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ABSTRACT

Large-eddy simulation is used to simulate quasi-steady state convection in a windless mixed layer over a
uniform surface with constant heat flux. Different tracers are injected at each discrete height in the model to
track vertical transport of tracers as a function of time. The resulting tracer source and destination information
is presented in the form of transilient matrices.

These matrices are asymmetric for time increments on the order of the convective time scale, ¢,. They show
nonlocal mixing occurring over a range of wavelengths up to the mixed layer depth, some convective overturning,
and the loss of nearly all of the surface layer air into thermals. Measurements of transport across finite distances
exhibit skewed distributions of vertical transport velocity. The relative importance of upward versus downward
transport strongly depends on both height and time, as measured by the fractional transport and mixing lengths
in each direction. Process, mass, and heat transport spectra show the relatively minor contribution made by
small-size eddies as compared to the medium and large scales. Favorable comparisons of these results with a
variety of traditional turbulence statistics exemplify the wealth of turbulence information that is captured within
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a transilient matrix.

1. Introduction

Turbulent mixing in the atmospheric boundary layer
takes place on many scales, with the most vigorous
mixing generally associated with buoyant convection.
Coherent eddies in the form of narrow updrafts and
broad downdrafts can extend most of the depth of the
convective boundary layer (CBL). The mixing asso-
ciated with this type of turbulence is nonlocal; that is,
the mixing of air into or out of a region is related to
processes occurring outside of the immediate vicinity
of that region, in addition to local processes.

Even for the simple case of horizontally homoge-
neous turbulence over a flat surface in the presence of
zero mean wind, the complex structure of turbulent
motions over many scales produces transports of mo-
mentum, heat, moisture, and pollutants which are not
adequately described using simple diffusion theories.
This has led to the development of higher-order closure
schemes (i.e., Mellor and Yamada 1974; Zeman and
Lumley 1976; Chen and Cotton 1983; Finger and
Schmidt 1986) and high-resolution large-eddy simu-
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lation (LES) models (i.e., Deardorff 1974; Moeng 1984;
Nieuwstadt and de Valk 1987; Schumann et al. 1987;
Mason and Thompson 1987). The LES approach is
especially attractive because it explicitly resolves the
important scales of motion through direct integration
of the Navier-Stokes equation on a very fine three-
dimensional model grid.

The primary goal of the study presented here is to
investigate vertical nonlocal turbulent mixing in the
convective boundary layer using the large-eddy simu-
lation (LES) model of Schumann et al. (1987). The
large-eddy simulation can provide a wealth of knowl-
edge about turbulent mixing behavior which would be
impossible to measure directly in the atmospheric
boundary layer. This mixing information is important
not only in the study of turbulence itself, but also in
providing boundary conditions for atmospheric flow
on larger scales. However, it is still impractical to im-
plement a LES model for the boundary layer within a
numerical weather prediction model or a climate
model. Therefore, the knowledge gained from the LES
must somehow be translated into a simpler but accurate
description of vertical nonlocal turbulent mixing,
which is adapted to the coarser horizontal resolution
of the large-scale model.

One simple framework for describing nonlocal ver-
tical turbulent mixing is the transilient turbulence the-
ory of Stull (1984). In essence, this theory says that
the amount of air that mixes from any source altitude
to any destination altitude in a horizontally homoge-
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neous boundary layer can be described by a matrix of
mixing coefficients. Although it has been half a decade
since the concept was discussed in discrete form by
Stull (1984 ) and Stull and Hasagawa (1984), no mea-
surements of the mixing coefficients in the matrix have
yet been made. Instead, indirect estimates of this tran-
silient matrix have been presented based on parame-
terizations (Stull and Driedonks 1987). Direct mea-
surements of nonlocal mixing matrices in the real at-
mosphere or even in laboratory tanks are difficult due
to the difficulty of injecting a sheet of tracer into an
already turbulent boundary layer.

In this study we use LES results to directly determine
the transilient mixing coeflicients. Large-eddy com-
puter simulations allow one to forecast a turbulent
boundary layer up to a quasi-steady state, then insert
passive scalar tracers, and continue the simulation
while tracking average tracer transport. This latter
method, while not perfect because of subgrid approx-
imations, can hopefully capture the most important
physics for idealized cases such as the CBL.

The LES approach has been used by Lamb (1978),
Moeng and Wyngaard (1984), Fiedler and Moeng
(1985), Sun and Chang (1986), Nieuwstadt and de
Valk (1987), Chatfield and Brost (1987), and Schu-
mann (1989) to investigate dispersion of passive and
interactive scalars originating at specified levels in the
CBL. Our approach differs from most of these previous
studies in that we simultaneously compute the turbu-
lent mixing for sources at all levels in the CBL in order
to measure the total (resolvable) nonlocal mixing.
Moreover, most previous studies introduced tracers as
point or line sources, while we are using plane sources
so that the results are functions of vertical coordinate
and time only. Plane sources at just two levels were
used by Fiedler and Moeng (1985) to mark the top-
down and bottom-up contributions to mixing.

The approach used here is rather simple, as sketched
in Fig. 1. The forecast of the three-dimensional LES is
interrupted after a quasi-steady turbulent state is

reached. Every grid box within each layer of the model .

is filled with a unit amount of tracer, where different
tracers correspond to the different layers. For example,
tracer number 3 originates only from those cells in grid
layer number 3. Thus, each tracer is a marker for the
source location of air parcels (Fig. 1a). The forecast
then resumes, and tracers are allowed to mix in all
directions. Later, after some time interval At, the
amount of each tracer in each horizontal layer of the
model is measured, and the result presented in matrix
form, as in Fig. 1b. This matrix gives the fraction of
air at each destination layer that came from each source
layer—the definition of the transilient matrix.

The transilient matrix, in addition to being useful
for predicting boundary layer evolution (i.e., Stull and
Driedonks 1987), is a convenient tool for studying the
nature of the mixing processes. The statistical properties
of the coeflicients describe the transport and dispersion,
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typical mixing lengths and mixing velocities, the spec-
trum of eddy sizes, and the asymmetry of the mixing.
We can compare the transport from a given level with
the transport toward that level. The transilient matrices
also contain information on upward and downward
mixing processes.

In section 2 we describe the transilient turbulence
theory, and in section 3 the large-eddy model is sum-
marized. The resulting transilient matrices and their
statistical properties are described in section 4 as they
relate to characteristics of the vertical mixing processes.
The spectrum of scales of the mixing processes them-
selves, as well as their associated mass and heat fluxes,
are also described. Section 5 investigates the depen-
dency of the mixing at a given time on the timestep
used in the transilient model formulation. We compare
our results with other concepts in section 6. Finally, a
summary and conclusions are presented in section 7.
Some technical aspects are reported in the appendices.

2. Transilient turbulence concept
a. Basic framework

Transilient turbulence theory is a nonlocal first-order
closure approximation that can be used to describe re-
solvable-scale vertical mixing when the horizontal tur-
bulence is unresolved (as in many meso-, synoptic-,
and climate-scale forecast models with large horizontal
grid sizes but smaller vertical sizes). In this approach,
a matrix of mixing (transilient) coefficients, [c;(¢, Af)],
specifies the percentage of air that arrives within des-
tination layer i from source layer j, during time period
At. Indices i and j can represent neighboring layers as
well as layers that are separated in space. Nonlocal
mixing descriptions have had a long history under
many different names by many investigators, and is
reviewed by Stull (1988a).

The forecast equation for scalar ( ¥) is written as a
simple matrix multiplication:

| (W1 + AD)) = 2 (e, ANCE (DY (1)

where the angle brackets denote a horizontal average.
The transilient coefficients must obey mass conserva-
tion

n
2 cl:f = 13
Jj=1
for each grid box i, and tracer conservation,
n
z Cj = 1,
i=1
for each tracer j.
The first subscript of the transilient matrix represents

the destination layer, and the second represents the
source layer, allowing easy interpretation of any tran-
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FIG. 1. Schematic diagram showing (a) the initial distribution of tracers with height in a 3-D large-eddy simulation (LES) model, and the corresponding
horizontally averaged concentrations represented by the transilient matrix. (b) The same information at a later time after turbulence has transported
some of the tracers.

silient matrix (see Fig. 2). The magnitude of an ele-
ment in the matrix is proportional to the amount of
air undergoing mixing, while the distance of the ele-
ment from the main diagonal is proportional to the
size of the eddy. This distance is also related to net
advection speed of air parcels, because the matrix ap-
plies over a specified timestep, Az. Elements along the
main diagonal of the matrix indicate the fraction of
air that remains within a grid box, and hence do not
mix outside that box. Such a situation can occur with
no turbulence, or with pure subgrid-scale mixing,

Symmetric matrices imply an equal exchange of air
between two points (Stull 1984), or isotropy in one
dimension (upward mixing equals downward mixing).
Asymmetric matrices indicate differing rates of mixing
between upward and downward transport (Stull
1988b), or anisotropy in one dimension.

The transilient matrix is a function of both the un-
derlying “physics” (fluid dynamics), and the timestep
increment. The physics is often nonstationary as the
atmosphere evolves with changing boundary conditions
and forcings, making the matrix a function of time.
Also, given fixed physics, the total amount of mixing
increases as the timestep increases.

The mixing process that causes air from layer j to
reach layer i is not directly related to physical eddy
size. For example, a series of small physical eddies
might contribute to the mixing across a medium dis-
tance, given a sufficiently large timestep, while a very
large physical eddy might contribute to mixing across
the medium distance by partially completing its trans-
port during a short timestep. Similarly, if we employ
the concept of air parcels, the mixing from layer j to i
might be caused by an air parcel that moved from j to
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FIG. 2. Example of an 8 X 8 transilient matrix and its interpretation:
(a) given in the standard mathematics format; (b) flipped upside-
down to place the origin at the bottom left so that the destination
index increases upward, as in typical meteorological presentations;
(¢) contoured and shaded to highlight regions of strong mixing; and
(d) general physical interpretation for any (upside-down ) transilient
matrix. The main diagonal is highlighted in all figures.
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some point well beyond i before returning to layer i
during the timestep. We use the words eddy, eddy size,
and air parcel here to refer loosely to the net mixing
process between grid points j and i during a time in-
terval, rather than to the physical eddies or to the phys-
ical parcel paths.

We can use the transilient concept to examine the
kinematic flux of a scalar, and also the contributions
from various eddy sizes, called the transport spectrum.
These quantities are introduced here and will be eval-
uated in section 4.

b. Kinematic flux

The kinematic flux, Fi, of ¥ across any level, k, that
occurs during the time interval between ¢ and ¢ + Af
is (Stull 1988c):

AZ k n
Fi(t, Ar) = A 2 ¢ [(Xi(2)) — YD) (2)
i=1 j=1

where Az is the vertical grid spacing, assuming evenly
spaced points. If one pictures the grid points to be lo-
cated in the center of boxes of air, then the fluxes occur
between the boxes at levels staggered between the cen-
ters of the grid layers (Fig. 3). Hence, air within grid
box i is at an average height of z = (i — 0.5)Az, and
the flux F; across the top of layer i is at the level z
= iAz.

One intuitively expects that the flux across any level
k should depend only on those eddies that cross that
level. We show in appendix A that (2) is mathemati-
cally equivalent to

No turbulent flux across the top boundary of the model.
24
Grid 23
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Level 7
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No turbulent flux across the bottom boundary of the model.

HG. 3. Schematic showing grid boxes and flux levels. Those mixing
processes (eddies) of size 4Az that contribute to the flux across level
7 are identified by the arrows.
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k n

A .
F=5 2 2 (@)~ (L))

i=1 j=k+1

(3)

Remembering that the first subscript of a matrix ele-
ment always indicates the destination, we see that the
first term in (3) describes those eddies or parcels starting
at layers below k that carry air of state ¥; up towards
destination layers above k. Similarly, the second term
describes parcels starting above level k& and carrying
their state ¥, to a destination below. Parcels that start
and end on the same side of £ do not contribute to the
flux across that level, as expected (Fig. 3).

¢. Transport spectrum

The total flux at any height can be partitioned by
eddy size, creating the transport spectrum (Stull
1988d):

Az ko
=A—tz2 2 Omii-p(Gi{¥i) — ¢5(¥;))

i=1 j=k+1

F, klm (4)
where §,, | is the Kronecker delta (6,; = 1 for i = j;
0, ; = 0 otherwise). The term Fy,,, indicates how much
of the flux across level k (at height kAz) is associated
with eddies of size mAz.

The transport spectrum has the same dimensions as
a kinematic flux, and exists only when there is transport
of a scalar, such as heat. This differs from the classical
state spectrum (e.g., Fourier spectrum), which indi-
cates the contribution of various scales to the total
variance. Even the state spectrum of flux and the co-
spectrum of a scalar and velocity do not indicate trans-
port across a distance. The transport spectrum exists
when there is mixing across distances.

3. The large-eddy simulation model

The MESOSCOP program, including the LES model
used in this paper, has been developed by Schumann
etal. (1987). The subgrid scale (SGS) parameterization
for momentum and heat transport is fully described
in Schmidt and Schumann (1989). Here, we review
the changes and additions required for passive scalars.

a. The basic equations

The basic equations describe the mass and momen-
tum budgets and the first law of thermodynamics in
terms of grid-averaged velocities, u; = (u, v, w), tem-
perature, 7', and any dynamically passive scalar, ¥, as
a function of the coordinates, x; = (x, y, z), and of
time, ¢. The Oberbeck-Boussinesq approximation is
used; i.e., density, p, is assumed to be constant except
for buoyancy. In this approximation, temperature 7°
corresponds to the potential temperature in the at-
mospheric boundary layer (Busse 1978). The budget
equations, written in Einstein’s summation notation,
are
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Here, p is the pressure, g the gravitational acceleration,
B8 = —(9p/9T)/p the volumetric expansion coefficient,
and », 1 and v are the constant molecular diffusivities
of momentum, heat, and tracers (included here for
completeness only). The coordinate x; = z points ver-
tically upwards. The overbar denotes the average over
a computational grid cell and the double-primes the
deviations thereof. Coriolis forces are neglected because
they have very small effects at zero mean wind in the
CBL. The subgrid scale model is described in appen-
dix B.

b. The numerical solution method and boundary con-
ditions

The numerical integration scheme is described in
detail by Schumann et al. (1987). It is based on an
equidistant staggered grid and finite difference approx-
imations. The momentum and continuity equations
are approximated by second-order central differences
in space which conserve mass, momentum and energy
very accurately. Time integration is performed using
the Adams-Bashforth scheme. The budget equations
for temperature, concentration fields and for SGS ki-
netic energy are approximated by the second-order up-
wind scheme of Smolarkiewicz (1984). Pressure is
computed by solving a discrete Poisson equation em-
ploying fast Fourier transform algorithms.

The upwind scheme of Smolarkiewicz (1984) re-
quires some discussion because it affects the results. A
first-order upwind scheme would cause unacceptable
numerical diffusion, while the present scheme elimi-
nates first-order numerical diffusion. The scheme
guarantees that positive fields stay positive under ad-
vection. This advantage is balanced to some extent by
increased diffusion for fields which are close to zero.
This diffusion causes deviations from integral conser-
vation of scalar variance in cases without SGS diffusion,
and is discussed in appendix C. If the equations are
linear in the advected field, then an arbitrary constant
¥, may be added without changing the mathematical
solution. The numerical solution, however, differs be-
cause the numerical advection scheme of Smolarkie-
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wicz (1984 ) contains nonlinear approximations and is
thus sensitive to this constant as has been noted by
Smolarkiewicz and Clark (1986) and Schumann et al.
(1987). For the passive scalar fields, the constant is set
to 1000 in the reference simulations, but varied in a
set of sensitivity tests in appendix C. Before evaluating
the results, ¥, is subtracted. The resultant solution may
then show small negative spurious oscillations but
conserved variance better than if applied with zero ¥,.

The computational domain extends horizontally and
vertically over a finite domain of size X X X X Z. At
the lateral boundaries, periodicity is assumed. At the
top, free-slip boundary conditions are used for the hor-
izontal velocity components, the vertical derivative of
potential temperature is prescribed according to the
mean potential temperature profile, the vertical dif-
fusive flux of SGS kinetic energy is set to zero, and
pressure and vertical velocity are connected by means
of the radiation boundary condition of Bougeault
(1983) and Klemp and Durran (1983), which reduces
the reflection of gravity waves. At the bottom, the im-
posed heat flux, Q;, determines the SGS flux at this
surface, and the vertical fluxes of horizontal momen-
tum are evaluated from the Monin-Obukhov relation-
ships as described in Schmidt and Schumann (1989).
The present study assumes zero surface fluxes of con-
centration, W.

¢. Initial conditions and computational aspects

The initial conditions for potential temperature, ve-
locity and SGS energy are the same as those given in
Schmidt and Schumann (1989). The initial potential
temperature profile is adiabatic in the mixed layer, and
is topped by a layer of uniform lapse rate with constant
static stability. Small random temperature and velocity
fluctuations in the mixed layer initiate the convective
motion. All fields are made nondimensional in terms
of a reference inversion height, z;o, and the corre-
sponding convective scales, w, and T, defined by
Deardorff (1970). Table 1 gives the values of these
parameters. The actual inversion height, z;, is deter-
mined in the simulations as that height where the ver-
tical heat flux assumes its (negative) minimum.

The reference inversion height, z;o, for normalization
is that obtained after 6¢,, where the convective time
scale, t, = z;0/ Wy, 18 proportional to the time required
for one convection cycle. At this time a quasi-steady

TABLE 1. Values of initial and boundary conditions,
and scaling variables in the LES.

Kinematic heat flux from the surface, Q, 006 Kms™
Convective velocity scale, w, 1.46 ms™!
Convective temperature scale, 7, 0.041 K
Reference inversion height, z;o 1600 m
Convective time scale, £, 18.3 min
Brunt-Viisili frequency in stable layer, N 0.0099 s™!
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state of turbulence has been reached. The model is
restarted at ¢/¢, = 6 with the previously calculated flow
field, but with an injection of tracers into the previously
tracer-free forecast. In the remainder of this paper,
t = 0 refers to this restart time. [A word on notation:
the time expressions ¢/f, and At/t, are equivalent;
however, we will use the former when discussing LES
results specifically and the latter when discussing
quantities derived from the transilient coefficients,
ci(At).]

The resultant CBL is characterized by a “convective
Froude number,” Fr = w, /(z;oN) = 0.0922, where N
is the Brunt-Viisili frequency of the stable layer above
the CBL. The surface roughness is set at zo = 107z;,.
Molecular diffusivities are effectively zero.

The computational domain extends horizontally
over a domain of size X = 5z;oin the x- and y-direction,
and vertically from height z = 0 to z = Z = 1.5z;.
The number of grid cells was varied. Simulations were
run for “grid C” (coarse) with 40 X 40 X 24 cells, for
“grid M” (medium) with 80 X 80 X 24 cells, and for
“grid F” (fine) with 160 X 160 X 48 cells, where the
last number counts the grid cells in the vertical direc-
tion. The fine grid is the same used by Schmidt and
Schumann (1989). Consequently, the grid width varies
between Ax = z;o/8 and z;0/32. The timestep is set to
0.004¢, for grids C and M, and 0.0025¢, for grid F.
Grid M was used for most of the calculations presented
here (except for some sensitivity tests); thus Ax = Ay
= Az = 100 m. The sensitivity of the model results to
the grid resolution is discussed in appendix C.

The program is coded such that it can include an
arbitrary number of passive scalars. The actual number
is limited, however, by the computer resources. For
the coarse and medium grids we have used 24 scalar
fields to fill each of the 24 grid layers in the model.
Only four such fields could reasonably be used with
the fine grid on the present computer (CRAY-XMP
with 8 million words main storage and up to 64 million
words fast secondary storage ), and tracers were injected
only into a selected subset of the 48 model layers.

In order to compute the #» X n matrix (n = 24 for
the medium grid) of transilient coefficients, we perform
simulations with # scalar fields, ¥;. Initially each field
is set to zero everywhere except in the j-th grid layer
of grids C or M, where it is set to unity. For grid F,
which has double the resolution in the vertical direc-
tion, the scalar is set to unity in two adjacent grid layers
which cover the same height interval as in the coarser
grids. (Actually, a constant value, ¥y = 1000 is added
in the simulations as explained above.)

The horizontal mean values of the results for the
concentration, <\I/j>, as a function of vertical grid in-
dex, i, at time, At¢, after initialization give approxi-
mations to the j-th column of the matrix of transilient
coefficients, [¢;( At)]. The results are approximations
because of SGS-model errors, finite difference errors,
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and because of statistical errors due to the differences
between ensemble mean values and horizontal mean
values over the finite number of grid points in the
computational domain. Note that the numerical ap-
proximation errors are probably rather large in the ini-
tial period because the concentration distributions start
from a Dirac-é function, which is hard to approximate
in any numerical scheme.

d. Resultant concentration and velocity fields

For illustration of the dynamics of the CBL and the
induced mixing, Figs. 4a~d show fine-grid results at ¢/
ty =0.2,0.6, and 1.0 of three scalar fields starting from
different levels, together with the vertical velocity field.
The vertical plane selected for display included places
where the maximum vertical velocity is reached inside
the computational domain. The reduced vertical mo-
tions due to the inversion are clearly visible from Fig.
4d. The results illustrate the dominance of resolved
eddy transports. The scalar from the lowest level is
transported upwards within the main updrafts. “Clean
air” from above replaces the “contaminated air” which
is drained along the surface towards the plumes. Figure
4b shows that a layer of contaminated air in the middle
of the CBL experiences strong upward transport at
places with strong updrafts, but is generally advected
downwards because of the dominance of areas with
sinking fluid. This layer experiences the strongest mix-
ing relative to the two others shown. A pollutant layer
near but below the inversion, Fig. 4c, is mainly trans-
ported downwards within the downdrafts. Clean air
from below displaces the contaminated layer near the
inversion. The polluted air comes close to the ground.
The results show clearly that the mixing is far from
complete in the time interval of 1.0z, for which these
results are computed with the fine grid. Therefore, the
medium grid was used as a computational expedient,
and the model was run out to £/1, = 4.

4. Resulting transilient matrices

Because a different tracer is inserted at each level in
the LES, the transilient coefficients ¢;( A¢) are directly
approximated by the horizontal mean values of each
scalar concentration, ( ¥;), at vertical grid index, i, at
time, At, after initialization. In the following discussion
the transilient coefficients and scalar concentrations
will be treated as equivalent. Thus, the variation of the
transilient coefficients in time and space describes the
behavior of the simulated convection in a horizontal
mean sense. Our results allow us to separate the upward
and downward transport processes, as well as transport
from and toward each vertical level. Here we examine
some statistical properties of the transilient coefficients
which reveal the nature of the mean vertical transport,
dispersion, asymmetry, and nonlocalness of the mixing.
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a. Description of the transilient matrices

Figure 5 shows the 24 X:24 element matrices of
transilient coefficients, presented as contour plots, at
several time intervals A¢/¢, in the grid M simulation.
As discussed previously, values of ¢; lying below the
main diagonal indicate downward transport, and values
above the main diagonal indicate upward transport,
with greater distances from the main diagonal signi-
fying larger eddy sizes and faster transport.

At small values of At/¢, the transport is extremely
small in both directions. Asymmetry in the transport
is evident quite early (Fig. 5b) as the air from the lowest
levels begins to be diffused upward. For longer time
intervals the majority of the scalar transport is down-
ward as evidenced by the axis of peak concentration
values which lies below the main diagonal (Figs. 5c¢, d,
and e). Only the air originating near the surface has
moved upward. These results agree with the qualitative
picture of scalar transport shown by the instantaneous
vertical cross sections shown in Fig. 4, and with the
established laboratory results of Willis and Deardorff
(1975, 1976, 1981) and numerical CBL simulation of
Nieuwstadt and de Valk (1987).

Let us characterize the intermediate timestep ma-
trices in more detail. In particular, we examine [c;( A?)]
at At/t, = 2.0, which will serve as a reference case for
a set of experiments described in section 5.

The reference matrix, [¢;(2¢,)], shows the following
characteristics:

(i) considerable mixing over the whole depth of the
mixed layer, because of the nonzero elements in the
lower left % of the matrix;

(ii) most of the air originating near the surface has
moved elsewhere during this long timestep, as indicated
by the relative minimum in the lower left corner;

(iii) convective overturning is occurring, because of
the relatively large values near the ends of the cross-
diagonal through the mixed layer (dashed line);

(iv) asymmetry, because the ridge of maximum
magnitude (dotted line) drops to the lower right of the
main diagonal;

(v) both the net transport velocity (distance moved
per timestep) and ‘the amount of downward-moving
air from within the top third of the mixed layer increase
as the destination point approaches the ground, as
shown by the distance of the dotted line from the main
diagonal, and magnitudes of c; along the dotted line;

(vi) there are greater upward transport velocities
than downward, since the 0.01 contour line is farther
from the main diagonal for upward transport;

(vii) a small amount of diffusion in the free atmo-
sphere above the mixed layer, associated with the nu-
merical problems discussed in section 3b. If there were
no diffusion, then all of the elements in the upper third
and right third of the matrix would be zero, except for
ones along the main diagonal.
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b) Origin: z/zj=0.47 At/ts
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FIG. 4. (a) Scalar concentration at ¢/¢, = 0.2, 0.6, and 1.0 for air originating at z/z; = 0.03. The fine grid LES model was used, and the
contour intervals are 0.05, 0.15,0.25, . . . , 0.95; (b) as in (a), for air originating at z/z; = 0.47; (c) as in (a), for air originating at z/z; =
0.97; (d) vertical velocity field at the same times. The contour interval is 0.3 m s™', and the dashed contours represent negative velocities.

After several time units the CBL is well mixed and
the air originating from each level is distributed more
or less uniformly over the entire lower portion of the
domain (Fig. 5f). Some diffusion can be seen in the
stable layer. While a fraction of this represents physical
diffusion, the bulk of it is numerical, resulting from
the response of the subgrid scale turbulence parame-
terization to linear waves generated at the inversion
level. We will therefore confine our discussion primarily
to the behavior of the coefficients in the mixed layer.

b. Time dependence of mixing

We can follow the time evolution of the vertical
mixing of fluid originating at a given level j by exam-
ining the values of ¢; for the jth column. Figure 6 shows
the transilient coefficients as a function of time for four
levels in the CBL. Air from near the surface is trans-
ported upward in time, with the concentration maxi-
mum reaching 0.75z/z; after 1.3 time units, then re-
turning slowly to the middle of the mixed layer. For
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air originating at 0.22z/z; and 0.47z/z;, downward
transport occurs for At/¢, < 1, after which the con-
centration maximum rises toward the middle of the
CBL. This same behavior was observed by Willis and
Deardorff (1978) in their laboratory tank experiments,
and by Eberhard et al. (1988) in the atmospheric CBL
during the CONDORS (CONvective Diffusion Ob-
served by Remote Sensors) experiment. Near the in-
version level the air is effectively trapped beneath the
stable layer, with only a slow upward diffusion of con-
centration associated with the numerical problem dis-
cussed earlier. The net transport is strongly downward;
in fact, a weak local maximum in concentration is
found at the surface at Af/¢, ~ 3. Note that the trans-
port diagrams of Fig. 6 do not have the same meaning
as a snapshot of a tracer plume because we are following
the dispersion of a layer of tracer rather than of a linear
point tracer.
The corresponding vertical fluxes of tracers origi-
nating at the same four levels are plotted in Fig. 7.
"These are obtained as horizontal averages of w”¥" at
various time points in the LES calculation. Initially the
vertical tracer fluxes correspond strongly to the tracer
gradient, i.e., a large downward flux is associated with
a large positive vertical concentration gradient, and vice
versa. However, several regions with counter-gradient
fluxes develop between At/t, ~ 0.5 and At/t, ~ 2.0.
For sources near the surface (Figs. 7c, d) the flux con-
tinues to be upward at all levels even though the level
of maximum concentration rises with time, creating
an area of positive concentration gradient below that
level. At midlevels a counter-gradient downward flux
is seen in an area of negative concentration gradient
for 0.5 < At/t, < 1.0 (Fig. 7b). For a source near the
inversion, the fluxes just below the inversion are against
the local gradient for 0.5 < At/t, < 2.8 (Fig. 7a). Thus
we see that for intermediate time intervals, the mixing
cannot be accurately described by simple down-gra-
dient approximations. We shall examine the resulting
implications for K-theory later in section 6.

¢. Mean vertical transport and dispersion

The mean transport of tracers originating at the jth-

level after some time interval At is obtained by weight-
ing each destination level i by ¢;; to get the mean po-
sition, or center of mass, Z;( At):

n
Zi(At) = —0.5Az + Az 3 ¢;i(A)- i

i=1
The mean vertical transport distance is simply Z;( At)
—(j— 1)+ Az. For tracers originating near the surface,
Z;is analogous to the mean plume height. When plotted
as a function of time (Fig. 8) we see that on average
the mean height of tracers originating near the surface
rises to about 60% of the depth of the mixed layer before
lowering to 0.5z; in the uniformly mixed layer. Con-
versely, the mean position of tracers from near the in-
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FIG. 6. Transport diagram showing isolines of ¢;( At) as a function
of At/t, for selected source levels, j, corresponding to levels z/ z; =:
(a)0.91, (b) 0.47, (c) 0.22, and (d) 0.03. Contour levels are in percent
of the original concentration. The heavy dashed line indicates the
concentration maximum,

version sinks below the middle of the mixed layer be-
fore rising back to 0.5z;. The behavior of Z; with time
agrees well with the dispersion from point sources in
the laboratory tank measurements of Willis and Dear-
dorff (1976, 1978, 1981). The simulated mean upward
transport from z/z; ~ 0.2 was slightly greater than the
observations, and the mixing of surface air occurs a bit
more slowly in the simulation than in the observations.
After four time units all of the tracers originating below
the inversion have been mixed evenly. Tracers from
just above the inversion are entrained down into
the CBL.
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F1G. 7. Vertical flux of tracers as a function of At/1,, for the same
source levels as in Fig. 6. Contour levels are in percent of w, (assuming
unit initial concentration).

A measure of the spread of the concentration dis-
tribution is the vertical dispersion parameter, o;( At),
“defined by

a? (A1) = (Az)? 3 c(AL)- (i — j)?

i=1

(10)

(Stull 1986). This quantity reflects the amount of ver-
tical mixing which has taken place. Figure 9 shows the
dispersion for several layers in the model. Tracers from
the middle of the CBL are mixed the most rapidly,
with the dispersion reaching an equilibrium value of
approximately 0.3 after about one-half time unit.
Tracers from the bottom and top of the mixed layer
are slower to disperse because the flow is limited by
the surface and the capping stable layer. The dispersion
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z/z

FIG. 8. Mean height, 7;( At), of tracers originating at each level, j, .
as a function of time. The experimental results of Willis and Deardorff
(1976, 1978, 1981) are also plotted, corresponding to the heights of
z/z; = 0.04 ([4), 0.24 (A), and 0.49 (O).

for surface tracers equilibrates after approximately three
time units. The dispersion of tracers at the highest stable
level in the model is much smaller than that for mixed
layer air at all timesteps, and describes the dispersion
caused by numerical noise. Again, the dispersion cal-
culated from the transilient coefficients agrees quite
well with the laboratory results of Willis and Deardorff
(1976, 1978, 1981), except for the case of z/z; ~ 0.2,
where the calculated dispersion is about 20% greater
than the observed. At z/z; = 0.34 our vertical dispersion
is also larger than that measured during the CONDORS
experiment ( Eberhard et al. 1988) by about 20%. These
differences are to be expected because in the field ex-
periments the tracers diffuse both vertically and lat-
erally, while in this simulation the lateral dispersion is
irrelevant because of the layered source distribution.

d. Asymmetry of vertical mixing process velocity

Transilient matrix asymmetry is related to the
skewed probability distribution of vertical velocity that
is typically found in a convective mixed layer. Each
element along the main diagonal (thick shaded line in
Fig. 10a) of the matrix corresponds to one individual
grid layer (index = r), and serves as a reference height,
as illustrated with the dotted lines. Through any ref-
erence height, we can draw a cross-diagonal line,

GI(At)
0

%

FIG. 9. As in Fig. 8, for the dispersion, ¢,( At), at selected vertical
levels. The atmospheric measurements of Eberhard et al. (1988) (A)
are included, corresponding to a release height of z/z; = 0.32.
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F1G. 10. (a) Schematic diagram showing a cross-diagonal distri-
bution of transilient matrix elements at a reference height of z/z;
= 0.5. (b) Net mixing-process velocities, defined by wyp = (i — j)Az/
At, are shown as vectors for the special cross-diagonal set of source
(/) and destination (/) locations. (¢) Distribution of the fraction of
air (c;) associated with mixing process velocities at several heights
as a function of wyp, based on the LES forecast of tracer movement
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sketched as the solid line. Matrix elements along this
cross-diagonal have the special characteristic that their
source and destination locations are equidistant from
the reference height, with one location above the ref-
erence and the other below (Fig. 10b).

A matrix element on this cross-diagonal that is two
elements away from the main diagonal, for example,
describes the fraction of air that started from two grid
points below (above) the reference level, and ended
two grid points above (below). This corresponds to
transport across a net distance of 4Az during the time
interval At for which the matrix was evaluated. A net
mixing-process velocity, wmp, associated with this
transport is easily defined by wyp = (i — j)Az/A¢,
where i and j are the destination and source indices,
respectively. Here we are focusing on only a special
relationship between i and j, thatis, i —r=r —j.

The largest-size eddy considered is that which hits a
model boundary such as the ground, and the smallest
size is 2Az. Between these limits is a range of eddy
sizes, subject to the constraint that the destination and
source locations of the parcel be equidistant from the
reference height. Such net transport velocities across
finite distances, wyp, inherently differ from the local
w-velocity measured at one height.

The fractions of air (i.e., ¢;) associated with various
mixing process velocities for Az/z, = 1.0 are shown in
Fig. 10c, and are compared to the corresponding prob-
ability distributions of state w found by Schmidt ( 1988)
during previous simulations with the same LES model
(Fig. 10d). The transilient results show a positively
skewed distribution of wyp throughout most of the
mixed layer, changing to a narrower and slightly neg-
atively skewed distribution at the top of the mixed layer.
These shapes not only agree with Schmidt’s results for
state w (except at z/z; = 0.25), but also agree with
other distributions in the published literature (Stull
1988c).

The magnitudes of vertical velocity, however, are
quite different, as is to be expected. The instantaneous
w values of Fig. 10d are about a factor of 3 larger than
the wyp velocities of Fig. 10c. An air parcel with large
state w might move rapidly upward, and then rapidly
downward again during a time interval A¢. The net
difference in starting and ending locations of the parcel
might be small, corresponding to a small wyp. Since
Fig. 10c corresponds to net transport during one con-
vective timescale (Af = t, = 18.3 min), we would an-
ticipate that many of the air parcels have had time to
change their vertical direction of motion as they follow
the normal closed circulations expected in a convective
mixed layer.

during At/t, = 1.0. (d) Probability distribution of instantaneous
values of state vertical velocity, w, averaged over horizontal grid layers
in the LES model at a time when it was in near steady state. Note
the differing scales on diagrams (¢) and (d).
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e. Asymmetry of transport

The transilient matrices in Fig. 5 clearly show that
the mixing of air from a given level is generally not
symmetric in the upward and downward directions. It
follows that the transport of air from a level should
differ from the transport of air toward that level.

First we compare the fractional amounts of concen-
tration transported upward as opposed to downward
from a given level. These are computed from the col-
umns of the transilient matrix by summing over all
destinations, i, above or below the source, respectively:

n . Jj-1
Man = 2 ci(Ar); fY(A1) =3 ci(Ar). (11a,b)
i=j+1 i=1
The fraction remaining at the jth level is ¢;;.
Early in the simulation, before the convective mixiag
has proceeded very far, the little amount of fluid trans-

port that occurs is similar in the upward and downward

(a) At/t. =0.02
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directions at all levels away from the surface, as seen
in Fig. 11a. For At/t, = 0.2 the maximum upward
transport occurs for surface air, while the maximum
downward transport is found at midlevels in the CBL
(Fig. 11b). The solid line shows that mixing rapidly
moves air away from its original grid level. Initially the
strongest removal occurs near the surface, but the min-
imum in ¢;; gradually moves toward the middle of the
CBL. Most of the transport of CBL air is downward
for At/t, < 1.0 (Fig. 11b, ¢, d). This is in agreement
with the conditional sampling results of Greenhut and
Khalsa (1987) and Young ( 1988), who examined the
fractional areas of upward and downward vertical ve-
locity in the CBL.

With time the peak in the downward transport rises
until it reaches the inversion level. At the same time
the surface air continues to be mixed upward most
rapidly, while a minimum in upward transport occurs
just beneath the cappping inversion (except for air

(c) Att. =0.6
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I I ]
0.5 0.57
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0002040608 1.0 000204060810 0002040608 1.0
fraction fraction fraction
(d) AVt =1.0 (e) AUt, =2.0
157 1.57 T T
1.07 &£
z/z,
l -
0.57

0.0
0002 0406 08 1.0
fraction

0.0 -
00 02 0406 081.0
fraction

0.0~ -
0002040608 1.0

fraction

FIG. 11. Fraction of air transported upward and downward at each level for selected time intervals, At/f, =: (a) 0.02, (b) 0.2, (c) 0.6,
(d) 1.0, (e) 2.0, (f) 4.0. The transport upward and downward from each source level is given by (e, (0), and j}‘(At), (@), respectively,
and the transport upward and downward toward each destination level is given by f;'(At), (A), and f¥(AL), (A), respectively. The solid

line indicates the fraction of air not subjected to resolvable transport.
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originating at the uppermost level where the model
constrains the upward transport to be zero). The level
at which f' = £V is low in the CBL for short time
intervals, then shifts upward for longer values of A¢/
t.. After several time units the unmixed fraction ¢j;
=(24/1.5)"! ~ 0.06, and the upward and downward
fractional transports achieve an approximately linear
profile in the boundary layer, given by fi! ~ 0.94 — £
and f* ~ 0.94 z/z;(Fig. 11f). The upward and down-
ward transports are of equal magnitude at z/z; ~ 0.5.
This is what we theoretically expect for complete mix-
ing of CBL air. ,

The partial sums of the transilient coefficients along
a row in the matrix give the fractions of air which were
transported upward or downward foward a given des-
tination level:

f*(At)—Zcu(At), fif(an = Z ci(Ar). (11cd)

j= j=i+1

Profiles of f;' and f;* are also shown in Fig. 11. As in
the previous case for transport away from a level, the
upward and downward components are equal only for
very short time intervals. For A¢/t, < 1.0, most levels
in the CBL contain a greater fraction of air transported
downward from above than upward from below. Only
near the inversion has the original air been replaced
by air originating at lower levels (Fig. 11b, ¢, and d).
With increasing time the level at which £;' = f£;* moves
downward from the inversion level to 0.5 z/z;, and
the profiles approach the linear profiles expected for
the well mixed CBL.

Comparing the transport foward a level with the
transport from a level, one sees that except at the earliest
and latest time points, large differences exist between
the shapes of the curves. The fractional transport away
from a level approaches equilibrium much faster than
the fractional transport toward that level, as expected
because c;; # ¢;;. For symmetric mixing, i.e., for a sym-
metric transﬂlent matrix, it is easy to show that f;t
= f*and fi' = f;*. The differences between the curves
in Fig. 11 are another measure of the asymmetry of
the mixing produced by the LES model for interme-
diate time intervals.

[ Mixing lengths

The concept of a mixing length can be used to de-
scribe the average distance a parcel moves during the
mixing process. The mixing length depends on the rel-
ative amount of air transported across various vertical
distances and is, therefore, a function of height. Based
on the discussion in the previous section, we should
also expect the mixing length to depend on the direction
of the mixing. We use the column values of ¢; to es-
tlmate upward and downward mixing lengths, /;* and
l, , as weighted average displacements from the source
level j,
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Az 2 ci(At)- i — jl
I_]T(At) -j n s
Z' Cij(At)
=j

J
Az T cy(AD)- |i—
lj‘(Al)= i=1

(12a,b)
cu(At)

Il NZRT

Similarly we can compute the mixing lengths for
upward and downward transport f0 a given destination
level i,

Az 2 ci(At)- |i—j
1A = — :
Z C,'J-(At)
j=1

Az 2 cy(At)- |i—j]
lit(At) = — 7
2 c;(At)
Jj=i

(12c,d)

Initially the values of /;! and /;* are small and nearly
symmetric about the level of origin (Fig. 12a). At At/
ty, = 0.2 (Fig. 12b) the mixing lengths for upward
transport from a given level exceed those for downward
transport throughout most of the boundary layer, while
the fraction of air transported downward is greater than
the fraction transported upward (Fig. 11b). This sup-
ports the qualitative picture of narrow buoyant updrafts
separated by broader regions of slower, downward
movm% air. At intermediate time intervals /;! is greater
than /' in the upper part of the CBL, and /" is less
than l ! in the lower part of the CBL. As the mixing
proceeds the mixing lengths approach a linear depen-
dence on height (Fig. 12d, e, f), with /;! and /! ap-
proaching linearity more rapidly than J; ¥ and AN +’ This
reflects the greater speed of the updrafts over that of
the downdrafts. The largest mixing lengths correspond
to upward transport of surface air and downward
transport of inversion-level air. The upward and
downward mixing lengths are equal only at z/z; ~ 0.5,
with increasing asymmetry away from that level.

An equation for overall mixing length, [, at level k
is simply

h(At) = Az Z > [Czk(At) + ca(AD] - i — kI

i= 1

(13)

This equation represents a weighted sum of the upward
and downward transport both toward and from the
level k. Figure 13 shows that with increasing time the
overall mixing length increases in magnitude, with the
level of the maximum value splitting from the lower
CBL at small At/t, to the surface and inversion level.
This splitting is evident as early as A/t = 0.6, when
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FIG. 12. Normalized mixing length for air transported upward and downward at each level for selected time intervals, At/ te =:(a)0.02,
(b) 0.2, (c) 0.6, (d) 1.0, (e) 2.0, (f) 4.0. The normalized mixing length upward and downward from each source level is given by tan/
2;,(O), and [*(Ar)/ z;, (@), respectively, and the normalized mixing length for air transported upward and downward toward each destination
level is given by /;*(A?)/z;, (A), and [*(At)/ z;, (2), respectively.

air from near the surface is transported rapidly upward
in updrafts, producing large mixing lengths at the lowest
level. At large At/t, air near the boundaries of the
mixed layer can travel farther on average than air from
the midlevels, which feels the confining effects of both
vertical boundaries.

z/z 8. Process spectra

The process spectrum, introduced by Stull (1988c,
d), spectrally decomposes the total mixing at a level
into contributions of different-size mixing processes
originating from different locations. It is analogous to
the transport spectrum discussed in section 2, except
that it measures the relative magnitudes of the mixing
processes themselves, regardless of the fluxes associated
with them. The process spectrum, Py, is the contri-
bution to the mixing from each eddy size, mAz (which
FIG. 13. Normalized mixing length, /(A?)/z, we also loosely refer to as the “wavelength”) at the

for selected time intervals. height kAz, and follows from Fig. 3 and Eq. (4):
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FIG. 14. Process spectra, Py;,,( At), for selected heights and time intervals, At/t, =: (a) 0.2, (b) 1.0, (c) 4.0. The total process spectrum is given
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k n
Pk[m(Al) = z Z 6m,|i_j|[Cg(Al) + C‘ji(At)]. (14)

i=1 j=k+1

The magnitude of Py,,, reflects the “vigor” of the mix-
ing. The portion of Py,,, which includes c; represents
the contribution from downward mixing processes, and
the portion including ¢;; is the contribution from up-
ward mixing processes (refer to Fig. 3).!

! Note that the original equation for process spectra suggested by
Stull (1988c,d) is incorrect. First, it applies only to symmetric ma-
trices. Second, it is too small by a factor of two. Third, it includes
the effects of eddies that do not cross the level of interest, k. Due to
a fortuitous trick in computer programming, however, the graphs of
process spectra presented by Stull (1988c,d) are correct, except that
the magnitudes of the spectra are too small by a factor of.two. The
process spectra shapes of Stull (1988¢,d) are still valid, as are the
associated physical interpretation. We recommend that ( 14) be used
for all process spectra calculations, because it is valid for both sym-
metric and asymmetric transilient matrices.

Figure 14 gives the process spectra for selected al-
titudes and time intervals. For very short time intervals,
Py m is small at all wavelengths because most of the air
still remains in its original grid box (refer to Fig. 11a).
For longer time intervals the mixing processes mix
greater amounts of air across longer distances. Thus
both the magnitude of Py,,, and the wavelength, mAz,
corresponding to the dominant eddy size tend to in-
crease with At¢. Near the surface (z/z; = 0.06) vigorous
mixing takes place for short time intervals (Fig. 14a),
then decreases with time as a broader range of eddy
sizes influences the mixing (Fig. 14b, c¢). The spectral
broadening for upward eddies is more rapid than that
for downward eddies, although both lead to a shift to-
ward larger wavelengths. Deeper inside the CBL (z/z;
=0.25, z/ z; = 0.50) the mixing quickly becomes more
vigorous than at the surface, and larger wavelengths
become relatively more important. By At/t, = 1.0 the
peak wavelengths are on the order of 0.5z; inside the
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CBL (Fig. 14b). Again, because of the greater speed
of the updrafts, the upward component of Py, dom-
inates the spectrum of the larger eddy sizes. Near the
inversion the process spectra remain small, limited to
wavelengths of 1Az-2Az for most time intervals. The
capping stable layer inhibits upward motion at z/z;
= (.94, and the slower downward transport of inversion
level air is not as effective as the upward transport of
surface air in thermals.

The symmetric structure in Fig. 14c represents the
equilibrium (with respect to timestep) process spectra
for a well mixed CBL. At each level there exists a range
of intermediate distances across which the mixing is
approximately equal. We emphasize that Py, repre-
sents the net effect of many sizes of physical eddies in
transporting air across a distance mAz. After several
time units the values of the transilient coefficients are
nearly the same everywhere in the CBL. If we treat the
mixing coefficients as constant, i.e., ¢;(Af = ) = ¢,
then it is easy to show that

2¢-min(m, k), k<%n,-
Py = (15)
2¢-min(n; — m, n; — k), k>%n,-

where #; is the index of the uppermost CBL grid box.
The flat portions of the curve represent scales of mixing
which are inhibited by the presence of either the surface
or the capping stable layer. The curve slopes toward
zero on both sides of the diagram because there are
fewer terms in the summation [i.e., fewer (i, j) for
which exchanges of length mAz can occur].

The area under the spectrum is related to the total
mass of air transported upward and downward past
each level, which can be interpreted as a measure of
mixing intensity, P,. We sum Py, across all wave-
lengths, m, which is the same as removing the Dirac
delta function in (14), to obtain

k n
PuA) =2 2 [e(An) + ci(An]. (16)

i=1 j=k+1

Figure 15 shows the mixing intensity as a function of

height and time interval. The Py is small at all levels
for small Az, then grows with time as the mixing de-
velops. The maximum mixing intensity moves upward
from the lower CBL to the mid-CBL, and P, ap-
proaches an asymptotic profile defined by

P (At — oo)=—2'{f(n,<——k) (17)

1

for the well mixed CBL. Equation (17) follows directly
from (16) in the special case of constant ¢;; everywhere
in the mixed layer. The departure of the profile at At/
t, = 4.0, which is essentially well mixed, from the

asymptotic profile, is again due to numerical diffusion.
The shape of the mixing intensity curves is strikingly
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FIG. 15. Mixing intensity, P = X Py m, as a function of dimen-
m=]1

sionless height, z/ z;, for selected time intervals. The vertical velocity
variance profile, normalized by w2, is plotted as the dashed line
(Schmidt and Schumann 1989).

similar to the shape of the vertical velocity variance,
{w?), also plotted in Fig. 15. This {w?), which was
previously computed by Schmidt and Schumann
(1989) using the same LES model, initial and boundary
conditions, is a “‘state” statistic based on instantaneous
measures of w. Thus, it is expected to correspond more
closely to the shorter time-interval mixing intensities.

h. Air transport spectra

In section 2 expressions were given for the total flux
and transport spectrum of a passive scalar [Egs. (3)
and (4)]. The total mass flux of air through each level
must equal zero because of mass continuity, but the
contributions from different sizes of mixing processes
may be nonzero. Since at the initial time ¥; = 1 at
each level j, Eq. (4) can be simplified to give the trans-
port spectrum for air (mass) flux,

air AZ £ .
Fii.(AL) = A 2 > Omii-plci(At) — c(AD)].
i=1 jmkt1
(18)

This expression is nearly the same as (14) for the pro-
cess spectrum, except that the difference of the upward
and downward components, rather than the sum, de-
termines the net air flux through level k due to mixing
processes across a vertical distance of mAz.

Figure 16 shows the air transport spectra for selected
levels and time intervals. The phrase “vertical transport
distance” is used here instead of “eddy size” because
this spectrum is more easily interpreted as air parcel
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FIG. 16. Transport spectrum, Fi, (At), for vertical air mass flux
at selected heights, kAz/z;, and time intervals, At/z, =: (a) 0.2, (b)
1.0, (¢) 4.0. Note the change of vertical scale.

movements. Instead of continuing to grow with time,
as did the process spectrum, F§,, has its largest values
after relatively short time intervals when the mass flux
is concentrated in relatively small parcel displacements.
With increasing At/t,, Fil, decreases as the mass flux
is spread over a greater range of parcel displacements.
Downward net transport takes place across smaller
distances, while an equivalent amount of net upward
transport is accomplished across larger distances. It is
interesting that for A¢/t, < 1.0, values of F 2‘{,,, for
heights z/z; = 0.06, 0.25, and 0.50 cross the origin at
approximately the same vertical transport distance (Fig.
16a, b). This suggests that even though the process
spectra showed significantly different eddy size distri-
butions with height (see especially Fig. 14b), the net
transport across these various distances behaves simi-
larly near the surface and in the middle of the CBL.
Only the magnitude of F3,, is dependent on height
for At/t, < 1.0. Just below the inversion a net down-
ward mass flux across small distances is balanced by a
small net upward transport accomplished over a wide
range of distances. After 4 time units the mass transport
spectrum for air is very small. What little net transport
remains is controlled by the larger parcel displacements,
and probably also by the entrainment causing slow
growth of the CBL height, z;.

5. Equivalent-timestep matrix comparisons

A transilient matrix is, by necessity, a function of

both the physics, the time, and the timestep increment. -

For stationary turbulence, as is approximated by the
LES, the transilient matrices are not a function of time
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but continue to be a function of timestep. In this section
we attempt to remove the influence of the timestep
from our matrix comparison.

Because successive matrix multiplications are used
to generate a forecast, we can use a matrix valid for a
short timestep, At,, to calculate the corresponding ma-
trix that would cause the same amount of mixing over
a larger timestep, Af, = pAt:

(¥(t + pAn))
= [c(At)]-[e(At)]- - - [e(At)]- (¥(2))
= [c(At)]P- (¥(t))
= [c(AL)]- (¥(2)).

The matrix [c(At,)], it is hoped, describes the same
physics as [c¢(Af;)], but over a longer timestep. We
can thus convert the raw matrices of section 4a to cor-
respond to some larger reference timestep, Af,, using

[c(AR)] = [c(At)]™/ % (19)

In addition to taking the power of a matrix to change
its timestep as is done here, one can take roots of a
matrix by finding the eigenvectors and eigenvalues,
taking the roots of the eigenvalues, then multiplying
again by the eigenvectors to obtain a new matrix.

We use a reference timestep of At = 2¢, = 36.53
min, and take the matrices of smaller timesteps to the
appropriate power to bring them up to this reference.
The matrix powers were done in double precision (64
bits) to ensure that small elements away from the main
diagonal would have the proper influence.

Since the fluid dynamics is quasi-stationary, one
would anticipate that all of the matrices should look
similar when applied over a common timestep. The
results shown in Fig. 17, however, reveal that the ma-
trices are very dissimilar. We will use Fig. 5e as the
reference, and refer to the detailed description of this
matrix given in section 4a.

The matrix of [c(1t,)]% contoured in Fig. 17a, in-
dicates that the CBL is fairly well mixed but the mixing
processes are not symmetric. Inversion level air is still
transported efficiently to the surface, even though the
upward mixing process velocities are greater than the
downward wyp’s. The free atmospheric diffusion is still
fairly small. However, there appears to be less convec-
tive overturning, but mor¢ uniform mixing within the
mixed layer. This is somewhat surprising, because Fig.
Se indicates overturning (relatively large values along
a cross diagonal through the mixed layer). Also, there
is no longer a relative minimum at the lower left corner,
which is also associated with the more uniform mixing.

In Fig. 17b, for matrix [¢(0.5¢,)]*, we see even more
dramatic changes. The matrix is becoming more sym-
metric, a larger amount of air is not mixed out of the
surface layer, there is no evidence of convective over-
turning, and the mixed layer is less well mixed. The
upward wyp is still slightly greater than for downward



2196

Slource (z/z‘ i)

“ta

40.00

Destination (z/z,)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 46, No. 14
Solurce (z/z i}
0.00
(b) S _
Jo.c0 @9'4 ]

.=
N
N~
N
S
c
e,
—
©
=
e
7
@
Q
] 10 .0 . i
00— 3 1 0.0 —
0.0 0.5 £ 1.0 15 0.0 05 1.0 15

FiG. 17. Contours of transilient turbulence matrices after the matrices were taken to the appropriate powers to bring them to an
effective final timestep of Af, = 2¢, = 36.53 min. The original timesteps At,/?, were: (a) 1.0, (b) 0.5, (¢) 0.2, and (d) 0.02. The
corresponding exponents of the powers are: (a) 2, (b) 4, (c) 10, and (d) 100.

mixing, but this is partly due to numerical diffusion
problems rather than physics.

Figure 17c, for matrix [c(0.2¢4)]'°, shows that al-
most all of the apparent physical characteristics are
different from those of Fig. 5e, except for the numerical
diffusion in the free atmosphere. There is still more
mixing in the mixed layer than above, but the mixing
is much more symmetric, and is taking on the char-
acteristics of small-eddy-diffusivity (K) theory. Figure
17d, for matrix [¢(0.02¢)] 100 shows a continuation
of this trend. Indeed, in Fig. 17d the physical mixing
within the mixed layer is more difficult to distinguish
from the numerical noise within the free atmosphere.

The differences between Figs. 5¢ and 17a-d are dif-

ficult to explain at first, because they are based on the
measurement of the same tracers within the same
steady-state LES convective mixed layer with effectively
identical timesteps. However, we see two reasons for
these differences. The first originates from the time de-
pendence of flux dynamics even for a homogeneous
turbulent velocity field. The second is related to the
vertical extent and convective structure of the CBL. To
explain the first reason, we recall the prognostic equa-
tion for the vertical turbulent flux of any tracer (e.g.,
Stull 1988c¢) in the CBL,

5 vy = —(w?

>%+Bg<\I’T>— v
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where v comprises diffusion, dissipation and pressure
effects on (w¥). This equation shows that time (of
order 7, ) is required to adapt the fluxes to gradient and
buoyancy forcings. The fluxes are zero initially because
the tracer fluctuations are zero. They become nonzero
very quickly because of large vertical velocity fluctu-
ations and the initially very steep concentration gra-
dients. Later in the simulation, as the tracer concen-
tration gradients weaken, their influence on the flux
tendency becomes less important. The fluxes are re-
sponsible for changes in the mean concentration pro-
files within a time interval and it is these profiles which
form the columns of the transilient matrix. Hence, the
evolution of the flux dynamics causes the early and
late evolution of the transilient matrix to possess dif-
ferent characteristics. .

The second reason for the observed differences is the
convective structure memory, or lack thereof, of the
transilient matrices. Initially after tracer injection, some
of the tracer mass is carried upward in the thermals,
and some is carried downward. During a short time
interval, the tracers from low altitude sources that hap-
pen to be within thermals are carried upward a short
distance, where they contribute to the total concentra-
tion at that destination height. The transilient matrix
for this short timestep captures the net mixing between
that source and destination, but does not contain in-
formation that the tracers are still within the thermals.
During the next short time interval, the tracers in the
real CBL are carried further upward within the same
thermals, leading to transport across larger distances
during the extended time period. However, because
the small-timestep transilient matrix has lost the in-
formation that all of the tracers are still in the thermals,
it transports only a small fraction of the tracers further
upward. Thus, the net transport generated by the re-
peated application of a small-timestep matrix is smaller
and more local than the single application of a large-
timestep matrix.

At first glance, this concept appears to be the same
as relative puff dispersion (Sawford 1988), where dif-
ferent physics is happening on different scales simul-
taneously, and any one tracer is affected mostly by those
scales of the same size as the tracer cloud. In this theory,
larger scales are more important at later times. How-
ever, we know that tracers were influenced by the large-
scale convective structure from the very beginning be-
cause they were injected into existing updrafts and
downdrafts. Convective structure memory appears to
better explain the tracer dispersion that we observed
here.

Although our results for short timesteps are similar
to relative puff dispersion, most applications and pa-
rameterizations of transilient turbulence theory are for
absolute dispersion (Sawford 1988; Stull 1988a), even
at short timesteps. Namely, one desires a transilient
matrix for short timesteps that, when reapplied many
times during the course of a forecast, causes the same
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dispersion and heat transport as a matrix for a larger
timestep that “feels” the full effect of the instabilities
and boundaries.

For mixed-layer simulation, we recommend that a
matrix based on a timestep of one to two ¢, (similar
to those plotted in Fig. 5d, €, but without the numerical
noise) be used as a “master” matrix, and that matrices
for different timesteps be found as powers or roots of
this master. Such a master and all of its powers or roots
will always contain the desirable convective character-
istics described in section 4a, and will provide the
proper response to the imposed instabilities and
boundary constraints. A proper simulation should also
allow for the nonstationarity associated with real mixed
layers. Similarly, any parameterization for the transi-
lient matrices should include these larger-scale absolute
dispersion effects, even for short timesteps.

6. Comparison with other concepts
a. Instantaneous vertical fluxes

The vertical profiles of instantaneous fluxes of each
tracer at various times were calculated directly from
the LES model. When these profiles are placed as col-
umns side-by-side to form a matrix, and then con-
toured, the result is shown in Fig. 18. In these diagrams,
each column represents the original source height of
each tracer. For example, for the tracer emitted in the
middle of the mixed layer (z/z; = 0.47), we see at very
short times (Fig. 18a) an upward (positive ) flux above
the emission height (i.e., at destinations greater than
0.47), and downward flux below that height, as ex-
pected for simple diffusion theory. At a time of ¢/t
= 4.0 (Fig. 18f), there is virtually no net flux of the
tracer emitted from the middle of the mixed layer, be-
cause that tracer is now almost uniformly mixed.

It would be expected that tracers emitted near the
ground are the first to be drawn into the thermal up-
drafts, while emissions from middle and top of the
mixed layer follow later. This is verified by the shift of
the maximum positive flux region from the left side of
Fig. 18c towards the right in Fig. 18d-f. Tracers that
were emitted just below the top of the mixed layer (z/
z; = 0.8 or 0.9) are slowly carried downward in down-
drafts and have a negative flux during most of the time,
as shown in Fig. 18a-d. However, by t/¢, = 4.0, these
tracers have a net upward (positive) flux, because they
finally reach the surface where they are drawn into the
base of thermals and rise. At this time there are negative
fluxes associated with the entrainment down into the
mixed layer from sources just above z/z; = 1.0. These
negative fluxes extend down to destination levels close
to the ground.

b. Comparison with K-theory

In Fig. 18d-f, the regions of positive and negative
flux cross the main diagonal. This would be impossible
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FIG. 18. Instantaneous flux of each tracer as a function of height, z/z;, calculated directly from the LES model, at times ¢/¢, of (a)
0.02, (b) 0.2, (c) 0.6, (d) 1.0, (e) 2.0, and (f) 4.0. Each tracer is represented by a different column in the contoured matrix, and is
indexed by its original source height. The contoured fluxes are made dimensionless by dividing by w, .
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to model with a simple K-theory model (assuming
positive K), which would instead cause a down-gradient
diffusion similar to that plotted in Fig. 18a, spreading
farther away from the main diagonal at later times.

If one uses the actual instantaneous local gradients
and the actual fluxes to estimate K,

Ky(A1) = =(w¥,), / (0<a_‘12'>)

the inadequacy of K-theory for convective mixed layers
is apparent. Figure 19, for example, corresponds to time
t/t, = 1.0. First, we see that there are large regions of
negative K (shaded), which implies countergradient

(20)

i

diffusion. This, of course, is unrealistic and points to.

the inadequacy of K-theory, because the transport of
tracer is governed by nonlocal large-eddy motions, not
by local gradients.

Secondly, Fig. 19 shows regions of discontinuity,
where unrealistically large negative K values are adja-
cent to large positive values. One region is in the lower
left corner, and the other is along the line of dark shad-
ing going upward through the center of the diagram.
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In an analog model of the same situation, this step
would be even more dramatic, jumping from positive
to negative infinity. In other regions indicated by the
cross hatching in the diagram, both the flux and the
gradient are so close to zero that K is undefined, or
varies with apparently random positive and negative
fluctuations (ill-defined).

Finally, and perhaps most importantly, we see that
each different tracer (i.e., each column in the contoured
matrix) has different profiles of K with height even
though they are mixing in the same mixed layer. Thus,
K is not a unique function of ambient turbulence in-
tensity, but rather depends on the tracer source height
and concentration. Hence parameterizations of K as a
function of turbulence kinetic energy, Richardson
number, stability, or other measures of the flow are
inadequate for the convective mixed layer.

The theory of top-down/bottom-up diffusion
(Wyngaard and Brost 1984) attempts to account for
the variation of K with source height. However, as we
see in Fig. 19 the small-eddy (gradient transport) dif-
fusion from only top or bottom sources explain only
a small portion of the complex K variations that occur

Source (z/z;)

FIG. 19. Instantaneous value of eddy diffusivity (K) as a function of height, z/z;, valid at ¢/¢,
= 1.0, as calculated from the LES results by dividing the instantaneous flux (Fig. 18d) by the
instantaneous gradient of tracer (Fig. 5d). Each column of the contoured matrix represents a
different tracer. K is made dimensionless by dividing by z;w, . Negative values are shaded, and
areas where K is undefined or ill-defined are indicated with cross-hatching.
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throughout the mixed layer. We conclude that no form
of small-eddy K-theory is adequate to describe the con-
vective mixed layer, and we do not recommend its use
in boundary layer, turbulence, and air pollution models
for convective situations.

c. Vertical state Fourier spectrum of vertical velocity
variance .

The process spectrum (section 4g) represents the
mixing due to vertical air motions of various sizes. Here
we qualitatively compare Py,, with the state spectrum
of vertical velocity in the vertical direction. (It is not
appropriate to compare the process spectrum to the
more common horizontal spectrum of w since the latter
is more a measure of the width and spacing of ther-
mals.) The vertical spectrum can be computed easily
from individual columns of gridpoints in the fine grid
LES vertical velocity field at ¢t = 0. We limii the vertical
domain to the 40 gridpoints within the CBL and en-
trainment zone (0 < z < 1.25z;), and use a sine trans-
form to obtain the spectral components. The sine
transform assumes w = 0 at the top and bottom of the
domain, which is generally valid. One must recognize
that the profile is not periodic, leading to some difficulty
in interpreting the spectrum. The spectrum of w is
computed for each of the 25,600 vertical columns in
the LES model, then averaged to get the mean vertical
spectrum. We have also conditionally sampled the
spectra according to whether the mean vertical velocity
in a column was positive or negative, and averaged
these separately to obtain mean spectra for updrafts
and downdrafts. The resulting spectra are shown in
Fig. 20.

The greatest spectral energy is associated with the
lowest wavenumbers, or largest wavelengths, and de-
creases by three or four orders of magnitude for the
smallest resolvable scales of motion. At the largest
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FIG. 20. Vertical spectrum of w normalized by w?z;, vs wave-
number kz;, computed from the LES vertical velocity field at ¢/¢,
=0.
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wavelengths the variance of.upward velocity is three
times greater than the downward velocity variance. The
curves converge at the smallest scales, where the vari-
ance is independent of whether w is positive or negative.
The spectra appear to follow a —; power relationship
at the lower wavenumbers. At high wavenumbers a
stronger decline is to be expected because of the filtering
implied by the finite grid. '

Both the state spectrum of w and the process spec-
trum give emphasis to the larger scales of motion.
However, the variance in the state spectrum increases
monotonically for increasing wavelength, while at Az/
ty = 4.0, Py, shows the greatest mixing associated
with wavelengths of 0.5z;.

d. Heat fluxes

We have used (3) to compute fluxes of heat using
the transilient coefficients, where the ¥; correspond to
T;/T,. We begin with the nondimensional tempera-
ture profile given by Schmidt and Schumann (1989)
and add heat to the lowest layer (j = 1) according to
the nondimensional heat equation,

Tiian=Tiiog)s ¥ A
() =TLa=0+ 252 2

where the nondimensional surface heat flux, {(wT)/
Os=1 ’

The resulting heat fluxes, F;,"*'(At), evaluated ac-
cording to Eq. (3), are shown in Fig. 21 for three time
intervals. It is clear that for short and intermediate time
intervals the transilient coeflicients do not predict the
correct heat flux. This is because the c;; for short time-
steps do not correctly represent the physics occurring
in warm updrafts and cool downdrafts, as discussed in
section 5. The agreement improves with increasing At/
t, when the “memory” of the convective structures is
incorporated into the transilient coefficients. The large
errors near the top of the domain are a product of
erroneous small-scale numerical diffusion.

Figure 22 shows profiles of the nondimensional net
heat flux due to small (0-0.12z/z;), medium (0.12-
0.44z/z;), and large (0.44-1.5z/z;) eddies at At/t,
= 4.0, computed by summing the heat transport spec-
trum over the appropriate eddy sizes. The net heat flux
contribution from small eddies is negligible below the .
inversion except near the surface. The large values near
the top of the domain are associated with large nu-
merical errors. The medium scales contribute positively
to the net heat flux in the lower CBL, as warm air is
transported upward from the surface, and negatively
to the net heat flux in the upper CBL and stable layer,
due to entrainment of warmer air from the inversion
layer. The component of the net heat flux associated
with the large scales is.out of phase with that of the
medium scales. Maxima are found near the surface,
just above the middle of the CBL, and at the inversion
level, where the upward heat transport in thermals ris-
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FIG. 21. Nondimensional heat flux, Fi"*(At), as a function of
height, z/z; for various time intervals, At/¢,. The actual heat flux
from the LES calculation is given by the heavy solid line.

ing from the surface largely balances the negative small
and medium-scale contributions associated with en-
trainment.

Using both aircraft turbulence measurements and
LES results, Jochum (1988) computed vertical profiles
of sensible heat flux for approximately the same size
intervals as used here. However, her eddy size ranges
were defined by horizontal wavelengths of state vari-
ables, while ours is a vertical wavelength or parcel dis-
placement distance. She found nearly linear profiles
for all size ranges. The smallest scales were important
only near the surface. Below about 0.6z; the strongest
positive heat flux was due to the medium scales, while
above that level the large eddies dominated. She also
found the strongest negative heat flux associated pri-
marily with medium scales below the inversion. Our
results agree with those of Jochum (1988) for small-
scale and total heat flux profiles, but the partitioning
of medium and large-scale contributions differs signif-
icantly. This difference is related to the different ways
of defining wavelengths.

1.0 4
z/zi

0.5 4

——0-0.12 2/z;

—o— 0.12-0.44 z2/z;

—O— 0.44-1.50 z/z;

total
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-2 -1 0 1 2

Non-dimensional heat flux

F1G. 22. Contributions to the vertical heat flux at Az¢/¢t, = 4.0
from small, medium, and large wavelength mixing processes.
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In Fig. 23 the heat flux is further partitioned into
upward and downward components. This is accom-
plished by summing the heat transport spectrum over
the appropriate eddy size ranges, where now i > j for
upward transport, and i < j for downward transport.
The net heat flux represents the balance of large upward
and downward heat transports which are nearly equal
and opposite. We note that this behavior is also seen
in traditional time series (see, for example, Stull 1988c,
p. 54). The smallest size range has very small values
in the CBL and maximum values in the stable layer
where the local temperature gradients (and numerical
diffusion) are greatest. The medium, large, and total
heat flux profiles have maxima near the middle of the
CBL where the overall mixing is greatest, and minima
near the surface and in the stable layer. In the CBL the
downward and upward heat transports increase with
increasing eddy size. This demonstrates that a small-
eddy (K-theory) approximation misses most of the
“action’ in the CBL.

7. Summary and conclusions

Our goal was to measure nonlocal attributes of ver-
tical mixing and convection in the atmospheric
boundary layer. A three-dimensional large-eddy sim-
ulation model was used to forecast convection in an
idealized windless mixed layer over a uniform surface
with constant heat flux. Once the turbulence in the
model had reached a quasi-steady state, a different pas-
sive tracer was injected into each of the 24 different
grid layers of the model. Thus, each tracer served to
mark a layer of source locations for air before being
turbulently mixed into other layers.

At various times after tracer injection, the horizon-
tally averaged fields of tracer concentrations were saved
as a matrix, recording how much of each of the 24
tracers were found in each of the 24 grid layers. This
matrix, called a transilient matrix, indicates the per-
centage of air in each of the destination layers that
came from the various source layers during the time
interval At since tracer injection,

The matrices describe the effects of all the resolvable
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FIG. 23. As in Fig. 22, for upward and downward components
of the vertical heat flux.
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local and nonlocal vertical mixing processes. The dis-
tance of a matrix element from the main diagonal can
be interpreted as a net transport distance or velocity,
and the magnitude of the element indicates the relative
amount of air undergoing that transport. For At = 2z,
= 37 min we find that the matrix is asymmetric with
a ridge of peak values on the downward side of the
main diagonal, indicating a large amount of slow
downward transport. There are small values at the or-
igin, implying removal of most of the surface-layer air.
The matrix has relative maxima at the ends of the cross-
diagonal through the mixed layer, implying large-eddy
convective overturning.

The time evolution of the transilient coefficients
showed that the initial transport of tracers is downward
from all levels except those nearest the surface. Air at
the surface is transported rapidly to the upper half of
the mixed layer. The actual vertical tracer flux was fre-
quently counter to the local concentration gradient,
implying that eddy diffusivity theory is inappropriate
in this case.

Matrices for smaller time intervals are more sym-
metric, with more of the mixing occurring across
shorter distances. Even when taken to an appropriate
power to bring these matrices up to an effective time
interval of 2t,, there is less large-eddy mixing than
expected. This effect is related to the time dependence
of the flux dynamics and the lack of convective struc-
ture “memory” that occurs when tracers are injected
into preexisting convective elements.

To further analyze the matrices, a number of existing
statistical descriptions were refined, and new techniques
were developed. The equations for turbulent flux and
for transport spectra (where the total turbulent flux of
a scalar is partitioned by transport distance) at a given
level were shown to depend on only the subset of air
parcels crossing that level. An air mass transport spec-
trum equation was proposed that uses the difference
in matrix elements across the main diagonal to high-
light asymmetric mixing processes. A modification of
the process spectrum equation was presented, which
now correctly indicates the importance of various eddy
sizes regardless of the amount of tracer that is trans-
ported.

The destination of a tracer from a single source
height was tracked by isolating an individual column
from the matrix and examining the evolution of that
same column in matrices for different time intervals.
Elements in any single column of the matrix can be
used as weights to calculate the center of mass and
concentration variance for tracers emitted from a single
source height. Mixing length profiles were found by
weighting the magnitudes of matrix elements by their
distances from the main diagonal. A mixing intensity
parameter based on the sum over matrix elements on
opposite sides of the main diagonal is suggested as a
way to measure overall turbulence vigor at a level.

‘Another analysis approach is to partition the trans-
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port into separate upward and downward components.
Equations are given for the amount of air transported
upward and downward away from any source, as well
as corresponding equations for transport towards any
destination. Separate mixing lengths are found for up-
ward or downward transport, toward a destination or
from a source, by weighting the distance from the main
diagonal by the magnitude of each matrix element.
The process spectrum definition is also examined in
terms of upward versus downward contributions.

Results from these statistics reinforce traditional ob-
servations of turbulence state, and also provide addi-
tional insight into nonlocal transport. In the first cat-
egory, the matrix asymmetry suggests a large amount
of air moving slowly downward, and a smaller per-
centage of air moving rapidly upward, as expected with
narrow updrafts and broad downdrafts. The transilient
matrices exhibit a positive skewness of vertical mixing-
process velocity in the mixed layer that becomes more
pointed and symmetric near the top of the mixed layer.
Vertical mixing intensity profiles are similar in shape
to traditional vertical velocity-variance profiles, with
peak magnitudes at about ¥ to Y2 of the mixed layer
depth. The center of mass of a tracer inserted at the
surface rises above the middle of the mixed layer before
settling back to the middle, while for tracers originating
near the top of the mixed layer the center of mass sinks
below the middle of the mixed layer before returning
to 0.5z;. The dispersion rate is initially greatest for
tracers emitted near the middle of the mixed layer, but
air from the surface experiences the greatest dispersion
over intermediate time scales.

The air mass transport spectrum showed that neg-
ative (downward ) net transport is associated with small
vertical transport distances, while the larger vertical
transport distances are associated with positive (up-
ward) net transport, again reinforcing the concept of
slow downdrafts and fast updrafts. Small eddies (or
parcel transport across small distances) play a very mi-
nor role in the mixed layer heat flux, except near the
surface and in the entrainment zone. Medium-size ed-
dies cause most of the negative het flux in the entrain-
ment zone, in spite of the positive flux contribution
from the larger eddies that bring up warm air from the
surface layer. K-theory has difficulties over much of
the interior of the mixed layer.

In the second category of results are the many par-
titions of statistics with respect to upward and down-
ward transport. This is similar to conditional sampling
using vertical velocity, except that ours consider the
actual transport across finite distances, while the ver-
tical velocity gives no information on the actual net
distances moved by the air parcels. The upward and
downward contributions to heat flux are individually
about 100 times greater than the net flux near the mid-
dle of the mixed layer, but are of opposite sign and
nearly cancel each other. The large eddies contribute
to about two-thirds of this directional flux, the medium
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ones contribute about one-third, and small eddies con-
tribute very little.

During a time interval of At = t,, roughly 95% of
the air is transported upward from near the surface,
but from the middle of the mixed layer about 35% has
gone up and 60% has gone down. From just below the
entrainment zone, roughly 10% moves upward and
78% downward. The remaining air at those levels re-
mains within the respective grid layers. Focusing on
destinations instead of sources of air movement, we
find that about 55% of the air arriving just below the
entrainment zone came from below, while about 30%
came from above, associated with entrainment. At the
middle of the mixed layer approximately equal
amounts came from below and above. The differences
between the upward and downward transport, and be-
tween the transport toward or from a level, reflect the
asymmetry of the mixing processes.

For short time intervals (At/t, < 0.2), upward and
downward mixing lengths have magnitudes of less than
0.2z;, reach their peak values within the bottom half
of the mixed layer, and have roughly the same shape
profiles regardless of direction. For time intervals
greater than about 0.6¢,, the mixing lengths approach
50% of the mixed layer depth, but the upward and
downward curves are now substantially different. Close
to the ground, the mixing length for air coming from
or going towards the surface must by necessity be small
because the eddies cannot go through the ground, but
mixing to or from higher altitudes is associated with
very large eddies. The opposite, of course, is true for
air just below the capping inversion.

Process spectra measure the contributions to the
mixing from every scale of the resolvable turbulence,
regardless of the amount of scalar that is transported.
For small time intervals the smaller size eddies dom-
inate, while the medium-size eddies are the most im-
portant for time intervals greater than about 1.0z,.
Furthermore, downward mixing is most vigorous at
slightly smaller wavelengths than upward mixing within
the top half of the mixed layer, but the opposite is true
closer to the ground. After a long time period the net
effects of upward and downward mixing processes are
equivalent.

We compared the process spectra to Fourier spectra
of vertical velocity computed from vertical columns of
grid points in the LES. The peak in this spectrum occurs
at the longest wavelengths, as is expected for thermals
that fill the mixed layer. A —; power relationship is
also observed over a limited portion of the spectrum,
also at the longest wavelengths.

We have attempted to demonstrate and explore the
wealth of information that is contained within a tran-
silient turbulence matrix. The transilient matrix was
initially conceived as a first-order closure approxima-
tion, to forecast the effects of turbulence given knowl-
edge of only the mean fields [Eq. (1)]. Although we
presented numerical measurements of the transilient
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matrix, a true first-order closure scheme requires a pa-
rameterization of the matrix based on the known mean
fields of state variables such as temperature and wind.

It is still quite a challenge to develop such a param-
eterization. A useful parameterization should be re-
sponsive to changes in the mean field, and should work
for unstable, neutral, stable, and cloud-topped bound-
ary layers. It should also have the observed asymmetries
for the unstable case, and should work for arbitrary
(but reasonable) timesteps and grid spacings. The latter
requires that the parameterization account for the flux
dynamics and the convective structure memory in
some way, in particular for small timesteps. In this
regard we believe that the transilient matrix for At/
~ 1 contains the essential physics of the mixing, and
that matrices corresponding to smaller timesteps should
be found as roots of this “master” matrix. The earlier
parameterization suggested by Stull and Driedonks
(1987) reduced a matrix of n? coefficients to a function
of four parameters. It had some of the desired qualities,
but it produced only symmetric matrices and did not
account for the memory effect. Thus it was not able to
capture some of the characteristics we have presented
here.
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APPENDIX A
Kinematic Flux Equation

Here we show that the flux at level k depends only
on those eddies that cross level k. Starting with the
kinematic flux equation,

AZ k n
Fk=XZ > il (¥ — (%)) (A1)
L j=1
we split the j-sum into two parts: the sum from j = 1
to k, and the sum from j = k + 1 to n. The distributive
law allows us to separate the first term, yielding:

Fr = %‘j {Zk:l [(‘I’i>}:zl Cij] - g [<‘I’j> é Cij]

Jj=1

k n
+ 2 2 [e(¥) — i ¥)]}
i=1 j=k+1
In the first two terms above, the <\If,> was moved out
of the j-sum, and the { ¥;) was moved out of the i-
sum, because i and j are independent.
Because of mass and state continuity (Stull 1988c),
the sum of ¢; over all rows and also over all columns
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must equal unity individually. Thus, the sum of ¢; from
1 to k in both of the first two terms above can be re-
placed by one minus the sum from k + 1 to n. Next,
in the second term only we switch the i and j indices,
which we can do because i and j are arbitrary (dummy)
indices. We then have

{2<‘1’> >3 e ¥ip

i=1 j=k+1
- z<\1,>+ Z 2 C],<\II>
i= lj k+1
+3 T (BT 3 ekB)).
i=] j=k+1 © =1 j=k+1

The first and third terms cancel, and the second and
fifth terms cancel, giving an expression for the flux at
level k that depends only on those eddies crossing that
level:

E Z e Wiy —

i=1-j=k+1

Fr= ai{¥;)]. (A2)

Al

The first sum is over layers below the level k, and the
second sum is over layers above k.

APPENDIX B
The Subgrid Scale Model

The subgrid scale (SGS) fluxes are approximated in
terms of the resolved fields and the SGS kinetic energy
E” = ' 4”2, for which we integrate the closed model
equation

Df” n ” a " l/
D = u,u,a L+ Bgw"T
—3/2
a 5 172 aE” El/
-‘-— E” — Cem Bl ’
o |3 Lo E G| T (BD)

The turbulent heat, mass and momentum fluxes and

their respective anisotropic components

7o T2 s T
A,j=uuj—§5,-jE, (B2)

are determined from the following set of algebraically
approximated second-order closure equations:

u; du;
—(1 = cgm) 2 E"( “ +ﬁ)+(1—csm)

O =
é)xj ax;, i

X [ﬁg( l3u_] T 4 6,3u"T" _ 5UM3T”):|

E"?
— CRm A:’
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(B3)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOL. 46, No. 14

aT
=—(1—-cor)3 E"a
X
o Trl/2
+ (1 — cpr)BT"?8i3 — Crr 7 uiT", (B4)
: 27— 0¥
0=—(1—cou) 2 E" =
( cGy) 3 ox;
—1/2
+ (1 — cpy) BgY"T"8;3 — Cre 7 u; v, (BS)
T
0= L I
ul a-xj T -C ’ (B6)
. — T —— ¥ ET
0= -—wwL _ppoZ_ =TT

This set of second-order closure equations is a straight-
forward extension of those given in Schmidt and Schu-
mann ( 1989). It results from the more complete system
deduced by Gibson and Launder (1976) by using ar-
guments as given in Mellor and Yamada (1974), Som-
meria (1976) and Schemm and Lipps (1976). In par-
ticular, it is assumed that local time derivatives, ad-
vective fluxes and anisotropic production rates
contribute little to the anisotropic components of the
fluxes. These approximations can be justified by scale
analysis (Schemm and Lipps 1976). The vertical heat
flux, the temperature variance, and the scalar-temper-
ature covariance can be determined explicitly by solv-
ing the above linear system of equations. Using the
abbreviations,

21— CeT 2 Cov
== == B
¢ =3 o Y T3 o (BB)
G=2(1—Csr)ﬁg;§2, ‘p_l_CBwﬂ&f2’(B9)
CrTCcT E CreCy E
we obtain
— c L2 aT\?
T?=2"2—o——|— B1
crl+ G(8T/dz) (8x,-) > (B10)
. 1 1 v 6T
W-VTII . 2
w1 + G(3T/02) [(C“’ DL o o
L2 .
c,G a\p aT . (BII)
T+ G(9T/3z) 8z 8x,

In order to ensure finite positive solutions of ¥, we
replace the expressions {1 + G4T/dz} and {1 + G4dT/
9z} by unity if they become less than one. This ap-
proach has also been used by Schemm and Lipps
(1976). Moreover, we found it necessary to replace
(0¥ /3x;)(8T/dx;) in (B11) by (d¥/9z)(dT/dz) for
strictly non-negative concentration values which are
close to zero, because otherwise this term causes small
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negative values of ¥. Once these covariances are com-
puted, the flux components follow from equations (B3)
to (B5).

The length scale, ., is prescribed as a function of
height z above the surface, and the average mesh spac-
ing, A, by
£ =min(A, crz), A= % (Ax + Ay + Az). (B12)
All essential model coeflicients can be determined from
the spectra of kinetic energy and temperature variance
in the inertial-convective subrange of locally isotropic
turbulence. In Appendix 2 of Schmidt and Schumann
(1989), this is shown in detail for momentum and
heat transfer. The corresponding coefficients for trans-
port of passive scalars are set equal to those for heat
transfer, which is appropriate because of the equality
of the Kolmogorov constants for temperature and sca-
lar spectra (Andreas 1987). The values of the coeffi-
cients are:

Con = 0.845, c.or=co = 2.02,
Com = 055, Cam = 055, CoTr = Cow — 050,
Cpr = Cpy — 050, Crm — 350,
Crr = Cpw = 1.63, 3, = 0.20, ¢, = Com.
APPENDIX C

Sensitivity to LES Specifications

The transilient coefficients were derived from the
results of large eddy simulation, rather than directly
from observations. As the LES results depend to some
degree upon the grid resolution, subgrid scale turbu-
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lence parameterization, and other details of the model,
we must determine to what extent the transilient coef-
ficients also depend on those factors. Figure 24 com-
pares the values of ¢;;, j = 1, 7, 15, and 22, at At/t,
= 1.0 for four different versions of the coarse grid large
eddy model, as well as the medium and fine grid ver-
sions. We note that the sensitivity of the coarse grid
model to the model specifications is likely to be greater
than that of the medium and fine resolution versions
because of the greater impact of the changes on the

-finite difference errors.

1. Sensitivity to scalar-temperature covariance .

In the scalar-temperature covariance equation (B11)
the product of the three-dimensional gradients of ¥
and T contains the contributions from all three di-
mensions, and this is used in the reference case where
the scalar reference level ¥y, = 1000 was large. For
cases with zero reference level, we must approximate
this product by omitting the lateral gradient contri-
butions in order to ensure positive V-solutions. We
examine the sensitivity of the results to this approxi-
mation by omitting the lateral gradient contributions
for fixed scalar reference level ¥y = 1000. The dotted
curve in Fig. 24a shows that the effect of this change
is negligible everywhere except in the middle of the
CBL for scalars originating immediately near the sur-
face, and even here the error in ¢; is less than 20%.
Therefore, we conclude that this approximation has
no significant effect on the results.

2. Sensitivity to scalar reference level

As discussed in section 3b, the Smolarkiewicz (1984)
differencing scheme used by the model is sensitive to
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FIG. 24. Profiles of ¢;(At), j = 1,7, 15, and 22, at At/¢t, = 1.0 for (a) coarse grid model (solid), and changes in the
model parameterizations: the removal of (8¥/dx;}(d7/9x;) (j = 1, 2) from the subgrid scale parameterization
(dotted); setting the reference level ¥, = 0 (long dashed); setting the reference level ¥, = 10 000 (dot-dashed); and
setting u7 V" = 0 (short dashed); and (b) changes in grid resolution: coarse grid (dotted); medium grid (solid); and

fine grid (long dashed).
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the scalar reference level; thus a level of ¥, = 1000
was added and later subtracted from the scalar con-
centrations to reduce numerical diffusion. The effect
is illustrated by the dashed curve in Fig. 24a, in which
this artificial addition and subtraction of 1000 was not
performed. This run also neglected the lateral gradient
product as described in the previous paragraph. The
profiles of ¢; are smeared due to numerical diffusion,
particularly near the inversion and in the stable layer.
In another test the reference level was set to 104 to see
whether the diffusion could be further reduced using
a greater value. The dot-dashed curve corresponding

to this test in Fig. 24a is coincident with the solid curve’

corresponding to ¥, = 1000. Thus, the addition of a
large reference value to the scalar concentrations is
useful for reducing numerical diffusion, and ¥, = 1000
is adequate to provide the maximum reduction of this
diffusion.

3. Sensitivity to the subgrid scale parameterization

The subgrid scale (SGS) parameterization estimates
the concentration fluxes for scales of motion which are
too small to be explicitly resolved by the model. It is
a source of diffusion, and acts to damp some of the
fine-scale resolved concentration fluctuations. The SGS
parameterization is more important in the coarse grid
model than in the fine grid version, for which Schmidt
and Schumann (1989) showed a negligible contribu-
tion of SGS processes to the vertical heat flux every-
where except near the surface (where the resolved ver-
tical velocity is constrained to be zero), and near the
inversion. We examined the importance of SGS pro-
cesses by setting u; V" = 0 everywhere in the coarse
grid model, as shown by the short-dashed curve in Fig.
24a. This intensifies the upward transport of surface
air (j = 1) because the SGS diffusion causes slight
downgradient transport while the large scale motions
introduce countergradient transports. Some noise is
seen in the profile corresponding to mid-CBL air (;
= 7) which results from the lack of damping. The re-
moval of SGS diffusion also reduces the downward
transport of inversion level air (j = 15). In the stable
layer the vertical diffusion of air is very small, as we
expect it should be; this reflects the unrealistically large
diffusion produced by the SGS parameterization in the
stable layer. This suggests that in future simulations
one should reduce the SGS mixing length / [see Eq.
(B12)] in the stable layer as proposed by Moeng
(1984).

4. Sensitivity to grid resolution

Figure 24b shows profiles of ¢;; for simulations using
the coarse, medium, and fine resolution versions of the
model as described in section 3c. The differences be-
tween the results of the three simulations are small
throughout the CBL, and slightly larger near the in-
version and in the stable layer. In general, the higher
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resolution simulations experience less diffusion than
the lowest resolution case. This is because smaller ed-
dies are explicitly resolved, reducing the proportion of
the motion handles by the SGS parameterization with
its associated excess diffusion. The qualitatively similar
behavior of the coarse, medium, and fine resolution
simulations justifies our selection of the “grid M”
model as a compromise between accuracy and com-
putational effort. We note that the offset of one grid
level between the grid F peak and the grid C and grid
M peaks is the result of an error in selecting the proper
height interval for initialization of ¥ at this level, but
this does not affect our conclusions regarding this ex-
periment.
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