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ABSTRACT

Earlier analyses of the annual cycle of the axial angular momentum (AAM) are extended to include mass
flows and vertical transports as observed, and to establish angular momentum budgets for various control
volumes, using the European Centre for Medium-Range Forecasts (ECMWF) Re-Analyses (ERA) for the
years 1979–92, transformed to height coordinates. In particular, the role of the torques is examined. The
annual cycle of the zonally averaged angular momentum is large in the latitude belt 20° � |� | � 45°, with
little attenuation in the vertical up to a height of �12 km. The oscillation of the mass term (AAM due to
the earth’s rotation) dominates in the lower troposphere, but that of the wind term (relative AAM) is more
important elsewhere. The cycle of the friction torque as related to the trade winds prevails in the Tropics.
Mountain torque and friction torque are equally important in the extratropical latitudes of the Northern
Hemisphere.

The annual and the semiannual cycle of the global angular momentum are in good balance with the global
mountain and friction torques. The addition of the global gravity wave torque destroys this agreement. The
transports must be adjusted if budgets of domains of less than global extent are to be considered. Both a
streamfunction, representing the nondivergent part of the fluxes, and a flux potential, describing the
divergences/convergences, are determined. The streamfunction pattern mainly reflects the seasonal shift of
the Hadley cell. The flux potential links the annual oscillations of the angular momentum with the torques.
It is concluded that the interaction of the torques with the angular momentum is restricted to the lower
troposphere, in particular, in the Tropics. The range of influence is deeper in the Northern Hemisphere than
in the Southern Hemisphere, presumably because of the mountains. The angular momentum cycle in the
upper troposphere and stratosphere is not affected by the torques and reflects interhemispheric flux pat-
terns. Budgets for the polar as well as for the midlatitude domains show that fluxes in the stratosphere are
important.

1. Introduction

The atmosphere’s zonal mean axial angular momen-
tum � exhibits a pronounced annual cycle [e.g., Peixoto
and Oort 1992, hereafter PO; see Eqs. (1.2) and (1.3)
for definitions]. For example, the midlatitude westerlies
are stronger in the winter than in the summer hemi-
sphere. The global angular momentum M oscillates
during the course of the year with an amplitude of 1.9
� 107 Hadleys (1 Hadley � 1018 kg m2 s with a maxi-
mum in boreal winter (see section 3b; Oort 1989; Kang
and Lau 1994; Hide et al. 1997). This seasonal variation
of M accounts for more than 90% of its total variance
(Rosen et al. 1991; Huang and Sardeshmukh 2000).
Given the torques, the transports, and the annual cycle

of the angular momentum, an attempt can be made to
establish a corresponding budget of the annual cycle.
Hantel and Hacker (1978), Oort and Peixoto (1983),
PO, and others tackled this problem by calculating
mean transports for the seasons, assuming that the ten-
dency of the angular momentum could be neglected
and that the vertical transports could be evaluated as
residuals. They found, inter alia, that an intensification
of the poleward relative angular momentum transports
in the respective winter season and an asymmetry of the
hemispheres in that the Hadley cell transports are
stronger in the boreal than in the austral winter (Fig.
11.9 of PO). The eventual effect of interhemispheric
cross-equatorial mass shifts on the angular momentum
budget has not been considered so far, because the bud-
gets had been derived for an atmospheric layer between
the 1000-hPa surface and a constant pressure surface on
top. Moreover, the annual tendency of the angular mo-
mentum has been neglected. The divergent part of the
angular momentum fluxes has not been evaluated as
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yet. These omissions and approximations are partly im-
posed by the data used by PO and earlier authors. It is
only in recent years that globally consistent datasets
became available, which allow one to calculate vertical
transports directly as well as the mass term. This calls
for a reanalysis of the annual cycle of angular momen-
tum and to an extension of the range of questions dealt
with so far in the literature. In particular, the role of the
mass term and its transports in the seasonal angular
momentum budgets needs further clarification. The an-
nual interaction of the angular momentum with torques
and transports in specific regions is not known and will
be investigated. In particular, we wish to determine the
divergent part of the angular momentum flux so as to
establish a complete budget of angular momentum.

The following analysis will be based on the zonally
averaged angular momentum equation

�

�t
� �

1
a

�

��
Fh �

�

�z
F� � �	
�p� acos�, 
1.1�

where the bar stands for the zonal integration

s � �
0

2�

sacos�d� 
1.2�

(a is the earth’s radius, � latitude, and � longitude). In
(1.1)

� � �
u � 	acos��acos� 
1.3�

( is density, u zonal velocity, and � � 2� day�1) is the
angular momentum per unit volume, and

Fh � ��, 
1.4�

F� � w� � acos�
z � 	a2cos2�H 
1.5�

are the related horizontal and vertical fluxes with me-
ridional (vertical) velocity � (w), respectively. A sepa-
ration of vertical fluxes w� as resolved by an analysis
scheme from a turbulent unresolved part is introduced
in (1.5) where �z is the vertical component of the stress
and H is the unresolved vertical density flux. In prin-
ciple, a similar separation should be made in (1.4), but
this refinement is omitted here because it is presumably
unimportant. The sum on the right of (1.1) runs over all
east–west pressure differences across mountain massifs
intersected by the line z � constant, � � constant for
which the integration (1.2) is performed. We introduce
the usual separation

� � �w � �m 
1.6�

of the angular momentum in a wind term, which rep-
resents the contribution of the zonal momentum u to
� [first term in (1.3)], and a mass term that captures the
contribution by the earth’s rotation. The mass term is
normally neglected partly because its seasonal variation
is smaller than that of the wind term (e.g., Huang and
Sardeshmukh 2000). Here, �m will be included.

It is convenient to introduce a Fourier decomposition

s � sccos�at � sssin�at, 
1.7�

where �a � 2� yr�1 is the annual frequency, and where
the Fourier components sc, ss do not depend on time.
Using complex notation, we write

s � Re�ŝexp
i�at��, 
1.8�

where

ŝ � sc � iss. 
1.9�

With that, (1.1) becomes

i�a�̂ �
1
a

�

��
F̂h �

�

�z
F̂v � �	
�p̂�acos�. 
1.10�

The vertical integration of (1.10) from the topo-
graphic height h to infinity gives

i�a�
h

�

�̂dz � �
h

� 1
a

�

��
F̂hdz � 
ŵ��z�h

� T̂o � T̂f � T̂g, 
1.11�

where T̂o(T̂f) represents the annual component of the
mountain (friction) torque per unit latitude width. The
gravity wave torque T̂g is included in (1.11), that is, the
mountain torque due to unresolved orographic effects.
As is well known, T̂f contains the unresolved part of
(1.5) at the lower boundary. Of course, ŵ � 0 at the
surface if there is no topography. The torques on the
right-hand side of (1.11) balance the annual tendency of
the angular momentum and the divergence of the flux.

Integration of (1.11) over all latitudes gives the glob-
al relation

i�aM̂ � T̂, 
1.12�

where M̂ � �v�̂dV represents the annual cycle of the
global angular momentum, and T̂ is the corresponding
global torque.

In what follows, the Fourier components �̂, etc., will
be evaluated using data. In particular, the fluxes F̂h and
F̂v are computed on the basis of the available winds and
densities. This allows us to analyze (1.10). The semian-
nual cycle will be considered, but only briefly where �a

in (1.7) has to be replaced by 2�a. Otherwise, the same
formalism can be used as for the annual cycle.

An interesting, and rather different, approach has
been chosen by Huang and Sardeshmukh (2000) who
noted that the seasonal cycle of the global integral of
ucos� at an upper-tropospheric level serves as an ex-
cellent proxy for that of the global wind term. In turn,
the vorticity equation, when adapted to this level, can
be used to study the dynamics of this proxy. Huang and
Sardeshmukh (2000) specified the divergence term in
the vorticity equation as well as the transient-eddy
terms as a forcing on the basis of data and were able to
reproduce the annual cycle of the proxy fairly well. It
remains to establish the link between the torques and
this upper-level forcing in view of (1.12).
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2. The data

The data that are to be used have been generated in
the European Centre for Medium-Range Weather
Forecasts (ECMWF) Re-Analysis (ERA) project (e.g.,
Gibson et al. 1997). They cover the years 1979–92. The
winds, temperature, and density are available at the 31
levels of the hybrid � system of the ERA scheme. Sur-
face pressure, stress, and gravity wave drag are part of
the dataset, so that all torques can be calculated. Al-
though it would have been preferable to use the data in
this original coordinate system, the height of the � sur-
faces performs an annual cycle. The effect of this oscil-
lation on the angular momentum budget is difficult to
estimate. It has, therefore, been decided to transform
the data to a z-coordinate system with J � 28 equally
spaced coordinate surfaces of distance Dz � 1000 m.
The coordinate surface zj is located at the height

zj � z1 � 
 j � 1�Dz 
2.1�

( j � 1, . . . , J � 1), where z1 � 100 m is the height of the
lowest surface [see Egger and Hoinka (2004) with re-
spect to the choice of z1]. The center of a layer is at
height ẑj � zj � 1/2 Dz. The choice of the z-coordinate
system implies, of course, that � is small in the strato-
sphere. The layers of the ERA system above sea level

are shown in Fig. 1a, as well as those of the z-coordinate
system. It is obvious from Fig. 1 that the vertical reso-
lution of the ERA set becomes inadequate above, say,
a height of 20 km, while it is quite good in the lower
troposphere. In turn, details of vertical structures found
above layer 21, say, are unreliable. Latitude belts of
width aD� are defined, which are centered at the lati-
tude

�̂
i
� �i�1 �

1
2

D� � �
�

2
� �i �

1
2� D�, 
2.2�

with 1 � i � �, where � � 20 is the total number of the
belts, and D� � �/� � 9°. The latitude �i � ��/2 � iD�

defines the northern boundary of belt i (see Fig. 1b).
Belts 1–3 (90°–63°S) and 18–20 (63°–90°N) constitute
the polar regions, belts 4–7 (63°–27°S) and 14–17 (27°–
63°N) represent the midlatitudes, and the Tropics are
covered by belts 8–13 (27°S–27°N). These belts provide
a coarse, but, as will be shown, sufficient, meridional
resolution for the phenomena we want to investigate.
On the other hand, the mass contained in a belt varies
� cos� with latitude. As emphasized by a referee, it
might be preferable to use belts of uneven widths but
equal mass contents; that is, the width of the belts must
vary �|sin� | with latitude. If that is done and if the

FIG. 1. (a) Mean height of the 31 coordinate surfaces of the (left) ERA system and the (right)
height of the z-coordinate surfaces used in this analysis. The numbers of the z-coordinate layers
correspond with the layer index j. (b) The arrangement of the variables in the analysis grid; the
streamfunction � and the flux potential � are defined in section 3b (see text for further details).
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number of belts is kept the same, equatorial belts have
a width of �6°; those at midlatitudes are close to D� �
9°, while belt 20 covers the polar cap at 64°–90°N. Al-
though the actual calculations will be carried out for the
belts of fixed widths, we will refer occasionally to the
effect of introducing belts of an approximately equal
mass. Of course, the choice (2.1) of the layers in the
vertical faces the same problem.

The intersection of the z-coordinate surfaces, with
the latitudes �i, defines 560 annuli with indices (i, j).
The data are available in a latitude–longitude grid on
the sigma surfaces. The transformation to the z-coor-
dinate system is straightforward except that some grid
points are inside the topography. We impose the con-
vention that all of those points of the (�, �, z) grid are
inside the mountains if the center height ẑj of the grid
box is less than the corresponding height of the ERA
orography. Such orographic boxes are excluded in the
integrals (1.2) over longitude. The data are interpolated
such that horizontal transports are available at the grid-
points (�i, ẑj), vertical transports at (�̂i, zj) and the an-
gular momenta �ij at the center point (�̂i, ẑi) of annulus
(i, j) (see Fig. 1b). The torques are calculated at the
ground and are finally available at the latitudes �̂i.

It is difficult to estimate the reliability of the various
data. It seems reasonable to attach high credibility to
the angular momenta that are calculated as products of
quantities that can be determined quite accurately. The
transports are presumably less reliable because they in-
volve triple products. Moreover, the vertical velocities
are not based on direct observations. Surface stresses
are calculated on the basis of turbulence parameteriza-
tions of limited validity above complex terrain. On the
other hand, the ERA data are the result of a consistent
analysis procedure so that budget equations should be
satisfied reasonably well, even if, say, the torques that
are used deviate somewhat from the unknown real
torques.

The time resolution of the ERA data is 6 h. The
computational effort is reduced by averaging all of the
variables over all four values per day. Integration of
(1.10) over the latitude–height cross section of an an-
nulus above topography with area Q � aDzD� gives

i�a�̃ij � 
F̃h�ij � 
F̃h�i�1j � 
F̃��ij�1 � 
F̃��ij � 0, 
2.3�

where

�̃ij � �
Q

�̂ad�dz, 
2.4�


F̃��ij � �
�i�1

�i

F̂� |z�zj
a d�, 
2.5�


F̃h�ij ��
zj

zj�1

F̂h |���i
dz. 
2.6�

The treatment of the lower boundary poses a prob-
lem in that at least the lowest z-coordinate surfaces of

the (�, �, z) grid intersect the orography of the ERA set
at various points. The torques have to be distributed
over several levels to take this effect into account. A
corresponding discussion is found in Egger and Hoinka
(2004), where globally averaged vertical angular mo-
mentum transports are presented as well as global
torques. In particular, various sets of vertical resolu-
tions of the grid are tested. It turns out that the angular
momentum budgets near the ground are affected by the
specific incorporation of the topography and also by the
vertical resolution. However, there is little influence
above the lowest two layers, that is, above a height of
2000 m. It has been decided on the basis of this work to
adopt the simplest scheme where all torques are de-
fined at the surface z1, so that

F̃�i1��
�i�1

�i


T̂o�T̂f � T̂g� ad�. 
2.7�

The Fourier coefficients sc, ss of a variable s are
evaluated by standard Gaussian minimalization, that is,

sc�	
n

s(nDt) cos��anDt��	
n

cos��anDt�2, 
2.8�

etc., where Dt � 1 day and n is the time index running
over all of the days of the ERA set.

The resolved vertical flux F� as derived from the
ERA data does, of course, not contain the unresolved
fluxes ��z and �H, which are certainly important, at
least close to the ground. The only information avail-
able on the unresolved flux is that on the torques.
Moreover, the tendency �a�̃ij in (2.3) tends to be at
least one order of magnitude smaller than the fluxes.
As will be demonstrated, the divergence of the fluxes as
evaluated does not balance these small tendencies with
a sufficient degree of accuracy. A way out of this di-
lemma is to adjust the horizontal fluxes in the sense of
Gaussian minimalization [see also Hantel and Hacker
(1978) and PO for similar approaches to this problem].
We require that the quadratic deviations of the ad-
justed fluxes (F̃*h)ij from the observed fluxes are mini-
mal under the constraint that the vertically integrated
version

	
j

�i�a�̃ij � 
F̃ h*�ij � 
F̃ h*�i�1j� � T̃i � 0 
2.9�

of (2.3) with (2.7) is satisfied for each belt where T̃i is
the sum of all torques in (2.7). The details of the pro-
cedure are described in the appendix. This technique
works if

	
i


T̃i� � 	
ij

i�a�ij, 
2.10�

that is, if the global angular momentum balance is sat-
isfied exactly. This constraint is imposed by subtracting
a constant T̃c from the observed total torque in each
belt. The resulting fluxes (F̃*h)ij are inserted in (2.3)
and the adjusted vertical fluxes (F̃*v )ij follow from (2.3)
by integrating this equation vertically, assuming (2.7) at
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the bottom. Moreover, (2.9) ensures (F̃*� )iJ�1 � 0. Note
that (2.9) imposes an exact angular momentum balance
for each belt, but not for each annulus. The adjusted
fluxes F̃*h , F̃*� will only be used in the budget studies. It
is an unsatisfactory feature of (2.9) that the torque data
are accepted as correct.

3. Results

In what follows we present first the fields �̃, F̃h, F̃�

and the related torques. After that, budgets will be con-
sidered and, finally, a streamfunction and a flux poten-
tial are derived.

a. Angular momentum, fluxes, and torques

The annual cycle of the total angular momentum is
displayed in vector form in Fig. 2a as a function of
latitude and height. The angular momentum vector in
an annulus has the components (�̃c, �̃s). The conven-
tion is such that the direction of an arrow reveals that
time when the corresponding variable attains its maxi-
mum value. A horizontal vector pointing to the right
indicates that this maximum occurs on 1 January; an
upright vector corresponds with 1 April. The length of
the vector characterizes the amplitude.

It is seen that the annual cycle of the angular mo-
mentum is weak in the Tropics, but attains amplitudes
of almost 2 � 1024 Joule seconds (J s) in the subtropics.
The annual variation is small for |� | � 60°. The oscil-
lations extend to the lower stratosphere with little vari-
ability in the vertical. Of course, the maxima are at-

tained in the respective winter seasons. There is a slight
asymmetry in that the oscillations in the Northern
Hemisphere are stronger than those in the south. This
feature corresponds, of course, with the observed maxi-
mum of M̂ in the boreal winter (e.g., Oort 1989). A
switch to the equal mass grid would have little effect in
this case. A turn of the vectors in Fig. 2a to the right by
�/2 and a multiplication by �a generates the corre-
sponding tendency of the angular momentum. The
maximum vector length is 0.3 Hadley (1 Hadley �
1018J) in that case.

The semiannual component (Fig. 2b) is weaker than
the annual one with maxima in May and November
almost throughout the region |� | � 30°, except for the
lower equatorial troposphere where the peak occurs
early in February and August. There is also some ac-
tivity in the region 30°N � � � 60°N, but not in the
corresponding domain of the Southern Hemisphere.
So, while the annual oscillation is strong outside of the
Tropics, the opposite is the case with the semiannual
oscillation. This feature would be less pronounced in
the equal mass grid.

The contribution of the mass term to Fig. 2a is shown
in Fig. 3a. The annual cycle of the mass term is strong-
est in the lower troposphere at midlatitudes. A weaker
oscillation of opposite sign is seen in the stratosphere.
The annual cycle of the mass term is clearly dominant
in the extratropical lower troposphere when compared
to that of the wind term (Fig. 3b). Higher up, the annual
cycle of the mass term is opposed to that of �̃, and it is
the wind term that dominates there. The oscillation of

FIG. 2. (a) Annual and (b) semiannual component �̃ of the angular momentum per annulus
presented as vector (�̃c, �̃s) with a maximum vector length of 1.7 � 1024 Js in and 0.4 � 1024

Js, respectively. Here, and in all following vector plots, the horizontal component is oriented
toward the right for positive values and represents the cosine component, while the sine
component is oriented upward. Thus, the maximum occurs on 1 Jan for a vector pointing to
the right and on (a) 1 Apr and (b) 14 Feb for an upright vector. Polar and upper domains are
omitted where the vectors are too short to contain information in the display.

15 MARCH 2005 E G G E R A N D H O I N K A 761



the mass term in an annulus is, of course, tantamount to
an oscillation of the mass content. Hence, correspond-
ing mass fluxes are required. It has to be kept in mind,
however, that the prognostic equation

�

�t
�m � 	a2 cos2��1

a

�

��
�� �

�

�z
�w� � 0 
3.1�

for the mass term weighs the divergence of the mass
transport with cos2� so that mass shifts at low latitudes
generate larger effects than those near the poles. Figure
3a implies a maximum of mass content in February in
the domain 30° � � � 50°N, 0 � z � 6 km, say. This
increase of density during winter is, of course, also con-
tained in the early analyses of Oort and Rasmusson
(1971).

The distribution of the wind term’s annual cycle is
presented in Fig. 3b. The observed zonal wind maxi-
mum near 30°N late in winter is the dominant feature in
the Northern Hemisphere, with corresponding but
weaker oscillations in the south. The basic structure of
Fig. 3b resembles closely that of Fig. 3 of Huang and
Sardeshmukh (2000). However, the wind term is small
in the lower troposphere in Huang and Sardeshmukh
(2000; see also Fig. 10 of Rosen et al. 1987) because the
decrease of density with height is not reflected in pres-
sure coordinates. The pattern in Fig. 2a is a superposi-
tion of Figs. 3a and 3b, where both the wind and the
mass terms are important. The semiannual component
of the wind term (not shown) contributes most of the
features in Fig. 2b (see also Fig. 4 of Huang and
Sardeshmukh 2000), except for the lower equatorial
troposphere where the mass term is again dominant.

The annual cycle of the horizontal fluxes is displayed
in Fig. 4 where the transports of mass and wind terms

are presented separately. As for the mass term (Fig.
4a), the seasonal oscillations of the fluxes are largest by
far in the Tropics. There is a shallow layer of transports
close to the ground with opposite fluxes aloft due to the
seasonal shift of the Hadley cell (Oort and Rasmusson
1971; PO). A maximum flux of 210 Hadley, as in Fig. 4a,
corresponds with a mass flux of 1790 kg m�1 s�1 at the
equator or a mean meridional velocity of 1.8 m s�1 in
the corresponding layer, if we assume a density of
1 kg m�3.

Although there is substantial cancellation of the mass
transports in the upper and lower troposphere in Fig.
4a, the vertically integrated fluxes of angular momen-
tum linked to the mass term are up to 80 Hadley in the
equatorial belt to become quite small for |� | � 30°.
These large mass fluxes near the equator are spurious.
The maximum of 55 Hadley at the equator implies a
total mass flux of 466 kg s�1 m�1, with a corresponding
vertically averaged meridional velocity of 0.05 m s�1.
This is much more than the maximum velocity of 2–3 �
10�3 m s�1 found by PO, who estimated the flux on the
basis of the annual oscillation of the hemispheric mean
surface pressure. Hoinka (1998) arrived at a similar
value when repeating these calculations with the ERA
surface pressures. In principle, an error of �0.05 m s�1

is quite small in an analysis system, but is by far too
large to be tolerable here. However, the adjusted cross-
equatorial flux with a maximum velocity of 6 � 10�3 m
s�1 is reasonably close to that of the observations.

The fluxes related to the mass term are about two
orders larger than those of the wind term (Fig. 4b). The
well-known maximum of northward momentum trans-
ports that occur late in boreal winter near 30°N is seen
quite clearly in Fig. 4b, as well as is the corresponding

FIG. 3. Annual component (a) �̃m of the mass term and (b) �̃w of the wind term, with
maximum vector lengths of 1.3 � 1024 Js and 1.4 � 1024 Js, respectively; see Fig. 2 for the
definition of the vectors.
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feature in the Southern Hemisphere. The narrow zone
of strong southward transports in February above the
equator is a novel feature. A separation in wind and
mass term fluxes is not possible for the adjusted fluxes,
but the adjusted fluxes (not shown) are so similar to
those in Fig. 4a that differences would not be visible.

The annual components of the vertical transport F̃v

as resolved by the analysis scheme are presented in

Fig. 5. Again, it is in the Tropics that the fluxes of the
mass term are strong. Positive fluxes peak in March in
the Southern Hemisphere, and about half a year later in
the north. This pattern reflects the annual shift of the
Hadley cell (e.g., PO). Of course, it is again the trans-
port linked to the mass term that is, by far, larger than
that of the wind term that is seen in Fig. 5b. The vertical
flux vectors of the wind term (Fig. 5b) are opposite to

FIG. 4. Annual components F̃h of the horizontal flux of angular momentum: (a) mass term
with a maximum vector length of 210 Hadley, and (b) wind term with a maximum vector
length of 2.7 Hadley; see Fig. 2 for the definition of the vectors.

FIG. 5. Annual components F̃v of the resolved vertical flux of angular momentum: (a) mass
term with a maximum vector length of 320 Hadley, and (b) wind term with a maximum vector
length of 5.7 Hadley; see Fig. 2 for the definition of the vectors.
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the horizontal transports in the upper troposphere near
30°N (see also Hantel and Hacker 1978). The strong
and important positive transport of the wind term in
winter is coupled to an even stronger negative vertical
flux. It is the same near 30°S. The fluxes of the semi-
annual component are not shown for the sake of brev-
ity. A shift to the equal mass grid would affect F̃v, but
not F̃h.

Note that the vector fields in Figs. 2–5 are smooth, at
least in general. Therefore, the chosen resolution of D�

� 9° is sufficient to capture the salient features of the
various annual cycles. On the other hand, there are
noisy structures in the lower equatorial troposphere in
Fig. 5b. However, the related fluxes are quite weak.

The adjusted flux F̃*v differs from the resolved flux at
the ground where F̃*v equals the torque, while F� van-
ishes there. Otherwise, the fluxes linked to the torques
are dwarfed by the mass fluxes. It is, therefore, better to
represent the torques separately.

The seasonal cycle of the torques is shown in Fig. 6
for all of the belts. The vector arrays are quite noisy
despite the relatively coarse resolution D� � 9°.
Clearly, the annual cycle of the friction torque domi-
nates. The strongest contributions to T̂f are related to
the trade winds, with maximum positive fluxes in Au-
gust and September in the Southern Hemisphere and in
the boreal spring in the Northern Hemisphere (see also
Fig. 11.11 of PO). Outside of the Tropics the friction
torque peaks late in the austral summer when the sur-
face westerlies are weakest. The situation is more com-
plicated in the Northern Hemisphere where peaks are
found also in fall. The oscillations of the mountain
torque are smaller than those of the friction torque, but
nevertheless are important for |� | � 40° (see also Mad-
den and Speth 1995). The maxima are mostly attained
in fall in the Northern Hemisphere. The tropical moun-
tain torques peak in the respective winter season (e.g.,
Oort 1989). The oscillation of the gravity wave torque
has an amplitude that is comparable to that of the
mountain torque itself. For example, the amplitude of

the gravity wave torque is 4 Hadley in belt i � 15 (�̂ �
40.5°N), where that of the mountain torque is just 2
Hadley. Although the mountain torque is somewhat
larger than the gravity wave torque in most of the other
belts, it is clear that the parameterization of the gravity
wave drag torque overestimates T̂g. This result comple-
ments that of Huang et al. (1999), who obtained unre-
alistic results for the gravity wave torque in the Na-
tional Centers for Environmental Prediction (NCEP)
data. Therefore, T̂g will be excluded in the following
more quantitative analysis. A switch to the equal mass
grid would, of course, not only affect the position of the
grid points, but reduce the tropical torques by a factor
�0.6. The torques in the polar cap would remain quite
small. This does not mean that they are unimportant
because the fluxes and angular momenta are small
there as well.

b. Budgets

The angular momentum Eq. (1.1) has been cast in the
form (2.3), which is suitable for budget studies. We
have to choose budget domains in contact with the
ground if we want to elucidate the role of the torques.
Of course, the global atmosphere satisfies this require-
ment. The amplitude of the global angular momentum
tendency is just 3.8 Hadley with a phase of �58° so that
the maximum tendency occurs late in October, in
agreement with earlier work (e.g., Oort 1989, see his
Fig. 8). The corresponding amplitude of the sum of
friction and mountain torque is 4.4 Hadley with a phase
of �11°. The contribution of T̂f is slightly larger than
that of the mountain torque. Thus, the agreement of the
amplitudes is almost perfect and the phases differ just
by �45 days. Note that a total torque amplitude of 4
Hadley is a small residual given the large contributions
by individual belts as shown in Fig. 6. An incorporation
of the gravity wave drag with an amplitude of 8 Hadley
would destroy this good result. The total semiannual
torque without Tg is 4.3 Hadley with a phase of 152°.
This torque fits quite well the observed tendency of 5.3
Hadley with a phase of 153°. The global mountain
torque has almost twice the amplitude of the friction
torque for the semiannual component. Again, the grav-
ity wave torque would degrade the result. Although the
semiannual global torque has a slightly larger ampli-
tude than the annual torque, the contributions by the
individual belts (not shown) are relatively small, with a
maximum of 3 Hadley (belt 12), as compared to 16
Hadley (belt 12) for the annual component. As is well
known (e.g., Huang and Sardeshmukh 2000), the an-
nual and semiannual angular momenta are almost out
of phase, so that the annual minimum of the total an-
gular momentum M in July is more pronounced than
the maxima in boreal winter and spring.

In general, we have to sum (2.3) over the control
domains spanning the belts i1 � i2 and the layers j1 � j2.
Then, we find from (2.3)

FIG. 6. Annual components of the mountain, friction, and grav-
ity wave torque. The dots give the meridional location of the
centers of the 20 belts. Vectors below drawing accuracy are omit-
ted; see Fig. 2 for the definition of the vectors.

764 J O U R N A L O F C L I M A T E VOLUME 18



	
ij


i�a�̃ij� � �	
i

�
F̃��ij2�1 � 
F̃��ij1
�

� 	
j

�
F̃h�i2j� 
F̃h�i1�1j�, 
3.2�

where i runs from i1 to i2 and j from j1 to j2. In particu-
lar, the vertical flux for j1 � 1 is identical to the sum of
mountain and friction torque. The first term in (3.2) is
the tendency. To demonstrate the need for flux adjust-
ment, we choose j1 � 1 and lump all flux terms together
on the right of (3.2) to form the sum of the total torque
T̃ and the total flux F̃. That is, the “forcing” must bal-
ance the tendency. We present in Fig. 7 the torque and
transport, as well as the tendency vector, for two do-
mains extending over the full depth of the analysis do-
main. The Southern Hemisphere’s torque of 12 Hadley
peaks in the austral winter, the unlabeled tendency of 8
Hadley attains its maximum late in the fall. The contri-
bution by the fluxes is quite large and peaks in Febru-
ary so that the forcing T̃ � F̃ deviates considerably from
the tendency. These large transports represent the spu-
rious cross-equatorial mass transports mentioned
above. In other words, we have to replace F̃ by the
adjusted flux F̃*. By definition, the sum of F̃* and T̃
balances the tendency vector in Fig. 7 [see (2.9)]. The
amplitude | T̃ | of the torque vector is larger than that of
the adjusted transport vector. The tendency is some-
what larger in the Northern Hemisphere (not shown),
as is the torque, so that the relative importance of the
torques is even stronger than in the south. As a second
example, we show in Fig. 7 the angular momentum bal-
ance for the midlatitude domain of the Northern Hemi-
sphere. Again, the contribution F̃ by the fluxes is too
large given the torque and the tendency. A closer in-
spection shows that the flux from the south is too strong
in this case. The corrected flux F̃* has about the same
orientation as F̃ but is, of course, much weaker. Alto-
gether, it is clear from these examples, that the fluxes as
provided by the ERA must be replaced by adjusted
fluxes if we want to perform budget studies.

Let us now consider a few domains in more detail.
Results are presented in Figs. 8–9 for the polar caps and

midlatitude domains. The mass contained in the latter
is about 4 times that within the polar cap. For all do-
mains (dashed rectangles), the corrected transports are
split into horizontal contributions (northward, right;
southward, left) and vertical components (top and bot-
tom of rectangle). The torque T̃ is represented at the
bottom of a rectangle if j1 � 1. The tendency is given in
the center of each rectangle. The convention is such
that the sum of all of the vectors at the boundaries of a
domain equals the tendency in the center so that the
contributions of transports and torques to the tendency
can be visualized easily.

The torque in the Antarctic domain peaks in the aus-
tral winter when the surface easterlies are strongest
(Fig. 8, left). Its contribution to the budget of the Ant-
arctic lower troposphere (Fig. 8; 0  z  5 km) is
partly balanced by the tendency. But, most of the an-
gular momentum transferred to the domain from below
is exported to the upper troposphere and even to the
stratosphere. The orientation of the horizontal fluxes in
the lower troposphere is opposite to that of the vertical
transports. These fluxes represent mainly mass trans-
ports. It has been argued by Egger (1992; see also
Juckes et al. 1994) that the angular momentum gained
through the positive annual mean of the friction torque
in Antarctica is transported to the upper troposphere to
be transported toward the midlatitudes by topographi-
cally modified Rossby waves. Moreover, Juckes et al.
(1994) demonstrated, on the basis of model-generated
data, that mass fluxes are important in the momentum
balance of Antarctica. Figure 8 demonstrates that these
results apply equally well to the annual cycle. It is seen,
in addition, that the stratosphere plays an important
part in this budget. The tendency in the domain 15 � z
� 28 km is too small to be drawn in Fig. 8, but the fluxes
reach amplitudes of more than 1 Hadley with maximum
impact from below in the austral spring, that is, when
the stratospheric vortex decays.

The torque in the northern polar cap (Fig. 8, right) is
quite small and peaks in the winter. The torque is ori-
ented almost normal to the tendency in the lowest do-
main and is mainly balanced by the horizontal fluxes.
Vertical fluxes are important and balance, inter alia, the
tendency in the intermediate domain. As in Antarctica
the upper, completely stratospheric domain is impor-
tant.

The dominating feature of both of the budgets of the
midlatitude belts is the large fluxes from and to the
Tropics, with a strong corresponding vertical flux com-
ponent between the lowest and the intermediate box. A
look at Figs. 4 and 5 reveals that fluxes of the mass term
are the main contributors. The projection of the
torques on the tendency in the lowest domain is posi-
tive in the south, but vanishes almost in the north where
the tendency is a rather small residual of the fluxes. It
is difficult, if not impossible, to explain the tendency in
terms of the fluxes because the nondivergent compo-
nent of the fluxes is so large (see also section 3c). The

FIG. 7. Angular momentum budget of the annual cycle for the
(left) Southern Hemisphere and for the (right) northern midlati-
tudes. The vectors per domain are the sum T̃ of mountain and
friction torque, the sum F̃ of all flux vectors, the unlabeled ten-
dency, and the adjusted flux F̃ *. The sum of T̃ and F̃ * equals the
tendency. The depth is H � j2Dz � 28 km. Also given is the scaling
of the vectors.
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relative importance of the stratosphere is not as large as
in the polar domains but is still surprising.

The budgets of the tropical domains are fairly good
mirror images of each other (not shown). For example,
the flux from above into the lower troposphere of the
Northern Hemisphere domain peaks in February with
335 Hadley, while that in the south reaches its maxi-
mum of 366 Hadley half a year later. Clearly, these
enormous transports are essentially due to the fluxes of
mass. Both the tendency and the torques are dwarfed
by these huge fluxes.

c. Streamfunction and flux potential

The dominance of the nondivergent part of the fluxes
in the budgets suggests the introduction of the well-
known concepts of streamfunction � and flux potential
� to achieve a separation of divergent and nondivergent
fluxes. Any two-dimensional flux F can be written

F � �� � nx�� 
3.3�

(n unit vector is perpendicular to the meridional plane).
Here, integrated functions �̃ij, �̃ij are introduced, which
are defined in the analysis grid (see Fig. 1b). Thus, (3.3)
is converted to


F*h�ij � �̃i�1j�1 � �̃i�1j � �̃i�1j � �̃ij,


F*v�ij � �̃i�1j � �̃ij � �̃ij � �̃ij�1.

3.4�

Note that the gridpoint field �̃ij is normalized with
respect to distances, as is �̃ij. The streamfunction vector
�̃ represents the rotational, nondivergent part of the
flux, which is oriented tangentially to the streamlines.
The angular momentum is not affected by this part of
the flux. The potential �̃ captures the divergent part of
the flux, which is oriented normal to the isolines of the
potential. Streamfunctions were calculated by PO for

FIG. 8. Angular momentum budgets of the annual cycle of the polar domains: (left) 90°–
63°S, belts 1–3; and (right) 63°–90°N, belts 18–20. The dashed rectangles represent the do-
mains and the vectors at the boundaries are the contributions by the respective corrected
fluxes. In particular, the vector at the bottom of the lowest domain is the torque T̃. The
convention is such that the vectors at the boundaries add up to the tendency vector at the
center of a domain. The height extension of the domains is given in the center, as is the scaling.
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the seasonal transports of the angular momentum while
a flux potential has not been presented as yet. The
“vorticity” �2� becomes

�4�̃ij � �̃i�1j � �̃i�1j � �̃ij�1 � �̃ij�1 �


F̃*��ij � 
F̃*��i�1j � 
F̃*h�i�1j � 
F̃*h�i�1j�1 
3.5�

in the grid. This equation must be solved for �̃ij with �̃1j

� �̃��1j � �̃iJ � 0. The flow potential is a solution to �/�t
� � �2� � 0, that is,

i�a�̃ij � �̃ij�1 � �̃ij�1 � �̃i�1j � �̃i�1j � 4�̃ij � 0, 
3.6�

with �̃0j � �̃1j, �̃��1j � �̃�j, �̃iJ�1 � �̃iJ. Note that the
observed tendencies do not affect the streamfunction.
To specify both �̃ and �̃ at z � 0, we have to calculate
the contribution of a belt’s torque to the total tendency
in that belt. Thus, if

d̃i � 	
j�1

J

i�a�̃ij 
3.7�

is the total tendency of belt i, the contribution of the
torque T̃i to (3.7) is

T̃di � T̃i
T̃i · d̃i� |Ti |
�2, 
3.8�

where the scalar product of the vector T̃i and d̃i in (3.8)
is defined as usual. Of course, (3.8) is a formalization of
Fig. 7, where the torque and the transports add up to
the tendency. The projection (3.8) captures that part T̃d

of the torque that affects the tendency in that belt. It
must, therefore, be attributed to the velocity potential,
while the part T̃i � T̃di has no impact on the tendency
and is, therefore, attributed to the streamfunction.
Hence, we prescribe

�̃i�11 � �̃i1 � T̃i � T̃di � C̃ 
3.9�

at the lower boundary, where the choice

C̃ � 	
i�1

�


T̃i � T̃di� 
3.10�

FIG. 9. Annual angular momentum budgets of the annual cycle of the midlatitude belts: (left)
63°–27°S, belts 4–7; and (right) 27°–63°N, belts 14–17. Otherwise, the same as in Fig. 8.
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ensures that the summation of (3.9) over all of the belts
gives �̃��11 � 0. It follows that

�̃i2 � �̃i1 � T̃di � C̃ 
3.11�

at the lower boundary. The evaluation of the ratio R �
| T̃di � C̃ | / | T̃i � T̃di � C̃ | shows that the relative impact
of the torques on the tendency may be large at the poles
and midlatitudes, where 0.1 � R � 1.1, but small in the
trade winds belts (9–12) with R � 0.1.

The streamfunction for 1 January is shown in Fig.
10a, that for 1 April is shown in Fig. 10b. Both patterns
are, of course, completely dominated by the mass cir-
culation of the Hadley cell (see also PO), which is an-
ticyclonic in both cases, in agreement with Figs. 4 and 5.
The vertical extent of the cell is �15 km, and there is
a slight asymmetry (as in Fig. 5a) in that the descending
branch tends to be more narrow than the ascending
branch in the south. The circulation in April is some-
what weaker than in January. The impact of the lower
boundary condition is obviously small. It is only a few
streamlines that intersect the ground. Note that stream-
lines emerging from the ground have to return to it,
except if �̃ � 0 on the streamline. The �̃ pattern for 1

February is similar to that in Fig. 10a, but the circula-
tion is slightly more intense. On the other hand, the
cyclonic cell in the Northern Hemisphere on 1 May is
almost as strong as the equatorial anticylonic cell, but
maximum amplitudes are as low as 5 Hadley.

The flux potential is displayed in Fig. 11. In the win-
ter there is a maximum of �̃c in the northern tropical
latitudes at a height of �8 km. Tendencies are positive
in this area (see Fig. 2a) and, correspondingly, the di-
vergent part of the transports is directed toward the
maximum as a center of convergence. The annual
march of the Hadley cell is not completely described by
Fig. 10, but involves also changes of the angular mo-
mentum. At the lower boundary there is a minimum of
�̃c underneath this maximum, but it is shifted slightly
southward. This minimum represents the impact of the
torques. Its amplitude is more than twice that of the
maximum at the surface in the south. The amplitude of

FIG. 10. Streamfunction �̃ (10 Hadley) of the annual cycle an-
gular momentum transport for (a) 1 Jan (�̃c) and (b) 1 Apr (�̃s),
with a maximum value in the center of the equatorial cell of 420
and 271 Hadley, respectively. Presentation restricted to heights z
 20 km. Contour interval 20 Hadley.

FIG. 11. Flux potential �̃ (0.1 Hadley) of the annual cycle of the
angular momentum for (a) 1 Jan (�̃c) and (b) 1 Apr (�̃s); trajec-
tories (dotted), separatrices (dash dots), and saddle point P. The
X in (a) marks the location of the minimum of �3.9 Hadley. The
contour interval is 0.2 Hadley. Presentation for heights z � 20 km.
Trajectories and separatrices are not drawn close to the centers of
convergence/divergence. Moreover, the gridpoint representation
is too coarse to allow for a reasonably accurate evaluation near
such points. The reentry of the “stratospheric” trajectory into the
domain of presentation in (a) has not been calculated because of
the uncertainty of the flux data at upper levels. Negative isolines
are dashed.
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the annual cycle and, therefore, that of its tendency in
the Southern Hemisphere is smaller, and the related
minimum is located (cross in Fig. 11a) at lower heights
than the maximum in the north (see also Fig. 2a). There
is a saddle point P close to the ground near 20°S, which
separates the two maxima and the two minima. Maxi-
mum horizontal fluxes are �0.4 Hadley near the equa-
tor. If these fluxes were entirely due to mean meridi-
onal mass transports �̂, the corresponding flux veloci-
ties were � 10�2 m s�1.

The dotted lines in Fig. 11 are “trajectories” of the
divergent flow. These trajectories follow the flux vector
(��̃) of the divergent part of the fluxes in the (�, z)
plane, just as trajectories in the airflow follow the wind.
They are orthogonal to the isolines of �̃. The direction
of a trajectory as indicated by the arrowheads in Fig. 11
is that of the gradient. It does not indicate causality.
However, we can establish close relations between ten-
dency, torques, and transports by integrating (3.6) over
budget areas Q. Thus, one obtains

�
Q

�a�sdf � �
S

O ��̃c · nds � 0 
3.12�

for the winter season where S is the boundary of Q with
unit vector n oriented normal to it. To exploit (3.12) we
will consider only areas Q where S consists of trajecto-
ries and/or parts of the ground. Of course, there is no
contribution to the second integral whenever S is part
of a trajectory. The dash-dotted lines in Fig. 11 are the
separatrices, which separate the “basins of influence”
of the torques and of the extrema of the tendency. They
have been determined approximately by calculating a
great number of trajectories. Curves that are not
crossed by trajectories are separatrices. There is a sepa-
ratrix that connects the southern boundary with the
minimum and the saddle point. Another one leads from
P via the maximum to the polar boundary. Two more
separatrices link P with the surface. Domain � is located
above all of the separatrices. Control surfaces in do-
main � are confined by pairs of trajectories emerging
from the minimum and joining again at the maximum
so that

�
Q

�a�sdf � 0. 
3.13�

There is no mean tendency in areas enclosed by pairs
of trajectories. In other words, the torques do not affect
the annual cycle in domain �. However, angular mo-
mentum flows toward the maximum within Q. The re-
lated flux pattern is interhemispheric. Domain II con-
tains the lower troposphere of Antarctica and the
southern midlatitudes. It is not possible to construct
control surfaces in domain II that are confined by tra-
jectories only. Instead, the boundary S contains part of
the ground. Therefore, the torques affect the tendency
throughout domain II. Domain III is small and located

underneath the saddle point. Trajectories emerge from
the ground and return to it in domain III. They cannot
reach any of the two extrema. Such trajectories are not
drawn in Fig. 11a, because domain III is represented by
a few grid points only. This implies considerable uncer-
tainty with respect to the calculation of trajectories. In
any case, the torques in domain III act on fairly shallow
layers only. Domain IV is the northern analog of do-
main II, but is deeper and meridionally more extended.
The torques affect the atmosphere in domain IV.

In April (Fig. 11b), signs are opposed to those in
January. There is a minimum in the Northern Hemi-
sphere indicating the decrease of �̃ (see Fig. 2a). The
saddle point is so close to the ground that a domain III
does not exist in April. Otherwise, the situation is fairly
similar to that in January, except that both extrema are
stronger than in winter. Domain IV is again more ex-
tended than domain II, a feature that reflects the im-
pact of the mountains.

The winter regime in Fig. 10a fades fairly quickly.
The velocity potential pattern for 1 February contains
hardly any features above the lower troposphere. The
structures in Fig. 10b are found also 1 month late, but
with increased amplitudes.

Given Fig. 11, we may turn back to the budgets pre-
sented in Figs. 8 and 9. As for the polar domains, we can
state that the tendency in the lower Antarctic tropo-
sphere is strongly affected by the torques, while the
large fluxes on top do not contribute to the tendency of
that domain. The annual cycle of � in the intermediate
domain (5 � z � 15 km) is, however, not affected by
the torques, but reflects the convergence of fluxes of
planetary scale. In the Arctic, the impact of the torques
extends also to the lower troposhere only. The ten-
dency in the lower polar troposphere in the Northern
Hemisphere results mainly from fluxes linked to the
extremum of �̃.

4. Conclusions and discussion

Earlier studies of the annual cycle of the axial angu-
lar momentum have been extended in this paper on the
basis of the ERA by deriving a consistent set of angular
momentum tendencies, of horizontal and vertical trans-
ports and of the related torques. The analysis has been
performed in height coordinates so that the information
on the mass term is on equal terms with that on the
wind term.

It is found that the annual cycle of the mass term is
larger than that of the wind term in the lower tropo-
sphere. The related transports due to the annual shift of
the Hadley cell are much more intense than those of the
wind term. The global budgets revealed good agree-
ment of the observed global angular momentum ten-
dency with the sum of the global mean mountain and
friction torque as observed both for the annual and the
semiannual components. This agreement is lost if the

15 MARCH 2005 E G G E R A N D H O I N K A 769



gravity wave drag is added. The analysis of specific re-
gions showed a substantial cancellation of the contri-
butions of the torques and the transports on the angular
momentum tendency for deep domains. The pattern of
the streamfunction of the fluxes is dominated by the
signatures of the Hadley circulation, while that of the
flux potential has an extremum in each hemisphere.
The impact of the torques on the annual cycle of the
angular momentum extends to the lower troposphere
only. The related heights of influence are a few kilo-
meters in the Tropics, 4–5 km in Antarctica and the
southern midlatitudes, and 3–7 km in domain IV.
Higher up, an interhemispheric flux pattern imposes
the tendencies.

The statistical significance of our results is of con-
cern. Fourteen years of observations may not be
enough to deal with eventually noisy factors like the
torques. To address this point, the contribution of in-
dividual years to the torques in a belt have been evalu-
ated so that standard deviations �a of amplitudes and
phases (�p) are available. The standard deviations of
the phases of the friction and mountain torque are dis-
played in Fig. 12. The interannual variation of the fric-
tion torques is quite small for |� | � 45°. In particular,
the annual oscillation of the tropical torque is essen-
tially the same from year to year where, also, the stan-
dard deviation of the amplitudes is less than 10% of the
mean amplitude. The situation is quite different near
the polar caps where the fluctuations from year to year
are quite large. In particular, �p � 130° in belts 4 and 5.
Almost the same can be said with respect to the moun-
tain torque, except for the peak of variability in belt 13,
where �p � 91°. We have to conclude that our angular
momentum budgets for, say, |� | � 45° are presumably
subject to sampling errors. On the other hand, the an-
nual cycle of � has a small amplitude in these latitudes
anyway so that it can be stated that our results are
reliable in the regions where the annual oscillation of
the angular momentum is large.

Acknowledgments. We are grateful to all three refer-
ees for their constructive criticism.

APPENDIX

Adjustment of Horizontal Transports and Torques

Let us denote the adjusted horizontal fluxes by F̃*ij ,
thus, suppressing the subscript h. We wish to minimize

E � 	
ij


F̃*ij � F̃ij�
2 � 	

i

�i�	
j


F̃*ij � F̃*i�1j

� i�a�̃ij� � T̃i�, 
A.1�

where F̃ij stands for the observed horizontal fluxes and
�i are Lagrangian multiplicators that help satisfy the
constraints of a vanishing vertical flux on top. More-
over, the observed torque at the bottom is represented
this way. The sums in (A.1) run over all of the annuli.
Of course, (2.9) is fulfilled automatically if E is mini-
mized. Differentiation of (A.1), with respect to F̃*ij
yields,

2
F̃ij � Fij� � �i � �i�1 � 0. 
A.2�

Combining (A.5) and (2.9), we obtain

2�i � �i�1 � �i�1 � 2Ii �J, 
A.3�

where

Ii � 	
j


i�a�̃ij � F̃ij � F̃i�1j� � T̃i 
A.4�

is the imbalance of the observations summed over all of
the layers of belt i. Of course, �i is known from the
observations. In belt 1, (A.3) must be replaced by

�1 � �2 � 2I1�J, 
A.5�

so that the difference �1 � �2 can be calculated. Pro-
ceeding toward the northernmost belt, we are able to
evaluate all of the differences �i�1 � �i and, therefore,
the necessary corrections F̃ *ij to the fluxes F̃ij [see
(A.2)]. This procedure works only if

	
i

Ii � 0; 
A.6�

that is, if

	
ij

i�a�̃ij � 	
i

T̃i. 
A.7�

To achieve this exact balance in (A.7) we subtract
from the observed total torque a corresponding con-
stant that is distributed equally over all of the belts.
These corrections are small. For example, the correc-
tion of the total torque per belt is 0.16 Hadley. Finally,
the vertical flux is obtained by integrating (2.3) down-
ward from the top layer j � J � 1. Note that the cor-
rection does not depend on height. The adjustment pro-
cedure, as outlined, is similar in spirit to that of Hantel

FIG. 12. Standard deviation �� in degrees for the phases of the
annual oscillation of the friction and mountain torque per belt.
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and Hacker (1978), but is not restricted to the vertical
transports.
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