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ABSTRACT
In this paper, we present a concept for an open vehicular
data interface and describe it’s components and architec-
ture. We discuss the enabled applications in the context of
advanced driver assistance systems with a focus on human-
machine interfaces, vehicle-to-x (V2X) communication and
context inference systems. We conclude by a presentation
of the initial implementation and deployed system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3 [Information Storage and Retrieval]: Systems and
Software

General Terms
Algorithms, Measurement

Keywords
vehicular interfaces, context awareness, context inference

1. INTRODUCTION
Modern vehicle comprise hundreds of sensors, various com-

munication busses and significant processing power, compa-
rable to a modern personal computer. These systems have
immense untapped potential for advanced driver assistance
systems (ADAS) and context-aware systems and many more
innovative automotive applications.

Unfortunately, access to the in-vehicle sensors requires the
knowledge of restricted information, such as the CAN ma-
trix. This information is only available to vehicle manu-
factures and not the the general research community. We
therefore are investigating how interested researchers could
interface their research vehicles without the need of a full
CAN access. This, we think, significantly leverages research
in the area of automotive user interfaces and V2X commu-
nication.
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We present three ways to access in-vehicle sensor data:
first, using the standardized vehicle diagnostic bus, provid-
ing only limited data which can be used e.g. as ground truth
(e.g. for the vehicle speed), second, using our developed
general purpose data interface and third, using vision-based
OCR of the vehicle’s debug system. The latter is part of
nearly all vehicles and is intended to provide an easier-to-
use access than the vehicle manufacturer’s full diagnostic
tool set.

We integrate data from all three interfaces to develop
context-sensitive driver user interfaces. So far, nearly all
user interface components in a vehicle are static: the tacho-
graph (even if displayed on a pixel-based screen instead of
being an analog meter), the gear information, and many
more. The set of information is never adapted, e.g. in case
of potentially hazardous situations, such as driving at high
speeds and using the high beam lights at the same time
which could indicate another driver changing lanes and ob-
structing the way for the ego vehicle. Neither is the sound
volume of the stereo adapted, nor the telephone muted and
incoming calls silently blocked. Kern et al. [8] showed the
benefits of integrating context information in the driver as-
sistance systems for providing better user interfaces. We ex-
tend this concept to different types of sensors and a broader
application range.

2. ACCESS TO RAW DATA
In this section, we introduce three ways of open data ac-

cess in vehicles that can be used to elicit sensor information.

2.1 OBDII Interface
OBDII and EOBD [13] are standardized interfaces for ve-

hicle diagnostic. Tab. 1 summarizes selected sensors and
their meaning w.r.t. to vehicle diagnostics. As we will see
later, more meaning and context information can be elicited
from this data. The inferable meaning is additionally en-
larged by incorporating additional information, as described
in the following two sections.

2.2 General Purpose Data Interface
Even though many functions of modern vehicles are man-

aged by microcontrollers, in the end, there is either a a sen-
sor or an actuator controlled, such as the light or the front
wiper. This means at some point, there is current flowing
and voltage present. We use this fact to create a general
purpose data interface to elict information from the vehi-
cle, without the need of the CAN matrix which is usually
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confidential not accessbile for researchers in general. Fig. 1
shows an overview on the the developed system.

Information Initial Meaning

Engine Load Computed from Air Flow Rate
into the engine and Intake Manifold
air pressure

Engine Speed Reported by the Crankshaft Position

Sensor Coolant Reported by the engine coolant
Temperature sensor, a thermistor that varies

its resistance according to the
engine coolant temperature

Throttle Position Throttle position sensor creates a
voltage signal that varies in
proportion to the throttle valve
opening angle

Intake Air Measured by another thermistor
Temperature located in the Mass Air Flow

Sensor unit
Battery Voltage affects the speed at which the fuel

injectors open and must be taken
intoaccount in computing the fuel
injectorpulse length, or injector
open time

Oxygen Sensor The oxygen density in the exhaust
emissions is detected and generates
a control signal back to the ECU
indicating the burned air to fuel
ratio.

Table 1: The On-Board Diagnostics interface,
mainly targeted at maintenance, provides informa-
tion about several sensors that can be used to assess
the vehicle’s context. The table give a list of the
most useful information for context inference http:

//www.4x4wire.com/toyota/4Runner/tech/OBDII_ECU/.

The data is currently used by three systems in the vehicle:
first, a simple HMI component, shown in Fig. 6 that visu-
alizes the state of one interface to the driver. This will in
future be an fully graphic interface, replacing all other user
interface information components, such as the tachograph.

While local sensor information alone is very important,
esp. for context inference, we also explore options of inte-
grating this data directly in the ongoing research efforts on
vehicle-to-vehicle and vehicle-to-infrastructure communica-
tion, subsumed as vehicle-to-x (V2X) communication. The
goal of V2X communication is, by cooperative communica-
tion, to increase safety, traffic efficiency, and provide novel
services [1].

Again, researchers are in need for the in-vehicle sensor
data and are relying on the cooperation with a vehicle man-
ufacturer. This might limit options for exploring ideas. By
providing a general approach to vehicular sensor data, we
think that here, too, research is fostered by our approach.

The output connector for V2X communication enables the
collaborative sharing of local data, allowing the near-by ve-
hicles to get a notion of the context of the other surround-
ing vehicles. Our system is the local correspondent of the
distributed collaborative CODAR (Cooperative Object De-
tection and Ranging) architecture [9, 10].

Figure 1: General Purpose Vehicle Data Acquisition
Architecture. A set of self-describing components
acquire data from analog signal wires and convert
the input data and provide pre-processed data over
three optional outputs. In case of serial communica-
tion, the data is read and re-sent over a socket. The
self-description of the node is used for correctly pro-
ducing the outputs for the data consumers: a driver
HMI, a 802.11p-based V2X communication unit and
a Bayesian network for context inference.

2.3 Visual Diagnostic Screen Recognition
Our PriCARVe research vehicle enables us, due to the

availability of the CAN matrix [14] to access the in-vehicular
sensor systems directly. With an additional video-in-motion
modification using a VAIS tech CAN module faking a present
DVD player on the AVC-LAN bus, we can use the built-in
factory touch screen for our adaptive user interfaces. This
enables, for example, to reproduce the results of Coroama et
al. [3] without the need of any additional external sensing
equipment.

Figure 2: Debug Information System: Factory de-
bug system of the 2006 Toyota Prius in our Pri-
CARVE, the Prius Context-Aware Research Vehi-
cle. In addition to the general purpose interface,
sophisticated CAN BUS access complements the in-
put data. The debug screen shows speed, the status
of the car (ignition, powered), the driving direction
(rev is currently off), the status of the vehicle’s light
and the parking brake.

In the context of this research, we use the availability of
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Figure 3: Debug Information System: The debug
information system of the Mercedes G400 delivers
battery and audio status, the coordinates as mea-
sured by the in-vehicle navigation unit, the driving
direction as set by the automatic gear and the cur-
rent speed as measured by the odometry.

the real data as ground truth and can thus directly compare
the information to the one computed by the combination of
OBDII, general purpose data interface and the visual diag-
nostic screen.

Visual diagnostic screens, ranging from LED segment dis-
plays to fully graphic displays are standard in modern ve-
hicles. They enable the garage to quickly check the main
functions of the vehicle, without the need of fully wiring the
manufacturer’s diagnostic computers to the vehicle. Fig 2
and Fig 3 show two examples of secretly built-in diagnostic
screens. The first shows an example of the Toyota Prius’
screen, the second an example of a Mercedes G400.

The contents of the screen are only dynamic w.r.t. the
data values, the position of the information is static. Using
a fixed digital video camera, such as an webcam, we can
grab images of the screen. As the a-priori knowledge of the
information locations are known, optical character recogni-
tion software can extract the information from the images
several times per second. We are planning to explore the op-
tions of video analysis, though feel more than 5 updates per
second are not necessary. This is also the envisoned update
rate of EU V2X systems.

3. FROM RAW DATA TO SAFETY RELE-
VANT CONTEXT

Active Safety Application are any application that try to
prevent accidents and therefore have to intervene at the first
indication of a potential accident situation (in the remainder
also called hazardous situation). To detect these hazardous
situations applications have to collect the available context
information. To be precise, when we use the term ”context”,
we follow the definition given by Dey in [4]:

Context is any information that can be used
to characterize the situation of an entity. An en-
tity is a person, place, or object that is considered

relevant to the interaction between a user and an
application, including the user and applications
themselves.

In particular high-level context information like the danger
of a situation is of importance for context aware applica-
tions in cars. The process of generating this information
from the available data described in the last section is called
context inference. The high-level information we are inter-
ested in given the available data is the profile of the track
where the car is currently driving (e.g. tunnels, hills, inter-
sections, high-ways), the danger of a situation or the car’s
status or actions like parking, lane changing or normal driv-
ing. Among others we can seen the following dependencies:

• If the blinking lights are on, we receive a GPS signal
and are driving at relatively low speed, this might in-
dicate that we are approaching an intersection.

• If on the other side lights are on and we do not receive
any GPS signal, we are most probably in a tunnel.

• If one is driving backwards at relatively low speed, we
can assume that the car is parking.

• If the engine load is different than usual at the same
speed or your current speed differs from your normal
speed profile you are probably driving up- or downhill.

• Blinking lights at constant speed indicate a lane change
maneuver on a motorway.

• With a high wiper level and lights switched on, one can
assume an environmental condition with low sight.

From those dependencies we can model inference rules
that are evaluated in real-time while the car is driving. Ac-
tive Safety Applications can access these data from a prede-
fined interface and enhance the overall traffic safety.

4. CONTEXT INFERENCE WITH
BAYESIAN NETWORKS

There are different ways to perform inference, among oth-
ers logical reasoning with all different types of logics (like
Propositional Logics, Description Logics, First and Second
Order Logics and many more), context history based ap-
proaches and probabilistic algorithms. Probabilistic infer-
ence e.g. with Bayesian Networks (BN) resulted to provide
the best trade off between expressivity, ease of modeling and
inference performance [5].

Over the last 15 years, BNs [12] have evolved as a major
tool in a wide area of scientific disciplines requiring sound
statistical analysis, automated reasoning or exploitation of
knowledge hidden in noisy data. These range from fields
in medical research, genetics, insurance analysis, and fault
handling to automation and intelligent user interaction sys-
tems. BNs combine techniques from graphical models with
those from Bayesian analysis to provide a formal framework
where complex systems can be represented and analyzed.

A BN encompasses a set of random variables (RV) that
represent the domain of interest and the BN encodes many
of the important relationships between these variables, such
as causality and conditional dependence and conditional in-
dependence. Specifically, their structure bears information
about the qualitative nature of these relationships whereas
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Figure 4: A complete Bayesian Network linking the information that is available through the sensors. Nodes
represent Random Variables that model the raw data sources (top and bottom rows) and inferred concepts
(in the middle). The target random variables, that represent the value added information for drivers are
represented in bigger font size and thicker frame. The directed edges represent causal influence in the
direction of the arrow. The ”Direction” you are driving to influences for instance the status of your ”Reverse
Lights”.

their network parameters encode the quantitative probabilis-
tic relationships among the variables of interest. Figure 4
shows a BN, that models the status of a car based on the
available information described in section 2. It may seem
simplistic, but represents a fair trade-off between complexity
and quality of the results. This trade-off can even be learnt
by automatic processes like in [11] that create structure and
transition probabilities of BNs from a given data set. As
any inference rule or ontology, it represents a relevant part
of the reality, abstracting from the general complexity.

For context inference now, we can represent any infer-
ence rule by a BN and evaluate them by calculating the
conditional probabilities. RVs represent context attributes
of a specified user. Context inference takes into account
sensed values for context attributes in the BN as evidence
and computes the conditional probability of the target con-
text attribute. The most probable value of this context at-
tribute will be returned together with its probability as con-
fidence level. This computation of the conditional probabili-
ties can for example be done in a message passing algorithm
[7], that first transforms the graph into a tree structure of
cliques (=combinations of random variables) and then, if
evidence is added, passes the new probabilities as messages
through the whole tree, so the evidence takes effect in every
related node. Among the proposed evaluation algorithms
for Bayesian networks, this one offers exact inference, and a
well-described implementation that is more efficient than a
straight-forward evaluation of conditional probabilities.

It can be shown however that the general problem of infer-
ence in a BN is NP-hard in the number of nodes [2], that’s
why we developed the concept of Bayeslets [6]. In these,
the concepts of ”divide and conquer” as well as object ori-
entation are applied to BNs. Inference is only applied to

sub-networks that are thematically closely linked. Only on
demand for a higher inference goal, several Bayeslets can be
joint. This offers faster inference as only necessary nodes are
evaluated taking into account only available sensors. With
the predefined interfaces contents of Bayeslets can be shad-
owed as long as the outcome is applicable to Bayesian in-
ference. Bayeslets furthermore ease personalization and dy-
namic incorporation of other users’ context, which is partic-
ularly desirable in large scale highly dynamic environments
like in road traffic.

In Figure 5 we show the evaluation of a Bayeslet, i.e. of
a part of the BN from Figure 4. The result shows that
based on the causal influences defined in section 3 we can
infer the current track profile taking into account possible
ambiguities, fault rates of sensors and general uncertainty.

5. TEST ENVIRONMENT
Our test environment comprises two equipped vehicles, a

Mercedes model G400 and a Toyota Prius model 2006. They
are equipped with an automotive computer from DSM that
automatically powers up when the car is turned to ignition.
It has a connection to the three above named interfaces,
OBDII, general purpose data interface and debug screen.

We are using the information data sources and informa-
tion summarized in Tab. 2 in the current state of our system.

The automotive computer acquires the data from the dif-
ferent interfaces and processes, when necessary, the corre-
sponding output, e.g. for the debug screen.

Every input that can be read then digitally available and
provided over sockets, allowing flexible information exchange
between the producers and consumers of the data, using a
client/server model.

Fig. 6 shows a first visualization of the vehicle’s state,
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Figure 5: Based on the inference network of Figure 4, the measured information is taken into account and
the current ”Track Profile” is evaluated. This representation of BNs shows the possible values in the ranges
of a RV associated with their probabilities. The measured data have been introduced into the sensor nodes
as evidence and propagated throughout the network to calculate the probabilities of ”Track Profile”. In the
left sub-figure you can see that with the blinking lights set to either left or right and relatively low speed,
the most probable current track profile is a street ”intersection”. If the system knows in addition that there
is no GPS signal receivable at the moment like in the right sub-figure, the highest probability switches to
”tunnel” for the current Track Profile.

Source Data

OBDII speed, engine load, fuel tank level
General Purpose front and back wiper speeds,
Data Interface fog, front and rear lights, brake status
Visual Diagnostic GPS coordinates, driving direction,
Screen Recognition phone status

Table 2: Data source and information acquired in
our system. Data from all three sources is com-
bined and evaluated by a Bayesian network and for
adaptive human-machine interfaces.

based on the developed general purpose data acquisition sys-
tem. The goal of the data acquisition is to infer the vehicle’s
and the driver’s context and adapt the user interface to the
situation. As example, in case of driving at high speeds
and when using the high beam lights, the audio could be
muted as a potentially hazardous situation could arise and
the driver’s attention should not be distracted by any ra-
dio or CD audio signals. Using context information from
the driver and the vehicle, a later user interface could adapt

to the current situation. For instance, when driving at high
speeds, the amount of UI elements could be reduced, and im-
portant elements such as the tachograph could be enlarged,
the amount and type of feedback could be changed, e.g.
from visual to audio or tactile output. This closes the loop
to improving traffic safety.

As with the proposed system no legal or insurance aspects
are concerned, e.g. with interference with safety-critical sys-
tems, such as vehicle stability control (VSC), real world test
can be conducted in real traffic contexts on public roads.

6. CONCLUSION AND OUTLOOK
We proposed and implemented an open-access vehicular

data interface for in-car context inference and adaptive au-
tomotive human-machine interfaces. We used one existing
standardized interface and proposed and implemented two
additional, simple and transferable interfaces. Thereby, re-
searchers are enabled to modify vehicles into research ob-
jects, without the burden of acquiring a CAN matrix and
thus leveraging research in this field.

Based on the proposed architecture, we presented an ini-
tial user interface as basis for context-aware user interfaces



Figure 6: HMI Visualization of selected vehicle sig-
nals. This initial bird’s eye visualization of the Mer-
cedes G400 model currently visualizes the state of
selected signal wires. The information from this and
further general purpose data units can be combined
and form the basis of later context-aware adaptive
user (driver) interfaces.

and developed a Bayesian network for determining the ve-
hicle’s and thus driver’s context. We thereby verified the
validity and potential of our approach.

The connections underlying the Bayesian network have
been developed based on our experiences as vehicle drivers.
We in the next step will collect real world data sets and
analyze the performance of the network with respect to the
accuracy of the connections and the reliability of the context
predictions.

For our future research, we will explicitly focus on non-
GNSS (global navigation satellite system) based driving. We
want to elaborate on different questions, e.g. w.r.t. map
building: does driving slowly, blinking and speed allow us
to correctly infer an intersection? Using the history infor-
mation of the data sets, can we infer deviations from normal
driving behavior, such as making a short stop at the mall
when driving home?

Using GNSS information, we will explore if we can im-
prove digital map information with e.g. road profile in-
formation, update missing intersections and tunnels and in
general improve the quality of community-based free geo-
information systems by applying our research.
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[5] K. Frank, M. Röckl, P. Gallego Hermann, and M. T.
Morillas Vera. Knowledge representation and inference
in context-aware computing environments. In J. Lloret
Mauri et al., editor, The Second International
Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM08), pages 89 –
95. IEEE Computer Society Conference Publishing
Services (CPS), 09 2008.
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