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Abstract

The DLR project Virtual Satellite will provide presses for maintaining a repository of SMP2 comptmehhese
components' behaviour shall be modelled using phigal editor rather than directly coding sourcewe regard it to
be more applicable for system modelling. The matiell then be transformed into an SMP2 model, deoto benefit
from platform and simulator independence.

This paper discusses the transformation from differmodel representations into a corresponding Siiiegel
regarding three specific modelling approaches. Wes first approach, the tool chain of Simulink wiieal-Time
Workshop and MOSAIC provides a working transforimatifrom Simulink to SMP2 models. Regarding the
transformation, some effort from the modeller igamed. Next, the open object-oriented language Moal@romises
advantages like better reusability and versatilityols like Dymola provide a graphical editor. Botich development
is necessary since no transformation into SMP2 tedues been developed yet. Last, the SMP2 C++ Eggymapping
and directly coding the component's behaviour glesithe technically simplest way. The effort foingseach of these
approaches will be compared using an exemplary mode

1 INTRODUCTION

In the DLR Virtual Satellite project, SMP2 model® aised for simulation. Engineers develop the mbédlaviour.

Reference [1]. It is to manually provide the comtim some automatically generated skeleton code.tiBe currently

supported language C++ seems unfitting for directi@tling of concepts of the engineering domainis ltoo generic

for the task. It doesn't support domain specifinagpts and instead burdens the engineer with uaedetaoncepts and
constraints. Engineers may not be adequately tlainghe language's specifics. They additionallgchéo concern

themselves with the SMP2 infrastructure. Also, gsiwo sources of code, i.e. the automatically gateer and the
hand-crafted code, introduces unnecessary diffesuih code handling. Reference [1] therefore psegahe usage of
different approaches for behaviour descriptiorhimlbng term.

Dynamic systems can be modelled more intuitively dmgphical representations. Modelling environmelésng
specialised in that task seem much more appropgoateehaviour description. Simulink and Dymola as@amples of
widely adopted tools. They use block diagrams a$rect representation of dynamic systems. Modefs lma easily
created or refined. Fig. 1 shows an example bloagrdm created with Dymola. Engineers often areaaly familiar
with these programs and the concepts they use. Theytherefore easily and quickly define the behaviof new
systems and can generate simulation results. Earerkrgely limited to the engineering domain.
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Fig. 1: Example model depicted as block diagrafymola.
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For the specific modelling and simulation enviromin&imulink, the Netherlands National Aerospace dratory
(NLR) developed the program MOSAIC [2], [3]. It mides a transformation from a Simulink model intM=
models. The process is described in detail in$8hulink is a widely used commercial tool that islMadapted in the
engineering community. The supplementary tool Réale Workshop (RTW) generates configurable and ablgs
simulation code. MOSAIC uses this code for generatif SMP2 models. The current MOSAIC version pehds on
Code of a specific version of Real-Time Workshop [ewer versions are available, leading to issuits Simulink
model compatibility.

We describe a general process for transformingrtbéel representation used by these programs infeMiP2 model.
In principle, this process could be applied to fyoany graphical modelling tool. The long term gidslto use this
process to create a library of reusable, qualisyigesi SMP2 models independent of the tool usethémtelling.

2 GENERAL TRANSFORMATION PROCESS

Creating an SMP2 component starts with definingMD& Catalogue. In short, the Catalogue describesrtodel
structure. Using the SMP2 Language Mapping, seddbilerplate SMP2 model code (also called wragpele) can
be created from a Catalogue automatically. Thiseghodde already takes care of all necessary intansathat can be
deduced from the model structure given, e.g. aeadind publication of the model’s state variabtegjstration with
the simulator, etc. Only the implementation of thedel’s EntryPoints is left to the user. RegardlEfsthe means used
to implement these EntryPoints, compiling the manbele yields an SMP2 binary executable.

The model behaviour has yet to be defined by pingithe EntryPoint implementation. Instead of dikeproviding it
as hand-coded C++ code, we explain how to use phiral modelling tool for this purpose. Any grapior non-
graphical modelling tool that creates C/C++ codal@¢de used.

The general process is depicted in Fig. 2. Thetemmodelling language Modelica [4] is used asexific example of
a graphical model representation. Given an SMPal@gte that specifies the model structure, a Modeihodel
template has to be created. This can be automated model-driven tools. The obtained Modelica niacigially only
contains structural aspects of the model. An eragim@uld now define the model’'s behaviour easilings graphical
modelling tool like Dymola. Doing so results in aneplete Modelica model ready to simulate. A Modelaompiler
can then generate C++ model code from it.

When generating code from models, a common paiteta store recurring tasks and code identicallt@enerated
models in a separate stack of code, called ruriibmary. The model-dependent code parts form thdehoode. Since
the basic execution pattern is the same for allgtgpdt can be found in the runtime library. Thedmbcode often
consists of several well-known functions with daetared semantic. Those functions are called by timime library
during execution.

It would be nice to just call these model code fioms in our own code and let that code be exechied set of
EntryPoints from an SMP2 simulator. However, inartb satisfy the dependencies on which the moaldt celies, we
also would have to reimplement the initialisatiamd aexecution patterns of the runtime library. S@dems best to
modify the runtime library itself. Given accessth@ runtime library, its main execution code canrdgrouped. The
new code would then expose a limited set of basinctfons, e.g. “Calculate_Next Simulation_Step” or
“Initialise_Model_Variables”. These functions arelte called by one dedicated SMP2 EntryPoint eachsaheduled
according to their original execution logic. Theeention logic from the original runtime library muse understood
and implemented in the SMP2 Schedule. Of courderdiit tool's runtime libraries are different fraach other and



thus might require different approaches to the ahaf EntryPoints. Yet all tools using fixed-steglvers are very
likely be dividedinto an initialise section, one main loop statetraamd a finalise section.

The model variables have to be published usingSi?2 interface. Typically all relevant variable® accessible
through a global data structure. This structure ldidae declared in the runtime library code, allogvifor an easy
model-independent publication mechanism. Howevetaintiation of the variables is model-dependedtwould take
place in the model code. This indicates that ceritaiormation might only be obtained by lookingtaé model code.
This would require parsing each generated mode¢ ¢dodsome way, and so increasing version dependandyalso
susceptibility to errors.

Continuing the process in Fig. 2 results in SMPgpgliant code. In that code the actual calculat®mone by the
model code part from the Modelica compiler, just@xed by a set of wrapping EntryPoints. The medehbles get
published through the SMP2 interface as well. Cdingpimodel and runtime code yields an SMP2 exedeatab

In order to simulate the executable, SMP2 Assemably Schedule documents are typically generatededls They

separate model instantiation and execution infaionafrom the model structure in the Catalogue. Hssembly is

model specific. It describes model instances iniw@ues for their variables. Yet the Assembly'sucture can be
constructed from the Catalogue, e.g. by a meta-hioatesformation. The Schedule specifies how Ergigf2 are to be
scheduled. Its structure can be expected to beahee for all models since all models expose theedantryPoints
defined in the runtime library just before. But daging on the desired simulation settings, eachefi®dchedule may
be parameterised differently, for example when shapdifferent simulation step sizes.

This simple approach of regrouping the executiathecand wrap it with EntryPoints works with fixe@ptsizes. That is
fine for some environments, e.g. OpenModelica. iBréstricts simulation settings for others, e.gn@ink. Simulation
code that calculates on variable step sizes migkie la more complex execution logic. Then a moréistipated
approach than ours will be needed.
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Fig. 2: General transformation process using Madedis graphical modelling tool.
3  IMPLEMENTATION USING OPENMODELICA

In order to show an example for the general mechamiof the transformation process, we had to chadsel working
with a specific graphical model representation. ngsBimulink for SMP2 model creation is already aeek by
MOSAIC. We chose Modelica. Modelica is a modelllagguage for complex physical systems, supportinjgat-
oriented and component-oriented modelling paradigdtsit provides advantages that may be well suited real
project's demands.

There are a few Modelica compilers available. Thesthadvanced of them is Dymola, completely suppgrthe
Modelica language specification and featuring pdwesolving capabilities. But its runtime librarpgrce isn't easily



accessible for modification. All source files prded with the distribution rather seem to contrittotenodel code only.
The actual runtime library comes as a binary witrsmurce.

This was the resean why we instead chose the nmoglelhd simulation environment OpenModelica. Wistributed as
Open Source under the Open Source Modelica ConsortfDSMC) general public licence [6]. It features @avn
Modelica compiler called OpenModelica Compiler (OM]. The compiler has good solving capabilitiggugh still
being under development. The OMC translates a Momletodel into C model code. This translation imesl substeps
like flattening the inheritance structure, resofyimclusions, sorting and optimisation of equatiofle functions of
this OpenModelica model code are then executedhbyGpenModelica runtime library. The Open Souradime
library is accessible for manipulation.

It turned out that execution in the OpenModelicatime library can safely be separated into theghrasic functions
Initialise, Calculate Next Step and Finalise. Doing so leaves behind a main function that fasls Initialise, then
Calculate Next Step in a simple loop statement and in the end ddlhslise. Next, this execution logic is implemented
with SMP2 mechanisms.

In order to execute th€alculate Next_Step method, an EntryPoint is defined in the Catalogle SMP2 Language
Mapping automatically declares the EntryPoint i@ 8MP2 boilerplate model code. Its implementationps/ consists
of calling Calculate Next_Step. It is scheduled in a regular interval as cyclimdation time event. Each cycle then
calculates a major simulation time step by callimg OpenModelica code function. So the cycle tirag to match the
simulation step size configured in the OMC compiétings. OpenModelica uses fixed steps for majee steps only.
With this the loop statement logic has been impleed The other two routines have to be called amma model
instantiation and finalisation. So, we didn’'t implent them as EntryPoints, but let them be calledctly from the
related SMP2 instanciation/finalisation code.

All model variables are represented in the OMC rhodde. Their attributes are listed in a globabdsttucture holding
all simulation relevant data. No assumptions altlbatorder of the variables can be made. The pasifoa specific
variable has to be determined by searching its n&agable names are given simply in a “model.subetwariable”

dot notation, allowing for using the identifiersfided in the Modelica model. In order to publiste thariables to the
SMP2 simulator, their memory locations have to teeased. This requires proper conversion of the types used in
SMP2 and OpenModelica code. For our simple dematistr of applicability we published only few choseariables

manually. Their values are assigned to separate2SMRables with each simulation step. A more gehsolution has
to be developed later.

SMP2 boilerplate code, OpenModelica model code eseetf-written interface code, and the modifiedtine library
are then compiled, producing a binary executabjeatbhSMP2 Assembly and Schedule are currentlytedemanually
using the Model Integration Environment (MIE) oktiSIMSAT simulator [8]. The creation process haoab be
automated in later development.

Exemplary Model Transformation

In order to show an actual transformation exampglagithe above process, a simple model is usezhldtilates the
remaining charge of a battery. Its input sigmé the electric power used by the connected coasaints output signal
y is the electric energy remaining in the batterg. B shows the SMP2 Catalogue created for thateingpkcification.
At the moment, this is done manually. It containe SMP2 Fields, representing the input and outfmtadsu andy as
well as the EntryPoint for the simulation loop.

= mcatak:-gue Battare
E;« Document Smp
= {} Mamespace Battare
= [-a Model Batterie
@ Entry Point Caloulate_Next_Step
[+ @ Field u (Float6d)
[+ @ Field v (Floatd)

Fig. 3. SMP2 Catalogue of the exemplary battery ehod



Let Fig. 4 be an example of the Modelica templateleh that is to be generated by transformation ftbenCatalogue
document.

nodel Batterie
Model i ca. Bl ocks. I nterfaces. Real | nput u;
Model i ca. Bl ocks. I nt er faces. Real Qut put v;
end Batterie;
Fig. 4. Exemplary Modelica template model.

Let Fig. 1 be an example implementation of this glte model. For implementation the graphical miiatgltool
Dymola was used. The model’s underlying Modelicaledisource code is shown in Fig. 5.

nodel Batterie
Model i ca. Bl ocks. I nterfaces. Real | nput u;
Model i ca. Bl ocks. I nt erfaces. Real Qut put v;
Model i ca. Bl ocks. Sour ces. Const ant const (k=0);
Mbdel i ca. Bl ocks. Mat h. Max max;
Model i ca. Bl ocks. Mat h. Gai n gai n(k=-1);
Model i ca. Bl ocks. Conti nuous. | nt egrat or integrator;
Model i ca. Bl ocks. Mat h. Max max1;
equati on
connect (u, nmax.ul);
connect (const.y, max.u2);
connect (max.y, gain.u);
connect (gain.y, integrator.u);
connect (i ntegrator.y, maxl.ul);
connect (const.y, maxl.u2);
connect (max1.y, Yy);
end Batterie;
Fig. 5: Exemplary implementation for the Modelicadel.

For the simulation run, an input signal is spedifés shown in Fig. 6. We chose a sine signal siralews alternating
positive and negative power behaviour. Positive grosonsumption is expected to lead to decreaséebattery
energy. On the other hand, negative consumptioridvMead to energy stagnation. The battery is piefyomodelled
simple. It is non-rechargeable and does not shéavferences upon a negative consumption or upamiggtying.
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Fig. 6: Environment used for simulating exemplaajtéry model.

Using the OpenModelica Compiler, the model soummgecfor this simulation setting is generated. W\s® areate the
boilerplate SMP2 model code using the SIMSAT Mobhégration Environment (MIE). The model source ead
compiled together with the modified runtime librargsulting in the SMP2 compliant binary executatfi¢he battery
model. Assembly and Schedule are also created nafoiathe time being. The Assembly simply inifsds the model
and its variables. The Schedule schedules theCalmilate Next Sep EntryPoint according to the simulation settings.
Thelnitialise andFinalise functions are called explicitly from SMP2 Initisdi and Cleanup code parts. That, too, has to
be automated in later development.

Given these steps, the model can now be simulaitdan SMP2 simulator. Fig. 7 shows the SIMSAT outpf the
simulation run. The expected behaviour can be @bderCurrently a few problems remain with the Oped®lica
output in SIMSAT. One obvious inconsistency is theve starting at 0 and switching to 10 at thet firme step.
Apparently this is an initialisation problem. Tharee shows that OpenModelica stops processing 4fter which was



the stop time defined for OMC. In order to providelonger simulation run, this parameter has to pecified
accordingly.
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Fig. 7: Simulation of exemplary model in SIMSAT
4 COMPARISON

Ease of modelling is now compared for the standareét approach and the graphical modelling approaceneral.
Concerning two graphical modelling approaches ithisn surveyed what steps need be taken for theonated
employment as needed in DLR's Virtual Satellitejggb These approaches are using MOSAIC with Ra@akT
Workshop or OpenModelica.

All approaches use the SMP2 C++ Language Mappingcifeation of SMP2 boilerplate model code. An émgst
implementation of the Language Mapping is for exiEngoovided by SIMSAT. Directly specifying modelhzsiour in

the created model code using C++ is therefore ébbnically simplest solution. No further tools fautomation or
transformation are needed, provided that the erginare adequately familiar with the C++ langu&ethe one hand,
they then have maximum freedom of choice for thmiplementation. On the other hand, they are comdierwith

language concepts not related to the actual engimgedomain. More difficulties are introduced byxinig automatic
and hand-crafted coding concepts. They have to dadt dvith. Thus we regard system modelling using @w+

approach as comparably difficult.

Engineers often are familiar with graphical modwglifrom using tools like Simulink or Dymola. Therspecific
engineering paradigms are available for modellifpus model errors can be expected to be restritiethe
engineering domain. Many simulation environmentso afeature automated code generation already. e c
generation process just has to be modified for SM&formity. Unfortunately, this may introduce rigdtons on
usable model features and simulation features/tiegun possible modification of preferred modedli approaches.
Yet we regard this approach as comparably easy.



Using Simulink as graphical modelling tool includesie generation with the Real-Time Workshop (RTWis code
generation process is automatable with scriptsT[Bg subsequent MOSAIC transformation is also aatabie through
command line scripting. But both RTW and MOSAIC imsp model restrictions for their transformatiorpsté work
[3], [9]. Although MOSAIC is compatible with a sgic RTW version, a variety of Simulink and RTW s&ns are
available so that already developed models maybaotompatible. Thus, existing Simulink models mayéehto be
adapted to work with the release needed by MOSAl@ther alternative might be an update of MOSAKelit.

In order to fully automate the process from Simkiimodel to executable, some development efforteisded for
devising a chain of automatic transformation steps.

Modelica is more and more used for modelling in émgineering domain. Being a rather modern, oljeetated

language that supports model-driven concepts,ldwal for better model separation, model reuse dms teasier
development. The OpenModelica Compiler createslsitiom code. The process is automatable throughtamd line

scripting. Unfortunately no SMP2 transformation ha&en available yet for OpenModelica code. But hewsd that
small alterations of the runtime library source ¢aad to SMP2-compliant code. Although the prodess yet to be
greatly improved and evaluated. OpenModelica daesrpport the full Modelica standard yet. So it 6sps model
restrictions, too. Since being under developmeantjoesn’'t support the complete Modelica languageci§ipation

currently. There is development needed for relialgring the runtime library code in regard to @x@n controlled
by EntryPoints and publication of relevant variablalso, the generation process for the SMDL doaséssembly
and Schedule needs to be developed and the Opetitéo@empiler code generation must be automated.

5 CONCLUSION

Graphical modelling provides for easier and safsdviour description than manual coding. We idettifa general
process for transformation of graphical model repngations into SMP2 models. We then used Openhbadas an
example of how to implement this general proceser@fore OpenModelica’s runtime library had to benipulated.
We generated an SMP2 executable from the Modelm@efcode. This executable was successfully simdlasing a
fitting set of Assembly and Schedule documents.

Integrating the fully automated OpenModelica applhoeequires more development effort than the exdsMOSAIC
approach. But Modelica offers promising advantdgeshe modelling process itself. Also it makesuacl adaptation
of version changes in the compiler possible.
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