
Challenges for Context Management Systems imposed by
Context Inference

Korbinian Frank

German Aerospace Center (DLR)
Institute of Communications and Navigation

Oberpfaffenhofen, 82234 Wessling, Germany
korbinian.frank@dlr.de

Nikos Kalatzis, Ioanna Roussaki and
Nicolas Liampotis

National Technical University of Athens
Inst. of Communication and Computer Systems

157 73 Zografou, Greece
{nikosk,nanario,nliam}@telecom.ntua.gr

ABSTRACT
This work gives an overview over the challenges for context
management systems in Ubiquitous Computing frameworks
or Personal Smart Spaces. Focused on the integration of
context inference in today’s context management systems
(CMSs) we address important design decisions for future
frameworks. The inference system we have in mind is prob-
abilistic and relies on the concept of Bayeslets, special in-
ference rules extending Bayesian networks. We show that
for inference rule creation, storage, inference scheduling and
update frequency the best solutions are hybrid, allowing
for high flexibility and performance while reducing resource
costs. We also see that human expert knowledge cannot be
substituted completely in an efficient context-aware system.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; H.3.2
[Information Storage and Retrieval]: Information Stor-
age; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software

General Terms
Management, Performance

Keywords
Context Management, Context Inference, Smart Spaces

1. INTRODUCTION
Ubiquitous Computing Systems offer many challenges to
the research community. Abowd and Schilit in [1] identi-
fied the following important components for this computing
paradigm:

• Scalable Interfaces,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MUCS2009, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-579-6/09/06 ...$5.00.

• Ubiquitous software services,

• Ubiquitous information,

• Support for Automated Capture and Access,

• Context-aware computing and

• Technology

Context-aware computing is a particular important one among
these as it influences all the other fields, or their usability.
The desired seamless integration into the environment is
only possible by incorporating the users’ context into de-
cision making processes. As already shown in a host of
projects and prototypes, context aware service management
is fundamental to personalised ubiquitous computing. For
an overview, see for instance [13]. These approaches use
context in service selection, service ranking, service filtering,
proactive service invocation, service handover, service con-
figuration and service deployment – sufficient reasons that
context management has to be highly efficient.

The performance of context management however not only
depends on efficient access to context information in some
knowledge base (be it reading by consumers or writing by
context sources), but – more complicated – also on the in-
ference algorithms and applications that produce or enrich
context information. This enriched, so called high-level con-
text information is necessary, as many decisions cannot be
taken on pure sensor input like temperature coming from a
thermometer, but on complex situations, like weather. The
concept weather is based on a number of lower level con-
cepts (temperature, wind, humidity, air-pressure) that
can be sensed, for weather itself on the other hand there is
no particular sensor.

This example demonstrates that a context inference rule
itself is also a context consumer. The inference outcome
can change every time one of its input information changes,
causing new evaluation of the rule. Inference duration con-
sequently becomes a significant parameter influencing re-
sponse time and Quality of Service. Its computational com-
plexity must not be neglected. Traditional logical (deduc-
tive) inference relies on Boolean or propositional satisfiabil-
ity, the famous SAT Problem, which is NP complete [14,
9]. Moreover probabilistic inference in its general case is NP
hard [3], even approximated inference [5]. Hence the infer-
ence algorithm has to be chosen carefully with regards to its

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/30986777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mightiness and its performance, and with it the scheduling
and triggering of inference have to be optimised.

In particular with respect to its mightiness (support of
uncertainty, missing information and more, see Angermann
in [2]) we have chosen Bayesian approaches for context infer-
ence. An inference rule is represented by a Bayesian network
(BN) [15], evaluation is performed by calculating the condi-
tional probabilities. BNs consist of nodes representing ran-
dom variables and directed edges representing causal influ-
ence between the random variables. Every random variable
has values and is assigned a conditional probability distribu-
tion. For Bayesian context inference random variables repre-
sent context attributes of a specified user. Context inference
takes into account sensed values for context attributes in the
BN as evidence and computes the conditional probability of
the target context attribute. The most probable value of this
context attribute will be returned together with its proba-
bility as confidence level. A concept adapting general BNs
for context inference, called Bayeslets is described in [7].

The remainder of this paper shows in the next section the
requirements to context management systems (CMSs) that
usually do not take explicitly into account context inference
considerations. Section 3 will detail how inference rules have
to be created, stored and integrated in order to reduce access
time, the integration of the inference itself with a basic CMS,
its triggering and result handling is discussed in section 4.
Finally section 5 gives recommendations for the design of
integrated CMSs and an outlook how we want to pursue
this research.

2. REQUIREMENTS FOR FUTURE CON-
TEXT MANAGEMENT SYSTEMS

One of the first context management systems capable to
handle generic context information was developed for the
needs of the Cooltown project by HP labs. The Cooltown
context management system attempted to resolve problems
regarding the context representation, while it combined and
exploited context information by introducing a uniform Web
presence model for people, places and things [12]. Cooltown
envisioned a world where “humans are mobile, devices and
services are federated and context-aware and everything has
a web presence”. Various prototypes have been developed
based on this perception, the most important of which are:
museum exhibits that interact with the user, conference
rooms that recognize users & automatically adapt to their
presence, and radios that play songs based on the preferences
of users in the proximity. However the provided context
management system did not handle issues regarding context
history, inference of context data, quality of context, context
privacy and security.

The Owl [6] is a context-aware system, which aimed to
gather, maintain and supply context information to clients,
while protecting people’s privacy through the use of a role-
based access control mechanism. Apart the provision of ba-
sic context related functionalities, the Owl project performs
an initial research on more complex issues such as history of
context, access rights, quality, extensibility and scalability
of the contextual information [11].

Another project that provided an architecture for the pro-
vision of mobile context-aware services is SOCAM (Service-
Oriented Context-Aware Middleware) [10]. This architec-
ture models context information around four main context
concepts: person, location, activity and computational en-
tity (e.g. device, network, application, service, etc.). The
SOCAM context model is specified in OWL and addresses
context sharing, reasoning and knowledge reusing, while pro-
viding a service oriented middleware infrastructure for in-
door applications, where a central server retrieves context
data from distributed context providers and delivers them
to its clients after proper processing. Although the SOCAM
architecture supports context inference, there is no mech-
anism for storing and managing context history, while no
requirements regarding the protection of the privacy of the
user and group context data are addressed.

The IST CONTEXT project [20] is another project that
focused on context-awareness. Its main objective is the spec-
ification and design of models and solutions for an efficient
provisioning of context-based services making use of active
networks on top of fixed and mobile infrastructure. CON-
TEXT has proved that active networks are also powerful in
context-aware systems for tackling the issues of context dis-
tribution and heterogeneity. It has implemented a flexible
and extensible context model, but did not support context
inference, privacy & security, quality of context, history of
context and group context.

The DYNAMOS project [19] aims at providing mobile
users with context-aware services, focusing on proactively
notifying them about services they are possibly interested
in. The main context information used is the user’s per-
sonal profile, which is a combination of its personal infor-
mation, preferences and schedule, including the user’s ac-
tivities and a personal calendar. This information is stored
and can be shared with other users, rendering the sharing of
services possible based on privacy criteria set by the users
themselves. Context management functionality is provided
by the Contory [18] middleware that is specifically designed
for resource-constrained devices, such as smart phones. A
disadvantage of this approach is that functionalities that
demand many computational and storage resources, such
as context inference and context history maintenance & ex-
ploitation are not supported. Furthermore, no requirements
regarding group context or quality of context are addressed,
while the types of context information exploited are very
limited.

The CroCo (Ontology-Based, Cross-Application Context
Management) [16] context management service aims to sup-
port domain independent applications by handling arbitrary
context data, provided by context providers and requested
by consumers via a service interface. This is achieved by
adapting an extensible context ontology allowing the inte-
gration of external ontologies describing contextual aspects
relevant with various domains. Among others, the basic
design principles of the CroCo architecture include the con-
sistency maintenance of the distributed stored data and the
reasoning of context information. As stated in [16], the ar-
chitecture is not sufficiently addressing requirements regard-
ing context history management and user privacy protection,
while neither group context concepts are used.

The IST Amigo project (Amigo Integrated project1) has
also implemented a context management system aiming to
establish Ambient Intelligence features in networked home
environments. For this purpose, very extended context on-
tologies have been developed that represent users and their
environments, content, services, networks, devices, capabili-
ties, etc., aiming to provide a complete and flexible semantic
representation for middleware components and third party
applications. Context inference based on ontologies was also
supported, as well as history of context maintenance. Nev-
ertheless, in Amigo, no support for distributed context man-
agement was provided, nor for group context, sophisticated
context query handling or for context security & privacy
protection.

Finally, for the needs of the DAIDALOS and DAIDALOS
II (Daidalos Integrated project2) projects the CDDBMS (Con-
text Distributed Database Management System)[17] has been
designed and developed. The CDDBMS is a distributed het-
erogeneous multi-database system that is built in order to
face the requirements of network operators and context mar-
ketplaces, while being scalable and lightweight, as it resem-
bles to the web-server schema. It also provides more ad-
vanced features, such us context inference, query extension
mechanisms and free-text based query handling. It also pro-
vides context access control mechanisms capable to enforce
privacy and security protection techniques concerning the
sensitive context information maintained or traded. A ba-
sic mechanism for managing context history is also provided
by the CDDBMS. However, neither the quality of context
concept is captured in the context model, nor the notion of
group context.

Reasoning

Context Source
Manager

Context
Brokerinfer

Core Context
DB Manager:
User Context
User History
Preferences

System RTE
Sensor Mgmt

User Interaction

User Interaction Monitoring

Context
History

Management

Figure 1: The PERSIST CMS: It consists of five ar-
chitecture blocks. The Context Broker is the core
interface to any consumer, the Context Source Man-
ager is the only access points for all context sources
and sensors. Both components store their informa-
tion in the Context Database via the Core Context
DB Manager, the central information unit. Con-
text History Management provides the necessary,
pre-processed information e.g. for learning inference
rules, the Reasoning finally is the place where infer-
ence algorithms are stored and processed whenever
necessary.

The ICT PERSIST project3 is dealing with context man-

1http://www.hitech-projects.com/euprojects/amigo/
2http://www.ist-daidalos.org
3http://www.ict-persist.eu/

agement for the needs of Personal Smart Spaces. A Personal
Smart Space (PSS) is a set of services that are owned, con-
trolled, or administered by a single user, which are located
within a dynamic space of connectible devices and that are
capable of self-improvement and of demonstrating pro-active
behaviour.

Based on the above described systems the architecture
shown in Figure 1 has been designed to fulfil the following
set of requirements:

• Efficient Context Modelling and Semantics, in order to
represent the entire set of context data (both dynamic
such as location, and static such as preferences) that
need to be monitored, collected, stored and utilised in
PSSs, along with the necessary meta data.

• Distributed Context Management, including distributed
context maintenance, access, update and synchronisa-
tion, as well as provision of a transparent interface to
context management, support of ad-hoc context ex-
change, real-time and non-real-time context handling.

• Context Query Support. Various context queries need
to be supported by PSSs, such as identity-based (or
navigational) queries, location-based, semantic-based,
and time-based.

• Context Source Management, including sensor data
aggregation, context-source discovery, (de-) registra-
tion, configuration, etc.

• Preference handling facilities, in addition to the other
context management facilities aforementioned, i.e. pref-
erence analysis, preference evaluation, and preference
condition monitoring.

• History of Context Modelling and Management in or-
der to support history-based context inference and ac-
cess to past context information. In this respect, the
user behaviour & status will also be modelled and
recorded.

• Context Event Management, including support for dis-
tributed context event creation and propagation.

• Context Inference, i.e. extraction of high level context
information from raw context data. In this respect,
learning of context inference rules (CIR) needs to be
supported, as well as preference learning algorithms,
CIR individualisation, context association & pattern
extraction / matching, and CIR learning from group
knowledge.

• Group context, i.e. context information of group of
persons/users, including group preferences. More specif-
ically, the following need to be addressed: efficient
group context modelling and representation, group con-
text management & maintenance, group context esti-
mation & inference, context prioritisation & assess-
ment for resource sharing and context/preference con-
flict resolution.

• Context privacy & security. In this respect, the fol-
lowing need to be supported: access control over indi-
vidual and group context; context integrity, reliability,

http://www.hitech-projects.com/euprojects/amigo/
http://www.ist-daidalos.org
http://www.ict-persist.eu/

confidentiality and availability; context-based access
control; privacy policy learning; etc.

• Quality of context modelling, management and ex-
ploitation, including soft context and uncertainty in
context values and context inference rules.

• Context sensitivity, i.e. ability to support adaptation
of the provided services to the context of their users.

3. CREATION, STORAGE AND ACCESS OF
CONTEXT INFERENCE RULES

One challenge for CMSs is the handling of inference rules.
When and how they are created, stored and accessed are
important parameters to guarantee short response times of
a CMS.

3.1 Rule Creation
Next to a “manual” creation of CIRs by a human expert or
the adaptation of predefined template rules for an individ-
ual, there are approaches for automatic creation of Bayesian
inference rules. The process used to obtain both network
structure and parameters using a combination of expert know-
ledge and previous observations of the random variables is
referred to as learning.

Context information pertaining to a user of Smart Elec-
tronic Spaces may in general encompass a very large range
of human activities, sensor readings, information such as
calendars, as well as such data relating to other people; all
represented as random variables (RVs) in a very large BN.
Obviously it is impossible to include all sets of such RVs in a
representation used in inference, as the resulting BN would
be too large. For practical relevance it will be necessary
to impose boundaries on which RVs will be used to rep-
resent the information “around” her activity. These bound-
aries can come from constraints in the learning process (only
significant causal influence above a certain threshold will be
represented as a causal edge, nodes without a continuous,
undirected path from the output node will be removed), but
also be imposed by access limitations (context information
of other persons) and human expertise.

The information used for learning, the context history, is
also an important factor for learning. Usual learning meth-
ods like the one described in [4] are learning influences from
a complete context history, i.e. all high-level context in-
ference values have to be known and present in the his-
tory before incorporating them into rules. This implies that
they have to come originally from human interactions with
the context history, defining their current status on specific
context attributes. To enable data collection among dif-
ferent users, a common understanding of existing context
attributes have to exist which encompasses the existence of
a common context ontology defining the existing context
types. Also algorithms for learning from incomplete data
sets (algorithms from the class of (structural) expectation
maximization (EM) introduced in [8]) will not be able to
give semantically meaningful and therefore usable names to
new learnt context nodes.

Taking into account these considerations, it is necessary
to restrict the scope of learning as far as possible, e.g. by

incorporating knowledge from other already existing rules
from different users or individualising templates created by
human experts. But in addition the limitations on the learn-
ing algorithms have to be applied, their efficiency and per-
formance have to be exhausted to achieve best results with
shortest delays.

Rule Creation can be triggered either on demand, or by
using independent mechanisms. Furthermore the update of
existing rules can also be based on regular processes or by
incremental incorporation of new knowledge. The decision
has to take into account the system’s response time, but also
the quality and up-to-dateness of the responses.
As a conclusion, a CMS will have to provide all rule cre-
ation and update processes. On-demand rule creation adds
significant delay on a response, given that learning (even if
only roughly) takes some seconds, but is necessary as delay
may still be better than giving no response at all. It can
remain for the requester to decide if it continues after some
seconds or disregards the answers and proceeds immediately
without that information. Incremental rule updating keeps
all existing rules always up to date at the cost of perma-
nent computation load in the background and cannot create
any new rule which is necessary. So even if hardly flexible,
resource intensive and not need-oriented, also regular batch
processes for learning rules will be necessary to discover new
rules. To reduce the computational burden, these processes
have to run at typical low-usage times of the systems, for
instance during the nights.

CMS

Inference Manager

CIR Updating

CIR Access

CIR Deletion

CIR Storage

CIR Processing

CIR Creation
manual

External provider

Automatic learning

Adapting Templates

external internal

Context
Broker

Context
Source

Manager

Context
DB

Figure 2: Lifecycle of CIRs in a CMS

3.2 Rule Storage and Access
Once rules are learnt, also their storage and access has to be
managed efficiently. There are two options:

(1) Inside the CMS: High-level context inference depends
very much on individual persons (e.g. situations where
you don’t want to be disturbed differ significantly),
so personalised versions of each rule (specified by the
outcome context information) have to be stored. This
would cause intensive load on a centralised back-end
server in a large scale ubiquitous computing system
given that every user has tens of such rules. It is still
manageable though with today’s replication and load

balancing systems, keeps the information synchronised
and allows for access from everywhere. If the CMS
is not deployed in the back-end, but on the user’s
mobile device itself, bigger synchronisation problems
arise. Mobile devices are resource limited, may be
used by different users and can group and ungroup
dynamically with other mobile devices. A consistent
state is more difficult to achieve, but users can bene-
fit from reduced communication and higher privacy, if
their personal settings are only local.

(2) Outside the system: As an alternative, rules can also
be out-sourced. They can be represented as services
that firstly register with the CMS as context consumers
for the input information and secondly also register as
context sources that feed the outcome of the inference
back into the system. The deployment of such services
can be independent of the CMS. Access control, pri-
vacy protection and the integration with the history
of context for rule updating is more difficult however.
Also the control of the CMS over execution and update
is reduced. A positive option with this approach is the
possibility to incorporate formerly unknown rules that
may be provided with third party services.

Subsuming we can say that it is still preferable to store the
rules within the context management system. Some flexi-
bility is sacrificed for higher control and by that up-to-date
rules, guaranteed privacy protection and system immanent
access control. Third party inference rules still can be offered
by approach (2). Within approach (1), a combination of the
centralised and user-centric approach is probable. To have
the necessary rules on the local devices reduces unnecessary
remote requests, but probably cannot have all possibly nec-
essary information. In these cases the best option is to have
a back-end based system as fall-back solution. The resulting
integration of CIRs in a CMS with its life cycle is shown in
Figure 2.

4. INTEGRATION OF INFERENCE WITH
CONTEXT MANAGEMENT SYSTEMS

Once a solution about the maintenance of the inference rules
has been found, it has to be assured that also the infer-
ence process is running as fast as possible and scheduled ef-
ficiently, i.e. that inferred context information is sufficiently
current, but also to avoid unnecessary resource consump-
tion.

4.1 Bayeslets: a way to reduce inference time
The inference complexity NP-hard of Bayesian inference is
determined in the end by the number of nodes in the net-
work and the size of the conditional probability tables (CPT)
associated to the nodes. The size of the CPTs in turn is in-
fluenced by the number of parents, i.e. the number of edges
and the number of states, every node can have. Hence we
have to reduce the complexity in all parameters:

(1) Number of nodes in the Bayesian Network

(2) Number of values per node

(3) Number of edges per network

As already indicated in section 1, we have developed a con-
cept based on the afore mentioned “Bayeslets” that can re-
duce the inference time by improving all three factors. Fol-
lowing the principle of divide & conquer, a Bayeslet consists
of small stand-alone BNs where nodes can be assigned the
functionalities Input and Output Node that serve to dynam-
ically connect them to each other if required (for more in-
formation see [7]). Combining these Bayeslets based on an
entropy, that only lets connect other Bayeslets that provide a
significant win in information and certainty, keeps the num-
ber of random variables involved in the inference process at a
minimum – reducing parameter (1). Even distributed infer-
ence becomes possible if different Bayeslets can be evaluated
on different devices. Furthermore it is a working concept for
accessing different users’ context information in a controlled
way.

Parameter (2) will be reduced by a dynamic reduction of
value ranges based on an entropy that selects the currently
relevant values on a personal basis and adapts quickly to
changed settings. Details on this procedure will be pub-
lished shortly. Appropriately configured learning of Bayeslet
inference rules as described in subsection 3.1 moreover can
easily limit the number of edges created in a BN, more pre-
cisely the number of incoming edges per nodes and thereby
parameter (3).

A question to be further investigated on is about the size
of a Bayeslet and the separation of complete causal infer-
ence networks into Bayeslets. Most probably this separation
will have to incorporate human expert knowledge to a large
extend like in section 3.1. Although some theoretical limi-
tations can be incorporated, e.g. no d-separated nodes [15]
should be contained in a single Bayeslet. Sensors can be
represented in a single Bayeslet, so that its measurements
can be reused for different inference rules or even can be
combined with other sensors to increase certainty about the
represented concepts. We expect each Bayeslet to contain
between n ∈ [5, 10] random variables with not more than
p ≤ 3 (< n) parent nodes, where not more than s ≤ 5 rel-
evant states per random variable are necessary. This still
encompasses huge CPTs with sp+1 = 54 = 625, but without
these reductions the CPT size and the inference time would
be far worse.

4.2 Inference Scheduling
Such Bayeslets should never be called by the requester it-
self. It should be transparent to him, if the information
is inferred at all or if it was stored directly by a context
source. Consequently the CMS is receiving all requests and
forwards them to the context inference system if necessary,
i.e. if no appropriate current information is available in the
CMS. The easiest way to have always the current informa-
tion stored in the database, is to permanently evaluate the
inference rules, but this results in unnecessary evaluations
and lots of storage processes that will not have been used
before they are overwritten.

The other extreme is to initiate inference only on request,
as shown in Figure 3 – which is problematic, as response time
increases and more important: it would eliminate the option
to register for context updates on high-level context. Hence
preferences, proactive service invocation rules or other in-

Requester CMS Inference

Request
Context

Requested
Information

Forward Request

Requested
Information

Request Input

Retrieve CIR

Figure 3: Message Sequence Chart: context infer-
ence on demand

ference rules could not be based on them. To enable such
context subscription, continuous inference based on the up-
date of the requested rules’ input nodes has to be offered.

To avoid any continuous inference, but enable subscrip-
tion, the only viable solution would be to change the sub-
scription in a subscription for every input-node of the respec-
tive inference rule. As soon as any of these events occurs the
requester would be notified and can request on-demand in-
ference of the rule. On the other hand this is not efficient
with regards to CPU consumption if more requesters regis-
ter for the same rule. Moreover response time is worse than
with continuous inference.

In order to avoid unnecessary evaluation, another time
a hybrid solution will perform best. No rule that was not
explicitly requested should be evaluated continuously, but
as soon as it is requested it should be evaluated. Not on a
time based regular basis, but on necessity, i.e. depending on
the input information, like Figure 4 shows.

Requester CMS Inference

Subscribe for
Context

Request & Receive

Context Information

Forward Event

Process
Request Input

Receive Event

notify Store outcome

Figure 4: Message Sequence Chart: continuous con-
text inference

Like that we can guarantee for the always up-to-date infor-
mation. A remaining question however regards the storage
of the continuous inference outcome. It may be either re-
turned directly to all subscribers or be saved in the CMS.
The former is neglecting the needs of on-demand context
consumers that could also benefit from this already per-
formed evaluation, the latter could cause problems with the
up-to-dateness of information, if the CMS detects available
context information and does not cause re-evaluation for a
new on-demand request. Concluding, storage in the CMS is
preferable, but this information has to be marked as inferred
and assigned with a measure of up-to-dateness.

4.3 Update Frequency
A remaining problem with the compromise solution pro-
posed above is an estimation of the update frequency of
an inference rule finference, that depends on the update fre-
quency of its input information inputi, finputi . To always
have the most up-to-date information, the following equa-
tion holds:

max
i

(finputi) ≤ finference ≤
∑

i

finputi

If there is one input information coming from a sensor with
frequent measurements (e.g., an Inertial Navigation System
(INS) provides measurements in the order of 100 Hz) this
would cause so frequent rule evaluation that storage and in-
ference only may take a few milliseconds. If the relevancy
of this inference is not too high, this would be a waste of
resources. On the other side there are already cases of in-
ference, e.g. the estimation of hazardous situations in cars,
where the prediction frequency has to be higher than the
update rate of input sensors.

Connected to such considerations, we also have to ask:
would sensors store data with their rate of 300 Hz or more
in the Context DB? On the one side no, to reduce costs and
resource consumption, on the other side yes to allow process-
ing of the raw data by other interested services. Probably, a
good solution is to abstract from the sensor itself by means
of Bayeslets. The concept represented by the sensor then
can already be discretized, its values partitioned to mean-
ingful, semantical rich states. These states would change
less frequently though still provide all the input necessary
for other applications. We can assume that safety critical
applications bring along their own sensors where they can
access the raw measurements.

All in all we learn that the necessary update frequency
per context information depends on the context information
and its use case. It will not be possible to completely ab-
stain from making use of expert knowledge or human made
ontologies providing this information.

5. CONCLUSIONS AND OUTLOOK
In this paper we have discussed five questions regarding the
integration of CIRs in CMSs:

1. When and how should CIRs be created?

2. Where should they be stored and how accessed?

3. How can inference time be reduced?

4. How has inference to be scheduled or triggered?

5. When has inference to be updated based on its input?

Question 1 requires a combination of batch learning pro-
cesses and incremental learning, applying scope restrictions
with algorithmic and automatic means, as well as with the
help of human expertise. Storage of the resulting CIRs,
question 2, should be inside the CMS, on mobile devices as
far as possible, but backed up in the back end. A promising
approach for question 3 is the Bayeslet concept described
in section 4.1, question 4 requires a hybrid solution of on-
demand and continuous inference with results stored back
into the CMS under appropriate meta information. For
question 5 finally, we propose not to store high-frequent raw
sensor measurements in the CMS, but already semantically
enriched, less volatile information that is valuable for many
purposes.

As the next step, these assumptions will have to be verified
in a realistic evaluation of a context management systems,
as it is developed in the project ICT PERSIST. Interesting
input to be expected is also about the kind of user interac-
tion with a context aware system on mobile devices, which
will be necessary to incorporate expert knowledge.

Acknowledgement
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement no. 215098
of the Persist (PERsonal Self-Improving SmarT spaces) Col-
laborative Project.

6. REFERENCES
[1] G. D. Abowd and B. N. Schilit. Ubiquitous computing:

the impact on future interaction paradigms and HCI
research. In CHI ’97: CHI ’97 extended abstracts on
Human factors in computing systems, pages 221–222,
New York, NY, USA, 1997. ACM.

[2] M. Angermann, P. Robertson, and T. Strang. Issues
and requirements for Bayesian approaches in context
aware systems. In LoCA, pages 235–243, 2005.

[3] G. F. Cooper. Probabilistic inference using belief
networks is NP-hard. Technical Report KSL-87-27,
Medical Computer Science Group, Knowledge Systems
Laboratory, Stanford University, Stanford, CA, May
1990.

[4] G. F. Cooper and E. Herskovits. A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 09(4):309–347, October 1992.

[5] P. Dagum and M. Luby. Approximating probabilistic
inference in Bayesian belief networks is NP-hard.
Artif. Intell., 60(1):141–153, 1993.

[6] M. R. Ebling, G. Hunt, and H. Lei. Issues for context
services for pervasive computing. In Proceedings of the
Advanced Workshop on Middleware for Mobile
Computing, Heidelberg, Germany, 2001. Springer.

[7] K. Frank, M. Röckl, and P. Robertson. The Bayeslet
concept for modular context inference. In Proceedings
of UBICOMM08, Valencia, Spain, 2008. IEEE
Computer Society.

[8] N. Friedman. The Bayesian structural EM algorithm.
In In UAI, pages 129–138. Morgan Kaufmann, 1998.

[9] M. R. Garey and D. S. Johnson. Computers and
Intractability : A Guide to the Theory of
NP-Completeness (Series of Books in the
Mathematical Sciences). W. H. Freeman, January
1979.

[10] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An
ontology-based context model in intelligent
environments. In In Proceedings of Communication
Networks and Distributed Systems Modeling and
Simulation Conference, pages 270–275, 2004.

[11] K. Henricksen, J. Indulska, and A. Rakotonirainy.
Modeling context information in pervasive computing
systems. In F. Mattern and M. Naghshineh, editors,
Pervasive ’02: Proceedings of the First International
Conference on Pervasive Computing, pages 79–117,
London, UK, 2002. Springer-Verlag Berlin Heidelberg.

[12] T. Kindberg, J. Barton, J. Morgan, G. Becker,
D. Caswell, P. Debaty, G. Gopal, M. Frid,
V. Krishnan, H. Morris, J. Schettino, B. Serra, and
M. Spasojevic. People, places, things: web presence for
the real world. Mob. Netw. Appl., 7(5):365–376,
October 2002.

[13] F. Klan. Context-aware service discovery, selection
and usage. In Proceedings of Workshop Grundlagen
von Datenbanken 06, pages 95–99, 2006.

[14] C. Lutz, U. Sattler, and L. Tendera. The complexity
of finite model reasoning in description logics. In 19th
International Conference on Automated Deduction
(CADE-19), 2005.

[15] J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

[16] S. Pietschmann, A. Mitschick, R. Winkler, and
K. Meißner. Croco: Ontology-based, cross-application
context management. Semantic Media Adaptation and
Personalization, International Workshop on, 0:88–93,
2008.

[17] C. Pils, I. Roussaki, T. Pfeifer, N. Liampotis, and
N. Kalatzis. Federation and sharing in the context
marketplace. In LoCA, pages 121–138, 2007.

[18] O. Riva. Contory: a middleware for the provisioning
of context information on smart phones. In
Middleware ’06: Proceedings of the
ACM/IFIP/USENIX 2006 International Conference
on Middleware, pages 219–239, New York, NY, USA,
2006. Springer-Verlag New York, Inc.

[19] O. Riva and S. Toivonen. The DYNAMOS approach to
support context-aware service provisioning in mobile
environments. J. Syst. Softw., 80(12):1956–1972, 2007.

[20] S. Xynogalas, M. Chantzara, I. Sygkouna, S. Vrontis,
I. Roussaki, and M. Anagnostou. Context
management for the provision of adaptive services to
roaming users. Wireless Communications, IEEE,
11(2):40–47, Apr 2004.

	Introduction
	Requirements for future Context Management Systems
	Creation, Storage and Access of Context Inference Rules
	Rule Creation
	Rule Storage and Access

	Integration of Inference with Context Management Systems
	Bayeslets: a way to reduce inference time
	Inference Scheduling
	Update Frequency

	Conclusions and Outlook
	References

