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ABSTRACT

Vertical mixing of momentum and heat is investigated in turbulent stratified shear flows. It is assumed that
the flow has uniform shear and stratification with homogeneous turbulence and that an equilibrium is reached
between kinetic and potential energy without gravity wave oscillations. A simple model is derived to estimate
vertical diffusivities for Richardson numbers in between 0 and about I. The model is based on the budgets of
kinetic and potential energy and assumes a linear relationship between dissipation, shear, and vertical velocity
variance for closure. Scalar fluctuations are related to shear or buoyancy frequency depending on the Richardson
number. The turbulent Prandtl number and the growth rate of kinetic energy are specified as functions of this
number. Model coefficients are determined mainly from laboratory measurements. Data from large-eddy sim-
ulations are used to determine the “stationary” Richardson number with balanced shear production, dissipation,
and buoyancy terms. The results of the model are compared with data from laboratory experiments in air or
saltwater, with measurements in the atmospheric boundary layer and in the stable troposphere, and with results
from the numerical simulations. The model interpolates the observations within the scatter of the data. The
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analysis shows intrinsic relationships between several mixing parameters.

1. Introduction

Stratified shear flows are important in the strato-
sphere (Sidi and Dalaudier 1990), in the free stable
troposphere (Tjernstrdm 1993), in the stable atmo-
spheric boundary layer over cooled surfaces ( Nieuw-
stadt 1984 ), and in the ocean (Gregg 1987). For many
applications, one needs estimates of the rate of tur-
bulent mixing in neutrally and stably stratified shear
flows (Fernando 1991). This is a particularly difficult
topic because waves may cause turbulence by over-
turning (Farrell and loannou 1993), and turbulence
that originated from some strong initial disturbance
may decay (Woods 1969) or *“collapse” and degenerate
to wavy motions under strongly stable stratification
(Hopfinger 1987). Often, stable stratified shear flows
are strongly oscillating (Einaudi and Finnigan 1993).

In view of the difficulties to determine the level of
turbulence and even the mean profiles in stably strat-
ified shear flows, simple relationships are required to
estimate the magnitude of the mixing properties. Such
relationships have been deduced, mainly for strongly
stratified atmospheric and oceanic flows, on the basis
of the energy budgets using simple closure assumptions
for stationary flows, for example, by Lilly et al. (1974),
Osborn (1980), and Hunt et al. (1985). The present
paper extends these models and a preliminary version
given in Schumann (1994). It takes into account the
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deviation from stationarity and applies to both stratified
and unstratified shear flows.

Turbulence in stratified shear flows depends strongly
on the Richardson number. For convenience, we spec-
ify this number and the subsequent theory for thermal
stratification but will also discuss density variations due
to variable salt concentration in water. Hence, we con-
sider the turbulence properties of a flow with given
vertical velocity shear S and positive vertical potential
temperature gradient s,

§_dU  _do
dz dz
which define the Brunt-Viisild frequency N and the
gradient Richardson number Ri,

(1)

2 N2

N = (Bgs)'?, Ri-——?. (2)
Here, 8 is the thermal volumetric expansion coefficient,
and g is the acceleration of gravity. For Ri < 0.25
somewhere in the flow, small perturbances in inviscid
fluid may grow exponentially (Miles 1961). In general,
one expects that existing turbulence decays with time
when Ri > 0.25 (Woods 1969). In viscous flows this
limit may be smaller ( Nicuwstadt 1984 ). But even for
Ri = O(1), transient growth of perturbations can be
substantial and may cause overturning for Ri < 0.4
(Farrell and Ioannou 1993). Turbulent motions get
enhanced by shear at small Richardson numbers and
the kinetic energy in homogeneous turbulence grows
about exponentially with time for zero Richardson
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number (Tavoularis and Karnik 1989). Hence. tur-
bulent mixing may occur under nonstationary condi-
tions at all Richardson numbers.

When comparing mixing properties in the atmo-
sphere and in the ocean, one has to note the rather
large molecular Schmidt number of salt diffusing in
water (about 300) while the corresponding Prandti
number of thermal diffusion in air is about 0.7. At high
Reynolds numbers, one generally expects that the large-
scale turbulent motions become independent of the
Prandtl number, at least for neutral stratification.
However, for strong stratification, Pearson et al. (1983)
show that the vertical diffusivity is limited by small-
scale mixing once the available kinetic energy is con-
sumed to provide the poiential energy required for ver-
tical displacements. Such small-scale processes will de-
pend on molecular diffusion.

The present theory uscs several assumptions in order
to allow for a simple analytical model. It assumes that
the density variations affect thc buovancy only, that
is. we employ the Boussinesq approximation. The
analysis is restricted to flows at high Reynolds numbers
with active turbulence and with small molecular dif-
fusion at the energy containing scales. The turbulence
is further assumed to be strongly sheared (Ri < 1) so
that the timescale S™! of shear is smaller than the
timescale N~' of stratification, and both should be
smaller than the turbulence timescales. The theory as-
sumes a homogeneously turbulent flow exposed to
uniform (lincar) vertical shear and stratification. Be-
cause of homogeneity, all divergences of fluxes vanish
so that also the mean profiles do not change due to
turbulent mixing. As a result. the mean flow is char
acterized by an unique value of Ri. The assumption
of nearly homogeneous turbulence is appropriate when
the length scales of turbulence are small compared to
outer scales of any variations in the mean profile such
that the divergence of fluxes is small compared to the
local rate of energy dissipation. By means of scale anal-
ysis, Mellor and Yamada (1974 ) have shown that this
assumption of nearly homogeneous turbulence is often
satisfied even in inhomogencous boundary layers. Fi-
nally, we assume that the exchange of energy between
its kinetic and potential form has approached a local
equilibrium so that averaged quantities decay in a
nonoscillating manner. Hence, the model excludes sit-
uations with large amplitude wavy oscillations between
kinetic and potential forms of cnergy.

Homogeneous turbulence is by necessity time de-
pendent and becomes stationary only under special
conditions near a “stationary” Richardson number.
Certainly, the transient states at other Richardson
numbers cannot last forever. For stable stratification
the energy will decay and disappear until any event,
which the present model will not explain, creates a
new turbulent region. The model loses validity when
the turbulence gets so weak that viscosity becomes im-
portant. For growing turbulence in a large but finite
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domain, the assumption of homogeneity eventually
breaks down when growing spatial gradients cause
substantial energy diffusion out of the finite turbulent
region,

Homogeneous turbulent shear flows have been
measured by Rohr et al. ( 1988) in salt-stratified water,
Their data are taken from appendix 2 of Rohr (1985)
at shear times (dU/dz > 6 when the flow has ap-
proached constant correlation coefficients. Reliable
data for homogeneous air flows are available only for
neutral stratification ( Tavoularis and Karnik 1989).
[n order to extend the database, we use results from
numerical simulations of three-dimensional turbulence
in homogeneous stratified shear flows at a Prandtl
number of one,

Homogeuncous turbulence in stratified shear flows
has been investigated by direct numerical simulation
(DNS) in Gerz et al. (1989), Gerz and Schumann
(1991), and Holt et al. (1992). They investigated
the flow dynamics as a function of Richardson num-
bers in between 0 and 1.32. DNS on grids with 128°
grid points. as we could realize for this study, is typ-
ically restricted to a Prandil number of order unity
and to a turbulent Revnolds number, based on root-
mean-square velocity fluctuations and Taylor’s mi-
croscale, of less than about 50. For atmospheric flows,
much larger Reynolds numbers are of interest, For
this reason, the DNS method has been extended by
Kaltenbach (1992} into a large-eddy simulation
{LES) using 2 simple subgrid-scale model (Lilly
1967). This extends formally the Reynolds number
to infinity, However, the range of resolved scales is
still limited by numerical resolution. The method
and the parameters used for LES are summarized in
the appendix. Details and further results are reported
in Kaltenbach et al. (1994). These are the first LES
of stably stratified sheared homogencous turbulence.
LES of turbulence in the stable atmospheric bound-
ary layer have been performed by Mason and Der-
byshire { 1990), and these results have been used by
Derbyshire and Hunt (1993) to investigate mixing
models.

The paper is organized as follows. In section 2, a
simple theory is deduced based on the budget of ki-
netic energy. Here, temperature fluctuations are as-
sumed to be correlated with shear for small Rich-
ardson numbers and with stratification for large
Richardson numbers. The results of this model are
compared 10 several experiments and to the results
of the LES. Section 3 extends the model using the
budget of potential energy 1o determine the depen-
dence of temperature fluctuations on Richardson
number. Scction 4 discusses various assumptions and
consequences of the model and shows that the results
arc not far from measurements in the stationary but
inhomogeneous boundary layer and in some strati-
fied flows with weak shear. Finally, section 5 sum-
marizes the conclusions,
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2. A simple model based on the budget of kinetic
energy

a. Definitions and consequences of the budget of
kinetic energy

In homogeneous turbulence the ensemble averaged
kinetic energy E, = 0.5(u* + v + w?) of the turbulent
velocity fluctuations is a pure function of time ¢, and
satisfies the budget

dE,
dt

It states that the local rate of change in kinetic energy
equals the sum of shear production P, buoyancy de-
struction B, and viscous dissipation e, If vertical shear
and stratification dominate, the production terms are
functions of the vertical turbulent fluxes of momentum
and heat and of the related turbulent diffusivities,

=P—-B—e (3)

P=-uwS=K,S* B=-

= K,N*. (4)

Their ratio defines the flux Richardson number Risand
the turbulent Prandtl number Pr,,

B Ri K
Rij=—=— =—
=7 Pr,’ I X, (5)
Now, we introduce the parameter G,
P
YR ©

which controls the growth rate of kinetic energy,
dE

dt

The growth rate G is positive for downgradient mixing,
G = 1 for stationary flows, G = 0 for decaying flows
without shear production, and G = P/ ¢ in neutral shear
flows. As a consequence of the budget of kinetic energy
and the above definitions of Rirand G, the rates of
shear forcing and buoyancy destruction are related to
the rate of dissipation by

_ RiG G
B=T"Ric® ""T-mic*“

Together with Eq. (4), these relationships determine
the turbulent diffusivities,

=(G— 1)(e+ B). (7)

(8)

€ G
Km = Cm 35 s Cm = 1 = leG s (9)
e & . - _RiG
Kh=tnyz, =7 “RiG" (10)

The coeflicient ¢, is often quoted as the “mixing effi-
ciency” (Weinstock 1992). One also obtains estimates
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for the “stress coefficient” and for the correlation coef-
ficient of the heat flux,

uw €
w="""3 = Cn » 11
@ w.z & wrZS ( }
wil €s Cm €S
= —— = = , (12
e we'  "Nw6  Pr,S?w'¢’ (12)

where w' = (w?)'/2and & = (#%)"/? are the root-mean-
square values of the turbulent fluctuations of vertical
velocity and temperature. Except for a4, which de-
pends also on #, all other terms are determined once
e, w, S, N, G, and Pr, are given.

b. Approximations for dissipation and scalar
Sluctuations

According to Hunt et al. (1988), for stratified shear
flows, the dissipation due to small-scale mixing in tur-
bulent flows (remote from boundaries) is controlled
by the shear rate S and by w’, the characteristic velocity
in the direction of the mean gradients. Dimensional
analysis and Prandtl’s classical eddy mixing concept
suggest

€= Asw"‘S,

(13)

with A5 as a yet undetermined model coefficient. This
model looks similar to classical dissipation closure
models when written as ¢ = Agw'?/l,,, but fixes the
mixing length as /,, = w'/S. This appears to be natural
for strongly sheared flows. Hunt et al. ( 1988 ) suggested
that this model gives a good approximation for 0 < Ri
< 0.5. We will show that this is supported by various
measurements and by the LES results and that the up-
per limit may even reach up to Ri = O(1).

Most of the temperature fluctuations originate from
turbulent motions at the large scales and are more sen-
sitive to buoyancy, therefore. Hence, the impact of
buoyancy gets important at values of Ri considerably
less than 1. Dimensional analysis and order of mag-
nitude estimates give

%, Ri <0.25
0 = ] (14)
f‘“;s, Ri > 0.25

Here, {g, and {y are yet open coefficients. The first
relationship can be understood from the mixing con-
cept, which suggests # = s and w' = [,.§, with {; = [/
/., as the ratio of relevant mixing lengths. A reduction
of {5 appears reasonable at large Richardson numbers
where the vertical scale /; of temperature fluctuations
is affected by buoyancy more strongly than the scale
of vertical motions /. In fact, the scaling with N instead
of § at strong stratification accounts for the balance
between kinetic and potential energy, as will be dis-
cussed further in section 3. Previous authors have often
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used the scaling with N even at small values of Ri,
where we expect that shear becomes the dominant pa-
rameter. The limit Ri = 0.25 is certainly only approx-
imately valid and is taken in correspondance with the
linear stability criterion of inviscid flows.

The two versions for the temperature fluctuations
given in Eq. (14) are consistent with each other if

{s =const, {y= {sRi'/? (15)
for Ri < 0.25, and
s = twRiTV2 ¢y = const, (16)

for Ri > 0.25, with {y = 0.5{s at the limit between the
two ranges. Hence, only one of these coeflicients is an
independent model parameter.

These relations are introduced into Egs. (9)-(12),
to obtain

AsG
W mA.‘ . N 17
G = EmAS T TTRI G an
anﬂ=r(:l;;‘ ] {18)
- !
cow'?  oyw’?
K, = S = , K,=K,Pr, (19)
with

_ Qe L Oy R.il"r2

Cs = Pr,’ v Pr, - (20)

We remark that {5 affects the correlation coefficient
a,¢ but not the diffusivities.

¢. Closure assumptions

In order to close the set of equations, one needs to
specify A5 and {5 or {y as well as the growth-rate pa-
rameter G(Ri), and the turbulent Prandtl number
Pr,(Ri), which we assume to be pure functions of Ri.
This assumption is similar to assuming that the flux
Richardson number is a unique function of the gradient
Richardson number, as commonly assumed for
boundary layer flows ( Nieuwstadt 1984 ). One expects
that G and Pr, are not unique functions of Ri but de-
pend also on the ratio of outer to inner (turbulent)
timescales, such as the turbulent Froude number (Ivey
and Imberger 1991) or the turbulent shear number
(Tavoularis and Karnik 1989). But we will see (in sec-
tions 4b and 4c) that these numbers are related to Ri
or become constant when the turbulent timescale is
large.

The function GG(Ri) is set up such that it equals the
value Gy = P/e > | for neutral shear flows at Ri = 0,
becomes unity at the stationary Richardson number
Ri,, for which the forcing by shear just balances dis-
sipation and buoyancy destruction, and decreases at
large Richardson numbers, where shear production of
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energy cannot balance dissipation and buoyant de-
struction. This can be expressed by a monotonic func-
tion that approaches zero at large Richardson numbers.
We select the exponential function for simplicity,

G=G(Sl RilRiﬂ_ (2[)

This function does not necessarily imply an exponential
decay of energy with time. In fact, the present model
predicts exponential increase or decay only when w'?/
E = const. The value of Ri; is less than the inviscid
stability limit 0.25 because of finite dissipation in real
flows (see Nieuwstadt 1984).

Several conflicting theories and measurements exist
for the turbulent Prandtl number. As will be discussed
in section 4d, the value Pr,y for neutral flows varies
typically in between 0.7 and 1.2. Also, the data suggest
that Pr, is fairly insensitive to stratification as long as
Ri is small. Because of Pr, = Ri/Riy, and finite value
of Riy, we expect that Pr, increases with Ri. Some mea-
surements and numerical simulations (see Gerz et al.
1989) show that Pr, grows strongly with Ri and may
even become infinite when the heat flux and Riy ap-
proach zero at the transition to wavy flows. However,
for equilibrium flows, it appears reasonable to assume
that Pr, stays finite at all Richardson numbers, and
varies as

(22)

Ri Ri
Pr, = Pry exp(— . ) :

Prm Ri_f'm Rifm ’
This equation is constructed such that Pr, increases
with zero gradient at Ri = 0. At large values of Ri,
Pr, = Ri/Ri,, . Here, we assume that the value of Ri,
approaches a constant limit Riy,, . The data do not allow
to determine this parameter very precisely, and the
value Riy,, = 0.25, which we select, is probably an upper
limit, but not far from 0.2 as found by Nieuwstadt
(1984).

d. Determination of the model coefficients

The coefficients are fixed using mainly the previously
discussed laboratory data (see Schumann 1994). Table
1 contains the LES results, which are used to determine
the stationary Richardson number. The mean values
of the measurements have been tabulated in Schumann
(1994). We find that the coefficients differ depending
on the molecular Prandtl number (or Schmidt num-
ber), as was to be expected. In saltwater, the damping
of concentration fluctuations is much smaller than that
of temperature fluctuations in air. Therefore, we have
to give two sets of coeflicients. For saltwater we use the
measurements of Rohr (1985). For Ri = 0, the data
give Gy = P/e = 1.8 = 0.36 and a,,, = 0.87 + 0.08.
Hence, Eq. (17) implies Ag = a,,./ Gy = 0.48. For Ri
= 0, also the value {s = 2.88 + 0.15 is measured, giving
v = {s/2 = 1.44, The scalar flux correlation coefficient
was found to be a,,4 = 0.42 + 0.03. From Eq. (18), we
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TaBLE 1. Large-eddy simulation results: Mean values and standard deviations.

Ri 0 0.13 0.25 0.5 1.0
PB+ ¢! 1.54 +0.048 0.999 + 0.031 0.632 + 0.021 0.190 = 0.036 —0.031 = 0.015
—uww'? 0.829 + 0.046 0.703 = 0.020 0.532 £ 0.011 0.157 + 0.037 -0.036 = 0.007
—wi(w'8)! 0.467 £ 0.006 0.323 £ 0.010 0.187 + 0.004 0.031 + 0.008 -0.013 = 0.007
#S(w's)" 238 +0.03 2.80 =003 275 +£003 226 +0.02 1.54 +=0.01
ws)! 0.540 = 0.016 0.587 = 0.027 0.638 + 0.015 0.635 + 0.025 0.508 + 0.045
Pr, 0.741 £ 0.033 0.781 = 0.041 1.03 +0.014 228 +£0.25 —
w'ig? 0.183 + 0.009 0.149 = 0.003 0.140 + 0.004 0.137 + 0.004 0.153 + 0.004

conclude Pr,p = e, (ctugls) ™" = 0.72. For Ri > 0, the
data suggest G(0.36) = 0.5 £ 0.3, which defines Ri; =
0.16 % 0.06.

Similarly, for air we take the wind tunnel data of
Tavoularis and Corrsin (1981, 1985) and Tavoularis
and Karnik (1989), for Ri = 0, to obtain G, = 1.47
+0.13, o = 0.73 £ 0.05, a0y = 0.45 £ 0.03, and {5
= 1.65 £ 0.1. Hence, As = 0.50, {x = 0.825, and Pr,g
= (.98. No measurements exist for homogeneous tur-
bulence in airflows at Ri > 0, but from the LES, which
were performed with a comparable subgrid-scale
Prandtl number of 1, we determine Ri, = 0.13. The
resultant model coefficients are summarized in Ta-
ble 2.

e. Comparison to measurements and simulation
results

Figure 1 shows that a constant value of Ag
= ¢(w'2S)"! falls within the error band of the mea-
surements of Rohr (1985) for salt diffusing in water
and of Tavoularis and Karnik (1989) for thermal dif-
fusion in air. The differences between Ag for air and
saltwater are insignificant. The value of 4 is remark-
ably close to the value 0.45 deduced in Hunt et al.
(1988) from the logarithmic law of the wall in the neu-
tral boundary layer. The LES results do roughly con-
firm the derived value of As.

The growth rate G is plotted versus Ri in Fig. 2. The
scatter of the individual measurements is quite large.
Nevertheless, the data support the assumed exponential
trend, with G = 0 at Ri = 1, in particular when one
includes the LES results (see Table 1). In principle,
there is no reason why G(0) = G, should be different
in air and saltwater flows. However, the differences are
within the scatter of the data. The stationary Richard-

TABLE 2. Model parameters for air and saltwater.

Coefficient Air Salt
As 0.50 0.48
ts 1.65 2.88
Gy 1.47 1.80
Rig 0.13 0.16
Pryo 0.98 0.72

son number Ri,, for which G = 1, is obviously difficult
to determine very precisely. From DNS, Holt et al.
(1992) found Ri, growing from 0.05 to 0.21 with in-
creasing Reynolds number. The LES result Ri; = 0.13
for air is, perhaps incidentally, close to the DNS results
obtained by Gerz and Schumann (1991). This value
is little smaller than the generally accepted values of
0.2 or 0.22 for stably stratified air flows (Nieuwstadt
1984). It appears possible that this difference is due to
deviations from homogeneity, as will be discussed in
section 4f. Compared to saltwater, a smaller value of
Ri; has to be expected in air because of the enhanced
dissipation of total energy (kinetic and potential) by
the stronger thermal diffusion at the smaller Prandtl
number.

The dependence of the turbulent Prandtl number
Pr, on Ri is depicted in Fig. 3. The data from the mea-
surements and from the LES are in rough agreement
with the interpolation curves for water and air. ( The
dotted curve will be discussed in section 4e.) Kim and
Mahrt ( 1992) fit their measurements in the stable lower
troposphere by Pr, = 1 + Ri/0.263. This function is
close to the present assumption showing also a linear
trend at large values of Ri. It implies a value 0.263 for

AS T T T T o T T T T T T T
o
064 % o ¥ .
*
S ——— |
o &= *
04 "% °© 1
0.2 :
0 T T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1.0

Ri

FIG. 1. Dissipation scaled by shear and vertical velocity variance,
As = «(w”S),”" versus gradient Richardson number Ri, based on the
data of Rohr (1985) in saltwater (circles), the measurements in neu-
trally stratified wind tunnel shear flows of Tavoularis and Karnik
(1989) (full circle with error bar), and the LES results (stars). The
full line corresponds to the present model, Eq. (13), for air, the dashed
line represents the best fit for the saltwater data. The square dot at
Ri = 0 indicates the boundary layer estimate by Hunt et al. (1988).
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F1G. 2. Growth factor G = P(B + ¢)' versus Ri. Symbols as in
Fig. 1. The full curve depicts Eq. (21) for air, the dashed curve for
saltwater.

Riy,. , in fair agreement with the value 0.25 that we
selected. Tjernstrom (1993) also tests linear functions
but finds that Pr, = (1 + 4.47 Ri)'/? fits his data best.
Such a function would imply that Ri, increases with
Ri'/? in strongly stratified flows, but we do not see a
reason to support such an increase. Schumann (1991)
shows that a linear increase of Pr, for large Ri is nec-
essary to avoid the kinetic energy becoming negative
from excessive buoyancy destruction. However, we
should note that the turbulent Prandtl number mea-
sures the ratio of two diffusivities that are both very
small (or even ill conditioned) at high Richardson
numbers. Rohr’s data show very large variations in the
turbulent Prandtl number already for Ri = 0.36, with
Pr, in between —0.6 and 3.4.

Figure 4 shows the resultant trend of the stress coef-
ficient a,,, versus Ri. Obviously, the model is a fair
approximation in the whole range of Richardson
numbers up to 0.5. As an independent source of data,
the results from Nieuwstadt ( 1984 ) have been included
in this plot. Here and in the following figures, the error
bars to his data measure the standard deviation between
various mean values and not the larger scatter within
a single time series. His data agree well with the model,
although they are taken from a stationary nonhomo-
geneous stably stratified atmospheric boundary layer.
This fact will be discussed in section 4f. The results
show clearly the decreasing trend of the mixing fluxes
with Ri.

The ratio {g = #5/w's is plotted in Fig. 5. Here, the
differences between air and saltwater are very large,
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but this seems to be justified by the large impact of
molecular damping on the magnitude of the scalar
fluctuations. The LES data are closer to the measure-
ments in saltwater than to those measured in air, which
cannot be explained easily and which indicates that
the present concept might not yet cover all influences
(as discussed in section 3). For Ri > 0.25, the figure
actually depicts {5 = {y Ri /2. The value {y = 0.825
for air is very close to the values {y = 0.8 £ 0.25 and
¢v = 0.96 found for the stable atmospheric boundary
layer in Nieuwstadt (1984) and Hunt et al. (1985).
Recently, Derbyshire and Hunt ( 1993) deduced from
a similar analysis, {y = 0.9 £ 0.1, for Ri = 0.2, and {y
= (2 + 0.2)Ri'"?, for Ri < 0.2. These estimates were
shown to compare well with results from LES of the
stably stratified boundary layer (Mason and Derbyshire
1990). Hence, these findings are roughly consistent
with the present model.

In Fig. 6, the approximations are compared with the
data for air and saltwater in terms of the correlation
coefficient for vertical scalar fluxes. The curves are the
consequences of the previous assumptions, and the data
for Ri > 0 have not been used to calibrate the model
parameters. Therefore, the comparison provides a
check for the internal consistency of the present model
and supports the selected value Rig, = 0.25. We see
that the agreement is generally within the range of the
data. The agreement is again very good with respect
to the data measured by Nieuwstadt (1984). The heat

Pr,

2.04

1.5

1.0

0.51

0.1 02 03 04 05
Ri

FIG. 3. Turbulent Prandtl number Pr, = K,,/K}, versus Ri. Symbols
as in Fig. . The full curve depicts Eq. (22) for air, dashed curve for
saltwater. The dotted curve represents Eq. (36) for Pr,g = 0.72 and
Ri, = 0.66.
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04 T T T . T
0 0.1 0.2

FIG. 4. Stress coefficient a,, = —uw/w? versus Ri. Symbols as in
Fig. 1. In addition the measurements of Nieuwstadt ( 1984) obtained
in the stable atmospheric boundary layer are indicated by the full
square with error bars. Full curve, Eq. (17) for air; dashed curve,
same for saltwater.

flux decays with increasing Ri more quickly than the
momentum flux, which is consistent with an increasing
turbulent Prandtl number because of more efficient
momentum than heat transport in wavy flows. This
can be understood physically ( Tritton 1977): “A fluid
particle that is displaced but then falls back to its orig-
inal position without any mixing with its new envi-
ronment does not transfer any heat, but it can transfer
momentum through the action of pressure forces.”

3. Estimate of potential energy from its budget

In the above model, we have introduced the values
of {y and {5 in a purely empirical manner. A slightly
more formal support and a refinement to this approx-
imation can be obtained by using the budget of poten-
tial energy E, = #2N?/2s?,

dE,
dt

The budget includes the source of potential energy from
upward buoyancy flux and the dissipation ¢, of poten-
tial energy due to small-scale scalar fluxes. This budget
can be used to deduce independent estimates of the
ratios

=B—¢, (23)

r2y =1
n=§i-=£,,(“’—) , and (=2

2 Ri 24

For that purpose, it is assumed that both forms of en-
ergy, E, and F;, decay at the same rate. Actually, we
would need to consider only the ratio of E, to the ki-
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F1G. 5. Temperature fluctuations normalized by shear, temperature
gradient, and vertical velocity fluctuations, {s = &S/ws versus Ri.
Symbols as in Fig. 4. Full curve represents Eq. (15) for Ri < 0.25,
and Eq. (16) for Ri > 0.25 for air; the dashed curve applies for salt-
water.

netic energy of the vertical velocity variance. However,
since we have no closed budget for that variance (which
would require to specify the pressure-strain term), we
start in using the budget of the total kinetic energy
instead. Thus, we assume that the ratio

dE,/d! E,

dE.jdt  E.’ (25)

stays constant with time. Moreover, it is assumed that
the dissipation timescales 7 = 2E;/eand 7, = 2E,/¢,
equal a time-independent ratio Z = 7/7, (which may
depend on Ri), that is,

FIG. 6. Vertical scalar flux correlation coefficient ct,g = —wl/wé'
versus Ri. Symbols as in Fig. 4. Full curve, Eq. (18) for air; dashed
curve, same for saltwater.
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FIG. 7. Vertical velocity variance w” relative to twice the kinetic
energy of turbulent velocities ¢* = «? + v? + w? versus Ri. Data
from Rohr (1985) in saltwater (circles with error bars), from Tavoularis
and Corrsin (1985) for air (full circle with error bar), and the LES
results (stars).

&_ ,E

. 2
. Z (26)

If these assumptions are put into the budget of potential
energy, and if B is expressed as in Eq. (8). then one
finds that the ratio of potential to kinetic energies is
given by

E, _ Ri,
E, 1-RyZ+(Z-1)G""

(27)

It shows that for Ri > 1, where G — 0, a constant ratio
of energies can exist only if the ratio of timescales Z
approaches unity in the way that

Z=1+§G, (28)
with a parameter £ of finite value.

In order to evaluate n under these conditions, we
need to know the ratio of vertical to total kinetic energy,
w'2/q?, with E; = g?/2. If this ratio is given and if £
is a parameter that is independent of Ri, then £ can be
determined from

> 1
ST T )
for Ri = 0, which follows from Egs. (27) and (28).
Hence, £ and then Z and {y are determined once the
parameters Pr,, and {y are given at Ri = 0 and if the
function ¢?/w'? is given for all Ri.

Figure 7 shows data that are available on the ratio
of energies w'?/g* for homogeneous turbulence. Ba-
sically, one has to expect that this ratio depends not
only on Ri but also on the relative importance of wavy
and vortical flow components. Nevertheless, the few
available data allow only to determine a dependence
on Ri, such as
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w2 Ri
— =0.15 + 0.07 B
p 0.15+ 0.0 exp( 0‘25)
+0.02 Ri, forair, (30)

“.}12

Ri
— = 0.15 + 0.05 exp| — ——
pe 0 “p( 0.25)

+ 0.02 Ri, (31)

The conclusions do not change much if a constant
value w'?/q? = 0.22 is used.

As a consequence of the previously determined pa-
rameters, we get £ = 0.70 for air and £ = —0.16 for
salt. The sign of £ determines whether Z is larger or
smaller than unity. For Ri = 0, the given values imply
Z = 1.98 for air and Z = 0.75 for salt. Hence, the
theory predicts a drastically smaller ratio Z = 7 /7, of
dissipation timescales for air than for saltwater. This
appears to be a reasonable consequence of the differ-
ences in molecular Prandtl and Schmidt numbers and
agrees qualitatively with simulation results of Gerz et
al. (1989).

Figure 8 shows the resultant ratio

for salt in water.

w2 1 — Rij(1 + £G) + £

versus Richardson number by the thick curves, where
w'?/q? is computed from Egs. (30) and (31). The thin

7=

(32)

0O 02 04 06 08 1.0 Hi1'2

FIG. 8. Potential energy over kinetic energy of vertical motions,
= N*0#”/s*w?, versus Ri. Data from Rohr (1985) in saltwater (circles),
from the LES results (stars), from Nieuwstadt (1984) (full square
with error bars), and from Hunt et al. (1985) (full circle with bars
indicating the maximum variations of the measured data). The thick
curve depicts the model, Eq. (32) for air; the dashed curve is the
result for saltwater. The thin straight lines correspond to n = Ri{?
for Ri < 0.25, and 5 = {& for Ri > .25, according to Egs. (15) and
(16), and Table 2.
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lines depict the simple approximations in terms of %
= {3 Ri, for Ri <0.25,and 5 = ¢} = {3/4 = const for
stronger stratification, using the respective value of {
listed in Table 2. Moreover, the figure includes the data
points from Rohr ( 1985) and the results of Nieuwstadt
(1984). The widely scattering data from Hunt et al.
(1985) are within the range included by the bars.
Roughly speaking, the interpolations given by the
curves fit the data to within the uncertainty of the mea-
surements.

The thin lines show qualitatively the same trends as
the full curves. Incidentally, the agreement would be
even better if the full curves would be computed from
Eq. (32) with w'?/g? = 0.22. Anyway, the general
agreement confirms the stepwise changing specification
of {sand {v, Eq. (14), as reasonable approximations.
The results also show that {y = '/ ~ Ri'/? for Ri
< (.25, a result found earlier by Derbyshire and Hunt
(1993).

However, as for {s, we find the LES results to be
closer to those for salt than those for air, in spite of its
subgrid-scale Prandtl number of unity. This indicates
that other reasons affect the ratio of energies 7. As has
been discussed by Stillinger et al. (1983), Mason and
Derbyshire ( 1990), and Yoon and Warhaft (1990), a
larger fraction of vortical motions relative to wavy mo-
tions increases n. Hence, one possible reason for large
values of 7 in the LES may be that the simulated flow
contains relatively little wavy motions compared to
vortical motions.

4. Discussion
a. Turbulent diffusivities

For given vertical velocity variance and mean gra-
dients, Eq. (19) may be used to estimate the vertical
diffusivities, K,,, = cs Prw'?/S and K, = cyw'?/N. Al-
ternatively, for given dissipation rate, Eqs. (9) and (10)
predict K,,, = c,,e/S? and K}, = ¢4¢/ N?. The equivalence
of these relations was not noted before. From these
equations and Table 3, we see that the coefficients are
strong functions of Ri.

Hunt et al. (1985) postulated that ¢y is a constant,
but their measurements indicate large scatter (see Fig.
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FIG. 9. Thermal diffusivity parameter ¢y = K,N/w? versus S/N
= Ri™"2, Data of Hunt et al. (1985) in the atmospheric boundary
layer. The arrow marks Ri = 00.25. The full curve corresponds to Eq.
(20) for air.

9). In fact, the present model appears to interpolate
the data at least as well as a constant value of ¢y. Later,
Derbyshire and Hunt (1993) deduced ¢y = (0.6 £ 0.15)
Ri'/? for 0 < Ri < 0.15, and ¢y = 0.23 + 0.02 for Ri
> 0.15. For small Richardson numbers we find the
same trend, but smaller values of ¢y for Ri > 0.2.
Equation (9), K,, = ¢,,¢/S?, was derived by Gregg
(1987) for stationary turbulence with G = 1. He dis-
cusses the difficulties in applying this “dissipation
method” for cases with fluctuating shear. Several pre-
vious authors assumed that the mixing efficiency ¢,
= const = Ri (1 — Ri,;) ™' to determine the vertical dif-
fusivity of scalar components from K}, = c,e/N?. For
example, Lilly et al. (1974) assume Ri, = 1/4 so that ¢,
= 1f3. Osborn (1980) proposes ¢, = 0.2. Weinstock
(1992) revised some previous estimates and deduced
that ¢, is a function of the Froude and Reynolds num-
bers and typically about 0.17. Itsweire et al. (1993)
find that ¢, = 0.16 gives a reasonable approximation
to results obtained near Ri = Ri; from DNS of ho-
mogeneous stratified shear turbulence at rather mod-
erate Reynolds numbers. On the other hand, Holloway
(1988) argued that previous theories give a considerable
uncertainty in ¢,. Equation (10) shows that ¢, is not
a constant. It would be constant only if Ri,G is inde-
pendent of Ri, but this product increases with Ri at
small values of Ri, where Ri;2 Ri/Pr,, and decreases
at large values of Ri, where G(Ri) gets very small. The

TABLE 3. Mixing coefficients cs = KiS/w'?, ey = KiN/w'?, ¢y = KyN¥e, and ¢, = KnSe,
according to Egs. (9), (10), and (20), for air and saltwater.

Air Saltwater
Ri Cs Cw Ch Cs Cx Ch Cm
0 0.75 0 0 1.47 1.20 0 0 1.80
0.1 0.58 0.18 0.12 1.22 0.87 0.27 0.18 1.47
0.2 0.38 0.17 0.15 0.94 0.48 0.21 0.20 1.04
0.3 0.23 0.13 0.14 0.69 0.25 0.14 0.16 0.69
0.4 0.14 0.09 0.11 0.50 0.13 0.08 0.11 0.46
0.5 0.09 0.06 0.09 0.36 0.07 0.05 0.08 0.31
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FiG. 10. Ratio of the Ellison length scale L, = #/s to the Ozmidov
length scale Lo = €N~ versus Ri, in logarithmic scales. Data as
given by Rohr et al. (1988). The curve is the consequence of the
present theory. Large stars indicate the LES results. The arrow marks
Ri = 0.25.
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variation is, however, not large within the range 0.1
< Ri < 0.5 (see Table 3) where the present model con-
firms previous findings with ¢; = 0.14 £ 0.06 for this
range, both in air and saltwater.

An alternative estimate uses K, = ¢,¢,/ N2, which
can be deduced similarly to Eq. (19) from the budget
of potential energy (Osborn and Cox 1972; Gregg
1987), with ¢, = 1. It is justified also by the analysis
of Pearson et al. (1983), who show that the vertical
diffusivity is limited by small-scale mixing of the scalar
once the dispersion has extended over w'/N. Itsweire
et al. (1993) find empirically that the DNS data (within
+50%) are consistent with this estimate for ¢, = 1.

b. Relations to other mixing parameters

Our model also allows to identify several intrinsic
relationships in between various mixing parameters.
For example, we may determine the ratio between
mixing lengths defined by

3

€= —

/

— r _ y
Km - IPH“J » Kh - !h“;,

(33)

From the given relationships, we obtain

42
oL b g _GAs
by Pr,” | Pr, — RiG

Evaluation of these functions for increasing Ri shows
that the mixing length /, for heat becomes smaller than
I,», and much smaller than the dissipation scale /,. Brost
and Wyngaard (1978) assumed that the dissipation
scale is limited by /, = w'/N. This “buoyancy length
scale” measures the vertical scale of motions that are
possible under stratification for given vertical motion
energy. We find, however, that the dissipation scale is

(34)
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not limited by the buoyancy scale, at least not for Ri
< 1, where Ag = const and

I Ri'?

lh  As
The same conclusions were obtained by Schumann
(1991) from realizability conditions and numerical
simulation results and by Canuto and Minotti ( 1993)
using a spectral theory for energy transfer.

Moreover, the model predicts the ratio of Ellison
scale L, = #'/s to the Ozmidov scale Lo = (¢/N?)'/?
to depend only on Ri and the parameters {s and Ag:
Ly/ Lo = £5 A5 2 Ri** for Ri < 0.25. Recently, Wein-
stock (1992) deduced a similar function, including the
impact of limited Reynolds numbers. The linear de-
pendence of this scale ratio on Ri%* is strongly sup-
ported by the data of Rohr et al. (1988) (see Fig. 10).
It also agrees with DNS results of Itsweire et al. (1993).
For Ri > 0.25, our model gives L,/ Lo = {yA5'"?
Ri'/*. This is not in disagreement with the data for Ri
< 0.5. However, for even larger values of Ri, buoyancy
will limit vertical motions and cause the effective length
scale to be smaller than w'/S. Hence, the simple de-
pendence of ¢ on shear alone loses validity. If ¢
= Ayw'?N for Ri > 0.5, as supported by Gregg and
Sanford (1988) and Tjernstrém (1993), with Ay
= AsV2, then one finds that L,/ Lo = {vA x'/? becomes
independent of Ri, a result as indicated in Fig. 10. The
LES results fall within the range of the measured data.

The energetics of mixing in stratified flows was also
discussed by Ivey and Imberger (1991). In their theory,
shear plays a secondary role compared to buoyancy
forces, so that Riy= B/ P becomes ill defined. Therefore,
they express vertical mixing in the form of a “gener-
alized flux Richardson number,” which reads as B(B
+ ¢)7! in the notation of this paper. They predict a
dependence of this ratio on a turbulent Froude number
Fry = q/NL,. Using the ratio w'2/g? = 0.22, as sup-
ported by the data of M. Tjernstrom (1993, personal
communication ), and roughly justified by Fig. 7, one
can compute this Froude number from Frr = g/ {ww'.
Both ¢y and B(B + ¢)~' = Ri;GB can be evaluated
from the present model for various values of Ri, be-
tween about 0 and 1, and plotted versus each other as
in Fig. 1 1. The figure contains data from stratified flows,
including cases without shear. The generalized flux
Richardson number is maximum near Fry = 1. For
smaller Froude numbers, turbulence collapses and
mixing gets very small. At larger Froude numbers, the
importance of buoyancy damping decreases slowly. We
find that our model equations interpolate the given
data as well as the interpolation of Ivey and Imberger
(1991). This provides an independent support for the
present model and suggests applicability for quite a
large range of stability conditions.

(35)

¢. Further consequences of the dissipation model

Several authors have discussed the possibility of a
constant shear number Sw'?/¢. Tavoularis and Karnik
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(1989) assume that this shear number is constant in
neutral shear flows, while Holt et al. (1992) allow the
shear number to vary. A constant shear number to-
gether with steady «,,, implies an exponential growth
of kinetic energy, and this is clearly exhibited by Fig.
2a of Tavoularis and Karnik (1989) for Ri = 0. The
present model relies on Eq. (13) with 45 = const.
Hence, the assumption of a constant shear number of
about 2.0 to 2.1 is supported as far as the observations
agree with the model’s results.

Tjernstrém (1993) tests a parameterization € = ¢~/
7 with TNV2 = 11 (see Fig. 12). His measurements
for ¢, N, and g° can also be compared with e = Agw'%S,
. for Ri < 1, and € = Ayw'2N, for Ri = 1, when w'?/g?
= 0.22. This gives TNV2 = 12.86 Ri'/2, for Ri < 1,
and a constant value for this parameter at stronger
stratification. The data support these relations to a re-
markable degree. A slightly smaller limit (Ri in between
0.5 and 0.8) between the two regimes would give even
better agreement. (In Fig. 10 the limit was taken as
0.5.) The LES results fall slightly above the full curve
in Fig. 12, but within the upper range of the measured
data.

d. On the turbulent Prandtl number in neutral shear

Slows

Since the model depends heavily on the value Pr,(0)
= Pr,y, it is appropriate to discuss various experimental
and theoretical findings on this value. For saltwater,
we have only the result Pr,y = 0.63 as measured by
Rohret al. (1988). Tavoularis and Corrsin ( 1981) find
Pr,p in between 1 and 1.2 from their measurements in
a wind tunnel for homogeneous turbulence. Most at-
mospheric measurements, as discussed in Yamada
(1975), Wittich and Roth (1984 ), Gossard and Frisch
(1987), Kim and Mahrt (1992), and Tjernstrom
(1993), show that Pr,, varies in between 0.8 and 1.2.
It is interesting to note, however, that Townsend ( 1976,
section 8.9) shows that Pry = 0.4 in an initially iso-
tropic turbulence field suddenly exposed to uniform
shear and uniform temperature gradient and that this
value increases and reaches a value of about 0.71 after
a shear time St = 5 according to the rapid distortion
theory. In the inertial subrange, for small departure
from local isotropy, the measured values of the Kol-
mogorov coefficient Ko = 1.6 and the Batchelor coef-
ficient Ba = 1.3 imply a turbulent Prandtl number of
Pr,, = Ba(2 Ko) ™! = 0.42 (Schmidt and Schumann
1989), which is interestingly close to the isotropic limit
given by Townsend (1976). Mason and Thomson
(1992) show that the inertial range estimate of the tur-
bulent Prandtl number increases to about 0.7 if one
accounts for the stochastic backscatter of turbulent en-
ergy and scalar variance. Yakhot and Orszag (1986)
determine Pr,y = 0.72 from the renormalization group
theory, which is close to the result of Townsend for
large strain. On the other hand, for anisotropic bound-
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FIG. 11. Ratio of vertical buoyancy flux relative to dissipation rate
B(B + €)' versus the turbulent Froude number Fry = ¢#/N° = ¢/
wiy. Data as compiled by Ivey and Imberger (1991) from stably
stratified flows (partly without shear). (a) For thermal diffusion
(Prandtl number Pr = 7) and salt diffusion (Schmidt number Sc =
500) in water. (b) For thermally stratified turbulence in air (Pr =
0.7). The dashed curves are from Ivey and Imberger (1991); the full
curves depict the results of the present model.

ary layer flows with vorticity oriented in the mean flow
direction, the velocity and scalar fields satisfy the same
differential equations, implying Pr, = 1 for such flows
(Liu 1992). Hence, we have to expect variations for
Pr;; in between 0.7 and 1.0.

From Eq. ( 18) we see that the correlation coefficient
a,¢ depends primarily on the product Pr,{s. Its values
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FIG. 12, The product of the timescale for dissipation 7 = ¢*/e and
the Brunt-Viisild frequency versus Ri. The crosses represent the
measurements of Tjernstrém (1993), the dashed line is the model
discussed by him, and the full line corresponds to the present model.

Stars indicate the LES results.
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1.6 in air and 2.1 in saltwater at Ri = 0 differ less than
the individual factors (see Table 2) measured by Rohr
(1985) and Tavoularis and Corrsin (1981). One ex-
pects that they become equal in neutral turbulent shear
flows at very high Reynolds numbers.

e. On countergradient fluxes

The model predicts only downgradient fluxes, that
is, positive terms — #wS and —wfs. On the other hand,
observations and numerical simulations have shown
that countergradient transports may occur (Schumann
1987; Gerz et al. 1989; Sidi and Dalaudier 1990; Ei-
naudi and Finnigan 1993). Formally, we obtain coun-
tergradient fluxes only if Pr, or G < 0. In the absence
of other sources and sinks, the kinetic and potential
energy cannot decay at the same rate, since counter-
gradient heat flux increases potential energy on the ex-
pense of kinetic energy. Such transient processes are
inconsistent with the assumptions used in the present
model.

Nevertheless, we have tested the model with an al-
ternative Prandtl number function,

Ri —Ri
Pr, = Pr;o{m + exp(mﬂ. (36)

This model is applicable for Ri < Ri,, the “transition
Richardson number” at the onset of countergradient
heat flux. The value of Ri, depends on the flow history
and the turbulent Froude number of the flow but is
often in between 0.4 and 0.8 (Komori et al. 1983; Holt
et al. 1992; Kaltenbach et al. 1994). The above function
describes a slowly increasing Pr, for Ri less than about
Ri,/2, with a strong increase above and infinite value
at Ri = Ri,. Such a dependence is well supported by
the data of Rohr (1985) plotted in Fig. 3. The related
flux Richardson number passes through a maximum
near 0.513 Ri, and becomes zero at Ri,. We have tested
the model with this function for Ri, = 0.66, which fits
the LES result at Ri = 0.5. The results shown in Figs.
1,2, 5,7, 10, and 12 are independent of the Prandtl
number. Only small changes occur to «,,,, because this
depends only on the product Ri;G. Major changes are
found for Ri > 0.25 in the trend of the heat flux cor-
relation coefficient, which vanishes at Ri,. As a con-
sequence of Riy = 0 at Ri = Ri,, the model for n breaks
down and predicts zero potential energy at this point.
Also all the mixing coefficients ¢, cs, and ¢y become
zero when the heat flux ceases. This shows that an
equilibrium model, as we used in deriving », is incon-
sistent with countergradient fluxes, unless there are
other sources of potential energy (Schumann 1987).
On the other hand, for Ri < Ri,, the results of the
present model are fairly insensitive to the precise form
of the function Pr,(Ri).
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f. Turbulence in the stable atmospheric boundary
layer

Finally, we compare the model’s results with profiles
of turbulence statistics measured in the stable atmo-
spheric boundary layer. Such flows are stationary but
with some finite divergence D of vertical turbulent
fluxes of kinetic energy. Hence, the energy budget be-
comes

ax,
dt

with dE;/dt = 0. Obviously, we can apply the given
theory to this situation when we allow that —D in an
inhomogeneous but stationary flow takes over the role
of dE;/dt in a homogeneous but nonstationary flow
case. Nieuwstadt (1984) showed that his results scale
with the local Obukhov length scale A, and concludes
that D is small compared to the other terms in the
budget. He also found that the flow gets stationary for
Ri = 0.2, that is, at a value larger than Ri; = 0.13.
However, Egs. (37) and (6) give D = (1 — G)(e + B).
From Eq. (21) we obtain (1 — G) = 0.19 for Ri = 0.2.
Certainly, a budget contribution of 19% by divergent
upward flux of kinetic energy from the surface into the
stable layer cannot be ruled out based on Nieuwstadt’s
measurements.

The present model does not predict the Richardson
number as a function of altitude. Hence, for compar-
ison, we apply the relationship

—D=P—-B—g (37)

i = z\z z\”
Rl—(0‘74+4‘7 A)A(] + 4.7 A) (38)

to determine Ri(z/A) for given altitude z relative to
the Obukhov length scale A. This function was deduced
from measurements by Caughey et al. (1979), and it
also fits the measurements of Nieuwstadt (1984) (see
Fig. 13a). For given Ri(z/A), one can compute the
correlation coefficients for momentum and heat flux
from Egs. (17) and (18) and plot the results in the
same format as Nieuwstadt presented his experimental
data and those of Caughey et al. (1979) (see Figs.
13b,c). Obviously, the present model gives a good ap-
proximation to the measured data for the whole range
of altitudes, 0 < z/A < 4. In Fig. 13b, the new inter-
polation shows an increase of 1/ e, at small altitudes
z/ A, which seems to be supported even better by the
data than the constant value that resulted from the
second-order closure (SOC) model of Brost and Wyn-
gaard (1978) used by Nieuwstadt. If we would apply
our model with G = 1 instead of variable G(Ri), the
curve in Fig. 13b would show the opposite trend with
decrease at small z/A. This shows the importance of
contributions from D to the budget of kinetic energy.

5. Conclusions

A simple set of model equations has been deduced
to estimate turbulent mixing in sheared and stratified
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flows. The relations are derived under the constraints
given by the budgets of kinetic and potential energy of
homogeneous turbulence. The model assumes equilib-
rium between potential and kinetic energy and a quasi
steady state with constant decay rates and constant
correlation coefficients, without countergradient fluxes.
We do not expect that these conditions are satisfied
always. In fact, we have shown that an equilibrium
between kinetic and potential energy at high Richard-
son numbers, where G becomes very small, requires
equal dissipation timescales for kinetic and potential
energy. These timescales will not be equal in general.
For closure of the model equations, we follow the sug-
gestion of Hunt et al. (1988), relating the dissipation
linearly to vertical velocity variance and shear with a
coefficient Ag. A constant value of A4, is confirmed up
to Ri of about 0.5-1.0. Above that limit, some data
suggest that dissipation scales with w'2N. The fluctu-
ations of temperature of scalar concentrations vary with
shear and a constant value {5 below Ri = 0.25, and
with stratification and a constant value of {y above
that limit. Here, the assumption of constant {s in the
shear regime appears to be new. Dissipation scales with
shear over a larger range of Richardson numbers than
temperature fluctuations. Obviously, the large-scale
buoyant scalar fluctuations experience stratification ef-
fects earlier than the smaller dissipating motions. Fi-
nally, we assume that the growth rate G decays about
exponentially with Ri;, and the turbulent Prandtl
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FiG. 13. (a) Gradient Richardson number Ri versus altitude
z normalized by the local Obukhov scale A. Data with error
bars from measurcments of Nieuwstadt (1984), dashed curve
from his model, full curve, Eq. (38). (b) Ratio w(—uw)™'?
= a,? versus altitude z/A. Dots and error bars from Nieuw-
stadt (1984), crosses from Caughey et al. (1979), dashed
curve is the SOC model-result of Nieuwstadt (1984), full
curve is the result of the present model. (c) Same for
F(—uw) -~ wh)y " = alZayi’.

number Pr, increases slowly from Pr, in between 0.7
and 1.0. For large Richardson numbers, in equilib-
rium conditions, Pr, = 4 Ri is reasonable. Certainly,
the list of assumptions is long and the model concept,
therefore, does not cover all situations in real tur-
bulent flows that are often inhomogeneous, inter-
mittent, and strongly affected by gravity waves.
However, the general agreement between the model
and the observations shows that these assumptions
are suitable at least for those cases for which the data
were obtained.

The gap of data for homogeneous stratified shear
flows in air is bridged by results from LES. The LES
is used to fit Riy. For this purpose, we rely only on the
numerical results for Ri < 0.25, which are less sensitive
to the subgrid-scale model and the numerical details
than the results for larger values of Ri. The suitability
of the LES results is supported by the agreement with
measurements in the stable atmospheric boundary
layer,

As to be expected, the model coefficients are different
in stratified flows for saltwater and air because of dif-
ferent molecular mixing properties. However, the vari-
ations for neutral flows indicate that the database may
still not represent very high Reynolds number flows.
Also, some of the variations at large Richardson num-
bers will result from changes in the flow structures,
such as wavy and vortical motion components, which
cannot be predicted with the simple model.
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The model estimates vertical momentum and heat
fluxes by turbulence for Richardson numbers from 0
to about 1. Although only approximative, the estimates
may be of practical relevance. However, either ¢ or w'
has to be known from measurements or more complete
models. The present concept is more general than pre-
vious ones, for example, by Lilly et al. (1974), Osborn
(1980), and Hunt et al. (1985), which relate mixing
with either ¢ or w', and N, and, hence, are restricted
to cases with strong stratification. These estimates con-
tain coefficients that depend strongly on Ri, mainly
because of their dependence on G. At best, the coef-
ficient ¢, = K, N?/¢ is approximately constant in the
limits 0.1 < Ri < 0.5: ¢;, = 0.14 = 0.06. For the stable
atmospheric boundary layer in steady state, where Ri
< 0.22, our results are similar to those of Derbyshire
and Hunt (1993).

The analysis corroborates Nieuwstadt (1984), who
found only small deviations from local equilibrium in
the stable atmospheric boundary layer, but the vertical
energy flux divergence may amount to about 0.2 of
the energy sink. This added energy source causes a
slight increase of the stationary Richardson number
compared to that in homogeneous flows.

Several further implications have been found as
consequences of the scaling with ¢, w', S, and N, like
the constancy of the shear number, the dependence of
the heat flux correlation coefficient on the product
{sPr,, the reduction of /,/ [, with Ri, the increase of the
ratio of Ellison’s lengthscale to Ozmidov’s length scale
with Ri, the implicit dependence of B(B + ¢)~' on a
turbulent Froude number, the increase of N = g>N/
e with Ri'/2, and others, which were not noted before.
Generally, the model supports in understanding and
predicting transport and dissipation properties of strat-
ified shear flows.
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APPENDIX

Method and Parameters Used for the
Large-Eddy Simulation

Except for the subgrid-scale (SGS) model, the
method used is basically as described in Gerz et al.
(1989) and therefore only the essential features are
summarized here. The method simulates the turbulent
flow in a cubic domain with side lengths L. The mean
velocity (U, 0, 0) and the mean temperature © have
uniform gradients in the vertical coordinate z while
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being constant in the two other directions. All mean
gradients stay constant in time because of zero diver-
gence of fluxes in the homogeneous flow. The turbulent
fluctuations relative to these mean values are i; = (u,
v, w) for velocity and @ for temperature. These quan-
tities satisfy periodic boundary conditions at the lateral
sides of the computational domain and shear-periodic
conditions (i.e., periodicity in a direction which rotates
with the mean shear) at the upper and lower boundary.
The SGS turbulent transport is modeled using the tur-
bulent diffusivities

I

v,
v = (esasD)?(28;8)'2, v, = ,
Prsgs

(A1)

for velocity and temperature, respectively. Here, Sj;
= du; /dx; + du;/dx; is the resolved velocity deforma-
tion tensor, ¢sgs = 0.17 is the Smagorinsky coefficient,
based on inertial subrange theory, and Prggs = 1 is the
turbulent Prandtl number of SGS motions. The sim-
ulations are performed with 128* equidistant grid
points. An inertial subrange is not yet resolved with
this resolution, so that the SGS model is only partly
justified. More accurate simulations would require a
much wider range of scales to be included in the LES,
but this was not feasible on the computers available
for this study.

The initial conditions are taken from a previous run
for isotropic turbulence with maximum energy at a
wavelength L /9. The initial flow field is fully turbulent
with no coherent wave components. The turbulence
intensity is ¢ = 0.0260 SL, and the integral lengthscale
is [ = 0.0261 L. The temperature fluctuations are set
to zero initially. Such fluctuations develop quickly due
to vertical motions in the stratified fluid.

Simulations have been performed for Richardson
numbers Ri = 0, 0.13, 0.25, 0.5, and 1. The results of
the simulations are evaluated in terms of mean values
that are averages over the computational domain and
that are functions of time. Mean values and standard
deviations of normalized quantities, as listed in Table
1, are obtained by averaging over the time period 8
< St < 12, In this time period the structure of the tur-
bulent motions and statistics of correlation coefficients
become approximately stationary.

The LES results are close to those obtained by DNS
in Gerz et al. (1989) and Holt et al. (1992). Details
are documented in Kaltenbach (1992) for LES results
computed with 963 grid points. The present results for
1282 grid points are fully described in Kaltenbach et
al. (1994). By comparing the results with different spa-
tial resolutions and with different SGS models, it has
been shown that the results are insensitive to model
details for Ri < 0.25 (Gerz and Palma, 1994). Larger
sensitivity to model details and initial conditions is
found, as to be expected, for very stable flows with
wavy motion components and a trend toward collapsed
turbulence, but these results are not used for calibration
of the model described in this paper.
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