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Abstract. This study addresses the phenomenon of persistent countergradient (PCG) fluxes of 
momentum and heat (density) as observed in homogeneous turbulence forced by shear and stratifica- 
tion. Countergradient fluxes may occur at large scales when stratification is strong. However, they 
always occur at small scales, independently of stratification. A conceptional model is introduced to 
explain PCG fluxes at small scales as the result of the collision of large-scale fluid parcels. The large 
parcels collide under the driving force of inclined vortex structures (in a shear-dominated flow) or of 
buoyancy (in a strongly stratified shear flow). This "collision model" also explains the PCG heat flux in 
an unsheared stratified flow with zero average momentum flux. It is found that the energy of the 
small-scale PCG motions is provided (i) by quick transport of kinetic energy from the scales of 
production to relatively slowly dissipating scales if the flow is shear-driven and (ii) by conversion of 
available potential energy to kinetic energy at small scales when the flow is stratified. The collision 
mechanism is an inherent property of the turbulence dynamics. Therefore, the PCG fluxes at small 
scales reflect a universal character of homogeneous turbulence, and are found over a large range of 
Reynolds numbers. The Prandtl (or Schmidt) number influences the rate of dissipation of temperature 
(or density) variance but not the dissipation rate of the velocity variance. In stratified flows, therefore, 
the number directly affects the strength of the PCG heat flux at small scales. It is found, however, that 
the PCG momentum flux is also altered slightly when the Prandtl number is large enough to sustain 
small buoyantly moving parcels after collision. 

1. Observation 

In a turbulent flow, mean gradients of momentum,  density, heat, species concentrations, etc., usually drive 
respective mean fluxes of sign opposite to the sign of the gradients. These fluxes are called "down-gradient" 
(DG). Fluid density p in air and in water for sufficiently large temperature decreases about linearly with 
temperature and increases with the concentration of a relatively heavy species like salt in water. Hence, 
a positive mean vertical temperature gradient or a negative mean vertical salinity gradient cause stable 
stratification under gravity 9. Given a stratified flow with, e.g., a positive gradient s of mean temperature 
® in the vertical direction z, 

d® 
s=-~z >0, 

the down-gradient turbulent vertical heat flux is negative. In a stratified flow, gravity oscillations may 
develop which are accompanied by oscillating heat fluxes at a frequency of about  2N, where 
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N = (fig(d®/dz)) 1/2 is the Brunt-V~iisfil~i frequency and fi is the constant volumetric expansion coefficient. 
Hence, we expect that positive or "countergradient" (CG) heat fluxes occur temporarily, when available 
potential energy is transferred into kinetic energy of the flow. 

However, data obtained from numerical simulations of homogeneous stratified turbulence not only 
show oscillating fluxes, but often exhibit "persistent countergradient" (PCG) fluxes, i.e., positive fluxes 
which persist for longer than half the buoyancy period n / N .  Such fluxes develop at small scales and may 
dominate all scales at strong stratification. The PCG flux phenomena have been reported for heat by Gerz 
et al. (1989), Gerz and Schumann (1991), Holt et al. (1992), and Ramsden and Holloway (1992). Data from 
laboratory measurements as well as atmospheric and oceanic field measurements corroborate a similar 
heat-flux (or density-flux) behavior or, at least, give some evidence for the existence of PCG heat fluxes 
(Munk, 1981; Komori et al., 1983; Itsweire et al., 1986; Itsweire and Helland, 1989; Lienhard and van Atta, 
1990; Yoon and Warhaft, 1990; Salath6 and Smith, 1992; Komori and Nagata, 1994). 

PCG fluxes contradict general expectations and, therefore, they require special explanation. There is 
some controversy about PCG fluxes in recent studies, whether it is a large-scale or a small-scale 
phenomenon, and whether it occurs only in flows with high Prandtl or Schmidt number (as for salt diffusion 
or thermal diffusion in water) and at moderate Reynolds numbers, or also for thermal diffusion in air at high 
Reynolds numbers. Both energetic (Schumann, 1987; Holloway, 1988; Gerz et al., 1989; Gerz and 
Schumann, 1991) and mechanistic (Kaltenbach et al., Holt et al., 1992) explanations have been proposed. In 
this note we point out that CG fluxes occur at large and at small scales, but under different conditions and 
flow situations. We illuminate the underlying physics for both phenomena. 

Rohr et al. (1988) studied stably stratified homogeneously turbulent shear flows experimentally in 
a salt-stratified water channel with a turbulent Reynolds number varying between 100 and 200 (based on 
root-mean square velocity and microlength scale) and a molecular Schmidt number of about 700. 
Kaltenbach et al. (1994) performed large-eddy and direct numerical simulations of the same kind of 
turbulence but with lower effective turbulence Reynolds numbers between 30 and 70 and with an effective 
(subgrid-scale) Prandtl number of Pr = 1. In both studies data have been recorded for a variety of gradient 
Richardson numbers: 

N 2 d U  
R i = - -  where S = - -  

S 2 ' dz 

is the shear rate of the mean velocity U in the x-direction varying in the vertical direction z. 
We present and discuss cospectra of vertical fluxes of horizontal momentum, uw, and heat, Ow (or density 

pw) using data from Rohr's measurements (Rohr et al., 1988) and data from Kaltenbach's LESs, which, in 
parts, are published in Kaltenbach et al. (1994). We refer the reader to these two publications for details of 
the measurement and simulation techniques. We denote u, w, p, and 0 as the fluctuating (turbulent) part of 
downstream and vertical velocity, density, and temperature, respectively. We note that a density flux 
produces the same buoyancy flux as a heat flux of opposite sign, pw ~ - ~poOw, where Po is the mean 
density. All quantities are normalized by proper reference scales. 

Figure 1 plots measured "downstream" cospectra of - uw and pw in variance-preserving form at various 
downstream positions and for various Richardson numbers (from Figure 20 and 22 of Rohr et al. (1988)). 
These spectra are obtained by Fourier transforms of temporal fluctuations. By means of Taylor's frozen 
turbulence hypothesis, they can be interpreted as spectra versus the downstream wave number k x and are 
called "downstream" spectra, therefore. Figure 2 shows cospectra of uw and Ow obtained by Fourier 
transforms of simulated spatial fluctuations in downstream (kx) and vertical (kz) directions for Ri  = 0 and 
0.13 at shear times St  = 6, 7, and 8. Figure 3 depicts the same quantities for Ri  = 0.5 and 1 at St  = 8, 9, and 10. 
From the simulations a one-dimensional cospectrum is obtained by averaging the three-dimensional 
cospectrum over all wave numbers of the other two directions. Rohr et al. emphasize that, owing to limited 
averaging time, their cospectra of momentum and density fluxes should be interpreted only qualitatively. 
However and despite and different Reynolds and Prandtl numbers in the measured and simulated flows, the 
cospectra depicted in Figures 1-3 show the same basic features, and, therefore, demonstrate the same 
physical states of sheared and stratified turbulence. 

Both datasets reveal strong DG fluxes of momentum and heat (density) at large scales for small values of 
the Richardson number (Ri  <_ 0.13), which is consistent with a flow state of turbulent mixing. When 
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Figure 1. Measured cospectra in homogeneously sheared and salt-stratified turbuIence, Schmidt number  ~ 700. (a) Negative 
momentum flux and (b) density flux versus frequency f in variance-preserving form at various downstream positions for R i  ~ 0 and 
R i  >_ Ri~r ~ 0.25. This is a reproduction of Figures 20 and 22 from Rohr et  aL (1988). 
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Figure 2. Simulated cospectra in homogeneously sheared and temperature-stratified turbulence with P r  = 1 at shear time St  = 6, 7, 

and 8. Data  obtained from Kaltenbach et  al. (1994) and related simulations. Downstream and vertical cospectra of momentum flux (a), 
(c) and heat flux (b), (d) in variance-preserving form for R i  = 0 (solid lines) and 0.13 (dashed lines). 
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Figure 3. As Figure 2 for Ri = 0.5 (solid lines) and 1 (dashed lines) at St = 8, 9, and 10. 

stratification is strong (Ri >Ricr  ), CG fluxes occur at large scales which indicate collapsing turbulence. Ricr 
is the critical Richardson number that separates flow with growing turbulent energy from those with 
decaying energy; its value lies between 0.13 and 0.25 (Schumann and Gerz, 1995). For our purposes the flux 
behavior at small scales is remarkable. There, we observe in both datasets that the momentum flux is CG 
for all Ri  and the heat flux is not only zero for Ri = 0 but also CG when Ri > 0. At times St _> 6, the simulated 
flows have reached quasi-stationarity (Kaltenbach et al., 1994). Thus, the cospectra are representative for 
developed stages and their variation displayed for three different instants of time may be used as confidence 
intervals. The measured and the simulated data reveal that the observed CG fluxes, both at large and small 
scales, are persistent. In the following the small-scale flux behavior at different Richardson numbers is 
described and explained in detail. 

2. Explanation 

The idea that the small-scale PCG heat flux is driven by an excess of available potential energy at small 
scales, which can be caused either by weak dissipation of potential energy (when the Prandtl or Schmidt 
numbers are of order one or larger) or strong transfer of available potential energy from small to large wave 
numbers, i.e., large to small scales, stems from energy-budget considerations. Mechanistically, this effect can 
be understood in terms of warm rising and cold sinking fluid elements. Detailed descriptions of this process 
can, for example, be found in Schumann (1987), Holloway (1988), Gerz et al. (1989), and Gerz and 
Schumann (1991). We will see in Section 3 that the mechanistic model introduced below is also energetically 
consistent for the small-scale PCG momentum flux. 

Here, we introduce a conceptional model of colliding fluid parcels that is able to explain PCG fluxes of 
momentum and heat at small scales (Sections 2.1-2.3). The model works for homogeneous turbulence 
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under the influence of stable stratification with or without uniform mean shear. (A possible extension of this 
model to inhomogeneous boundary-layer flows is given in Section 3). The CG fluxes at large scales can be 
explained by the long-lasting influence of past mixing events, as discussed in Section 2.4. Further, the 
influence of the Prandtl number on PCG fluxes is described in Section 2.5. 

It is well known that coherent structures of fluctuating vorticity develop from stretching and rotating 
interactions of the mean shear with the turbulent vorticity and velocity fields. In boundary-layer flows and 
in free shear flows, the dominant vortex structures resemble hairpins or horseshoes that are vertically 
inclined against the downstream direction by an angle of typically 25°-35 ° (Rogers and Moin, 1987; Gerz, 
1991; Robinson, 1991). Far from boundaries, the horseshoe eddies can be oriented both upward and 
downward. We refer to them as "head-up" and head-down" structures. In a homogeneous shear flow with 
linear mean-velocity profile U(z), both eddy structures occur equally often due to symmetric forcing. Gerz 
et al. (1994) conditionally sampled the vorticity fields in homogeneous shear flows, and found that the 
prominent feature is not a single eddy structure but a pair of eddies, where the head-up structure always lies 
below the head-down structure (Figure 4). A thermal microfront, i.e., a region with a large temperature 
gradient, and an enhanced shear layer, form in the zone between the eddies. 

Figure 4 sketches a situation which is typical for weakly stably stratified and homogeneously sheared 
turbulence. Gerz et al. (1994) studied a flow with a Richardson number of Ri  = 0.13. At such Richardson 
numbers, the flow is controlled by the shear and stratification does not significantly suppress or 
fundamentally alter the turbulence, compared with a neutrally stratified condition. Hence, we can assume 
that the situation sketched in Figure 4 is also typical for neutrally stratified shear flows, where temperature 
represents a passive scalar field. 

On the other hand, flows with large values of the Richardson number are characterized by the weak 
influence of shear and the strong influence of stratification such that the turbulence decays with time. Such 
flows do not exhibit horseshoe-vortex structures at quasi-stationary states. Vorticity, rather, is organized in 
horizontal sheets and streaks (Gerz, 1991). 

J 
v o r t e x  _ "~ 

; : 0  0 

Figure 4. Sketch of a pair of vortex structures as it typically occurs in homogeneously sheared turbulence at neutral and weakly stable 
stratification with dU/dz > 0. A head-down eddy lies above a head-up eddy and a convergence zone develops between them. (From 
Gerz et al., 1994). 
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Figure 5. Two-dimensional sketch of the convergence zone where colli- 
sion tal~es place in the x-z  plane. The large fluid lumps are advected 
through the legs of their parent eddy structures and collide. Small fluid 
parcels result in the four sectors with properties as labeled. The sketch 
illustrates a typical situation for unstratified shear flow, Ri = O, dU/dz > O. 
The straight line symbolizes the microfront. 

2.1. Case I: Neutrally Stratified Shear Flow 

First, we consider neutrally stratified shear flows, Ri  = 0, where temperature  is passive. In  this flow the mean  
shear S drives the turbulence to become more  and more  energetic. In  Figures 1 and 2 we recognize 
dominan t  D G  fluxes of  m o m e n t u m  and heat  (density) at wave numbers  k x (or frequency f )  and k= in the 
range 1 _< k < 10, hence, at large scales. However,  at small scales (k > 25), the m o m e n t u m  flux is CG,  
whereas the density (heat) flux is weakly D G  or zero. We note that  the density flux at R i  = 0.01 to 0.03 in 
Rohr ' s  experiment (Figure l(b)) can be considered as a passive scalar case. N o  positive fluxes are found in 
cross-stream (ky) spectra of  the numerically simulated turbulence. 

In homogeneous  turbulence the horseshoe vortices are responsible for the strong D G  fluxes at large and 
medium scales (Gerz, 1991). Between their legs, the vortices t ranspor t  very efficiently heavy (cold) and slow 
fluid lumps upward  (head-up eddy) or light (warm) and fast fluid lumps downward  (head-down eddy), see 
Figure 4. Since the structures happen  to occur most ly  as pairs in homogeneous  turbulence (see Gerz  et al., 

1994), they t ranspor t  the lumps toward  each other, with the result that  the lumps collide in the frontal  zone 
between the parent  eddy structures and break into smaller parcels. Dur ing  collision, fluid lumps exchange 
m o m e n t u m  by pressure forces but  exchange heat only when they mix. This picture of colliding fluid lumps 
provides an interpretat ion of  the mixing process in terms of dynamic  actions of flow structures. The 
small-scale C G  m o m e n t u m  flux and the vanishing heat flux at small scales result f rom this collision: as 
sketched in Figure 5, four different sectors have to be distinguished schematically in the collision area, 
above and below the microfront  and left and right of  the collision center. (Since the mean flow is symmetr ic  
with respect to the cross-stream direction y, it is sufficient to consider the collision zone in a down-  
stream/vertical cross section only.) Fo r  S > 0, every sector provides a positive uw. During  collision we can 
assume that  the four smaller parcels resulting from collision maintain  mos t  of  their pr imary  heat such that  
we observe a positive and a negative Ow on each side of  the front. Hence, in the mean (<), averaged over the 
four sectors), net fluxes < u w )  > 0 and <Ow)  = 0 result consequently.  1 

1 In the averaged cospectra from the simulations, we observe a stronger CG effect in the vertical spectra than in the downstream 
spectra. This reflects the fact that the vortex structures are vertically inclined with an angle smaller than 45 °. As a consequence, the 
spectral character of these structures dominate more in averaged k~ spectra than in averaged k z spectra. Hence, they hide the spectral 
character of the collided fluid parcels almost completely in downstream spectra but only marginally in vertical spectra. A spectral 
evaluation of the data in tilted directions parallel and perpendicular to the horseshoe eddies revealed this effect at its strongest extent. 
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Figure 6. As Figure 5. The resulting flow properties in the four sectors 
are typical for a stably stratified but shear-controlled flow, Ri = 0.13. 
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2.2. Case Ih Weakly Stratified Shear Flow 

Here, we look at weakly stratified shear flows, Ri = 0.13. Temperature is now an actively buoyant scalar 
that reduces turbulent mixing. Therefore, the fluxes at large scales are weaker than in the passive case, see 
Figure 2. Further, the simulation data show that turbulence has approximately reached a stationary state 
(Kaltenbach e t  al., 1994). Qualitatively, the cospectra of u w  do not differ from those in case I. However, we 
observe a reduced DG heat flux at large k x and a positive (CG) heat flux at large kz (Figure 2(b), (d)). 

Again, the warm and cold fluid lumps which are advected through the legs of the parent eddy structures 
collide in the frontal zone and break into smaller parcels essentially maintaining their primary heat. 
However, now these parcels are actively warm and cold, i.e., a warm parcel will rise or resist the dynamically 
forced sinking due to its buoyancy; a cold parcel will sink or resist the dynamically forced rising, as 
illustrated for four typical parcels in Figure 6. There, parcel 1 (3) will enhance the dynamically forced rising 
(sinking), whereas parcel 2 (4) will only diminish the dynamically forced sinking (rising). In other words, the 
former mechanism strengthens the positive heat fluxes in parcels 1 and 3, but the latter mechanism weakens 
the negative heat fluxes in parcels 2 and 4. This asymmetric behavior of the parcels results in a positive net 
heat flux at small scales. The momentum flux is explained as in case I. 

2.3. Case IIh Strongly Stratified Shear Flow 

In the last case we study strongly stratified shear flows, R i  = 0.5 and 1. These flows resemble situations 
of decaying turbulence. For both Richardson numbers, the covariance spectra of momentum flux and 
heat flux in Figure 3 show positive contributions at large and at small kx, whereas they are negative at 
medium wave numbers. At small vertical wave numbers the fluxes show negative or indifferent values, but at 
medium and large kz the fluxes are strongly CG. Positive fluxes at large scales are also found in ky spectra of 
the simulations. The cospectra at large R i  measured by Rohr et al. (1988) are depicted only as an envelop 
over all values in Figure 1. However, the data corroborate our observations from the simulations 
qualitatively. 

In contrast to shear controlled flows, horseshoe eddies do not exist in flows with zero mean shear or 
strong stratification (Gerz, 1991), but warm and cold fluid lumps buoyantly rise or sink and collide 
occasionally (see, e.g., Gerz e t  al., 1989; Gerz and Yamazaki, 1993). These colliding lumps are of medium 
size, 10 < k < 30, and break into smaller parcels (k > 30). Figure 7 sketches this situation for weak shear. 
Before collision, the lumps are buoyancy-driven and carry a CG heat flux and a DG or zero momentum flux 
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0<0 
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Figure 7. Two-dimensional sketch of a collision of fluid 
lumps which follow their own buoyancy force. The resulting 
flow properties in the four sectors are typical for strong 
stratification and weak shear, R i  = 0.5 and 1. 
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F i g u r e  8. Measured downstream cospectra of the vertical turbu- 
lent heat flux in homogeneous temperature-stratified flow without 
shear at two downstream positions. The flow had a mesh Froude 
number of 5 and P r  ~ 5. This is a reproduction of a figure by 
Komori  and Nagata (1994). 

at wave numbers roughly between 10 and 30. The cospectra in Figure 3 corroborate this scenario, especially 
for Ri = 0.5 and as a function of k=: The strong CG contribution of Ow in the range of 10 < k < 30 is due to 
the buoyantly moving medium-sized lumps. The observed CG fluxes at the small scales (k > 30) result from 
the situation after collision and are explained as in case II. 

For  positive shear, S > 0, the collision front between two buoyantly moving lumps is on average inclined 
against the mean flow direction (the positive angle between the x-direction and the front). The inclination of 
the collision front is the reason why the net momentum flux at small scales is CG. In the absence of a mean 
shear, the lumps collide under any angle, such that the net small-scale momentum flux, averaged over all 
collisions in the domain, is zero. Hence, the collision model is also consistent with the observations made in 
shear-free stratified flows, where the mean momentum flux is indeed zero, but the small-scale heat flux is 
persistently CG. Figure 8 shows downstream cospectra of the vertical heat flux of grid-generated turbu- 
lence in an unsheared but stratified water tank with Pr  = 5 at two downstream positions. These spectra have 
recently been measured by Komori  and Nagata (1994). We recognize that the heat flux oscillates at large 
scales but remains persistently CG at small scales. This result is in perfect agreement with the predictions of 
the collision model. Previous measurements of unsheared and stratified turbulence in air flows with 
Pr = 0.7 (Lienhard and van Atta, 1990; Yoon and Warhaft, 1990) show very small fluxes at small scales and 
no significant CG fluxes. The different results could be caused by the different Prandtl numbers of the fluids 
(the influence of Pr  is discussed in Section 2.5). 

2.4. Persistent CG Fluxes at Large Scales 

The CG fluxes at large scales depend on the kind of forcing and, therefore, may look different in the 
atmosphere, the ocean, or the laboratory. In our case the PCG fluxes of momentum and heat at the largest 
scales, as displayed for k < 10 in Figure 3, occur only at strong stratification (Ri > Riot), when the flow is 
controlled by buoyancy and decays in time. The fluxes can be explained by the long-lasting influence of past 
mixing events. Kaltenbach et al. (1994) mentioned this effect previously, but did not provide a detailed 
explanation. To our understanding the large-scale CG momentum flux develops as follows: if there was 
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a strong negative correlation between u and w in a sheared and stratified flow at early times, and if the fluid 
lump has not yet adjusted its horizontal velocity to the mean velocity of its new surroundings when 
w changes sign for restratification, then ( u w )  will become positive (where ( )  denotes an appropriate 
mean). 2 The same proce'ss causes a PCG heat flux at large scales, since u and 0 are strongly correlated (Rohr 
et al., 1988; Holt et al., 1992; Kaltenbach et al., 1994). The largest scales are affected by buoyancy first, 
causing the sign change of w. Indeed, Figure 3(a), (b) shows that this type of CG flux starts at the largest 
wave numbers and later affects smaller and smaller scales when Ri is increased. 

Flow history at large scales becomes important for the evolution of turbulence when the transfer of 
energy from large scales in the production range to small scales in the dissipation range is reduced. In other 
words, motions at small scales are decoupled from those at large scales when the turn-over timescale 
increases relative to the dissipative timescale. As shown in Figure 11 later, this is observed for flows with 
large Richardson numbers. Hence, strongly stratified flows suffer more from flow history (e.g., initial 
conditions) than flows with weak stratification. 

2.5. Influence of the Prandtl Number 

The molecular (or, in the case of LES, the subgrid-scale) Prandtl number Pr affects the dissipation rate 
of available potential energy (or temperature variance) but not the dissipation rate of kinetic energy 
(velocity variances). Therefore, a change of Pr can affect the small scales of the heat flux directly but the 
momentum flux only indirectly and to a weaker extent. This is corroborated by the graphs in Figure 9 
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Figure 9. Vertical cospectra of m o m e n t u m  flux (a) and heat flux (b) in variance-preserving form for Ri = 0.25 at St = 7 (from 
Kaltenbach et al., 1994). Solid line: Pr = 1, dashed line: Pr = 0.5. 

z Kal tenbach et al. (1991) thought  to explain the small-scale CG fluxes by this mechanism. 
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depicting the flux cospectra for Ri = 0.25 for Pr = 1 and 0.5 (LES data). We now show that the conclusions 
drawn from the collision model for flows with Pr > 1 are also consistent with the CG-flux behavior in flows 
with Pr = 0.5. 

If Pr is 1 or larger, temperature fluctuations are diffused at a weaker rate than velocity fluctuations (Gerz 
et al., 1989; Gerz and Schumann, 1991). Thus, the parcels keep their temperature properties longer than 
their velocity properties, and, consequently, warm and cold, slowly rising and sinking spots develop: 
Buoyancy enhances the vertical motion of parcels 1 and 3 and changes the sign of the vertical velocity of 
parcels 2 and 4 (Figure 6). The related momentum fluxes of parcels 2 and 4 then become DG again. Hence, 
we expect scales where the heat flux is CG but the momentum flux is DG. This is corroborated in 
Figure 2(c), (d) for Ri = 0.13 (see range 15 < k < 30) and the trend is enhanced for larger Ri (see Figure 3 and 
Rohr's data in Figure 1). 

On the other hand, when Pr is smaller than about 13--as for the wind-tunnel experiments by Lienhard and 
van Atta (1990) and Yoon and Warhaft (1990)--the rate of dissipation of temperature variance increases 
relative to the dissipation rate of velocity variance. Thus, the small fragments are less buoyant and mostly 
driven by the collision dynamics (see Figure 6). So, parcels 1 and 3 produce a CG heat flux, whereas parcels 
2 and 4 sustain a weakly DG heat flux. The CG momentum flux is observed at all four parcels. Hence, the 
average CG heat flux is strongly reduced, whereas the average CG momentum flux is only slightly (but 
systematically) diminished compared with cases with larger Pr values (dashed lines in Figure 9). The fact that 
the small-scale momentum flux for Ri > 0 is sensitive to the value of the Prandtl number (see close-up in 
Figure 9(a)) results from buoyancy that increases the vertical velocity of parcels after collision when Pr > 1. 

3. Discussion 

In shear-controlled homogeneous turbulence, the inclined eddies mostly occur in pairs (Gerz et al., 1994), 
such that the advected fluid lumps form a microfrontal zone between the structures (Figure 4). From 
Figures 5 and 6, we learn that the net properties of the small-scale parcels are provided by the average over 
the parcels on each side of the microfront. Hence, a pair of eddy structures is not necessary to explain the 
development of the PCG fluxes. The same arguments also hold for a single eddy structure where the fluid 
lump between the legs of the parent eddy collides with noncoherently moving fluid masses. For example, in 
a boundary-layer flow close to the lower boundary, only head-up structures can exist. We expect that CG 
fluxes at small scales are also present in such cases. H~irtel and Kleiser (1993) indeed report such fluxes in the 
buffer layer of their channel-flow simulations and suggest that such reversed flow is associated with the 
ejection events. It is possible that ejections transporting fluid with small downstream momentum upward 
(uw < 0) are caused by head-up vortices. Hence, the observed CG momentum flux is probably produced 
when the ejected fluid collides with downward-moving fluid of higher downstream momentum. 

The findings from the collision model are also consistent with the observed cospeetra of the horizontal 
heat flux, Ou, shown in Figure 10. The model predicts an average nonzero horizontal heat flux despite the 
absence of a respective mean gradient (note that d®/dx = 0). The predictions are also consistent with the 
behavior of Ou at different scales: In case I we expect large positive values of Ou at large scales and vanishing 
values at small scales (see Figure 5). When the flow is stably stratified, as in cases II and III, Ou should 
decrease at large scales, since stable stratification reduces mixing. However, at small scales, the horizontal 
heat flux should slightly increase relative to the large scales, because parcels 1 and 3 in Figure 6 are more 
energetic than parcels 2 and 4. This means that u of parcels 1 and 3 increases in magnitude at the expense of 
w by the action of pressure, whereas w of parcels 2 and 4 is too small to feed u. Therefore, we expect an 
average positive heat flux at small scales, (Ou) > 0. The plots in Figure 10 corroborate our model since, 
with increasing stratification, the heat flux at small scales gains more and more intensity relative to the 
decaying mean value. 

In flows with molecular Prandtl numbers of order 1 or less, such as air, the CG fluxes occurring at small 
scales have a minor effect on the entire flow evolution. However, in flow with large Prandtl or Schmidt 
numbers such as water or a salt-water solution, the small parcels that result from colliding larger fluid lumps 
keep their temperature properties longer than their velocity properties because of different dissipation rates 

3 The limit between small and large values of Pr should be the effective turbulence Prandtl  number  of neutral turbulence. This limit 
is a little less than  1 (Schumann and Gerz, 1995). 
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Figure 10. Simulateddownstreamcospect raof thehor izonta lheat  flux;(a) Ri = 0 (solid lines) and 0.13 (dashed lines) at St = 6,7,and 8; 
(b) Ri = 0.5 (solid lines) and 1 (dashed lines) at St = 8, 9, and 10. (LES data, see Kaltenbach et al., 1994.) 

for available potential and kinetic energy (Schumann, 1987). Hence, these small parcels may become 
buoyancy-driven. The resulting CG heat flux is more intense than in flows with Pr of order 1, as measured 
by Komori and Nagata (1994) (see also Figure 8) and simulated by Gerz and Yamazaki (1993). Such parcels 
are embedded in the (wavy) large-scale flow as warm and cold, slowly rising the sinking spots, and may 
become a dominant flow property at strong stratification. Such a situation is, e.g., typical for the oceanic 
thermocline with a Schmidt number of about 8. In the thermocline, patches of enhanced temperature 
fluctuations are often observed without corresponding signals in the fluctuating velocity field (see Munk, 
1981). Our collision model provides a tool to explain these patches dynamically, i.e., as a result of collsions 
of large-scale fluid lumps driven either by shear or by buoyancy. 

The phenomenon of CG momentum flux is subject of a book by Starr (1968). He mostly describes 
transient and persistent flux phenomena at large scales (e.g., between wave numbers 1 and 15 on the 
planetary scale of the earth's atmosphere, (Starr, 1968, p. 48)). However, he formulates an energetic 
condition for the appearance of such fluxes which is also relevant for our discussion of CG fluxes at small 
scales: the CG motion must be supplied by kinetic energy at the respective scales, either by conversion from 
other energy reservoirs or by transfer of kinetic energy from other scales to the CG scales (Start, 1968, p. 23). 
Both situations are given at the small scales of the flows considered here: 

(i) A CG motion gains energy by conversion of available potential energy to kinetic energy when the 
flow with a large Prandtl number is stably stratified, as discussed in detail above. 

(ii) In addition to this source, we suppose that the CG momentum flux at small scales results from 
a quick transfer of energy from the production range to small scales by the collision process causing 
accumulation of energy in the dissipation range. 

Evidence for the quick spectral transfer of energy may be seen in the different evolutions of the timescales 
for turn-over (I/E t/z) and dissipation (E/eL where E, e, and 1 stand for turbulent kinetic energy, its dissipation 
rate, and the integral length, respectively. By plotting the ration E3/2/(el) versus shear time St in Figure 11, 
we see that the ratio is larger than 1 and that it even grows in time after St ~ 2 for the most energetic cases 
(Ri = 0 and 0.13). Thus, when the flow evolves, the energy cascades quicker from large to small eddies than it 
is removed by viscosity in the dissipation range. To counteract energy accumulation, the flow produces CG 
motion (with CG momentum fluxes) at the small scales. 

On the other hand, for the cases with Ri > 0.5, the timescale ration decreases with St. This reflects the 
growing suppression of the energy cascade causing separation of the motion at small scales from the motion 
at large scales and indicates a growing incluence of flow history as discussed in Section 2.4. Now, the small 
scales gain energy from the buoyantly moving medium-sized lumps when they occasionally collide and 
break and, as explained above, from conversion of available potential energy to kinetic energy if the Prandtl 
number is larger than 1. Hence, molecular diffusivities are more important for stratified flows than for 
nonstratified flow because buoyancy reduces the energy-cascading process and diminishes coupling 
between the energy levels at small and large scales. 
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4. Summary and Conclusion 

We addressed the phenomenon of PCG vertical fluxes of downstream momentum and heat in homogene- 
ously sheared and stratified turbulence. We defined a PCG flux as a flux that persists for longer than half the 
buoyancy period ~ / N  of the stratified fluid. PCG fluxes are observed in many flow situations, but they seem to 
contradict general (thermodynamical) expectations. We showed that one has to distinguish between 
PCG-flux phenomena at large and at small scales, and that they require different explanations. We presented 
a conceptional model to explain the development of PCG fluxes of momentum and heat at small scales. 

We summarize our findings as follows: 

• PCG fluxes of momentum and heat are not restricted to low Reynolds and high Prandtl number flows, 
because they have been documented in various measured and simulated flow situations with small to 
at least moderate Reynolds numbers (up to 200 based on microscales) and with Prandtl or Schmidt 
numbers varying from 0.5 to several hundreds (see, e.g., Komori et al., 1983; Itsweire et aI., 1986; Rohr 
et al., 1988; Gerz et al., 1989; Gerz and Schumann, 1991; Holt et al., 1992; Ramsden and Holloway, 
1992; Komori and Nagata, 1994; Kaltenbach et al., 1994). 

• As mentioned previously by Kaltenbach et al. (1994), the PCG fluxes at large scales evolve under 
strong stratification, i.e., at large Richardson numbers, only. They are controlled by flow history, that 
is, the fluxes result from effects which are caused by past events with a long-lasting influence on the flow 
evolution, such as a strong disequilibrium between kinetic and available potential energy of the flow. 
Hence, initial and boundary conditions become important in this case. 

• Conversely, the PCG fluxes at small scales occur at all positive (for momentum even at zero) 
Richardson numbers. The basic physical process is the break-up of energetic large-scale fluid lumps 
into small-scale parcels in the collision zone: In a shear-dominated flow the collision is driven by 
inclined coherent vorticity structures, the horseshoe eddies; in flows controlled by stratification (with 
weak or zero shear), large-scale lumps move in the gravity field driven by their own buoyancy and the 
most energetic ones occasionally collide. The inclination due to the mean shear is the mechanistic 
reason why the net momentum flux at small scales is also CG. In the absence of a mean shear, the lumps 
collide under any angle, such that the net small-scale momentum flux averaged over all collisions is 
zero. Hence, the model applies to flows with and without mean shear. 

• The model of the PCG-ftux dynamics may also explain why ejection events in boundary-layer flows 
cause (weak) CG momentum fluxes as reported by H/irtel and Kleiser (1993). 

• The collision model predicts the correct flux behavior at small scales as measured and simulated for 
a variety of Richardson numbers ranging from 0 to 1. It exhibits the right trend in the small-scale heat 
flux when the Prandtl number is reduced from values larger than 1 to 0.5, and it explains why the 
small-scale momentum flux is also weakly but systematically influenced by Pr. 

• The collision model is consistent with energy conditions as expressed by Starr (1968, p. 23). The kinetic 
energy of the small-scale CG motions is supplied by the transfer of energy from larger (production- 
range) scales to the CG scales and by conversion of available potential energy into kinetic energy at the 
CG scales when the flow is stably stratified and Pr > 1. 
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Finally, we conclude that the small-scale PCG fluxes of momentum and heat are a universal property of 
stably stratified homogeneously sheared turbulence. On the other hand, the PCG fluxes at large scales 
depend on the influence of flow history and, hence, are not universal. 
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