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The flow over an OA209 airfoil subjected to a sinusoidal pitching motion under dynamic
stall conditions is investigated experimentally by means of time resolved particle image
velocimetry (TR-PIV) and surface pressure measurements. Dynamic stall is distinguished
by the formation and convection of large scale coherent structures and a delay in massive
flow separation. A vortex detection scheme based on an identification function derived
directly from the velocity fields is adopted to identify vortex cores. The combination
of global time resolved imaging and an automated vortex identification algorithm allows
for the investigation of the spatial and temporal evolution of vortical structures within a
single oscillation. Furthermore, the mechanisms associated with the dynamic stall delay
are considered.

I. Introduction

Dynamic stall refers to the stall process of an airfoil subjected to an unsteady change in angle of attack,
such as a constant pitching motion or a sinusoidal oscillation. The dynamic stall phenomenon has been

the subject of numerous investigations over decades1–4 and it remains an object of scrutiny for its potential
in improving the manoeuvrability and performance of rotary-wing aircraft.

The dynamic stall process comprises a series of complicated aerodynamic phenomena and it is accompa-
nied by a delay in the onset of massive flow separation to higher angles of attack compared to quasi-steady
stall onset. The promiment features within the dynamic stall life cycle associated with an oscillating airfoil
are consecutively boundary layer separation, the formation and convection of large scale coherent structures,
massive flow separation, and finally flow reattachment. Analoguously, Shih et al.5 classify the unsteady flow
development over an airfoil pitching-up at constant rate into four successive stages, i.e. a vortex formation
stage, a vortex convection stage, stall onset and a stalled stage.

Separation of the boundary layer leads to the formation of a local free shear layer, which is then subjected
to a Kelvin-Helmholtz type of instability resulting in the formation of small-scale vortical structures. These
small structures quickly roll up into large-scale coherent structures, referred to as dynamic stall vortices.
Subsequent strong inviscid/visous interactions cause the primary stall vortices to break away from the surface
initiating stall. Stall onset is generally accompanied by a loss of lift and an increase of the negative pitching
moment. A detailed description of the mechanism causing the stall vortices to be pinched off from the
boundary layer can be found in Shih et al.6 and Doliganski et al.7 . The process of vortex formation and
convection results in a delay of stall to angles of attack larger than the static stall angle. During this period
of time the lift overshoot, which is another characteristic feature of dynamic stall, is produced. The stalled
stage is characterized by large scale vortex shedding and corresponding large fluctuations of the lift and the
pitching moment.

In order to sustain and to improve dynamic stall modelling and ultimatelly guide dynamic stall control,
profound characterisation of the basic features is necessary. Therefore, an investigation of the flow develop-
ment and vortex dynamics within a dynamic stall life cycle is desirable. From an experimental point of view
this requires global time resolved measurement techniques. This paper presents an experimental investiga-
tion of the unsteady flow field over an oscillating airfoil by means of time resolved particle image velocimetry
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(TR-PIV) and surface pressure measurement. Emphasis is placed on the spatiotemporal evolution of the
vortical structures that emerge with flow separation.

The investigation of vortices and vortex dynamics from experimental data remains a challenging task
due to the lack of an accepted definition of a vortex and the difficulty to quantify them. In the literature
several specific definitions have been proposed in this context8,9, 9, 10 . Due to the difficulty of defining
vortices unambiguously, different vortex detection criteria are available, each of them more or less adequat
depending on the specific problem. Comprehensive overviews of the diversity of vortex detection schemes
and their applications are provided by Jeong and Hussain11 and Cucitore12 . The objective in this paper
is not to debate on the adequateness of different vortex detection procedures, but to identify the algorithm
that is most suitable for the present application and to focus on the vortex dynamics.

The paper is organised as follows. In the first section the experimental set-up is described. The most
commonly used vortex identification schemes are considered in section III, along with the vortex centre
identification function adopted for this study. Subsequently, the results of the identification process will be
examined in section IV, with regard to the vortex formation, spatiotemporal evolution, dynamic stall onset
and delay.

II. Experimental Methods and Set-Up

Measurements were performed in the closed-circuit, low-speed wind tunnel at DLR Göttingen. The wind
tunnel had an open test section with a rectangular nozzle (0.7 m × 1.0 m). Free stream velocities up to 55
m/s can be reached. The airfoil model was an OA209 airfoil profile with a chord length of c = 0.3 m and a
span of 1 m. The carbon fibre model was equipped with 45 miniature unsteady pressure transducers chord-
wisely distributed on the suction and pressure side at the model mid-span. A hydraulic pitch-oscillation
set-up was arranged symmetrically outside of the wind tunnel test section and the model was oscillated
about its quarter chord axis by means of two hydraulic actuators operating in phase opposition. The model
motion was sinusoidal according to

α(t) = α0 + α1 sin (2πfosct) (1)

where α0 is the mean incidence, α1 the oscillation amplitude and fosc the oscillation frequency. For the
present study these three parameters were varied with α0 ∈ {18°, 20°, 22°}, α1 ∈ {6°, 8°}, and fosc ∈ {2.6 Hz,
4.0 Hz, 5.3 Hz}.

The surface pressures were scanned at approximately 6 kHz for about 15 s. Simultaneously three compo-
nent time resolved particle image velocimetry (TR-PIV) measurements were conducted in the cross sectional
plane at model mid-span. The TR-PIV system consisted of a frequency doubled Nd:YAG laser, which sup-
ports Q-switch frequencies up to 30 kHz and a pair of CMOS cameras with a 1024 px × 1024 px sensor,
operating at 3000 fps at full resolution. Series of 3072 PIV image frame pairs were acquired at 1.5 kHz
(3000 fps), corresponding to a measurement time of approximately 2 s. The cameras were mounted in a
stereoscopic set-up alongside the wind tunnel’s diffuser as schematised in figure 1. After mapping the views
of both cameras, the dimensions of the PIV measurement window were 284 mm by 214 mm and the spatial
resolution was 5.0 px/mm. The PIV images were processed using an interrogation window size of 24 px ×
24 px and a 50% overlap yielding a grid spacing of 12 px or 2.4 mm which is less then 1% of the chord
length. The resulting images were rotated into the airfoil reference system with the x-axis along the chord,
the y-axis along the span and the z-axis upward perpendicular to the chord, where the origin coincides with
the leading edge of the airfoil at model mid-span. The free stream velocity was U∞ = 50 m/s corresponding
to a Reynolds number Re = 9.2×105 based on the airfoil’s chord length and a Mach number Ma = 0.14.
The reduced frequency

k =
πfoscc

U∞
(2)

was k ∈ {0.05, 0.075, 0.10} for the data relevant for this paper.
The described test rig with the OA209 airfoil model was used in the past for unsteady measurements

in the transonic wind tunnel at DLR Göttingen13,14 . The latter has a closed test section and disposes of
adaptive upper and lower wind tunnels walls. Quick examination of the results obtained in the different
wind tunnels for like boundary conditions reveal a large influence of the open jet flow. The available wind
tunnel corrections for open jet flows15 are applicable only to fully attached flows. Unfortunately, no proper
corrections are available for unsteady flows.
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Figure 1. Schematic representation of the PIV set-up in the test section of DLR’s low speed wind tunnel.

III. Identification of Vortical Structures

The first step towards analysing the unsteady dynamics of the flow is the identification of the dynamically
significant, large-scale vortical regions contained in a given flowfield. The main existing vortex indicators can
be roughly divided into intuitive measures and methods based on the analysis of the velocity gradient tensor
∇u. The use of common intuitive indicators, comprising local pressure minimum, isovorticity surfaces and
closed or spiralling pathlines, might be inefficient or even fail for the detection of vortices in unsteady flows
or in flows with a large amount of shear12 . For this type of flows a vortex identification scheme should be
capable of identifying numerous vortices advecting at different speeds, providing Galilean invariance.

Three well known Galilean invariant vortex criteria derived from the velocity gradient tensor are the
Q-criterion introduced by Hunt et al.16 , the ∆-criterion of Chong et al.17 and the λ-criterion proposed by
Jeong and Hussain11 . According to the respective definitions vortices are regions where

Q =
1
2

(
|Ω|2 − |S|2

)
> 0, (3)

∆ =
(

Q

3

)3

+
(

det∇u

2

)2

> 0, (4)

λ2 (S + Ω)2 < 0, (5)

where S = 1
2

[
∇u + (∇u)T

]
and Ω = 1

2

[
∇u− (∇u)T

]
are the symmetric and antisymmetric components

of ∇u respectively, and λ2 is the second largest eigenvalue of the tensor S2 + Ω2.
However, these methods perform a local analysis of the flow field, while vortical structures are inher-

ently non-local phenomena. Hence, these criteria are not always adapted for the analysis of complex, highly
inhomogeneous flows, in particular when structures of various dimensions and strength are present. Fur-
thermore, vortex identification criteria based on ∇u are inadequate for application on experimental data,
such as instantaneous velocity fields measured with PIV, where measurement noise can severely contaminate
the derivatives. Another important issue arises when investigating three-dimensional vortical structures in
a two-dimensional measurement plane, where the detectability of a vortex is strongly affected when its axis
is not perpendicular to the measurement plane. This also applies for the present data where it is assumed
that the flow at the model mid-span is fairly symmetric, which permits the application of detection criteria
based on the two-dimensional geometry of the vector field.

For a given instantaneous velocity field the possible vortex cores based on the Q- , ∆- and λ2-definitions
(3)-(5) are determined and depicted in figure 2. The λ2-criterion seems to be the most suitable for this
application. Compared to the results of the Q- and ∆-criterion in the leading edge region, the λ2-criterion

3



U
∞

x/c

z/
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

x/c

z/
c

Q = 0

∆ = 0

λ2 = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

Figure 2. Instantaneous velocity field (left) and corresponding vortex contours determined with the ∇u-derived defini-
tions (right) at α = 25.9° on the downstroke (α0 = 18°, α1 = 8°, and k = 0.10).

is capable of distinghuishing between rotation due to pure shear and due to an actual swirling motion.
Nevertheless, none of the criteria allows for the detection of individual vortex cores. Therefore a non-local,
Galilean invariant procedure that does not require the computation of derivatives was chosen for this study.

S

xi

xj

θij

uj − ũi

xj − xi

Figure 3. Definition sketch for the com-
putation of Γ.

The alternative vortex centre identification algorithm used here is
based on a dimensionless scalar function Γ, derived directly from the
velocity field as was first proposed by Michard et al.18 . The function
Γ is defined as

Γ(xi) =
1
N

∑
xj ∈S

[(xj − xi)× (uj − ũi)] · n
|xj − xi| · |uj − ũi|

=
1
N

∑
xj ∈S

sin(θij) (6)

where S is a two-dimensional area around xi, N is the number of
points xj inside S, and n is the unit vector normal to the plane . The
velocity in xj is given by uj and ũi denotes the local velocity around
xi, which is the spatial average over a small surface surrounding xi.
The local velocity is taken into account in order for Γ to be Galilean
invariant. The angle θij is the angle formed by the vectors xj − xi

and uj − ũi as illustrated in figure 3. According to this definition,
Γ is a dimensionless scalar function, with −1 ≤ Γ ≤ 1, where the
location of possible vortex cores is determined by the local extrema of Γ and the direction of rotation is
given by the sign of the local extremum.

The possible vortex centres detected based on the calculation of Γ for the instantaneous velocity field of
figure 2 are presented in figure 4 together with the vortex cores determined with the ∇u-derived functions.
The circles and tringles indicate clockwise respectively counterclockwise rotating vortices. For all detected
vortex centres the conditions (3)-(5) are fulfilled, which demonstrates the effectiveness of the algorithm.
The remaining step towards investigation of the spatiotemporal evolution of the vortices is to trace their
trajectories over a time series of flow fields, herefore the velocity of the vortex centre within the reference
frame has been used to predict its future position and narrow the number of possible follow-up vortices.

IV. Results and Discussion

Due to the combination of global time resolved imaging and the vortex detection algrithm presented in
the previous section, the characteristic features of the dynamic stall process can be examined within a single
oscillation. With view to the present data, the unsteady flow development over an oscillation airfoil was
divided into different stages analogously to the classification of Shih et al.5 with regard to the flow over
an airfoil pitching-up at constant rate. A general description of the dynamic phenomena associated with
the different stages is attempted based on a sequence of instantaneous velocity and vorticity fields and the
corresponding airfoil surface pressure distributions. It will be focused on the separation mechanism, the time
scales associated with the different stages prior to stall, and the influence of unsteadiness on stall delay.
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Figure 4. Location of clockwise (•) and counterclockwise rotating (N) vortex cores (right) based on the calculation of Γ
(left) for the instantaneous velocity field of figure 2 (α = 25.9° on the downstroke for α0 = 18°, α1 = 8°, and k = 0.10).

IV.A. Dynamic Separation

The image sequence in figure 5 presents the prominent features of the dynamic stall life cycle. All images
were taken from within a single oscillation with α0 = 20°, with α1 = 8° and k =0.10. The dimensionless out
of plane component of the vorticity is colour-coded and only every fifth velocity vector is shown for the sake
of visibility. The position of vortices, as determined by the detection algorithm described in section III, are
indicated by circles for clockwise rotating vortices and triangles for the counterclockwise rotating ones. The
associated evolution of lift coefficient (Cl) and pitching moment coefficient (Cm) is depicted in figure 6. The
static air loads are presented by the gray lines, which reveal a static stall angle of attack αss = 21.4°. The
markers correspond to the snapshots in figure 5.

During the upstroke motion, until the airfoil reaches its static stall angle, the flow is attached to the
surface and there is a strong leading edge suction peak near the leading edge (figure 5(a)). When the upstroke
motion continues beyond the static stall angle, the adverse pressure gradient on the suction side increases,
causing flow reversal to develop from the trailing edge up towards the leading edge region (figure 5(b)-5(c)).
Clockwise rotating vortical structures develop in the shear layer at the interface of the reversing flow and the
external flow. Although the reversing flow layer extends along almost the entire chord, the boundary layer
stays close to the surface and the vortices are not ejected into the external flow. Due to the local thickening
of the boundary layer at the leading edge the flow is accelerated around the nose causing the suction peak to
grow. As a consequence the lift, since integrated from the pressure distribution, keeps increasing as well but
with a slightly different slope than below αss. The latter is due to the fact that the suction at the trailing
edge neutralizes when the flow separates. This differs significantly from the flow over a stationary airfoil,
where flow reversal implies departure of the boundary layer from the airfoil’s surface, leading to a dramatic
decrease of the lift and pitching moment.

The shear layer vortices in figure 5(c) are relatively small, of the order of the shear layer thickness. With
increasing time the Kelvin-Helmholtz type of instability of the shear layer grows, leading to the development
of larger individual vortical structures (figure 5(d)). These individual clockwise rotating vortices evolve very
quickly and tend to merge into much larger structures. This is clearly visible in figure 5(e) where multiple
vortices seem to roll up into a large dynamic stall vortex, resulting in a plateau in the surface pressure
distribution between approximately 0.2c and 0.5c on the suction side. The primary large-scale coherent
structures, referred to as dynamic stall vortices, consist of a combination of the rolled-up shear layer and
the remnants of several vortices generated by the shear layer instability. The part of the dynamic stall cycle
that starts with the onset of flow reversal and decribes the formation of the primary stall vortex is referred
to as the vortex formation stage.

Strong inviscid/viscous interactions between the stall vortices and the reversing flow layer near the airfoil’s
surface lead to the emergence of counter-rotating vortices that seem to push the primary vortices away from
the surface. Analogue to the formation process of vortices in the wake of a cylinder19 , this primary stall vortex
grows to saturation before being pinched off from the separated boundary layer that provides its circulation
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(a) α = 21.5° on the upstroke
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(b) α = 24.5° on the upstroke
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(c) α = 26.8° on the upstroke
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(d) α = 27.6° on the upstroke
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(e) α = 27.9° on the upstroke
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(f) α = 27.9° on the upstroke
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(g) α = 28.0° on the upstroke
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(h) α = 28.0° on the downstroke
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(i) α = 27.9° on the downstroke
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(j) α = 27.7° on the downstroke
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(k) α = 27.5° on the downstroke
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(l) α = 16.5° on the downstroke

Figure 5. Instantaneous flow fields with detected vortex cores (©: clockwise, 4: counterclockwise rotating) and the
respective surface pressure distribution for the states marked in figure 6 within a single oscillation (α0 = 20°, α1 = 8°,
and k = 0.10).
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Figure 6. Lift (left) and pitching moment (right) coefficient hysteresis for a single oscillation (α0 = 20°, α1 = 8°, and
k = 0.10) together with their static counterparts (-).

(figure 5(f)). The additional circulation accumulates in the shear layer leading to the formation of a secondary
stall vortex. Both separated leading edge structures are convected downstream. As a consequence the flow
can follow the nose again (figure 5(g)), which in turn gives rise to the increased suction near the leading edge
seen in the pressure distribution. The resulting massive separation starting at approximately 0.25c slows
down the convection of vorticity from the leading edge forcing the leading edge shear layer to roll up such
as a separation bubble is formed (figure 5(h)). During downstroke the separation bubble grows and moves
slowly downstream as can be recognised both in the surface pressure distributions and the velocity fields in
figure 5(h)-5(k). When this large coherent structure is convected downstream, it will cause the boundary
layer at the leading edge to reattach. Flow reversal redevelops in form of a separation bubble as long as
the adverse pressure gradient near the airfoil’s surface is dominant, which then leads to a break down of the
shortly reattached flow.

This alternation of boundary layer separation and reattachment, which causes the large fluctuations of
the air loads during the downstroke motion, continues until the adverse pressure gradient at the leading
edge is to weak or disappears at all and no reversing flow and subsequent large-scale coherent structures are
formed (figure 5(l)).

IV.B. Dynamic Stall Delay

In the absence of dynamic effects, the flow over an airfoil is massively separated for α exceeding the static
stall angle, whereas massive flow separation associated with dynamic stall may be delayed to much higher
angles of attack. The actual dynamic stall delay is defined as the delay between the time the effective angle
exceeds the static stall angle (tαss) and onset of dynamic stall (tαds), which is marked by the detachment of
the dynamic stall vortex from the boundary layer. The attempt to assess the stall delay from the measured
velocity fields is based on the observation of the fact that prior to stall during the vortex formation stage
the vortical structures that are formed in the shear layer stay close to the surface and are not ejected into
the external flow. However, the average distance of the shear layer, respectively shear layer vortices from
the airfoil’s upper surface increases until the small-scale structures are subjected to a higher order instability
and tend to merge into the dynamic stall vortex. Therefore the average distance (∆z) of the experimentally
determined vortical structures normal to the surface was calculated for fixed phase angles and is presented
in figure 7 as a function of geometrical angle of attack and time.

In the first part of the upstroke motion the flow is fully attached and no vortical structures should be
present. The scatter in this region is due to experimental limitations near the airfoil’s surface and the
malfunction of the vortex detection algorithm here. After passing beyond the static stall angle the detected
coherent structures represent the shear layer vortices and their average normal vertical displacement (∆z)
is equivalent to the average height of the shear layer. Initially the average height increases slightly and
approximately linearly up to a certain point where the shear layer rolls up into the dynamic stall vortex,
which is then pinched off from the boundary layer and ejected into the external flow. This latter stage is
referred to as the vortex convection stage. The close-up view in figure 8 exhibits a linear increase of the
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Figure 7. Average vertical distance of the vortex cores from the airfoil’s upper surface versus angle of attack (left) and
versus time lag with respect to tαss , the time at which the angle of attack passes beyond the static stall angle (right),
for different degrees of unsteadiness and α0 = 20°, α1 = 8°.

vertical displacement during the vortex convection stage. The slope of the fitting curve represents the vertical
component of the vortex convection speed. The transition of the vortex formation stage into the convection
stage corresponds to stall onset. Hence dynamic stall onset has been assessed from the intersection of the
two linear fitting curves.

In the right part of figure 7 the curves are shifted such that the zero on the abscissa coincides with
the time the effective angle exceeds the static stall angle (tαss). The effective angle is the angle between
the airfoil’s chord and the relative wind. When dynamic effects are present the effective wind is found by
substracting the motion induced velocity at the leading edge from the external flow. The influence on the
magnitude is less than 0.3% of U∞ and it is therefore neglegible. The influence on the effective angle of
attack αeff is taken into account for the calculation of the stall delay.

For all cases in figure 7, corresponding to different oscillation frequencies, i.e. different degrees of un-
steadiness, the mean angle of attack and amplitude are α0 = 20° and α1 = 8° allowing for the isolated
influence of the reduced frequency to be examined. With regard to angle of attack, stall is further delayed
with increasing frequency, whereas with regard to the actual time delay, the onset of stall is sooner for larger
oscillation frequencies. As already pointed out by Currier and Fung20 , unsteadiness actually speeds up the
separation process rather than delaying it. Visbal and Shang21 also report a delay of stall to larger angle of
attack for higher pitch rates. Additionally, they studied numerically the influence of the pitch-axis location.
They suggested using the velocity of the nose as a measure of the stage of evolution of the flow. Following
this suggestion, the stall delay is presented in figure 9 as a function of the magnitude of the motion induced
velocity of the airfoil at the leading edge vle at t = tss. For the present data a tendency towards shorter
delays for increasing nose speeds is found.

∆z/c (fosc = 2.6 Hz)
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∆z/c (fosc = 5.3 Hz) + 0.10
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Figure 8. Detail of figure 7 (right) with the corresponding linear fits.
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Figure 9. Stall delay (left) and minimum surface pressure level (right) versus the motion induced speed of the airfoil’s
leading edge for different oscillation parameter combinations: fosc = 2.5 Hz (N), 4.0 Hz (�), 5.3 Hz (•), α0 = 18° (N),
20° (N), 22° (N), α1 = 6° (4), 8° (N) and the static case (∗).

The calculated values of the dynamical stall angle, the stall delay and the leading edge speed as well as
the minimum surface pressure level or suction peak Cp,min, are listed in table 1. Figure 9 depicts the relation
between the suction peak and the leading edge speed. The scatter displays a tendancy toward strong suction
when the nose speed is increased. The data point corresponding to the static case has been included as well
and supports the tendency. This observation provides a hint towards the mechanisms leading to stall onset.
The suction peaks are an indication of the strength of the leading edge vortex.21 A stronger vortex implies
stronger inviscid/viscous interaction between the vortex and the reversing flow layer that separates it from
the airfoil’s surface. As a consequence the shear layer induced counterrotating vortices will be stronger and
they will react in a way that they push the primary vortex away from the surface. A larger nose speed
implies a stronger stall vortex that can more easily break away from the boundary layer, leading to a shorter
stall delay.

For the range of oscillating motion presented in the study, the motion induced speed of the leading edge
at static stall angle appears to be the appropriate parameter to describe the unsteadiness with respect to
stall delay. A more systematic study, including an investigation of the Reynolds number effects would be
necessary to sustain the previous assumption and to understand the physical key mechanism.

Furthermore, for the present data, the boundary layer separation in both cases, static and dynamic, is

Table 1. Overview of the assessed dynamic stall parameters for different oscillation parameter combinations.

fosc [Hz] α0 [°] α1 [°] αds [°] ∆t [ms] vle(tss) [m/s] -Cp,min

2.6 18 6 24.0 49 0.10 7.05
5.3 18 6 24.0 31 0.20 7.22
2.6 18 8 25.2 39 0.15 7.99
5.3 18 8 26.0 29 0.30 8.28
2.6 20 6 25.0 42 0.12 7.49
4.0 20 6 25.6 36 0.19 7.92
5.3 20 6 25.8 31 0.25 8.10
2.6 20 8 25.9 38 0.17 7.96
4.0 20 8 26.9 31 0.25 8.61
5.3 20 8 27.3 27 0.34 8.98
2.6 22 6 25.6 43 0.13 7.80
5.3 22 6 26.8 29 0.26 8.68
2.6 22 8 26.1 36 0.17 8.36
5.3 22 8 28.1 28 0.35 9.35
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Figure 10. Lift (right) and pitching moment (left) hysteresis for two arbitrary oscillations as well as the average of all
recorded cycles where the error bars indicate the standard deviation (α0 = 18°, α1 = 8°, and k = 0.10).

initiated by a local adverse pressure gradient. Assuming that the angle of attack at which the local pressure
gradient occurs is unaffected by dynamic effects, and solely determined by the external flow characteristics,
the airfoil’s geometry, and its effective angle of attack, unsteady separation is triggered when the static stall
angle is reached. Using this argumentation the dynamic stall delay would be specified by the duration of
the formation process of the primary stall vortex.

IV.C. Cycle to Cycle Variations

In figure 10 the measured air loads, lift and pitching moment, corresponding to different cycles of the forced
oscillation around α0 = 18°, with amplitude α1 = 8°and reduced frequency k = 0.10, are presented as well
as the cycle average hysteresis curve. The evolution of the aerodynamic coefficients during downstroke
displays strong discrepancies between the two arbitrary oscillation periods. In general the reproducibility
during the downward pitching part of the cycle is rather poor, due to the intristic characteristics of the
dynamic separation process and the sensitivity of the separated flow to variations of the boundary conditions
inherent to the experimental process. However, the inconsistency between the two cycles presented here,
seems to have different origin. The different evolution of the air loads seems to be a result of different
separation behaviour. This becomes more obvious when examining the temporal evolution of the individual
pressure signals associated with three pressure sensors closest to the leading edge on the airfoil’s suction side
(x/c=0.0045, 0.0130, 0.0250) in figure 11(a) and figure 11(b). The corresponding integrated air loads are
presented in figures 11(c)-11(f).

At the beginning of the first downstroke the leading edge suction collapses entirely whereas the signal
respective the sensor closest to the leading edge (at 0.45% chord length from the leading edge) is more
elevated during the complete downstroke part of the subsequent cycle. This indicates that there is less flow
separation and the flow can still follow the nose contour to a certain extend. This is also evidenced by the
discrepancies in the trajectories of the vortices shown in figure 12, where the trajectories of the clockwise
rotating vortices emerging during the last quarter of the upstroke and the first two quarters of the downstroke
part of the motion are plotted for the different cycles. The evolution of the average vertical displacement of
the vortical structures for these particular oscillation periods is presented in figure 13.

Near the end of the upstroke part the boundary layer is thickened and the vertical position of the vortices
increases slightly, but they still follow the airfoil contour. After the maximum angle of attack is attained
and the downward motion is set in, the structures move further away from the airfoil’s surface, but there
is a clear difference between the path along which vortices are being convected downstream. This different
behaviour can be explained based on the concept of stall delay and formation time introduced earlier. The
assessed dynamic stall angle for this particular case equals αds = 26.0 which coincides with the maximum
angle of attack or the reversal point of the oscillation. Hence this appears to be a particular case where small
perturbation decide whether stall is initiated at the end of the upstroke or at early downstroke, resulting in
a different separation behaviour.

The ejection of the primary structure into the external flow in figure 12(c) seems to take place on the
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Figure 11. Temporal evolution of the surface pressure signals generated at the very leading edge on the airfoil’s suction
side (a,b), the lift coefficient (c,d), and the pitching moment coefficient (e,f) for two arbitrary oscillation cycles A (left)
and B (right) and α0 = 18°, α1 = 8°, k = 0.10.

upstroke, under an angle larger than the stall angle. Whereas the dynamic stall vortex in the second cycle
appears to break away from the boundary layer immediately after the pitching direction reversed, therefore
experiencing a downward induced force by the airfoil’s leading edge. This could be a reason why the vortex
trajectories in figure 12(d) are more gently inclined and yield a smaller separation region and less deflection
of the external flow, especially near the leading edge. As a consequence the vorticity formed at the leading
edge can be convected downstream and does not accumulate into large coherent structures. Hence, large
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(f) 22° > α ≥ 18° on the downstroke

Figure 12. Detected cores and trajectories of vortices originating within different quarters of the arbitrary oscillation
cycles A (left) and B (right) and α0 = 18°, α1 = 8°, k = 0.10.

fluctuation of the aerodynamic coefficients is suppressed and the flow can reattach sooner.

V. Conclusion and Future Perspectives

The application of global time resolved imaging and an automated vortex identification algorithm yield
insight into the prominent features of the dynamic stall process. Based on the location and evolution of
the detected coherent structures, different stages were identified within the dynamic stall life cycle and the
stall delay was assessed. The delay of dynamic stall was attributed to a finite formation time of the primary
stall vortex and was observed to decrease with increasing unsteadiness. For the present data the motion
induced speed of the leading edge at static stall angle appears to be the appropriate parameter to describe
the unsteadiness with respect to stall delay. The induced leading edge stall vortex is assumed to be stronger
for increasing nose speeds. The subsequent resulting stronger inviscid/viscous interactions cause the stall
vortex to detache sooner from the surface.
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Figure 13. Average vertical displacement of the vortical structures versus time for two arbitrary oscillation cycles
(α0 = 18°, α1 = 8°, k = 0.10).

A more systematic study, including an investigation of the Reynolds number effects would be necessary
to sustain the above assumption and to understand the physical key mechanisms with regard to stall delay.
Furthermore, higher spatial resolution measurements will yield more information about the strength and
spatial scales of the coherent structures. Measurements of the three-dimensionality and spanwise extent of
separation region are envisaged as well.
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