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A new algorithm for the downscaling of cloud fields
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We present a novel algorithm for the downscaling of three-dimensional cloud fields.
The goal of the algorithm is to add realistic subscale variability to a coarse field
taking the resolved variability into account. The method is tested by coarse graining
high-resolution sparse cumulus and broken stratocumulus clouds in the horizontal
plane, downscaling these coarse fields back to the high resolution and comparing
the radiative and microphysical properties of these downscaled fields with the
original high-resolution fields. The resolutions of the cumulus and stratocumulus
clouds used for this purpose are increased by a factor of four and ten, respectively.
The downscaling decreases the errors in the flux transmittance and reflectance of
the cumulus and stratocumulus cloud fields by at least a factor of ten and three,
respectively, compared to utilising the coarse cloud fields. A novel aspect of our
algorithm is the fact that it constrains the high-resolution fields of cloud liquid water
content as well as the subscale cloud fraction. An alternative version that does not
include cloud fraction information is less accurate, but still significantly better than
using the coarse fields. The latter downscaling algorithm can also be utilised for the
disaggregation of geophysical fields for which fractional coverages are not defined.
Furthermore, the downscaling algorithm can be combined with our other algorithms
to generate surrogate fields with other constraints, for example, surrogate clouds
with a prescribed liquid water content height distribution. Copyright c© 2010 Royal
Meteorological Society
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1. Introduction

The spatial resolution of cloud fields from dynamical
atmospheric models is often insufficient to capture all
scales relevant for cloud–radiation interactions and thus to
serve as input to three-dimensional (3D) radiative transfer
calculations (Koren et al., 2008). This is the case, for example,
for numerical weather prediction (NWP) models, but also
for many cloud resolving models (CRMs). To address this
problem, we have developed a downscaling algorithm that
produces 3D cloud fields with a higher resolution from

such available coarse fields. The algorithm takes as input
the coarse resolution fields of the mean liquid water content
(LWC) and the cloud fraction.

Two statistical properties are essential for radiative
transfer (RT) simulations. First of all, the distribution of
the cloud water or optical thickness is important for taking
into account the nonlinearity of RT. The assumption of
no significant subscale variability, implicitly made by using
coarse-resolution clouds, has similar consequences as the
plane-parallel homogeneity assumption, i.e. the assumption
that there is no variability on any scale. Both cases lead to
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biases in the radiation fields, e.g. producing too-bright cloud
tops (Cahalan et al., 1994). Second, the structure of the cloud
field, in the sense of two-point statistics, e.g. the spatial
correlations, is also important for RT. Coarse-resolution
clouds will tend to have longer correlation lengths than
higher-resolution clouds. Both horizontally uncorrelated
fields (Venema et al., 2006a) and fields with a correlation
length much larger than the cloud depth (Chambers et al.,
1997; Davis et al., 1997) have a higher reflectance than
clouds with a correlation length in the order of the cloud
depth. In the latter case, photons will scatter preferentially
towards regions with lower extinction, which increases the
transparency of clouds. This horizontal photon transport is
especially important near cloud edges.

From these considerations, one can deduce that a
downscaling algorithm aiming to improve RT should
add subscale variability to the coarse field of the right
amount and with the right spatial correlations. In our
algorithm, both the variance and the spatial correlation of
the subscale variability are estimated by extrapolating the
power (variance) spectrum of the coarse cloud field. The
algorithm is able to handle any extrapolated power spectrum.
The code is similarly organized as the Iterative Amplitude
Adjusted Fourier Transform (IAAFT) algorithm used for
the stochastic generation of surrogate fields (Venema et al.,
2006a, 2006c; Schmidt et al., 2007) and can easily be
combined with it. The downscaling algorithm iteratively
adjusts the spectrum and the coarse fields. Because of its
iterative character, the algorithm is able to add the subscale
variability while taking resolved small-scale features into
account. For example, if the coarse field elements to the
north are cloudy and to the south cloud-free, the algorithm
will automatically insert more subscale cloudy pixels in the
northern part. Furthermore, the algorithm is able to avoid
negative LWC values.

Next to downscaling 3D NWP cloud fields, a 2D version
of the algorithm could perform a downscaling of satellite-
retrieved 2D liquid water path fields. A version without using
information about the subscale cloud fraction could be used
for the downscaling of measured or modelled precipitation
and radiation fields. Such an algorithm for 2D radar-derived
rain fields would be similar to the one of Ferraris et al. (2003)
or Perica and Foufoula-Georgiou (1996). Their algorithms
add multiplicative noise independently of the resolved field,
leaving the coarse field visible in the final product. Many
other downscaling algorithms have been developed; most
perform, however, their downscaling on 1D time series
(e.g. Olsson, 1998; Basu et al., 2004; Marani and Zanetti,
2007) or assume multifractal behaviour (e.g. Olsson, 1998;
Basu et al., 2004). Perica and Foufoula-Georgiou (1996)
find that adding noise independent of the smallest resolved
scale can lead to deviations in the spatial correlations of
their rain fields. This may be a reason why Olsson (1998)
explicitly makes his perturbations a function of the resolved
precipitation beforehand and afterwards.

2. Data and methods

2.1. Methodology

To quantify the quality of the downscaled fields, the
downscaling algorithm is applied to coarsened large-eddy
simulation (LES) clouds. From high-resolution 3D cloud
fields, we calculate a coarse mean LWC field and a

coarse cloud-fraction field. Based on these coarse fields the
algorithm produces fields at the resolution of the original
LES clouds. In this way, the physical and radiative properties
of the downscaled surrogates can be accurately compared to
the original high-resolution LES clouds.

We expect that the main applications of interest will be
the downscaling of cloud fields from numerical weather
prediction (NWP) and cloud resolving models (CRMs).
Furthermore, a 2D version of the algorithm could be
employed for the downscaling of satellite measurements.
In both applications, not only is the mean cloud liquid
water known, but also the subpixel cloud fraction. The
algorithm will thus exploit information from both these
fields.

We have chosen to coarsen the LES fields only
horizontally, because NWP cloud fields are much better
resolved vertically than horizontally. Furthermore, most of
our LES cloud fields are relatively shallow. Consequently,
after coarsening there would be no information left on
the vertical LWC profile and its structure. For thicker
clouds, it would be possible to adapt the algorithm to
additionally perform the downscaling in the vertical. In
this case, the vertical LWC profile that is subtracted
before computing the statistics and added afterwards to
the surrogate cloud, see subsection 3.1, would need to
be interpolated. An elegant method for this would be a
mean-preserving spline interpolation algorithm (Sheng and
Zwiers, 1998).

2.2. LES clouds

The algorithm is validated on two sets of clouds: cumulus
(Cu) over land and stratocumulus (Sc) over the ocean.
The 51 cumulus fields represent a diurnal cycle and were
generated in the framework of the Atmospheric Radiation
Measurement (ARM) project (Brown et al., 2002) and are
also employed and described in more detail in Venema
et al. (2006a). The fields have a resolution of 100 m in the
horizontal and 40 m in the vertical. The number of grid boxes
is 66 by 66 horizontally with 122 height levels. For this study
we use the layers between 1160 and 3040 m. Additionally,
two vertical slices in both directions are removed at the sides
to obtain a cloud field with 64 × 64 pixels in the horizontal,
which is coarsened to 16 × 16 pixels, i.e. the resolution is
decreased fourfold to 400 m.

The 29 stratocumulus fields originate from three model
runs in which polluted marine stratocumulus clouds
are dissolving (Chosson et al., 2007). The geometrical
thickness and LWC of one of the model runs was
validated against a measured case from the ACE-2 (Aerosol
Characterisation Experiment) project; the others have
similar initial conditions. The cloud field starts relatively
homogeneous and slowly dissolves and organises itself into
larger patches. The clouds have 35 layers with a vertical
resolution of 10 m, of which we use the layers between 685
and 1025 m. The number of grid boxes is 200 × 200 pixels
horizontally with a resolution of 50 m. These fields are
coarsened ten times to 20 × 20 pixels of 500 m.

2.3. Radiative transfer calculations

The upward and downward fluxes are calculated using the
Leipzig Monte Carlo Model (LMCM: Gimeno Garcia and
Trautmann, 2003). The same model was used for 3D Monte
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Carlo (MC) and 1D independent pixel approximation (IPA)
computations. The IPA takes the real variability in optical
properties of the cloud fields into account, but does not allow
for horizontal photon transport between the 1D columns.

The radiation calculations for all sets of clouds have been
made for monochromatic solar radiation with a wavelength
of 550 nm and with solar zenith angles (SZAs) of 0◦ and 60◦.
The fluxes are computed for the upper and lower boundaries
of the input cloud fields. The surface albedo is set to zero,
periodic boundary conditions are applied and the number
of photons amounts to 107. The cloud fields are assumed to
be in a vacuum for simplicity.

The cumulus clouds were assumed to have 300 drops
per cm3, the stratocumulus clouds 200 cm−3. These droplet
concentrations were used to relate liquid water content to
the effective radius based on the expression of Peng and
Lohmann (2003). A fixed number concentration fits better
to reality than a fixed effective radius (Brenguier et al., 2000).
The Slingo parametrization (Slingo et al., 1989) was utilised
for calculating the optical properties – extinction coefficient,
single scattering albedo and asymmetry parameter – from
the microphysical parameters – the liquid water content and
the number of droplets. The cloud scattering phase function
was assumed to be the Henyey–Greenstein phase function.

3. Algorithms

The downscaling algorithm is iterative and has three iterative
steps, as illustrated in Figure 1. The algorithm is initialised
with a white-noise field. The first iterative step is the
adjustment of the spectrum. Consecutively, the resulting
coarse means are readjusted to the original coarse means.
This second step produces jumps at the edges of the coarse
pixels. Therefore, the third step of the iteration aims at
removing these artefacts. Subsection 3.1 describes these steps

in detail, after which subsection 3.2 details the extrapolation
algorithm to extrapolate the power spectrum to small scales.
The last subsection describes some additional fields that were
generated to investigate the reasons for the performance of
the algorithm.

3.1. Basic downscaling algorithm

Before the statistical input is computed (the power spectrum
and the distribution), the algorithm computes the mean
LWC height profile and subtracts it from the coarse mean
field, i.e. the algorithm is run with LWC anomaly fields. This
is done because correlations describe how variables change
together, but not how their mean values relate to each other.
It is therefore more elegant to subtract the mean profile
and work with the power spectrum of the anomalies. After
the iterative loop, the mean LWC profile is re-added to the
surrogate field.

From the coarse anomaly field the Fourier spectrum is
calculated and extrapolated down to smaller scales. The
extrapolation algorithm used in this study is described in
section 3.2. The downscaling algorithm can work with any
spectrum; consequently any other extrapolation method can
be used instead.

In the spectral adjustment step, the Fourier coefficients
of a white-noise field (in the first iteration), or of the
field after the third step of the previous iteration (F3),
are computed. The Fourier coefficients (Sk) are complex
numbers. In the spectral adjustment the magnitudes of the
Fourier coefficients are replaced by those of the extrapolated
spectrum (Ek). The phases ϕk = Sk/|Sk| remain unaltered.
In this way, the variance at each scale (described by the
Fourier magnitudes) is adjusted, but the position of the
waves (described by the phases) is not changed. Thus, the
new complex Fourier coefficients are given by S′

k = |Ek|ϕk.

Coarse mean &
distribution
adjustment

Converged?
YesNo

Start iteration
random shuffle

Spectral
adaptation

Remove jumps
coarse grid

1st iteration 2nd iteration

Coarse
means

Cloud
fraction

OriginalFinal
surrogate

Figure 1. The flow chart of the downscaling algorithm. The result of the operations is illustrated by 2D horizontal cross-sections at the height of the
maximum LWC, just below the top of this stratocumulus cloud.
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After an inverse Fourier transform of S′
k, one obtains the

field after the first iterative step, F1.
In the second iterative step, the surrogate field is adjusted

towards the coarse cloud fraction and coarse mean LWC
fields. This step loops over all coarse pixels. For every coarse
pixel, first the lowest values are set to an LWC of zero to
match the coarse cloud-free fraction. In a second substep,
a constant is added to every subpixel of the other fraction
to make their mean equal to the prescribed cloudy fraction
coarse mean. In a last substep, values that represent a
negative LWC are set to an LWC of zero and we obtain field
F2.

The second iterative step can create large jumps at the
edges of the coarse pixels. These jumps are especially clear in
the increment distribution of lag one, i.e. the difference
in LWC between two adjacent pixels. This increment
distribution has a fatter tail for increments that cross the
coarse pixels than the increments in the middle of a coarse
pixel. The too-strong jumps are partially removed by the
spectral adjustment. The Fourier spectrum is equivalent to
the second-order structure function (Davis et al., 1999). The
structure function for a certain lag is given by the width of the
increment distributions. Thus the spectrum can constrain
the width of the increment distribution, but does not
constrain its other moments. The spectral adjustment can
therefore only adjust the width of the increment distribution,
but not the fatness of the tails.

Therefore, the third iterative step adjusts the increment
distribution of lag one over the coarse edges to the
increment distribution in the middle of the coarse pixels.
This adjustment is performed in the same way the normal
IAAFT algorithm adjusts the distribution of the surrogate to
the measured distribution, i.e. increments over a coarse edge
are substituted with increments in the middle that have the
same rank. The two LWC values that make up an increment
are both changed by the same amount in opposite directions
to obtain the new increment. This increment adjustment
is performed once for increments over coarse edges in
the east–west direction and once for increments in the
north–south direction, after which we obtain field F3.

The aim of the above increment adjustment is to
remove artefacts from the second iterative step. Because
this adjustment is not a necessary requirement for the
final surrogate fields, the main iterative loop is executed
twice: the first time with the increment adjustment, the
second time without. The convergence criterion for both
loops is, just as in the stochastic IAAFT algorithm (SIAAFT:
Venema et al., 2006b), the number of iterations without an
improvement in accuracy of more than 1%. The accuracy is
determined as the difference of the Fourier spectrum of the
final surrogate and the spectrum of the original cloud. For
the cumulus clouds we set the threshold to 200 iterations
without significant improvements; for stratocumulus to 20.
It is expected that these thresholds are so high, that the
number of iterations is not a limiting factor for the accuracy
of the results.

For this study, we produced an ensemble of ten surrogate
fields for every LES cloud and only used the surrogate
with the best matching power spectrum. As the accuracy
of the ensemble members did not differ much, the results
would likely not be much different if only one surrogate
had been generated, but for this study we aimed for a high
accuracy.

3.2. Extrapolated spectrum—standard downscaled cloud
fields

The downscaling algorithm can utilize any given power
spectrum and is thus independent of the extrapolation
algorithm used. To generate the cloud fields a spectrum in
Cartesian coordinates Ek = Ekx ,ky ,kz is needed. However, the
extrapolation is easier to explain in a polar Ek = Ekr ,kθ ,kϕ or
cylindrical Ek = Ekr ,kθ ,kz coordinate system, with the radius
r, the angle in the vertical plane θ , and the angle in the
horizontal plane ϕ. A straightforward method would be to
extrapolate the power spectrum by modelling the small-
scale variance as a fractal power-law function (Ek ∼ |k|b),
where the spectral exponent would need to be a function
of the elevation angle θ to account for the stability of
the atmosphere and maybe of the azimuth ϕ in case of
horizontal anisotropies. This view is most appropriate if the
cloud water is understood as a conservative passive additive
to homogeneous turbulence (Tatarski, 1961; Erkelens et al.,
2001). This assumption likely holds and is often found to
be an accurate description for stratiform clouds over the
ocean (Cahalan et al., 1994; Davis et al., 1999), but may
fail for ice clouds or convective clouds. In the case of ice
clouds, the large crystals may not be an additive that moves
with the wind; Hogan and Kew (2005) have studied the
complicated structure of ice clouds measured by radar. For
convective clouds, the cloud water is neither conservative
due to phase transitions, nor passive due to condensation
and buoyancy; a non-fractal young cumulus field was, for
example, measured in situ by Schmidt et al. (2007).

In general, the information on the spectrum at small
scales may be obtained from higher-resolution models or
measurements. For the downscaling of fields from NWP
or CRM models, one may use LES clouds or higher-
resolved model runs over a smaller region in order to
find a good way to model the small scales. For downscaling
satellite measurements, ground-based or airborne imagers
may provide the needed small-scale information.

The structure of the LES clouds used in this study can
only be well approximated by a fractal power-law Fourier
spectrum at small scales: relative to the power law at small
scales, the spectrum is missing more and more variance
towards the larger scales and is flat at scales comparable
with the size of the model domain. In a double logarithmic
plot a power law becomes a line. In such a plot the power
spectrum is mostly flat at large scales and then slowly bends
down to become a straight line at small scales. This non-
fractal structure may be physical due to the abovementioned
reasons, but may also well be an artefact of the periodic
boundary conditions of the LES models. The latter condition
does not allow for variance at larger scales and disallows
large-scale vertical motion.

The small scales of the coarse field are in the bend
where the double logarithmic plot is still becoming steeper.
Because of this curvature of the spectrum, fitting a power
law to the small scales of the coarse field would result in
too much variance at small scales. Therefore, working in
a cylindrical coordinate system, the horizontally isotopic
power spectra (averaged over the azimuth angle ϕ) was
computed for every wave number in the vertical (kz). These
non-fractal isotropic spectra, including the bend described
above, were then averaged over all clouds. The cumulus and
stratocumulus clouds have their own empirical functions.
These empirical functions were consecutively fitted to the
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power spectra of the coarse fields to compute the new high-
resolution spectral coefficients. The fit was computed by
setting the variance (power) of the empirical function equal
to the mean variance over a common range of scales given
by the small scales of the coarse spectrum.

3.3. Alternative downscaled cloud fields

The downscaled cloud fields will be compared with the
original high-resolution fields and with the coarse-grained
fields; the abbreviations that will be used later on are
indicated in italics. The LWC of the latter fields has a coarse
structure, but the computational resolution is the same as
the downscaled clouds for better comparison of the pixel
scale noise levels. Linearly interpolated clouds were derived
from the coarse-grained fields using periodic boundary
conditions, which are only utilised for a comparison of the
autocovariance functions (section 4.3).

Next to these fields, a number of variations on
the downscaling algorithm were developed for a better
understanding of the importance of the various steps of
the algorithm. To investigate the importance of the spectral
extrapolation algorithm, the standard surrogates with the
extrapolated spectrum, will be compared to surrogates that
were generated with the exact spectrum of the original LES
clouds as input.

An alternative algorithm was developed that generates
downscaled surrogates assuming that no cloud fraction
information is available. This algorithm has an alternative
formulation for the second iterative step, i.e. the adjustment
of the coarse mean fields. This step starts by adjusting the
coarse mean in the same way as the standard algorithm.
Then the negative cloud water values are set to zero. The
sum of the liquid water content that is added this way is
computed. This sum is subtracted from the cloudy subpixels:

starting with the subpixel with the smallest positive LWC
value, the LWC is reduced to zero one by one (the last value
is reduced to a positive value to exactly compensate for the
added LWC sum).

To investigate the influence of the third iterative step, i.e.
the increment adjustments at the coarse edges, surrogates
are also generated without this step, marked as no edge
reduction. To make this algorithm as similar to the standard
algorithm as possible, it also executes the main iterative loop
twice.

4. Results

4.1. Liquid water content

Results for four out of a total of eighty original cloud fields
are displayed as examples in Figure 2. Two cumulus and
two stratocumulus cloud examples are shown. As aimed
for, the surrogate clouds display more variability than the
coarse fields. The colour scale is chosen to highlight the
differences for pixels with little LWC by making cloud-free
pixels dark blue and the smallest LWC values white/silver.
In this way one can see that the small LWC values of
the surrogate cumulus clouds, especially in the leftmost
column, are noisier than the original LES clouds, which
leads to positive biases in the reflectance. The noise in the
vertical leads to a bias in the cloud cover; depending on the
LWP threshold chosen to distinguish cloudy from cloud-
free columns, the cloud cover of the surrogates is a few
to about 7% too high for the stratocumulus clouds and
around 7% too high for the cumulus clouds. The cloud
cover of the surrogates is too high although their cloud
fraction (the fraction of 3D cloudy pixels) is too low by 2
to 3%. The latter is caused by the last step of the coarse
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Figure 2. Examples of two cumulus (left two columns) and two stratocumulus (right two columns) LES clouds and their corresponding coarse-grained
and surrogate fields. The first row depicts the original 3D LES clouds; the largest square subplot is the average LWC seen from the top, the bottom
subplot is a front view and the right subplot a side view. The second row represents the coarse-grained cloud fields. The third row shows surrogates with
an extrapolated spectrum.
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Figure 3. Histograms of the root-mean-square difference of the high-resolution ((a)–(f); top two rows) and coarse-resolution ((g)–(l); lower two rows)
3D liquid water content fields between the synthetic fields and the original clouds. The first and third rows display the cumulus clouds and the second
and fourth rows present the stratocumulus clouds. The left column depicts the histogram for the surrogates with the perfect spectrum. The middle
column displays the surrogate with an extrapolated spectrum. The right column represents the coarse-grained cloud fields. The red (or dark grey in the
print version) line and number indicate the mean errors. This figure is available in colour online at www.interscience.wiley.com/journal/qj

field adjustment. In this step the cloud fraction is reduced
if it is too high, but if it is too low no cloud-free pixels
are made cloudy, the net effect of which is a bias towards a
too-low cloud fraction. Looking carefully, the edges of the
coarse cloud fields are still partially visible in the surrogate
clouds.

The differences between the original cloud fields and the
surrogates is shown quantitatively in Figure 3, which displays

the histograms of the root-mean-square error (RMSE) of the
LWC fields at the coarse- and the high-resolution scale. The
histograms demonstrate that the high-resolution RMSE of
the surrogate LWC fields do not show a clear improvement
over the coarse fields. There is one exception: the surrogate
cumulus clouds which are based on the exact spectrum of
the original clouds do show a much lower RMSE. This is
likely an artificial result; see discussion.
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Figure 4. Histograms of the root-mean-square difference of the high-resolution ((a)–(f); top two rows) and coarse-grained ((g)–(l); lower two rows)
2D optical depth fields between the synthetic fields and the original clouds. The first and third rows are for the cumulus clouds, the second and fourth
for the stratocumulus clouds. The first column is for the surrogate with an exact spectrum, the middle column for the surrogates with an extrapolated
spectrum and the right column for the coarse-grained LES clouds. This figure is available in colour online at www.interscience.wiley.com/journal/qj

The RMSEs at the coarse scale are much smaller than
on the high-resolution scale. The errors for the surrogate
clouds are not zero because the adjustment of the coarse
mean LWC is not the last step in the algorithm. The coarse-
scale errors of the coarse fields are zero, as they should be.
Please note that the coarse-scale histograms of the two types
of surrogate field are identical, but the errors themselves are
not. The differences between the errors are, however, at least
two orders of magnitude less than the errors themselves and
do not influence the histograms.

4.2. Optical depth

Figure 4 shows the same histograms as Figure 3 for the opti-
cal depth. The high-resolution RMS errors of the surrogate
clouds are not much different from the coarse fields for the
stratocumulus fields. However, the cumulus clouds do show
differences, especially those based on exact spectral infor-
mation; see comments on this phenomenon for Figure 3.

At the coarse scale, the differences between Figures 3
and 4 are clear and point to the importance of the subscale
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Table I. Average error in optical depth over all LES cloud fields.

Field Overall bias fields RMSE of field averages RMSE at coarse resolution RMSE at fine resolution

Cumulus
Coarse field 0.5111 0.6164 1.7281 4.2682
Extrapolated spectrum 0.0174 0.0468 0.3653 2.9712
Exact spectrum 0.0005 0.0081 0.0544 0.4364
No cloud cover 0.1088 0.1447 0.6533 2.8003
No increment adjustment 0.0218 0.0514 0.3596 3.1846
Stratocumulus
Coarse field 0.1733 0.1826 0.4343 0.9399
Extrapolated spectrum 0.0451 0.0487 0.4074 0.9418
Exact spectrum 0.0047 0.0082 0.3170 0.7349
No cloud cover 0.0405 0.0502 0.3899 0.9301
No increment adjustment 0.0453 0.0488 0.4070 0.9475
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Figure 5. Histograms of the high-resolution optical depth distribution of the sparse cumulus clouds (left) and dissolving stratocumulus clouds (right).
The original LES clouds are depicted with the thick light lines, the surrogates with extrapolated spectrum with a dashed line and the coarse fields with a
thin black dashed line. Optical depth values below 0.01 (mainly zeros) are not shown, which explains the differences in the total number of counts.

variability. The coarse fields that have no error in the LWC
do have considerable error with respect to the optical depth.
The error of the surrogate cloud fields is smaller than the
error of the coarse fields, especially for the cumulus clouds.
The improvement of the surrogates over the coarse fields
is very clear for the bias and the RMSE of the field mean
optical depth, which are given in Table I. This table also
lists all four error measures and also includes the surrogates
without cloud fraction adjustment and without increment
adjustment. The adjustment of the increment distribution
over the coarse edges is found to have little influence on the
errors of the surrogate optical depth fields. The surrogate
cloud fields generated without cloud fraction information
are less accurate for stratocumulus. For the cumulus clouds
these surrogates are much less accurate, but still better
than the coarse fields. For interpreting the absolute errors,
please note that the mean optical depth is 1.8 for the
sparse cumulus fields and 1.7 for the dissolving broken
stratocumulus fields and that the standard deviations of the
optical depth are 1.2 and 0.8, respectively. The optical
depth of the cumulus clouds is low due to their low
cloud cover; the dissolving stratocumulus clouds have a
very low LWC.

The improvement of the coarse cloud fields due to
the downscaling can not only be expressed by the
root-mean-square differences at various scales, but can also
be seen in the optical depth distribution; see Figure 5. The

most obvious difference is seen for the cumulus clouds
where the optical depth distribution of the coarse fields
contains many more small values than the original and
surrogate fields. This also leads to a large difference in
the total number of counts of the histograms, as the zero
optical depth values are not shown due to the logarithmic
abscissa. For stratocumulus clouds one can also observe
that the distribution of the coarse fields is narrower than
those of the original and surrogate fields. The surrogate
downscaled cumulus and stratocumulus fields do have too
many average optical depth values, but much less so than
the coarse fields.

4.3. Structure of the LWC

The 1D autocovariance functions, shown in Figure 6, are
computed in the horizontal plane over all possible rows in
the east–west and north–south directions and averaged over
all height levels and cloud fields. The figure clearly shows
that the coarse-grained LWC fields and, even more, the
linearly interpolated LWC fields lack small-scale variance.
Defining the correlation length as the lag at which the
covariance is 1/e times the variance, the figure furthermore
shows that these two fields are too smooth in the sense that
their correlation length is too large. The surrogates with
the exact spectrum have almost the same autocovariance
function. The surrogates with the extrapolated spectrum
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Figure 7. The increment distributions for horizontally neighbouring pixels of the cumulus (top row: (a), (b)) and stratocumulus (lower row: (c), (d))
clouds. The panels in the left column display the increment distributions calculated in the middle, i.e. without a coarse edge between the increments.
The panels in the right column depict distributions of increments between pixels in adjacent coarse pixels. The grey thick lines represent the original LES
clouds, the thin dashed lines the standard surrogates and the dotted lines the surrogate without the increment adjustment over the coarse edges.

underestimate the small-scale variance, especially the
stratocumulus surrogates. The correlation length of the
cumulus clouds is slightly underestimated; this length is,
in turn, overestimated for the stratocumulus surrogates.
The close match for the surrogates based on the exact
spectrum and the deviations found for the surrogate with
an extrapolated spectrum indicate that the cause of the
latter deviations is the extrapolation algorithm and not the
downscaling algorithm.

To investigate the increment distributions and the
influence of the coarse edges on them, we have computed the
increment histograms displayed in Figure 7. The increments
in the middle of the coarse pixels match well for the cumulus
fields (Figure 7(a)). However, the increment distribution of
the stratocumulus surrogates (Figure 7(c)) has too-narrow
tails; similar behaviour was found for a range of geophysical
time series in Venema et al. (2006c): Surrogates tend to

have too little variance of the variance (intermittence),
probably as a result of the Fourier transform. In the original
LES clouds, the increment distributions in the middle and
at the edge of the coarse pixels are nearly identical; this
distribution can thus be used to compare the distributions
of the surrogates. It can be seen in Figure 7(b) that at
the coarse edges the cumulus increments of the surrogates
are larger than in the middle and too large compared to
the originals. For the stratocumulus surrogates the coarse
edges do not lead to a broader increment distribution; this
distribution is, however, too narrow compared to the one
of the original clouds, just as in the middle of the coarse
pixels. From the difference between the surrogates with and
without the increment adjustment one can observe that this
step has a small, but positive, influence on the cumulus
surrogates and no influence on the stratocumulus surrogate
fields.
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Table II. Mean difference in mean reflectance and transmittance.

Field Cumulus Stratocumulus

Refl. Transm. Refl. Transm.

SZA = 0◦ 3D RT
Original −0.000006 0.000006 0.000013 −0.000013
Coarse field 0.022002 −0.022002 0.009565 −0.009565
Extrapol. spectrum 0.001765 −0.001765 0.002555 −0.002555
Exact spectrum 0.000040 −0.000040 0.000056 −0.000056
No cloud cover 0.005706 −0.005706 0.002164 −0.002164
No edge reduction 0.001842 −0.001842 0.002555 −0.002555
SZA = 60◦ 3D RT
Original −0.000026 0.000026 −0.000016 0.000016
Coarse field 0.043428 −0.043428 0.033831 −0.033831
Extrapol. spectrum 0.004431 −0.004431 0.011788 −0.011788
Exact spectrum 0.000411 −0.000411 0.003287 −0.003287
No cloud cover 0.011400 −0.011400 0.010816 −0.010816
No edge reduction 0.005238 −0.005238 0.011994 −0.011994
SZA = 0◦ IPA
Original 0.000007 −0.000007 0.000001 −0.000001
Coarse field 0.022920 −0.022920 0.009528 −0.009528
Extrapol. spectrum 0.002113 −0.002113 0.002436 −0.002436
Exact spectrum 0.000028 −0.000028 −0.000005 0.000005
No cloud cover 0.006175 −0.006175 0.002204 −0.002204
No edge reduction 0.002458 −0.002458 0.002415 −0.002415
SZA = 60◦ IPA
Original 0.000003 −0.000003 0.000020 −0.000020
Coarse field 0.042657 −0.042657 0.033627 −0.033627
Extrapol. spectrum 0.004147 −0.004147 0.012023 −0.012023
Exact spectrum 0.000460 −0.000460 0.003510 −0.003510
No cloud cover 0.011387 −0.011387 0.011167 −0.011167
No edge reduction 0.004873 −0.004873 0.012127 −0.012127

4.4. Radiative fluxes

To study the influence of the downscaling algorithm on the
radiative properties of the clouds we have calculated their
flux reflectance and transmittance with the help of a 3D
Monte Carlo (MC) model. The mean transmittance for an
SZA of 0◦ of the surrogate and coarse fields is compared
with the transmittance of the original clouds in Figure 8.
Results for all types of synthetic fields, for both full 3D and
1D independent pixel approximation (IPA) computations
and additionally for an SZA of 60◦ are summarised in
Table II. The line marked ‘original’ in the table refers to
a second computation performed on the original clouds
and thus quantifies the sampling error of the MC radiative
transfer calculations. For comparison: the mean reflectances
of the stratocumulus clouds are 7.9% and 20.6% for an SZA
of 0 or 60◦, respectively. The same numbers for cumulus
clouds are 4.5% and 9.6%. The distribution of these values
can be estimated from Figure 10.

Figure 8 shows that the coarse-grained fields suffer from
considerable biases in the transmittance, which are reduced
strongly by the downscaling algorithm. In Table II one
can read that the biases are reduced by about an order of
magnitude for the cumulus surrogates and a factor 3 to
4 for the stratocumulus surrogate fields. These factors are
very similar for both the 3D MC and the IPA calculations.

In all cases the surrogates based on the exact spectrum are
considerably more accurate. The surrogates without cloud
fraction information reproduce the radiative fluxes more
accurately than the coarse-grained fields, but are not as
good as the standard surrogates. The improvements due
to the increment adjustment are small, but statistically
significant.

The RMSEs of the field mean transmittance and
reflectance show a very similar picture, see Table III, except
that for this measure the increment adjustment does not
lead to improvements for the stratocumulus clouds and is
even slightly detrimental for the cumulus clouds.

At the coarse pixel scale (Table IV) the reduction of the
RMSE of the surrogate fields relative to the coarse-grained
fields is smaller than at the scale of the full field. Again the
extrapolation algorithm and the cloud fraction information
are important. Whereas we did not find much improvement
of the surrogates with respect to the high-resolution RMSE
of the LWC, the reflectance still shows clear improvements
at this scale (Table V).

The downscaling also improves the distribution of the
radiative fluxes. This is exemplarily shown in Figure 9 for an
SZA of 60◦. In all cases (transmittance, reflectance and both
SZAs) the distribution of the standard surrogate clouds is
better than those of the coarse fields. The distribution of
the surrogate fields match those of the original fields very
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Table III. RMS differences in mean reflectance and transmittance.

Field Cumulus Stratocumulus

Refl. Transm. Refl. Transm.

SZA = 0◦ 3D RT
Original 0.0001 0.0001 0.0001 0.0001
Coarse field 0.0258 0.0258 0.0103 0.0103
Extrapol. spectrum 0.0024 0.0024 0.0029 0.0029
Exact spectrum 0.0002 0.0002 0.0004 0.0004
No cloud cover 0.0072 0.0072 0.0028 0.0028
No edge reduction 0.0025 0.0025 0.0028 0.0028
SZA = 60◦ 3D RT
Original 0.0001 0.0001 0.0002 0.0002
Coarse field 0.0491 0.0491 0.0352 0.0352
Extrapol. spectrum 0.0055 0.0055 0.0125 0.0125
Exact spectrum 0.0006 0.0006 0.0038 0.0038
No cloud cover 0.0136 0.0136 0.0127 0.0127
No edge reduction 0.0065 0.0065 0.0127 0.0127
SZA = 0◦ IPA
Original 0.0001 0.0001 0.0001 0.0001
Coarse field 0.0268 0.0268 0.0102 0.0102
Extrapol. spectrum 0.0027 0.0027 0.0027 0.0027
Exact spectrum 0.0001 0.0001 0.0004 0.0004
No cloud cover 0.0075 0.0075 0.0029 0.0029
No edge reduction 0.0031 0.0031 0.0027 0.0027
SZA = 60◦ IPA
Original 0.0001 0.0001 0.0001 0.0001
Coarse field 0.0484 0.0484 0.0351 0.0351
Extrapol. spectrum 0.0049 0.0049 0.0128 0.0128
Exact spectrum 0.0007 0.0007 0.0041 0.0041
No cloud cover 0.0133 0.0133 0.0130 0.0130
No edge reduction 0.0057 0.0057 0.0129 0.0129

Table IV. Mean coarse-scale RMS differences in reflectance and transmittance.

Field Cumulus Stratocumulus

Refl. Transm. Refl. Transm.

SZA = 0◦ 3D RT
Original 0.001 0.007 0.002 0.009
Coarse field 0.026 0.127 0.012 0.030
Extrapol. spectrum 0.003 0.032 0.005 0.018
Exact spectrum 0.002 0.011 0.003 0.015
No cloud cover 0.008 0.065 0.005 0.024
No edge reduction 0.004 0.035 0.005 0.019
SZA = 60◦ 3D RT
Original 0.002 0.007 0.004 0.008
Coarse field 0.049 0.163 0.039 0.074
Extrapol. spectrum 0.007 0.065 0.016 0.042
Exact spectrum 0.002 0.019 0.010 0.034
No cloud cover 0.015 0.092 0.018 0.051
No edge reduction 0.008 0.073 0.017 0.043
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Table V. High resolution RMS differences in reflectance and transmittance.

Field Cumulus Stratocumulus

Refl. Transm. Refl. Transm.

SZA = 0◦ 3D RT
Original 0.006 0.028 0.024 0.086
Coarse field 0.027 0.212 0.034 0.182
Extrapol. spectrum 0.007 0.177 0.032 0.195
Exact spectrum 0.006 0.064 0.029 0.176
No cloud cover 0.010 0.177 0.032 0.193
No edge reduction 0.007 0.185 0.032 0.196
SZA = 60◦ 3D RT
Original 0.008 0.027 0.040 0.080
Coarse field 0.051 0.256 0.075 0.243
Extrapol. spectrum 0.012 0.201 0.068 0.260
Exact spectrum 0.008 0.079 0.057 0.219
No cloud cover 0.018 0.206 0.067 0.259
No edge reduction 0.013 0.212 0.068 0.263
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Figure 8. Scatterplot of the mean transmittance of the fields computed with a solar zenith angle of 0◦. The top row ((a), (b)) contains the panels depicting
the results for the cumulus clouds, the lower row ((c), (d)) for stratocumulus. The first column ((a), (c)) is for the coarse-grained original clouds, the
right column ((b), (d)) for the standard surrogate clouds.

closely for cumulus and show a clear improvement over the
coarse fields for the stratocumulus clouds.

Another comparison can be made on the anomalies, i.e.
on the deviation between the high-resolution fluxes and
their coarse-resolution averages. The distribution of these
anomalies of the cumulus transmittance flux spans almost
the full range from minus to plus unity, both in the original
fields as well as in the surrogate fields. However, these
anomalies of the coarse field range between ±0.2 and ±0.7

for SZAs of 0◦ and 60◦, respectively. Also in all other cases the
downscaled surrogate fields match the anomaly distribution
much closer than the coarse fields.

In all radiative flux fields, the coarse fields have a longer
correlation length than the original clouds; the average
autocovariance functions of the surrogate fields are always
much closer to the average of the original fields.

A comparison of the radiative fluxes of the original LES
clouds computed by 3D and IPA calculations shows that
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Figure 9. Histograms of the high-resolution reflectance and transmittance fluxes for an SZA of 60◦. The thick grey line represents the distribution of the
original LES clouds, the thin black line the standard surrogates with an extrapolated spectrum and the dotted line the coarse fields. The top row are the
cumulus clouds, the lower row the stratocumulus clouds.
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Figure 10. (a) Scatterplot of the transmittance of the cumulus clouds calculated with the full 3D MC model versus the radiative fluxes obtained with the
independent pixel approximation (IPA). (b) Scatterplot of the 3D transmittance of the stratocumulus clouds versus the difference between the 3D and
the IPA-computed transmittance. Both panels are calculated with a solar zenith angle of 0◦. The drawn line indicates the mean difference and the dashed
lines its two times sigma uncertainty.

these are statistically significantly different, i.e. so-called 3D
radiative transfer effects due to the neglect of the horizon-
tal photon transport are significant for these cloud fields
(Figure 10). Thus getting the spatial correlations right can
improve the optical properties of these cloud fields, espe-
cially for the cumulus fields. Still the difference between
3D and IPA is not large, thus for these fields the main
improvements of the optical properties of the surrogate
fields are likely due to improvements in the LWC distribu-
tion.

5. Discussion

At the original resolution, we found that the RMSE of the
liquid water content and the optical depth is not improved by
the downscaling. The surrogate fields can improve the RMSE
by taking into account spatial correlations, e.g. if the coarse
pixel to the north has a higher LWC, the largest sub-coarse
pixel values will tend to be in the north as well. However,
these improvements are offset by the subscale variability that
is added, which increases the RMSE, but which is necessary
to obtain unbiased radiative fluxes. The RMSE of the fluxes
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is improved at the original high resolution. Because the
fluxes are determined by the optical cloud properties in a
region around the high-resolution pixel, due to radiative
smoothing (Marshak et al., 1998; Zinner et al., 2006), this
situation is similar to analysing the errors at a coarser scale,
which is discussed next.

For most applications, the results at coarser scales are most
important. For example, before comparing the radiative
transfer calculations performed on the high-resolution
downscaled clouds, one would average them to the scale
of a satellite measurement. At the resolution to which
the LES clouds were coarsened, the optical depth of the
surrogate cumulus clouds is almost a factor of 5 better than
the optical depth of the coarse fields; the stratocumulus
optical depth is a little better. These improvements are due
to the nonlinear nature of the relation between liquid water
content and optical depth. At this coarse resolution the
radiative fluxes of the cumulus clouds are improved by a
factor of 2.5 to 7 by the downscaling and about a factor 2
for the stratocumulus clouds. This is due to the nonlinear
nature of the relationship between LWC and extinction
(for a varying effective radius) and between optical depth
and the transmission and reflection of light (e.g. King,
1987).

At the scale of the full cloud field, the bias and the RMSE
of the optical depth and radiative fluxes of the cumulus
surrogates is at least one order of magnitude smaller than the
error of the coarse fields. The bias and RMSE of the optical
depth and the fluxes of the stratocumulus clouds is a factor
of 3 to 4 lower. Also, the distribution of the optical depth
and the radiative fluxes is improved by downscaling the
coarse fields. The correspondence between the distributions
of the original fields and the surrogate fields indicate that
these surrogate fields are better suited for studying 3D
radiative transfer effects in cloudy atmospheres. Again we
attribute the improvements to the nonlinear nature of the
relation between LWC and optical depth and of radiative
transfer itself, which is taken into account by the added
small-scale variability.

One of the strengths of the downscaling algorithm is
that it can handle any extrapolated spectrum and as a
consequence any extrapolation algorithm. The accuracy of
the results strongly depends on the quality achieved by the
spectral extrapolation algorithm. To be able to study this,
we have also generated surrogates with the Fourier spectrum
of the original clouds fields. This spectrum represents the
best possible spectrum an extrapolation method could
compute. For stratocumulus clouds the extrapolation
algorithm may approximate this upper limit well enough
to obtain similar results. However, for the sparse cumulus
clouds, this upper limit is likely not reachable: The Fourier
spectrum of the original cloud contains information on the
relative positions of the cloud clusters with respect to each
other. For sparse cumulus clouds with many zero-valued
pixels, this information is unambiguous enough to allow
a very accurate reconstruction of the original cloud field;
see also Venema et al. (2006a). Because the exact position
of the clouds is a property of a certain realisation, but
the positions will vary for every ensemble member, no
extrapolation algorithm based on ensemble statistics will be
able to estimate the spectrum with this accuracy. Thus for
the cumulus clouds the results with the exact spectrum are
only of theoretical interest.

However, it should be possible to develop better
extrapolation algorithms than the one used for this study.
The main limitation is that our extrapolation function
is constant, whereas both cloud situations were non-
stationary. In a similar non-stationary application, this could
be remedied, e.g. by modelling the same transient situation
with two models at two resolutions and using the high-
resolution model for the extrapolation (the coarse model
could compute a larger ensemble or a larger region). The
results for the surrogates based on the exact spectrum
promise that with a better extrapolation algorithm an
increase in quality similar to the current improvement
from using coarse fields to using surrogates is possible.
As the surrogates based on the exact spectrum still have
a remaining error, we can conclude that the downscaling
algorithm itself also contributes to the error.

In this study, the scale step was limited to a factor of
four to ten. If larger steps are necessary, information on
the distribution of the small-scale noise may become more
important. However, the extrapolation algorithm for the
power spectrum can only estimate the amount of subscale
variance that needs to be added. The lack of information on
the full distribution of the small-scale variability is likely the
main reason for the remaining error in the surrogates with
the exact Fourier spectrum of the original. More advanced
downscaling algorithms may want to adjust the distribution
of the subscale noise explicitly, based on information from
higher-resolution models or measurements. This could
be achieved by an additional iterative step that adjusts
the subscale distribution, which would be similar to the
adjustment of the full distribution in the standard IAAFT
algorithm. Alternatively, the extrapolation of wavelet spectra
(instead of or in addition to Fourier spectra) or structure
functions may allow for a more dynamic estimation of the
subscale variability on a case-by-case basis.

Information on the sub-coarse-scale cloud fraction is
important. The version of the algorithm that does not
use this information, however, still provides more accurate
results than the coarse fields. For example, its radiative
fluxes at the coarse scale are about a factor 2 more accurate.
In applications where this information is not available,
it is thus advisable to develop a parametrization for the
cloud fraction. In a real application, the information on the
cloud fraction will have an error itself. In this case, one may
simultaneously perform the adjustment of the cloud fraction
for multiple coarse pixels with about the same cloud fraction
instead of one coarse pixel at a time. Combined with the
spectral adjustment, this would allow for variations in cloud
fraction based on information from the surrounding coarse
pixels.

The adjustment of the distribution of the increments at
the coarse pixel edges leads to a small improvement of the
biases of the mean optical depth and radiative fluxes of
the cumulus clouds, but can also lead to additional RMSE.
For the stratocumulus clouds this adjustment does not have
a significant influence on the error measures. Considering
biases more important than RMSE, we decided to keep
this adjustment. In preliminary surrogate clouds generated
with a simpler extrapolation algorithm, the adjustment was
visually judged to be needed and effective in reducing the
large jumps at the edges. Thus for more difficult downscaling
applications, this adjustment may be important. If the
downscaling algorithm is applied to problems with a scale
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step larger than a factor ten, it may be useful to extend the
edge adjustment to pairs of pixels further apart.

The suitability of our proposed downscaling algorithm for
a particular application depends on the application’s specific
requirements. Whatever the application is, working with
real high-quality high-resolution data is always preferred.
Science should keep on striving to measure and model the
atmosphere at higher resolutions; a downscaled field will
always remain a surrogate solution, which is one reason to
call these downscaled fields: surrogate fields. A second reason
to view this algorithm as part of the surrogate line of research
is that it is able to work with an arbitrary extrapolation
function, in contrast to fractal methods, that impose a
power law. We have a third reason to call the scaled-down
fields: surrogate fields. Due to the structure of the algorithm,
it is possible to combine this downscaling algorithm with
the original algorithm we use for the stochastic generation of
surrogate clouds (Venema et al., 2006a) and with upcoming
similar algorithms. For example, surrogate clouds based on
the LWC height distribution and spatial correlations from
aircraft microphysics data, such as presented in Schmidt
et al. (2007), can be combined with a coarse liquid water
path field from satellite retrievals (Roebeling et al., 2008).
The in situ information on the LWC height distribution
will likely reduce the inaccuracies due to the fact that the
current algorithm only estimates the subscale variance, but
not the full subscale LWC distribution. The satellite would
provide an overview and could deliver information on the
temporal development of the mean liquid water content of
the cloud field. These two algorithms are thus expected to
complement each other very well.

6. Conclusions and outlook

This study presented a new downscaling method for three-
dimensional cloud fields. The algorithm was tested by
coarse graining high-resolution 3D cloud fields from large-
eddy simulations, scaling these fields down to the original
fine resolution and analysing the difference between the
original LES cloud fields and the downscaled surrogate
cloud fields.

A downscaling algorithm is needed because of the
nonlinear relationship between liquid water content and
optical depth and the nonlinear nature of the radiative
transfer equations. The algorithm avoids systematic errors
by adding small-scale variability. Our algorithms include a
first attempt to do so for radiative transfer through 3D cloud
fields with known subscale cloud fraction.

The differences were analysed with respect to four error
measures: the mean root-mean-square error at the original
resolution of the LES clouds, the mean RMSE at the coarse
resolution, and the RMSE of the mean field properties, as well
as the bias in the mean field properties. The improvement
achieved by the downscaling is larger the larger the scales
considered, which is fortunate because most applications
will be interested at the coarser scales. For example, at the
largest scale (the full cloud field), the bias and the RMSE
of the optical depth and radiative fluxes of the cumulus
surrogates is at least one order of magnitude smaller than
the error of the coarse fields. The bias and RMSE of the
optical depth and the fluxes of the stratocumulus clouds are
a factor of 3 to 4 lower. The optical depth and radiative flux
distributions are also improved by downscaling the coarse
fields.

Further improvements can be achieved by introducing
more-advanced extrapolation methods for the power
spectrum of the coarse fields. The current algorithm only
estimates the variance missing at sub-coarse pixel scales;
future versions could include a more accurate description
of the subscale distribution.

A very promising prospect is a combination of this
downscaling algorithm with the standard algorithm to
generate surrogate clouds. For example, coarse 2D satellite
imager fields could then be combined with high-resolution
in situ data or observations from active cloud remote-
sensing instruments to generate 3D cloud fields. The imager
would provide the overview and could give information
on the temporal development, whereas the high-resolution
distribution would improve the accuracy of the cloud
products.
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Löhnert U, Trautmann T, Macke A. 2006a. Surrogate cloud fields
generated with the Iterative Amplitude Adapted Fourier Transform
algorithm. Tellus 58A: 104–120.

Venema V, Ament F, Simmer C. 2006b. A Stochastic Iterative Amplitude
Adjusted Fourier Transform algorithm with improved accuracy.
Nonlinear Processes in Geophys. 13: 321–328.

Venema V, Bachner S, Rust HW, Simmer C. 2006c. Statistical
characteristics of surrogate data based on geophysical measurements.
Nonlinear Processes in Geophys. 13: 449–466.
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