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Abstract

Current driver assistance systems such as Adaptive Cruise Control (ACC) and in particular future assistance
systems (e.g. Collision Warning) anticipate high demands for effectiveness and accuracy of detection and ranging
methods for vehicles within their vicinity. Autonomous systems such as radar which are already integrated into
a multitude of vehicles meet these requirements to only a limited extent. As an alternative, cooperative systems
for detection and ranging will be enabled by future Vehicle-2-Vehicle communication. But even if the technology
is deployed in every vehicle, cooperative detection and ranging also has drawbacks regarding reliability due to
positioning and transmission errors if it is applied in a standalone way.

Thus, the solution presented in this paper is a hybrid approach combining autonomous and cooperative methods
for detection and ranging within a common architecture. A particle filter is used for the state estimation and sensor
fusion. The results are a higher detection effectiveness and a lower position error compared to using standalone
autonomous or cooperative detection and ranging methods.

|. INTRODUCTION the preceding vehicle within the same lane is of major
relevance. But - migrating more and moreRcedictive

Today, most traffic accidents occur due to a humahfety Systenfd] - also adjacent areas are of increasing
false estimation of the current traffic situation which igelevance. E.g. knowing the presence and position of
the consequence of misinterpretation or a limited amoufghicles located on adjacent lanes or in front of the
and accuracy of information [1] Futufituation-aware preceding vehicle may be relevant in order to be pre-
Driver Assistance Systenj&] will support humans in pared for abrupt lane change maneuvers or full braking
their task of driving a vehicle safely, efficiently anchf the preceding vehicle respectively (see fig. 1). Key
comfortably by exploiting situational information of theenabler for future driver assistance is hence a complete
own vehicle as well as other information sources (Othg_hd accurate model of the Surrounding inc|uding each
vehicles, road side units, etc). To achieve this comprigdividual vehicle within the relevant scope because even

hensive situation awareness, information on the presemgging no or inaccurate information of a single vehicle
and pOSItlon of vehicles in the V|C|n|ty is of parthUIarmay result in a per”ous situation.

importance. This vicinity includes areas with more or

less relevance depending on the type of application. Forln order to gather information on the surrounding

an application such as Adaptive Cruise Control (ACGJehicles, methods for detection and ranging are required.
[3] the area in front of the vehicle up to the distance ddetection and ranging of objects in the scope of this
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o Cooperative detection and ranging: Detection
and ranging is performed in a cooperative way
by information provided by the target vehicle. The
target vehicle plays an active role.

A. Autonomous Detection and Ranging
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Fig. 1.  Multi-hop Vehicle-2-Vehicle communication: Due to a
broken down vehicle a truck has to brake hard. Without Vehicle-
2-Vehicle communication the following vehicles will have no in-
formation on the hazardous situation in time because of the highl
obstructed view.

Target

Fig. 2. The figure shows a traffic situation on a 3-lane (per direction)
paper means the determination of presence and posad with several vehicles. The ego vehicle detects one target vehicle
tion of these objects relative to the ego vehicle. Thdth its radar sensor. But there may be more vehicles with the same
. . . . . _range which can not be separated and therefore are merely sensed as
information can then be used in a multitude of appllcgl—single vehicle
tions, e.g. ACC, hazardous following distance warning,

frontal/rear-end/flank collision avoidance, merging assis- _
tance, etc [5]. a) Radar: A common mechanism of autonomous

Objective of novel detection and ranging method3a@R of objects is the measurement of transit times
is to increase thdetection Effectivenesand decrease Of €lectro-magnetic signals. This concept is exploited
the Position Error at the same time. This paper willfOr instance by the well-establisheadio detection and
present a novel concept for a hybrid approach combinifg!9ing (radar) system which uses micro waves with a
autonomous and cooperative detection and ranging. Wave length of 1 millimeter up to several meters. Radar

Section Il gives an overview of concepts and types gystems dgployed as in-vehicle sensors use fo_r mstapce
detection and ranging methods for vehicles. Causes of &€ following frequency bands regulatively assigned in
ror that will play a major role for the proposed algorithnf-UroPe (according to [6], [7]):
will also be detailed herein. The proposed algorithm for a* K-band at 24 GHz forshort range radarapplica-
hybrid approach combining autonomous and cooperative tions (conferred until 2013 [8])
detection and ranging methods is provided in section Ill.« W-band at 79 GHz foshort range radarapplica-
Initial simulation results are presented in section IV. The tions (conferred for future usage [9])
paper ends with conclusions and outlook in section V. » W-band (76-77 GHz) fotong range radarapplica-

tions [10], [11]
For the increased situation awareness required for future
Situation-aware Driver Assistance Systepwaticularly
Il. DETECTION AND RANGING METHODS long range radartechnology is of major importance.
o _ _ Long range radaris aimed at maximum distances up

In principle, two different types of detection andg several hundreds of meters. The maximum distance
ranging (DaR) methods have to be differentiated: Rumas Can be calculated by the following equation (ac-

» Autonomous detection and ranging: Detection cording to [7]):

and ranging is performed only by the ego vehicle 5

without active interaction of the target vehicle. The Ronaz = 1 Pro-D7-0
. . 2

target vehicle stays completely passive. Prin - 4 - A

)



Pr, Transmit Power shows a much higher angular resolution. But, in contrast

D Effective length of the antenna to radar which do not show significantly deterioration
o Reflectivity of the target in fog, rain or snow, lidar sensors show high sensitivity
P Minimum power necessary for detection towards these environmental influences.

A Wave length of the signal . . .
o . ) B. Cooperative Detection and Ranging
In addition to the maximum distance of the DaR tech-

nology, the azimuth angle of beam spread is an essentia}l’ contrast to autonomous DaR methods, the target
characterization parameter in order to determine the s¥fhicle is actively involved in cooperative DaR. There-
sor scope. The half-power beamwidtidepends on the fore, the tgrget vehicle coope_rates V\_/l_th the ego vehicle
wave length\ and the effective length of the antenpa  PY transmitting messages with position relevant data.
It can be calculated by the following equation (accordingy r€ceiving the position relevant information, the ego

to [12]): vehicle can calculate the relative position of the target
A vehicle. So, basically, cooperative DaR comprises three
0= Kﬁ (@) main steps:

K is known as the beamwidth factor (e@88 rad ~ (1) Self-positioning of both ego vehicle and target

50.76° for uniform distribution rectangular apertures  Vehicle within a common reference system

[13]). (2) Transm|§S|on of the target vehicle’s position to the
The angular resolutiors 4 of a radar, which defines ego vehicle _

the minimum distance at which two equal targets at thd3) Range calculation by the ego vehicle

same range can be separated, can be calculated by (sddese steps will be described more in detail in the

fig. 2): following paragraphs:
K a) Self-positioning:A promising solution for self-
Sa > 25 -sin(0/2) = QS-Sin(ﬁ) (3) positioning is theGlobal Navigation Satellite System

(GNSS) because of its global availability in outdoor
areas. Although GNSS is the most promising solu-
The radar sensors available on the market today suffgin for positioning vehicles at present, other variants
from low angular resolution because of a half-powafave to be mentioned as well, e.g. GSM/UMTS signal
beamwidth of more than°6due to aperture size limi- measurements or dedicated road infrastructure, but are
tations. According to Rasshofer et al. [14] this resultsot further studied in this paper. More information on
in poor target separation in long and medium rangegeneral concepts of self-positioning can be found in [16].
As an example, the angular resolution in a slant rangeGNSS is based on lateration of undirectiofamne
of 150 m according to equation (3) is more thalM m of Arrival (ToA) measurements and therefore several
and thus spans at least over the two adjacent lanes wi{Basurements from different satellites are required to
a lane width of3.50 m according to German standarcyet a complete position estimation. With elimination
cross-section RQ-33 [15] for a 6-lane autobahn (as itd$ impossible solutions at least two measurements to
shown in fig. 2). An application such as ACC can nqhdividual non-collinear satellites for a 2D positioning
adapt the optimal speed in this situation because it cangethree measurements for a 3D positioning are required.
infer whether there is one or more vehicles within thﬂorma”y, a further satellite is necessary for time syn-
relevant scope. chronization between the space segment and the user
Modern radar sensors use filter techniques to ovegrminal.

come the problem of poor angular resolution but show The ToA measurements of the user terminal can be
constantly significant measurements errors, target losg@sed on two different levels:

or "ghost targets”. Figure 3 shows periodic radar mea-, code based measurements: ToA is measured on
surements (distance measurements encoded in stem .g4e Jevel (synchronization on chip basis)

length) recorded on a real test run. The real distance, Carrier based measurements: ToA is measured on
to the target vehicle is depicted as horizontal solid line.  5rier level (synchronization on carrier phase basis)

|'éources for inaccuracy are up to delays in signal runtime
resulting in erroneous pseudorangealculation:

S slant range along half-power beamwidth

uses laser instead of microwaves is caligtit detection
and ranging (lidar) system. Due to its high frequency,
lidar has a highly directional signal propagation and p = cAt = c(AT + Ad) = o+ cAd 4)
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Fig. 3. Radar distance measurements
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c is the velocity of signal propagatiol\r is the theoretic channel accesses, the message length and the number
signal transit time following line of sighty is the true of vehicles within the network. The maximum allowed
geometric range and\é is the additional signal transitpower will be between 33-44 dBm EIRP with an ex-
time that emerges due to satellite clock offset, satellipected range of up to 1000 meters. The absolute range
orbit dislocation, ionospheric and tropospheric refrafer message transmission can be extended by multi-hop
tion, receiver clock offset and multipath propagatiormessaging.

The former two error types, i.e. satellite clock offset ¢) Relative position calculationThe position rel-
and orbit dislocation, are specific to a certain satellitg/ant information sent by the target vehicle can then be
and only depend on this satellite. Atmospheric refractiased to calculate the position of the target vehicle relative
errors depend on satellite and receiver position. Receiverthe ego vehicle. Basically there are three different
clock errors and multipath errors strongly depend on tiygoes of relative positioning:

receiver and its local environment. « Absolute position based relative positioningby

b) Position transmissionTo inform the ego vehicle differencing of two absolute positions. Target ve-
of position relevant data in time, the target vehicle hicle and ego vehicle have to agree on a common
requires a reliable communication channel which allows reference system, such as WGS-84. This method
fast channel access and transmission times. Due to may be influenced by the whole set of GNSS
channel setup delays and infrastructure as prerequisite, measurement errors described above.
cellular systems (e.g. GSM/UMTS) are suitable to only « Code based relative positioninguses aTime
a limited extent. Preferable is ad-hoc networking with  Difference of Arrival (TDoA)method with sev-
fast channel access schemes such as Vehicle-2-Vehicle eral simultaneous measurements on chip basis (see
(V2V) communication based on Wireless LAN. above). Ego vehicle and target vehicle have to use

Wireless LAN based V2V communication is currently ~ identical satellites at the same time. Depending on
in the standardization process undéireless Access for ~ the algorithm the following errors can be elimi-
Vehicular Environments (WAVH)cluding IEEE 802.11p nated:

and IEEE P1609.1-4 in the U.S. and under ETSI TC — Single differencing between receivers elimi-
ITS and the Car-2-Car Communication Consortium in nates pseudorange errors emerging from satel-
Europe. Besides unicast and multicast as data distribution lite clock bias, satellite orbit dislocation and
mechanisms geo-based anycast and broadcast address- ionospheric and tropospheric refraction. The
ing will be developed. CSMA/CA is used for medium different types of errors have a high correlation
access control which requires acknowledged message when signals emitted from the same satellite at
transmission for the detection of transmission errors the same time have a similar propagation path
as a result of packet collisions. In order to avoid the which is valid within short distances between
broadcast storm problem broadcasting is not fed back ego vehicle and target vehicle as it is consid-
by acknowledgements and thus subject to unreliable ered in this paper.

message transmission. Packet loss strongly depends on — Double differencing between satellites addi-

the channel load which is influenced by the number of tionally eliminates errors emerging from re-



ceiver clock offsets. a hybrid approach including an adaptive sensor fusion.
« Carrier based relative positioning uses TDoA on The outcome of this is an increased effectiveness and
a carrier phase basis. Besides single and doublgher accuracy which will be shown in the simulation
differencing, triple differencing between epochs haésults in section V.
to be considered in order to quantify integer cycle
ambiguity. A. Reliable and accurate target tracking
Depending on the type of algorithm used for cooperative

relative positioning, different types of position relevar%Core component of our hybrid approach is the time-

rete value-continuous sensor fusion algorithm for

data has to be transmitted between the target vehicle L .
écomblnatlon of autonomous and cooperative DaR.

the ego vehicle. Whereas absolute position based relat]
positioning has lower acccuracy but can be encoded i
few bytes (e.g. 2x2 bytes (Latitude-Longitude) accordin
to [17]), pseudorange based relative positioning h Lk , .
higher accuracy but requires about 10 times as mura%aasurementsi for sensore = 1’.“"” over time
data to encode (e.g. 8x5 bytes = 8 pseudorange measﬂlré-_k and adequa_tely mfer_ the variable of mter%ﬁt
ments encoded in 5 bytes). Carrier phase based relaﬁ\tiet'me k. The V"’!”ab'e Of interest for DaR CcOMPTISEs
positioning has a even higher accuracy but requirgg Igast the rela_tlve position of the target vehlgle. For
considerably longer messages. Evidently, for reachify’ |mpl_ementat|on the state space of the variable .Of
higher accuracy longer messages have to be accepl[ 're_st is spanned by a hegdlng a!lgned 2-D cartesan
Thus for the final protocol specification a reS‘pecﬁv%oordmate system. The relative position of the target is

tradeoff between message length and position accuré1 ce formal!zec! by - [lap; ion), 1.€. the latitudinal
has to be defined. and the longitudinal intercept. Analogously, the sensor

measurements of thieth sensor is formalized by =
[zk ., 2k ] which are the autonomous DaR sensor and the
cooperative DaR sensor in our case.

ndependently of the type of sensor, measurements are
ject to incompleteness and inaccuracy. Therefore, the
eferred fusion algorithm should filter the noisy sensor

[11. HYBRID DETECTION AND RANGING

Goal of DaR methods that conform to requirements E k-1
of a Situation-aware Driver Assistance Systam to

gain an effective and accurate position estimation of a sensor1 7

target vehicles within the relevant scope. Due to the PR Kk
. ) . Pz~ 1X) p(z |X°)

errors of DaR methods as described in the previou p(xk|‘xk’1)

section, a single DaR method is not capable to fulfill the : : Q(D

requirements continuously in every situation. Therefort | 0(24 | XY) | o(z* [x)

the combination of different DaR methods which com- ’ ’

plement each other is considered as a promising solutio | sensor 2 Zg
A lot of work has already been done in fusioning

of different autonomous systems (e.g. radar & lidar;~~_ prediction Update Prediction Update

but all these systems mainly suffer from a commor——_2¢12 i el e ZE )

subset of error causes which have strong influence ¢ [fppf(x;;"x;il) dx}%p L e dx]%}

effectiveness and accuracy. Examples as described in tiic

previous section are the shadowing by obstacles (e.9.  Fig. 4. Bayesian state estimation with two sensors

in road curvatures), sensitivity towards environmental

influences (e.g. fog, rain, snow) and a narrow detection

zone. On the other hand, cooperative DaR depends ofiFrom a Bayesian perspective, the tracking problem

the active participation of the target vehicle and therefoi® to recursively calculate some degree of belief in

strongly depends on the penetration rate as well as the statex® at time k” [18] given evidencez'* (see

effectiveness and accuracy of self-positioning and tifig. 4). The degree of belief is characterized by the

wireless transmission of position relevant information.probability density function (pdfp(x*|z'**). This pdf
The hybrid approach presented in this paper therefaran be obtained, recursively, by a two-phase approach:

combines autonomous and cooperative DaR methodgpiediction and update.




The prediction phase of the dynamic state estimatorOriginally measurements from autonomous systems
is defined by: are to a certain extent directional and the sensors have a
fixed installation location and orientation. Thus the mea-
p(xF|zF ) = /1D(x’“!X'“fl)p(xkfl\zl:k*l)alxkf1 (5) surements are already aligned to the ego vehicle heading
and position - possibly with a certain offset in orientation
The update step is defined by: and location. Depending on the type and orientation of
k| k k|, 1:k—1 the local coordinate system, the measurements have to
2o )p (o211 .
(a2 T) (6) be transformed adequately. ' '
Cooperative DaR systems are not inherently aligned
To solve the equations, different types of Bayesiad the ego vehicle heading. In cases where a heading
filtering can be applied, including kalman filter and italigned coordinate system is used the measurements have
extensions or the particle filter. In order to meet thg be transformed adequately. Therefore the heading
requirements of a dynamic flexible state estimation, w# the ego vehicle can be estimated by analyzing the
chose particle filtering because it allows the usage sfeering angle. In order to determine the initial heading
non-Gaussian measurement and movement noise afifler further sensors, such as compass or gyroscope,
non-linear measurement and movement models [18}e required or the initial heading has to be inferred by
[18], [20]. Especially for complex non-linear driver be-consecutive position measurements. For the translocation
havior modeling (e.g. the Generalized GM model [21})f the measurements the positioning antennas’ location
this is an essential requirement. of both vehicles have to be known. Whereas for the ego
Particle filtering is a sequential Monte Carlo methodehicle the antenna position can easily be determined,
which represents the posterior distribution of the state @ke antenna position of the target vehicle has to be
timation by a set of discrete samples, so capedicles standardized or has to be added to the position relevant
Particle filtering belongs to the category of suboptim@formation that is sent by the target vehicle. Further-
filter algorithms which merely calculate an approximamnore the target vehicle size has to be annotated in order
tion of the variable of interest but allow non-linearityto allow the ego vehicle to reference the cooperative DaR
in the movement and sensor model (in contrast to theéeasurement to the reflection point of the autonomous
standard kalman filter). Our fusion approach is bas@hR independent of the target vehicle’s heading.
on the Sample Importance Resampling (Skyorithm b) Measurement-target associatioff: several tar-
which is a special case of thBequential Importance get vehicles are detected, measurements have to be
Sampling (SIS)algorithm. For each time slok the associated. A promising solution for particle filtering
variable of interest is represented by a setoparticles is provided by Hue et al. in [23]. TheiMulti Target
sk.j =1,...,m} and the corresponding weight of Particle Filter (MTPF) combines the two major steps
the particle. With a sufficiently large number of particlegprediction and update) of the classical particle filter
the SIS filter approaches the optimal Bayesian estimajgith a Gibbs sampler-based estimation of the assignment
Even in situations where merely a single sensor jgobabilities. Another solution which does not perform
available, i.e. if the target vehicle is for instance nain explicit measurement-target association is Finite
equipped with cooperative DaR, the dynamic state €Set Statistics (FISSTpy Mahler [24] and theJoint
timation allows promising results. But in every cas®lulti-target Probability Density (JMPDpy Kreucher et
additional information becomes available, effectiveneas [25]. Their solutions which are based on multiple
and accuracy can be increased significantly by sensgotheses outperforms association-based solutions in
fusion combining the sensor measurements. Simulatisituation with high clutter, occlusions and multi-target
results will be shown in section IV. confusions.
a) Measurement transformationin the run-up to _
the fusion algorithm itself the independent measuremefits System Architecture
have to be transformed to a common local referenceThe overall architecture of th®ituation-aware Driver
system. This reference system may for instance beAasistance Systemmsing our hybrid approach for DaR
polar or a cartesian coordinate system which may e depicted in fig. 5. Principally it uses autonomous
aligned to a fixed direction (e.g. geographical north polegnd cooperative sensors as main input for the fusion
dynamically adjusted according to the ego heading algorithm. In order to predict future movement and align
even road-aligned [22] the reference system, further input, such as steering

p(tjz ) = X




angle sensor and compass is used. The predictionséxjuential test runs. Thus, test results would not be
performed by &tate Modelncluding a realistic vehicle comparable.

following model (e.g. Krauss model [26]). Sensor errors We therefore designed and implemented a simulation
are represented by tifg&ensor ModelThe results of the environment enabling the selective usage of autonomous
fusion, i.e. a reliable and accurate relative position aihd cooperative DaR sensors. Therefore we implemented
target vehicles, can then be used in 8iiation Analysis a long range radarsensor which incorporates the mea-
to detect hazardous or inefficient situations. Last, thésirement errors described in section Il. Thus the quantity
is used to adapt vehicle effectors, e.g. adjust the AGSE detected target vehicles results from:

controller or inform the driver by visual, verbal or tactile # of detectable vehicles
Human-Machine Interfaces. vehicles that are within the azimuth angle
and in detection range due to equation (1)

Effectors — # of undetected vehicles

vehicles that stay undetected due to obstacles
and angular resolution (eq. (3))

Situation
+ # of wrongly detected vehicles

ghost vehicles that appear due to signal scattering

Situation Analysis

Sgergligg CODAR Fusion Engine ' ' _
sensor In _the S|mulat|op we used a !ong range radar W|fh_ 6
Model Model azimuth beamwidth. The maximum range for a vehicle

|

Object Association | detection is~150 m. Vehicles that are not detected
mainly arise due to the reflection of signals on intermedi-
ate obstacles and the limited angular resolution. Wrongly
detected vehicles occur due to scattering of signals on
obstacles (such as guard rails, roadside planting or other
vehicles). In our simulations we used a fixed rate of 20%
of the number of detectable vehicles for the wrongly
detected vehicles. For the quality of each measurement
we used a 0-mean Gaussian measurement noise with

The described components are part of theoper- 0 =2 m.

ative Object Detection And Ranging (CODAR)stem  The cooperative DaR was based on absolute position
which is a framework for information management basdwsed relative positioning with a constant 0-mean Gaus-
on Vehicle-2-Vehicle communications developed by tH#an measurement noise with = 5 m. Transmission
German Aerospace Center. It includes a comprehens@fgors were not modeled adequately because a small
and integrated set of tools and algorithms for the devé&lumber of vehicles and a high beaconing rate (10 Hz)
opment of cooperative driver assistance systems aimidlg Position relevant information was used and thus
at increasing safety, efficiency and comfort of drivinggporadic message losses can be neglected for the overall
More information on the system architecture and tfservation. The medium access and signal propagation

integration into the Situation-aware Driver Assistancéelay can also be neglected due to the low number of
System as a virtual sensor can be found in [27]. vehicles. Of course, this has to be inspected in detail for

dense traffic situation in the future.
An implementation of the CODAR fusion engine
based on a particle filter with 1000 particles has been
IV. PERFORMANCEEVALUATION integrated into the simulation environment. The number
of particles plays a decisive role for the state estimation
and has to be traded off between accuracy/effectiveness
In order to validate our concepts we designed and computability. 1000 particles turned out to have
simulation environment that allows the simulation o& sufficiently high accuracy/effectiveness and is com-
cooperative and autonomous DaR in reproducible trafficitable under real-time conditions on a Intel Core 2 Duo
situations. Real test runs with real sensor measuremef@®? GHz) with 2GB RAM. For the initial simulations
were not suitable for our purpose because it is almastsimple random movement model and basic sensor
impossible to guarantee identical situations for severabdels were applied.

| Measurement Transformation |

Cooperative DaR Autonomous DaR
Sensor Sensor

Fig. 5. CODAR Architecture

A. Simulation Environment



ACC, for instance, defines the scope as the headway of
the ego vehicle up to a certain range that depends on the
current speed, the following distance, etc. [3].

b) Position Error: The second measure, tiosi-
tion Error, is a qualitative measure for the accuracy of
DaR methods. Theosition Erroris defined by the root
mean square error whereas the error is the Euclidean
distance between the estimated position and the real
position of the target vehicle. It is defined by:

PE=\E[| XX ||, ] (©)
X Real distance to the target vehicle
X Estimated distance to the target vehicle

Fig. 6. CODAR Simulation Visualisation
C. Simulation Results

In our simulations we focussed on two different sce-
Figure 6 shows a snapshot of the graphical output eérios. The first analyzed scenario was similar to the
the simulation environment. The depiction shows the egeenario shown in figure 2. The ego vehicle is driving
vehicle (bottom) and a target vehicle (top). The whiten the left most lane of a three-lane road. Both other
dots represent particles with opaqueness proportionalldg@es are heavily occupied by vehicles with slower speed.
the particle weight. The overlying rectangle shows thEhus the ego vehicle drive past several target vehicles
estimated position of the target vehicle based on the the observed simulation period of 10 seconds. For
minimum mean square error. this scenario we studiedRecall and Precision based
on the requirements of two different scopes. The first
scope, depicted in figure 7 and 9, was the scope of
For the quantification of DaR methods we propose W conventional ACC which is the area in front of the
major measures: vehicle up to the distance of the leading vehicle. The
a) Detection EffectivenessThe Detection Effec- relevant scope of figure 7 and 9 is hence defined by
tivenesds a measure to quantify the effectiveness of thge detection zone of a radar system with &imuth
DaR method. Rijsbergen defines effectiveness in terfgsamwidth and a maximum detection range~df50 m.
of Precisionand Recall[28]. In figure 8 and 10 we analysed the scope of a future
Recallis a measure of completeness and specifies (Rec which takes the full headway of the ego vehicle into
probability that a real vehicle will be detected. It igccount. Therefore we used the same range as before,
defined by: i.e. 150 m, but a larger angle of 180This scope will
TP be in particular important for future safety applications

B. Quantification Measures

Recall It = 7 (") that will take all vehicles within the ego headway into
TP True Positives— Detected targets that correspond to real vehicle@cco_u_nt m_ order FO enable accurately timed situation-
witlhin the relevant sc%pe S ) ; |speC|f|c driver assistance.
FN F N t U tected t. ts that t .
vehicles within the relevant scope T "% Figures 7-10 show the absolute number of relevant

Precisionis a measure of exactness and specifies theE?C:eS (horizontall solid line), thle( number of ‘?'etht?d
probability that a detected vehicle corresponds to a réghicles by standalone radar (dark gray stem) including

; ; ; . false positives (black part) and the number of vehicles
vehicle. It is defined by:
y detected by our hybrid approach (light gray) in the form
Precision P — TP (8) of_stems at the bqttom of each figure. The simulated test
TP+ FP drive has a duration of 10s.

TP True Positives— Detected targets that correspond to real vehicles Evidently, in ﬁgure 7 and 9 the number of vehicles
within the relevant scope

FP Fals_e Pos_itives—> Detected targets that do not correspond to reaﬁleteCted by standalone radar is nearly as high as the
vehicles, i.e. ghost targets, within the relevant scope number of relevant vehicles because of the optimal case
The scope in which the effectiveness is analyzed is déat the relevant scope and the scope of the detection

termined by the application that requires the informatiosensor is identical. But it has to be recognized that
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Fig. 7. Recallfor ACC scope:

The depicted stems in the lower part of the figure show the number of vehicles detected by standalone radar (dark gray) including false
positives (black part) and the additional number of vehicles detected by cooperative DaR (light gray). The horizontal line shows the absolute
number of relevant vehicles. In the inspected scenario the number of relevant vehicles varies between 12-13 vehicles for the relevant scope
of ACC.

On the top of the figure thRecallfor the standalone and the hybrid approach is depicted. At millisecond 200Retted| for standalone

radar is quite low because the number of detected vehicles (11 out of 12 relevant vehicles) comprises a high number of “ghost targets” (4).
The Recall thus is0, 58 meaning that merely slightly more than half of all relevant vehicles have been detected by standalone radar. At
millisecond 6000 the radar system detected all 13 vehicles without false positives. THRsddl€for standalone radar its maximum value

without the hybrid fusion approach.

But in situations with a lowRecall of standalone radar, e.g. at millisecond 6700, our hybrid approach can reach a value of 1 (instead of

~ 0.61 with standalone radar) because all vehicles undetected by standalone radar have been detected by the hybrid approach (even with ¢
penetration rate of 80% for the cooperative DaR equipment).

0.8

Mumber of vehicles
Recall

40—

200~

N T N T T T T P T P T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
| # of vehicles additionally detected by hybrid approach ®  #of vehicles detected by standalone Radar === Falze positives

# of relevant vehicles | Time (ms)

Fig. 8. Recallfor full headway scope:

This figure differs from fig. 7 by observing a much broader scope, i.e. the full headway scope. The number of relevant vehicles hence is
higher than in the preceding scenario (25-30) as depicted by the solid horizontal line. Thus the number of vehicles remaining undetected by
standalone radar is considerably higher than with our hybrid approach. The result isRedalfor standalone radar whereas it remains at

a high level using the hybrid approach.

this number is affected by undetected vehicles (FN) este of equipped vehicles of 80%. Thus, not every vehicle
well as wrongly detected vehicles (FP). The numbean be detected by standalone cooperative DaR.
of vehicles detected by the hybrid approach hence isTo get a more detailed explanation of the depicted sim-

composed of: ulation results, figures 7-10 also show the results broken
# of detectable vehicles down into Recalland Precision The simulation clearly
— # of vehicles undetected by autonomous DaR ;
© # of vehicles wrongly detected by auto. DaR shows that the hybrid approqch has a more complete
+ # of vehicle additionally (Recal) and more exact effectivened3récisior).

detected by cooperative DaR Figure 11 shows thBosition Errorof standalone radar

For the cooperative detection we assumed a penetrationcontrast to the hybrid approach. The scenario we
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Fig. 9. Precisionfor ACC scope:

Precisionindicates the probability that a detected vehicle corresponds to a real vehicle. The inspected scenario is exactly identical to the
scenario inspected in fig. 7. Obviously the hybrid approach merely performs slightly better than standalone radar with respestoio

This can be explained by the number of false positives which remains constant when cooperative DaR is applied additionally to standalone
radar. Objects detected by the radar system which are not detected by cooperative DaR cannot be eliminated because the object may be
real vehicle but is not equipped with a cooperative DaR unit.

| — —— Precision for hybrid approach - -+~ Precision for standalone Radar
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Fig. 10. Precisionfor full headway scope:

The inspected scenario in this figure is exactly identical to the scenario inspected in fig. 8. In situations with few false positives standalone
radar performs obviously quite well. But with an increasing number of false positivéréleisionof standalone radar is considerably worse

than with our hybrid approach which remains over 0.9 most of the time.

analyzed was a winding road with no other obstacles V. CONCLUSIONS ANDOUTLOOK

or disturbances but a single target vehicle within a _, . . . : .
. . . This paper identifies the main methods for detection
constant distance to the ego vehicle. As can be seen_in : : . .
. and ranging of vehicles and their respective causes of
the figure, autonomous DaR shows three measuremen .
L . error. In order to overcome these drawbacks a hybrid
losses resulting in high errors when the target vehicle o .
. approach combining autonomous and cooperative DaR
just drove round the bend and thus leaves the detect ) :
: . . as been presented. The fusion of the independent mea-
zone. During these periods the hybrid approach uses

. L2 . o surements is based on a patrticle filter as a major part
cooperative DaR standalone resulting in a higbP@sition . P lor p
of the CODAR architecture. In order to compare our
Error. When the measurements from the autonomous

DaR method get valid again tiResition Errordecreases. S|mulat|on_ results and quantify the benefit of our. hybrid
approach in contrast to standalone radar, we defined two

Although cooperative DaR has a considerably IOWeifferent types of measures, i.Betection Effectiveness

accuracy n our m°d‘?' the hybrid appm"?‘?h shows hnuantified byRecall and Precision and the qualitative
almost every case an improvement of fPasition Error

) measurePosition Error. The simulation results showed

in contrast to standalone radar. g . )
that our concepts significantly increase tBetection
Effectivenessnd decrease thieosition Error.
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Fig. 11. Position Error.

The scenario inspected in this figure is a winding road with 3 tight bends and a single target vehicle running ahead of the ego vehicle
with a distance ok 70m. In situations where both autonomous and cooperative DaR can be exploited (e.g. at millisecond 3000-4100) our
hybrid approach has a min®osition Error compared to standalone radar most of the time. In situations where the target vehicle can not

be detected by standalone radar, Buesition Error goes to infinity with standalone radar. With our hybrid approachRbsition Error gets

worse in such situations but remains in an acceptable interval (less than 7 meters) for a subset of applications, such as cooperative traffic
jam detection [5].

Next steps will be the implementation of more realistic8] European Commission Decision 2005/50/EC. Technical report,
movement and sensor models which will lead to more  2005.

accurate position estimation. Furthermore we are goin ] European Commission Decision 2004/545/EC. Technical re-
’ port, 2004.

to implement a relative positioning method based Qi) ETSI. ETSI EN 301 091.
code and carrier measurements and compare all thiké ECC Decision ECC/DEC/(02)01. Technical report, 2002.
alternatives in our simulation environment in order tH'Z] Merrill lvan Skolnik. Radar Handbook McGraw-Hill Profes-

. . . . sional, 1990.
estimate their assets and drawbacks. Finally we Wﬂb] Thomas A. Milligan. Modern Antenna DesignJohn Wiley &

deploy our concept in our experimental vehicle and test Sons Inc., 2005.
the hybrid approach under real conditions. [14] R.H. Rasshofer and K. Gresser. Automotive radar and lidar
systems for next generation driver assistance functions. In
Advances in Radio Scienc2005.
[15] Forschungsgesellschaftif Strassen- und Verkehrswesen.
Richtlinie fur die Anlage von Strassen (RAS) - Querschnitt.
[16] Jeffrey Hightower and Gaetano Borriello. A survey and tax-
onomy of location sensing systems for ubiquitous computing.

Number 01-08-03, Seattle, WA, August 2001.
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