Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems
October 9 - 15, 2006, Beijing, China

Agile Robot Development (aRD):
A Pragmatic Approach to Robotic Software

Berthold Biduml and Gerd Hirzinger
Institute of Robotics and Mechatronics
DLR - German Aerospace Center
82234 Wessling, Germany
Email: berthold.baeuml @dlr.de

Abstract— Mechatronic systems are reaching a new level of
complexity, both for the single component and for overall systems
making necessary a new software concept for the development
and usage of such systems. Here we introduce the agile Robot
Development (aRD) concept, which is a flexible, pragmatic and
distributed software design to support and simplify the develop-
ment of complex mechatronic and robotic systems. It gives easy
access to scalable computing performance (even in hard realtime)
and is motivated by the abstract view on a robotic system as being
a decentral net of calculation blocks and communication links.
We discuss design considerations and an implementation of this
concept and demonstrate its performance with first applications.

I. INTRODUCTION

Our Institute of Robotics and Mechatronics has a long
tradition in building highly integrated mechatronic systems,
especially the DLR Light-Weight-Robot arms (LBR) and
DLR-Hands [1] including the control algorithms and software
infrastructure. As such mechatronic systems are now reaching
a new level of complexity, both for the single component and
for overall systems, a new software concept was necessary to
make the development and usage of such systems tractable.

For the single robotic component the complexity stems from
the high number of degrees of freedom (DOF) and sensors and
the necessity of sophisticated control algorithms requiring con-
siderable computational power. In overall systems complexity
naturally arises through the delicate and tight interaction of
several subsystems as, e.g. in the ROKVISS experiment [2]
in space robotics with a robotic arm at the international space
station ISS and a telepresence station on earth or the Robutler
[3] in service robotics with arm, hand and camera on a mobile
platform. This also makes scalable computational resources
an essential requirement, both for the non-realtime and hard
realtime parts.

Our robot control software successfully used so far was
originally designed for one robot arm with a gripper in a
monolithic implementation. This design, however, not only
made it increasingly harder to build more complex systems,
but also led to proprietary extensions and further to several
different strands of robot control systems. This, of course,
had consequences with regard to maintenance and provoked
incompatibilities.

In the process of analyzing the problems of increasing
system complexity it became clear that the currently available

1-4244-0259-X/06/$20.00 ©2006 IEEE

Fig. 1.
Arm-Torso (THAT) with 43 DOF. This system is built from two DLR-LBR-III
arms with 7 DOF each, two DLR-Hand-II with 13 DOF each [1] and a torso
with 3 DOF.

An example for a complex robot system: the new DLR Two-Hand-

computing power of commodity systems together with their
fast communication links and high-speed buses to the robot
components allows for a completely new view on the system
architecture of a robot system. This also led to the insight that
a mere redesign of the old robot control software was not an
adequate solution but that a completely new software concept
which makes full use of modern hardware possibilities was
necessary.

Another important point with strong influence on the re-
quirements for a new software concept is the fact, that a
complex robot system is developed by a heterogeneous team of
researchers from various fields. This implies that the software
concept has to support the specific tools from the different
fields and should allow to work independently on different
components, but still remains simple and easy to use.

Finally, for building complex systems it is highly advanta-
geous that the software concept supports rapid prototyping to
allow an iterative development process.

In the last years a number of software concepts and frame-
works have been proposed to address these challenges of
complex robotic systems. Prominent representatives are ORCA
[4], MARIE [5], MIRO [6], Player [7], OROCOS [8] and
MCA [9]. They are all based on the idea, that a complex
robotic system should be composed from interacting modules

3741

or components in the sense of the component based software
engineering approach [10] with all its benefits as flexibility,
code reuse or decoupling of the development flow in a team.
To allow the components to be distributed on a network of
heterogeneous computers all approaches also provide tools for
simplifying and standardizing communication.

These concepts were successfully used in applications,
where realtime constraints are relatively soft, e.g. in the field
of mobile robotics. But the current implementation of these
concepts have not shown that they can easily reach realtime
rates above some 100Hz in complex applications with high
numbers of DOFs. This is significantly slower than the high
rates of 1kHz to some 10kHz with hard realtime constraints
needed for mechatronical systems we are working on.

Therefore we present in this paper the “agile Robot Devel-
opment” (aRD) concept, a flexible, pragmatic and distributed
software concept especially designed to support the develop-
ment of complex mechatronic and robotic systems. It gives
easy access to scalable computing performance (even in hard
realtime) and is based on the abstract view on a robotic
system as being a decentral net of calculation blocks and
communication links.

The paper is organized as follows. First we give a more
detailed problem analysis and list of requirements. In the next
section we introduce our aRD concept that meets the iden-
tified requirements and describe its current implementation.
Then, we present performance examples and first applications.
Finally, we conclude with future development directions.

II. DESIGN CONSIDERATIONS

The design of a software concept is heavily influenced by
the computing hardware available for implementing it on. In
robotics in addition it heavily depends on the mechatronic
architecture, that is the details of the mechanics, electronics
and control.

A. State of the Art

First we take a look at the state of the art of mechatronics
and computing hardware.

1) Mechatronics: Here we present some features of the
mechatronic architecture of robots we are currently working
with or which are just going to be developed in our institute.

« Single robotic components, e.g. the DLR-Hand-II, have
13 DOF and more than 100 sensors (position, force-
torque, temperature, ...). The next generation with 40
DOF for an integrated hand-arm-system is in work.

o Complex compound robot systems, e.g. the DLR Two-
Hand-Arm-Torso (THAT) system, have more than 43
DOF and about 100 DOF in the next generation.

o Decentral electronics near the joints for the conversion of
sensor signals and actuator commands allows the use of
digital serial buses in the robots.

« Fast buses to the robots with bandwith of 4MBit up to
1GBit allow for high communication rates (e.g. 10kByte
of data at a rate of 10kHz)

« Rates of up to 3kHz are used for controlling a single com-
ponent (joint controller) but also for running sophisticated
controllers for all DOF of a compound system as needed
for gravitation compensation or impedance control [11].
The rate will reach 10kHz in the near future.

The conclusion one can draw from these mechatronic fea-
tures is, that despite the high complexity due to the high
number of DOF and sensors and the high control rates for
sophisticated controllers, the high-speed buse still allow for
full flexibility in connecting the robots to the computing
hardware.

2) Computer Hardware: The dramatic growth of perfor-
mance in computing hardware makes it possible to use com-
modity systems even for running complex algorithms in hard
realtime. Moreover the use of standard PC components makes
it also easy and cheap to participate on future developments.
Here we summarize important features of actual PC hardware.

e Clock rate of >3GHz.

o Multi-Core and Multi-CPU (e.g. Quad-Dualcore-Opteron
with 54GFLOPS [12]) systems are standard.

o A Cluster with 40 CPU-Cores fits into a small rack (e.g.
30cm x 45cm x 75cm for the Dell PowerEdge 1855).

o Performance growth is still exponential with a doubling
every 18 month.

o Fast communication with low delay is cheap and easy
to handle, e.g. for 1GBit ethernet transfer of a 1.5kByte
packet takes 15us.

« Flexible communication infrastructure by switched ether-
net or a multitude of decoupled point-to-point links (by
using multiport adapters 20 ethernet ports in one PC are
easy to do).

3) Conclusion: The currently available computing power
of commodity systems together with their fast communication
links and the high-speed buses connecting the robot compo-
nents allows to build flexible, distributed computing archi-
tectures with scalable computing performance even if hard
realtime is required. This offers the possibility to decouple
the overall system architecture from the hardware details and
to take a functional view on a robot system.

An appropriate software concept has to provide both tools
for designing this functional view and to mechanisms to map
this functional design onto the actual computating and robot
hardware.

B. Functional View

To find a good definition of a functional view we start by
giving an overview of a typical robot system (see Fig. 2).

Such a system consists of a number of robot components
connected to a realtime target running the controller loops. Ap-
plications for user interaction (e.g. 3D-viewer, GUI) and higler
level intelligence (e.g. vision system, trajectory planning) are
implemented on a network of non-realtime computers. Those
applications can communicate with the realtime target and also
possibly have a link to a remote command station, coupled by
a WAN or the internet.

3742

Development host Remote
edit GUI
compile
debug -
online viewing non real time
online tuning
visualization
sensors GUI
applications
status
robot motors -
visualization | non real time
[sensors| aul
robot applications
o
\ ,
— -
- non real time

robot real time target

Fig. 2. Overview of the system architecture and computing hardware of
a complex robot system. A number of robot components are connected to a
realtime target running the control loops. Applications for user interaction and
higher-level intelligence are executed on a network of non-realtime computers
and communicate with the realtime target. In addition there is a development
host and a host for low-level monitoring and configuration.

Additional hosts run tools for development (edit-compile-
debug) and tools that allow for monitoring and profiling of
the different parts of the system during runtime.

Leaving the details of the computer architecture aside and
refining the structure of the functional modules one ends
up with a scheme as in Fig. 3. All of the functionality of
the system is now represented by blocks running in realtime
or non-realtime. They perform calculations and communicate
with each other. Typically the granularity of the realtime part
is finer, as each block usually performs only a small amount
of deterministic calculation. On the other hand, blocks in
the non-realtime part represent more monolithic applications
and can perform elaborate algorithms on complex internal
representations.

It is therefore straightforward to see a robot system as a
decentral net of calculation blocks and communication links,
in this way defining the functional view on the system.

This abstraction not only helps in designing the architecture
of a robot system, but also paves the way for a component-
based software engineering approach [10] if supported by the
software concept. The component-based approach is particu-
larly well suited as a complex robot system is developed by a
team of researchers. If in addition the concept allows changing
the structure of the net in a simple and flexible way, rapid
prototyping is also naturally supported.

Besides the wish for a simple and flexible software concept,
one would pragmatically like to keep the implementation from
becoming too complicated.

What is following are the more detailed design consider-
ations and requirements of the net of communicating blocks
taking into account all of the above discussed issues.

1) Equality of Blocks: All blocks are euqal in the sense,
that they all can be sources and sinks for data and there is no

distinction in client or server blocks. Such a distinction would
be less general and unnatural for most blocks, e.g. a controller
block.

Also the connection scheme is arbitrary. A block’s output
port can be connected to any other block’s input ports, as long
as the data formats match.

2) Execution Order: Each block is an execution entity, e.g.
a process or thread, and can have its own priority. This allows
to schedule the available processing time between the blocks
and implicitly defines the execution order. In practice it is often
more efficient and simpler to aggregate blocks into groups,
where each group is an execution entity and iterates through
its blocks.

A block can be executed periodically with its own inherent
rate or be triggered by new data arriving at its input port. The
latter variant gives the flexibility to implement systems with
very efficient use of execution time but implies the danger of
deadlocks and needs delicate priority adjustment.

Especially for blocks running in hard realtime (e.g. con-
trollers) and having robot hardware connected to them it is
important to be synchronized. This means, that in a group
of synchronized blocks the execution order is deterministic.
Blocks in a synchronization group still can run at different
rates (multirate), but all rates have to be integer multiples
of the fastest rate, the so called base rate, of the group. An
example for an asynchronous block would be a viewer block,
having its own refresh rate.

3) Data Flow: The data format of each port of each block
can be different, but is static during runtime. This simplifies
the implementation of a block, but also means, that a block is
less than an object or a component, where different methods
with different parameters and return values can be called.
Nevertheless, this restriction is convenient for robotic system
as the static robot hardware (e.g. always the same number of
sensor values) implies the static data format for most of the
blocks.

Also the block’s connection scheme is static at runtime.
This design decision dramatically simplifies the implemen-
tation, not only of the single block but of the mechanisms
for configuring the overall system. Instead of allowing to
dynamically change the connection scheme it is possible
to disable and enable blocks through input ports, where a
disabled block does not consume computation time. Again,
this is convenient for robotic systems. A typical task, where
dynamic re-wiring seems to be necessary, as e.g. the switching
between different controllers, can be almost always solved by
statically connecting all alternatives (usually only some ten)
and activating exactly one of them by disabling and enabling.

All communication in the net of blocks is unbuffered. In
combination with a non blocking sending of data through a
block’s output port this allows for a simple way, conceptually
and with regard to implementation, to connect blocks running
at different rates. The receiving block simply reads the last
sent data, regardless if its rate is faster (reading the same
data multiple times) or slower (reading only every n-th data).
If a more specific rate transition is needed, one can simply

3743

input

3. Functional view on a complex robot

system as a net of calculation blocks and sD
S . viewer

communication links. Starting from a system

overview like in Fig. 2 one naturally ends up
with this functional view by leaving aside the
details of the computing hardware and refin-
ing the structure of the functional modules.
The system shown here is the DLR Robut-
ler [3] consisting of an arm-hand system

l

mounted on a mobile platform and equipped
with a stereo vision system.

There is a realtime and a non-realtime part.
In the former the granularity of the blocks

is usually finer and the blocks represent a
hierarchy of different controllers for each

robot component (WC=wheel control, MC
= mobile control, JC=joint control, AC=arm
control, ...) which are connected via device-

driver blocks (dev) to the hardware and run
with different rates (0.3ms up to 6ms). In
addition there are blocks for computing the
inverse kinematics (invkin) or interpolation

(ipol) or blocks that control the sequence e

of execution (SC) getting commands from (1ms)

higher-level blocks. In the non-realtime part

the blocks are typically more monolithic /

applications like a 3D-viewer or GUI for user

interaction or a vision system and path plan- ;

ner in combination with an execution control @ (':1(;12) ('1:23 (1Hn$s) > (1'%?;) (1T rﬁs) /
block (EC) for higher-level intelligence. O Z

insert an additional block between the communication partners
running at the higher rate and implementing an user defined
interpolation scheme.

A block sends data by pushing it through its output port to
the input ports it is connected to. To keep the design simple,
there are no pull or send-with-reply operations, which can
nevertheless be easily built on top of the push operation.

A further essential requirement for flexible network layout
is a mechanism for distributing a block’s output to several
receiving input ports.

C. System Handling

After having specified the properties of the net of blocks
and links, the following considerations address the handling
and development of such a system.

1) Development Tools: For complex systems consisting of
a large number of blocks and links between them a graphical
development tool, which allows to organize the net of blocks
in a hierarchy of meta-blocks is almost essential.

The possibility for rapid prototyping was one of the main
design aspects of the overall software concept. This should be
supplemented by having a quick edit-compile-debug cycle.

Tools for monitoring and visualization of the data flow are
also important for getting an insight into the runtime behavior
of a complex net of blocks and for finding bugs.

A complex full-system-debugging tool is not easily feasable.
But taking together the flexibility in re-wiring the blocks,
the tools for visualization and the quick turnaround cycles
most of the debugging can be done without such a tool.
Instead developers can use, so to say, a variant of the classical
printf debugging adapted to systems with a decentral data
flow.

Furthermore a module for simulation of the dynamics of the
robot components is desirable, because it allows to decouple
the development of the software from that of the hardware. In
principle the same system can be used as a simulator when
replacing the real robot components by a simulation of the
robot dynamics. Depending on the quality of the model of the
robot dynamics the simulator can resemble the behavior and
timing of the real system very accurately. This stems from the
facts that the other parts of the system are unchanged and that
the simulation can also be run on the realtime target, due to
scalability of computing power.

For a team of developers a simulator is especially worth-
while as it allows to parallize the development flow by simply
running more than one simulator. Additionally, together with
the flexibility of the software concept specific testbeds for parts
of the system can be easily built.

The development tools should also assist the mapping of the
abstract net of blocks onto a concrete network of computers.

2) Interfaces: The aRD concept only provides a flexible
communication infrastructure for the net of blocks. The func-
tionality, however, is implemented in the blocks. Therefore it
is very important that the interface for writing a block and
integrating it in the net’s communication structure should be
open to arbitrary programming languages. This is especially
important as in robotics the blocks are contributed by a team
of expert from different fields each requiring its specific tools
and languages.

The interface for writing a block should also be simple,
as researchers are experts in their field but not necessarily
software experts and are not willing to invest much time to
understand sophisticated software frameworks.

3744

3) Configuration, Startup and Shutdown: The description
of the configuration of a system consists of two parts. First, the
structure of the net of blocks has to be described. Second, the
mapping of this net to the actual computing hardware has to
be specified, to describe which block runs on which computer
and communicates over which links.

At runtime the system is a decentral net of communicating
blocks distributed over a network of computers. The software
concept has to provide mechanisms to allow for a central
startup from one console and a coordinated shutdown.

III. IMPLEMENTATION

The two main guidelines for the implementation of the
aRD concept were to realize the principle of a decentral net
of calculation blocks and communication links in a pure but
simple way and to keep the implementation effort as little
as possible by pragmatically relying on the functionality of
the operating systems and using any tool, open source or
commercial, which was appropriate.

The current implementation of the aRD concept consists of
aRDnet, a simple software suite developed at our institute and
a toolchain based on Matlab/Simulink/RTW [13] and RTLab
[14]. As operating systems (OS) we use QNX Neutrino [15],
a POSIX-compliant microkernel realtime OS, for the realtime
target, Linux for the non realtime computers and Windows XP
for the development hosts.

A. Matlab/Simulink Toolchain

Matlab/Simulink is the quasi-standard tool for simulation
of robot dynamics and controller design. A Simulink model
resembles the functional view on a system as being a net
of communicating blocks. Each block can have an arbitrary
number of input and output ports of usually real valued vectors
as well as an internal state vector. Basically, during model
execution the blocks are sequentially called in each simulation
step to compute the new state and output from the actual state
and input.

Simulink’s formidable graphical editor allows for a hier-
archical organization of groups of blocks in so called sub-
systems. The success of Simulink is also founded in its rich
library of blocks, including not only calculation blocks but also
blocks for data visualization and user interaction. In addition
due to its open architecture a multitude of third-party toolboxes
for different fields of application are available.

With RTW (Realtime Workshop) it is possible to automati-
cally generate from a Simulink model executables running on a
realtime target. To assure deterministic runtime behavior RTW
allows only a subset of blocks which implement deterministic
calculations and do not demand a console for user interaction.
If some of the blocks implement communication to I/O-device
cards with real hardware connected, such a system is known
as a hardware-in-the-loop (HIL) environment.

By using RTLab even a semi-automatic parallelization of the
Simulink model to run on multiple CPUs or even distributed
computing resources is feasible. The developer can easily
specify which parts of the model should run on which CPU

or computer. The Simulink model has only to be organized
in a way, that the subsystems at the highest level resemble
the desired model partition. All code for communication
and synchronization of blocks running on different CPUs is
automatically integrated by RTLab.

Having semi-automatic rather then automatic parallization
does not impose a severe restriction for robotic systems as
the modular structure of the robot hardware usually induces a
natural partition of the model.

Due to its distributed character the important issues of
inspection of and interaction with the model during runtime
have to be addressed differently by RTLab than it is done by
other HIL development enviroments like xPC Target [13] or
dSPACE [16]. When specifying the partition of the model, one
of the subsystems can be marked as the “console” subsystem.
This subsystem is not loaded to the realtime target, but
instead a new model is generated from it which is run in
a standard Matlab/Simulink enviroment on the host com-
puter during model execution. The code for communication
with the realtime part of the model is again automatically
included by RTLab. This communication, however, is done
assynchronously to not defer the model’s realtime behavior.
In the console subsystem the complete Simulink library, e.g.
scopes and switches, and even toolboxes, e.g. the Virtual
Reality Toolbox for 3D-visualization, can be used. In addition
RTLab also allows to change the parameters of all blocks of
the model during runtime by means of a parameter browser.

With respect to extensibility it is important that Simulink is
an open tool. It has a simple and well documented interface
of call-back functions for implementing own blocks, so called
“S-function blocks”. A multitude of programming languages
including Matlab and C are supported.

To simplify the implementation of standard blocks even
further, the aRD concept provides a wrapper to Simulink’s
S-function interface. Thus the developer has only to write an
init function to be called at the initialization of the model
to specify the number and dimensions of the block’s ports.
Furthermore a calc function is needed which is called at
each simulation step to perform the actual calculation.

The execution of all blocks in a model is synchronized
(except for blocks from the console subsystem), even when
they are distributed over several computers. Simulink also
provides multirate processing running each group of blocks
with the same rate in a separate thread. In addition the
enabling/disabling and triggering of subsystems is supported
to control the execution of its blocks by means of input from
other blocks.

B. aRDnet

Besides the blocks that are part of the Simulink model
and which implement mainly controller related functionality,
important parts of the net are made of standalone blocks. A
standalone block is an individual process running an arbitrary
executable which, as part of the net, sends and receives data
packets.

3745

4. Implementaion of the net of communi-
cating blocks (see Fig. 3) of a complex robot
system on a concrete computing hardware
using the aRD software concept.

The QNX realtime target consists of two PCs
with multiple CPUs and the non-realtime
blocks are executed on three PCs running
Linux. The controllers are implemented in
a Simulink model consisting of two sub-
systems (ellipses with white insets) each
running on a separate CPU and communi-
cating by code automatically generated by
RTLab. To connect standalone blocks, like
the device-driver blocks or blocks with non-
deterministic computation time, like some
inverse-kinematics algorithms, and blocks in
the Simulink model the aRDnet suite pro-
vides Simulink stub blocks. Communication

camera [+

3D
viewer

simulation

input
dev.

“world”

|

simulation
robots

cpu 3...N\

9%

[invkin J«+ ipol [sC |

between standalone blocks running on dif-
ferent computers is realized by an ardnet-
bridge consisting of an ardnet block (cir-
cles with ”an”) on each side.

The system can be run as a simulator by
replacing the real robot hardware by a second
PC with multiple CPUs or even a cluster
of PCs running blocks for simulating the

sensorsl
motors |
status |

robot dynamics and the interaction with the
enviroument.

Typical examples for such blocks running in the realtime
part are I/O-blocks that implement the device drivers for
communication with the connected robots or other hardware.
Another example are non-deterministic calculation blocks
which are asynchronously coupled to the Simulink model, for
instance an inverse kinematics wich uses some kind of itera-
tive minimization algorithm. Also, computationally demanding
blocks like the simulation of the dynamical interaction of a
robot with its environment are possible.

In the non-realtime part standalone blocks are usually appli-
cations for user interaction (GUI) and higher level intelligence
(vision system, trajectory planning).

Each block can have multiple input and output ports, but
each output port is connected to exactly one input port of an
arbitrary block with matching data formats.

aRDnet is laid out as a simple software suite that supports
and standardizes the communication between blocks. The suite
was developed at our institute and consists of three parts.
First, a library for easy implementation of a block’s input
and output ports is provided. Second, the ardnet executable
realizes communication between blocks running on different
computers. Finally, a template for a Simulink stub block
has been introduced, which allows for easy communication
between standalone blocks and blocks in the Simulink model.

In its current implementation the aRDnet suite supports
blocks running on computers with QNX, VxWorks and Linux.
In the near future we are planning to also support Windows.

1) aRDnet Library: The aRDnet library provides a native
C/C++-interface. Based on this interfaces to other program-
ming languages can also be easily built as most languages
allow to be extended by C-code. For Matlab and Python we
have already realized such interfaces.

realtime target

The simple interface consists of only five functions:

e create and init for creating and initializing the input
and output ports of a block. Details of the created prop-
erties of the port can be configured by special command
line arguments provided at startup to the block’s process.
This is similar to the mechanism the X-Window system
library Xlib uses to implement standard command line
arguments for all X-clients (e.g. the ’-display”” argument).

« send for non-blocking sending of a data packet through
an output port. As all communication is unbuffered the
last packet sent gets directly transported to the connected
input port of the receiving block.

e rec and tryrec for blocking and non-blocking receiv-
ing of data over an input port. The blocking version waits
until a new packet arrives and returns this data. In this
way the execution of the block can be triggered on arrival
of new data. In contrast, the non-blocking version returns
immediately with the data that has arrived last.

This set of functions for sending and receiving implements
a pushing semantics for data transport.

The size and format of a data packet can be different
for each port of each block, but is static and defined at
compile-time. As only the blocks which are connected to each
other have to know about the data format, this can easily be
specified, e.g. in a common include file.

The connection scheme of the block’s ports is determined
by providing command line options at startup of each block’s
executable. For each port of a block a separate name is
specified. Connections are simply determined by matching port
names for input and output and as each output port can only
drive exactly one input port, every connected pair of ports has

3746

to have a unique name.

The current implementation of the aRDnet library achieves
all of the above by only a thin layer of abstraction over the
functionality of the underlying operating systems. Basically
only the POSIX “named shared memory”, semaphores and
mutexes are used.

2) ardnet executable: The ardnet executable serves
three important purposes with regard to the communication
abilities in the net of blocks. Being also based on the aRDnet
library it can be seen as a block,however, with special features.

First, ardnet realizes the communication between two
blocks on different computers by running a corresponding
pair of ardnet processes as a network bridge. For this
purpose ardnet has built-in functionality for transmission of
data over the network providing a virtual wire” between the
two communicating blocks.

Communication is carried out unbuffered, i.e., if the rate of
the sender is higher than the rate ardnet can transmit packets
may be dropped. The packets sent, however, are always the
most recent ones. In the current implementation ardnet
uses bare UDP sockets but it can easily and transparently be
extended to any other transportation protocol, e.g. EtherCAT,
or even media, e.g. InfiniBand.

To address the problem of blocks running distributed even
on heterogenous computers (with differing CPU families,
operating systems and compiler versions) the aRDnet suite
defines compatible basic data types. In this way, the aRDnet
library assures the right representation on both sides because
the data packet is assembled from these basic types.

Furthermore, a detailed control of quality of service (QoS) is
possible by choosing different network connections, e.g. poin-
to-point or switched ethernet, using separate network stacks
(a particular feature of the QNX microkernel architecture) and
finally by adjusting process priorities. This way we have been
able to achieve realtime communication over four ports with
a rate of 1kHz on each line (for details see 1V).

The second purpose ardnet serves is to provide a port
multiplier block. Therefore ardnet can be configured to have
one input but multiple output ports. Each data packet arriving
at the input is distributed onto all output ports.

Finally, ardnet can be used to reduce the rate at which
data is sent between two blocks. This is done by inserting an
ardnet block into their communication line. The ardnet
block can then be configured either by setting a maximum
sending rate or by forwarding only every n-th incoming data
packet.

All these different configurations and parameters can be
controlled via command line options at startup.

3) Simulink stub: To connect standalone blocks to blocks
implemented in the Simulink part of the net the aRDnet suite
provides a template S-function code. This easily allows to
generate a stub block for Simulink representing the actual
block. The developer has only to implement three functions.
One specifies the stub block’s layout (number and dimensions
of in- and outports). The other two functions translate the data
packets being sent by the standalone block through its output

ports to the outport lines of the stub block and, in the other
direction, translate the data at the stub’s inport lines to the
data packets received at the standalone block input ports.

The connection between the standalone block and its stub
is implemented with the help of the standard aRDnet library
mechanisms. This allows for a seamless integration of the two
parts of the net.

C. Startup and Shutdown

Starting the decentral net of standalone blocks distributed
over a network of computers is done by using a hierarchy of
shell scripts very similar to the way a Unix system starts up. A
master script calls subscripts for setting up particular system
parts (e.g. the driver blocks for the robot hardware).

To allow for the startup of a distributed system from a
single central command station the aRDnet suite provides the
ardstart command for starting up programs and scripts on
a remote computer. In addition ardstart does bookkeeping
of what has been started where. This information is needed for
a coordinated shutdown of the whole system or only specific
subsystems and is exploited by the ardki1l1 command of the
aRDnet suite.

The hierarchy of shell scripts together with the Simulink
models give a complete description of the system configu-
ration. As the structure of the shell scripts is simple, they
can e.g. easily be generated automatically from a graphical
representation of the net.

IV. APPLICATIONS AND PERFORMANCE

In this section we present some performance measurements
and first applications which are based on the above imple-
mentation of the aRD concept. If not otherwise mentioned all
measurements were performed on a PC with Pentium 4, 3GHz.

o aRDnet Performance: The time it takes in worst case to
transfer a data packet of 1kByte between two standalone
blocks running on the QNX realtime target is measured,
including everything from calling the send routine until
the rec routine of the receiving block returns. For two
blocks on the same computer the transfer time is 7us.
For two blocks on different computers connected by
an ardnet bridge over a 1Gbit ethernet point-to-point
connection the time is 90us (and 60us on average).

« High Rate: In a HIL setup a simple Simulink model reads
analog values from an I/O-card and records them to the
harddisk. At a rate of 30kHz the system introduces only
little overhead (e.g. due to scheduling) of less then 10%
of cpu-time.

e Multirate: A robot arm is connected to a VxWorks
computer, which sends the sensor and actuator data at
a rate of 1kHz via an ardnet bridge to a QNX realtime
target running a Simulink model with a controller also at
a rate of 1kHz. The very same Simulink model contains
a subsystemm running at rate of 10kHz for reading in
analog values from a sensor via an I/O-card.

o Deterministic Execution and Jitter: In the very same
system as above, we could increase the average cpu load

3747

Fig. 5. Preliminary study for bimanual manipulation. The system consists of a
DLR-LBR-II and DLR-LBR-III arm and two DLR-Hand-II robot components.
The task was to grasp and empty a basket. With this setup the control concepts
for the new DLR-Two-Hand-Arm-Torso system (THAT) and the aRD software
concept have been succefully tested.

of the Simulink model up to a level of 90% before loosing
simulation steps, even while running debug and profiling
tools over a second network connection. This implies
that system jitter, even in case of the 1kHz network
communication rate via ardnet, is significantly smaller
than 100us.

o Two-Hand-Arm Setup (see Fig. 5): For a preliminary
study for the new DLR-THAT system two arms and
hands are connected to four VxWorks computers each
communicating at a rate of 1kHz via a point-to-point
ardnet bridge with the QNX realtime target. All 40
DOF could be controlled at a rate of 1kHz by one
Simulink model.

o THAT-Simulator: For building a simulator for the THAT
system we substituted the robot hardware by simula-
tion blocks and extended the system configuration by
visualization and user interaction blocks (see Fig. 1 and
Fig. 4). The former blocks were running on additional
CPUs of the realtime target, whereas the user frontend
was executed on a network of non-realtime computers.

V. CONCLUSION

In our robot system configurations at DLR the aRD concept
has proven successful and to be agile in at least two senses.
First it supports the development of agile robots, i.e. robots
that are dynamic, responsive and intelligent, by giving easy
access to scalable computing power even in hard realtime
and allowing for easy integration of non-realtime modules
implementing higher level intelligence functionality. Second,
it supports an agile flow of development, meaning flexible,
adaptive and rapid, in the spirit of the ’Agile Software De-
velopment’ methodology [17], [18] that is especially suited to
small teams of experts. This could be achieved by the simple
yet general functional view on a robotic system as a net of
communicating blocks in combination with an open and easily
usable implementation of this view. In short, the aRD concept
has turned out successful, because

« the functional view of a net of communicating blocks is
well-suited to complex robotic systems,

o one can make use of the power of modern commodity
computer hardware,

« only tools for supporting and standardizing communica-
tion are provided, but

« users can develop their own standards and interfaces for
the data on demand,

« one can do a prototypical implementation of new func-
tionality first and easily integrate it after it proved to be
of general use,

« it has a simple and small implementation, and because

« tools and functionality of operating systems have been
chosen pragmatically.

At our institute almost all projects are currently being ported
to the aRD concept. These projects range from teststands of
new robot joints over medical and space robotics to humanoid
manipulation experiments. First examples already show that
this unifying approach promises synergetic benefit between
these formerly distinct areas.

REFERENCES

[1]1 G. Hirzinger, N. Sporer, M. Schedl, J. Butterfass, and M. Grebenstein,
“Torque-controlled lightweight arms and articulated hands: Do we reach
technological limits now?” The International Journal of Robotics and
Research, vol. 23, no. 4-5, 2004.

[2] C. Preusche, D. Reintsema, K. Landzettel, and G. Hirzinger, “Robotics

Component Verification on ISS ROKVISS — Preliminary Results for

Telepresence,” in Proc. IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS) 2006, accepted for publication.

U. Hillenbrand, B. Brunner, C. Borst, and G. Hirzinger, “The Robutler: a

vision-controlled hand-arm system for manipulating bottles and glasses,”

in Proc. 35th International Symposium on Robotics, 2004.

A. Brooks, T. Kaupp, A. Makarenko, A. Orebéck, and S. Williams,

“Towards component-based robotics,” in Proceedings IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS 2005),

2005.

C. Cote et al., “Code reusability tools for programming mobile robots,”

in Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2004, pp. 1820-1825.
[6] H. Utz, S. Sablatng, S. Enderle, and G. K. Kraetzschmar, “Miro —
middleware for mobile robot applications,” in [EEE Transactions on
Robotics and Automation, Special Issue on Object-Oriented Distributed
Control Architectures, 2002.
[71 R. T. Vaughan, B. Gerkey, and A. Howard, “On device abstractions
for portable, resuable robot code,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robot Systems (IROS 2003),
2003, pp. 2121-2427.
[8] Orocos. [Online]. Available: http://www.orocos.org
[9]1 Mca2. [Online]. Available: http://www.mca2.org
[10] G. T. Heineman and W. T. Council, Component-based Software Engi-
neering. Putting the Pieces Together. Reading, MA: Addison-Wesley,
2001.

[11] A. Albu-Schiffer, C. Ott, and G. Hirzinger, “A unified passivity based
control framework for position, torque and impedance control of flexible
joint robots,” in Int. Symposium on Robotics Research 2005, 2005.

[12] AMD Linpack Benchmark. [Online]. Available:

http://www.amd.com/de-de/Processors/ProductInformation

[13] The MathWorks. [Online]. Available: http://www.mathworks.com/

[14] OpalRT. [Online]. Available: http://www.opal-rt.com/

[15] QNX Software Systems. [Online]. Available: http://www.qnx.com/

[16] dSPACE. [Online]. Available: http://www.dspace.de/

[17] (2001) The Manifesto for Agile Software Development. [Online].

Available: http://agilemanifesto.org/
[18] A. Cockburn, Agile Software Development.
Wesley, 2001.

3

=

[4

=

[5

[ty

Reading, MA: Addison-

3748

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber:
	0:
	5764093631474347: 3741
	3909136365950343: 3742
	7370506167957647: 3743
	9172696725303486: 3744
	9467991216858367: 3745
	44780624110575507: 3746
	7412202605331901: 3747
	19579880028194524: 3748

	TL1:
	0:
	894686168432459: Proceedings of the 2006 IEEE/RSJ

	TL2:
	0:
	3016274088149511: International Conference on Intelligent Robots and Systems

	TL3:
	0:
	6090804009046444: October 9 - 15, 2006, Beijing, China

