Diesel-soot aerosols mea-
sured by Arnott in a chamber study and cannot be explained
by considerations about the wavelength dependence modifi-
cation due to the scattering correction. The Weingartner cor-
rection keeps the measuredåabsabsolutely unmodified for all
aerosol types. The new correction similar to the Arnott or to
the Schmid method mainly preservesåabs, inducing a small
increase ofåabs in some cases, particularly in presence of
mineral dust as determined for the JFJ dataset. Since noåabs
reference measurements are available to determine the true
absorption coefficient wavelength dependence, the new cor-
rection probably offers a median solution between no mod-
ification and large modifications that are not based on theo-
retically or experimentally founded reasons.

4.3 Evaluation of each AE correction

Taking into account the criteria for a good correction proce-
dure defined in Sect. 4.1, Table 6 summarizes the applicabil-
ity and the performances of each AE correction scheme.

The AE correction proposed by Virkkula et al. (2007) does
not take into account all the known artifacts and produces a
lot of outliers. It is therefore not recommended to use it on
atmospheric aerosol long-term datasets.

The Arnott correction (Arnott et al., 2005) proves to have
technical limits mainly due to the generation of new nega-
tive babs values, that are greatly enhanced at lower aerosol
concentration and particularly at higher wavelengths. It in-
troduces large ad-hoc modifications of the absorption wave-
length dependence, which are not grounded in theory. The
Arnott method remains therefore difficult to apply to all at-
mospheric aerosol datasets.

The empirical Weingartner correction (Weingartner et al.,
2003) is easy to use, since it does not directly needbscatmea-
surements, even if an evaluation ofω0 can influence the filter-
loading correction. However the determination of thef con-
stant used in the Weingartner filter-loading correction is not
clearly defined. It does not modify the̊aabsand shows a very
good agreement with the MAAP.

The Schmid correction (Schmid et al., 2006) needs con-
comitant scattering coefficient measurements and cannot
cope with negative values ofbabs. It also introduces artifacts
in the absorption wavelength dependence like the Arnott
method, but to a lesser extent. It shows good agreement with
the MAAP babs, leading however to smaller slopes than the
Weingartner scheme as well as the new corrections for two
stations out of the four.

Both new corrections need concomitant scattering coef-
ficient measurements. Similarly to their originals, the new
correction like Arnott generates some new negativebabsval-
ues and the new correction like Schmid cannot cope with
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Table 6. Evaluation of the applicability and the performance of AE corrections based on the criteria defined under Sect. 4.1.

Correction All Applicable to Needbscat Outliers and Agreement åabs
Scheme artifacts babs<0 measurement newbabs<0 with MAAP modification

Virkkula no yes no Yes – –

Weingartner yes yes no no Very good none

Arnott yes yes yes Yes, a lot Not good large

Schmid yes no yes no good large

New like Arnott yes no yes Yes, few Very good small

New like Schmid yes no yes no Very good small

negative values ofbabs. Both new corrections introduce a
small modification ofåabs and show a very good agreement
with the MAAPbabs.

All the corrections apart from the Arnott one lead to pretty
good agreements with the MAAPbabs. The small differences
in the agreement with the MAAP between the Schmid, the
Weingartner and both new corrections leads to the conclu-
sion thatCref is indeed the most important parameter in or-
der to obtain a good agreement with another instrument. The
scattering correction, which is achieved differently for the
Weingartner, Schmid and the new corrections, has therefore
a far lower impact than the multiple scattering correction.
The filter-loading and the scattering corrections are however
not negligible and remain necessary to correct for the well-
documented corresponding artifacts. The filter-loading cor-
rection is more important in the presence of highly polluted
environments (lowω0) whereas the scattering correction is
the largest in remote stations measuring aged aerosol (high
ω0). For stations where nobabs reference measurements are
available, Fig. 5 yields an estimate ofCref if ω0 is known.

The monthly slopes between AE and MAAPbabsvary as a
function of time for all datasets with the standard deviations
of the monthly slope reaching 8% to 25%. Similar variations
are also found as a function of other extensive and intensive
aerosol parameters such asbscat, åscat, åabsandω0. The slope
between the MAAPbabs calculated by the MAAP software
including the backscatter measurement and from the MAAP
transmission measurement only (similarly to AE) are also not
constant as a function of time (Fig. 7). The inter-comparison
of six carbon measurement methods at the Fresno Supersite
during a year (Park et al., 2006) also resulted in standard de-
viations of monthly values ranging between 6% and 19% of
the average of all monthly values. Better results are only
met for similar instruments such as two AE’s. The com-
parison ofbabs measured by different types of instruments
seems to depend always on the aerosol properties despite the
presently applied corrections algorithms. Lack et al. (2008)
showed that there is a correlation between the aerosol or-
ganic content (OC), ranged between 0 and 17 µg m−3, and
the ratio between thebabs measured by a PSAP and a PAS.
The aerosol OC was measured during two campaigns of 2.5

months duration at the JFJ (Cozic et al., 2007). Since the
daily mean OC showed small variations and did not exceed
1.5 µg m−3 at the JFJ, no correlation between the measured
OC and the ratio between the AE and MAAPbabswas found
in this dataset. However, several results presented in this pa-
per, particularly the monthly slopes presented in Fig. 8, in-
dicate that the variability in aerosol composition is a main
clue to the variable slopes between the absorption coeffi-
cients measured by the MAAP and AE instruments at the
four sites.

5 Conclusions and recommendations

Corrections developed by Weingartner, Arnott, Schmid and
Virkkula have been applied to datasets obtained from four
stations with various aerosol types and loadings, two sta-
tions having a multi-wavelength AE and two having white-
light AE. Two new corrections based on previously published
ones are also presented and are applied to the four datasets
as well as to two datasets measured in the Amazon basin
and in Thessaloniki. The main modifications introduced by
these new corrections are firstly a new parameterization of
the scattering correction, which depends on the scattering
coefficient andÅngstr̈om exponent, and secondly the con-
sideration of the optical properties of all aerosol embedded
in the filter for the filter loading and for the scattering cor-
rections. Comparisons with MAAPbabswere performed for
all correction schemes and all four datasets. Principal crite-
ria for a sound AE correction scheme were determined as to
provide a good agreement with a reference instrument and
to preserve̊aabs, which is an important parameter measured
by the multi-wavelength AE. The Arnott correction gener-
ates many new negativebabs at low aerosol concentrations,
and it does not preserve̊aabs. The Schmid correction leads to
a good agreement with the MAAP, with slopes between AE
and MAAP babs somewhat lower than the other corrections
and it does not preserve̊aabs either. The empirical Wein-
gartner correction does not need the simultaneousbscatmea-
surement; it has no application restriction for lower aerosol
concentrations; it has good agreement with MAAP and it
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induces no modification of̊aabs. Thef constant determining
the filter-loading correction is however not well defined. The
new correction scheme has also good agreement with MAAP
and it mainly preserves̊aabsallowing however a modification
of åabs, for example in the case of mineral dust events. The
new correction similar to the Schmid method leads to a better
performance than the one similar to the Arnott method.

The results and recommendations for the AE measure-
ments and correction algorithms are summarized as follows:

– Measured attenuation values need to be stored in
databases, since they are used for all AE corrections.

– Concomitant scattering coefficient measurements are
highly recommended, since they are used in all the
corrections, and an estimation of the single scattering
albedoω0 is important in the determination of several
correcting constants.

– The determination of the multiple scattering constant
Cref is crucial to allow good agreement with MAAP data
or other reference instruments’ data. The analysis of
data from four stations permits a first estimation ofCref
as a function of the single scattering albedoω0. Fur-
ther analyses, particularly at stations with very high BC
load, are however recommended prior to determining a
universal correlation betweenCref andω0.

– The new filter-loading correctionRnew is the most ap-
propriate algorithm at two stations because it leads to
the most constant ratio between AE and MAAP absorp-
tion coefficients as a function of ATN.

– Modification of the absorption coefficient wavelength
dependence is a very important factor issue for global
radiation transfer assessments. Considerations on the
wavelength dependence of each AE artifact does not al-
low to determine if an increase or a decrease ofåabs
occurs. The use of multi-wavelength reference methods
(when available) should resolve this issue.

– If no scattering coefficient measurements are available,
the new correction withαnew=0, which corresponds to
the Weingartner correction apart from theR calculation,
or the Weingartner correction are recommended.

– If scattering coefficient measurements are available, the
new correction procedure similar to the Schmid method
is recommended.
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