
Towards Autonomous Context-Aware Services

for Smart Mobile Devices

Thomas Strang

German Aerospace Center (DLR)
Institute for Communications and Navigation
D-82230 Wessling/Oberpfaffenhofen, Germany

thomas.strang@dlr.de

Abstract. In this paper a framework is presented which allows the dis-
covery and execution of services on connected and partially autonomous
mobile devices. Discovery and execution procedures are sensitive to the
user’s context (current location, personal preferences, current network
situation etc.). We present a description language for service offers which
is used to provide the necessary information for a service registry running
on the mobile device itself. Services are executed in an abstract manner
(in the sense of a non-specific implementation) from the user’s point of
view, getting an optimal result with respect to the current context out
of a set of parallel invoked service implementations.

1 Introduction

In the past few years mobile computing has become very popular, the penetration
of mobile devices like mobile phones or PDAs is growing fast. By using technolo-
gies implemented today, mobile devices enable the user to access Web-based
data from nearly any place in the world when online by utilizing a Web/WAP-
browser in their device. In contrast, when offline (e.g. in a plane, where the usage
of online connections is prohibited), the user is unable to find new interesting
services and restricted to execute only a small set of offline-applications like a
calculator. It is a challenge to design an architecture which provides the user of
a mobile device with personalized, situation-related services for discovery and
execution, online and offline in a best effort sense.

Upcoming mobile devices are capable of using multiple access networks, and
are partially programmable for third parties.The architecture presented in this
paper is designed with such new features in mind. Even if the architecture does
not restrict the mobile device to be a client only, this paper does not further
investigate scenarios, where the mobile device is the server for clients in the
wired part of the network.

In section 2 of this paper we describe our definition of the service terminol-
ogy subsequently used. We introduce our architecture used to manage mobile
services. A new kind of service registry, residing on the mobile device itself, en-
ables autonomous service discovery and service execution in times of bad or no
network coverage. The concept of context sensors, presented in section 3, shows

M.-S. Chen et al. (Eds.): MDM 2003, LNCS 2574, pp. 279–292, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/30942027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


280 Thomas Strang

how to integrate context-awareness during discovery and execution. The service
offer description language proposed in section 4 will be used to create context-
dependent service offers, and also provide a way to exchange mobile services
for partial autonomous execution on the mobile device. A new type of abstract
service invocation is discussed next (section 5), which delivers an optimal result
with respect to the current situation. Finally, we discuss some implementation
aspects (section 6), and draw our conclusion (section 7).

2 Services in Distributed Systems

Within the context of computer networks, the terminology of a “service” is used
do describe a wide variety of different things. Thus, to avoid misinterpretation
of what a service is and how they are used, a detailed specification is required.

We define a service as a namable entity being responsible for providing in-
formation or performing actions with specific characteristics. We distinguish
between MicroServices and MacroServices. MicroServices encapsulate “atomic”
operations, meaning that no MicroService engages any other MicroService. In
contrast, MacroServices engage at least one other MicroService to perform its
operation.

The entry point of a service, be it a MicroService or MacroService, is repre-
sented by an addressable instance in a sense of WSDL’s “service ports” [4]. The
entity representing a service needs to be namable to identify its operation in re-
lation to a given namespace to distinguish services across different namespaces.
Each service is engaged through its addressable instance, which is instantiated
and controlled by a service provider. The service provider is required to man-
age the lifecycle (start/stop, pause/resume, etc.) of a service instance and to
coordinate service interaction (input/output, invocation/result delivery, etc.) by
adopting to a common protocol like JINI, CORBA, DCOM or SOAP for infor-
mation exchange in distributed environments.

For the time of the duration of a service’s operation, the service providing
entity bears the responsibility to act in a sense the calling entity envisioned. This
is modeled by a caretaker entity, which resides at the service provider and acts
e.g. as a life-cycle-manager as well as a representative of the calling entity when
the execution of the service is asynchronous. Thus, a service provider in our
definition has similarities to a platform for software agents [8], and the caretaker
entity can be seen as an extended life-cycle-manager like a dock [5].

2.1 Service Discovery and Interaction on Mobile Devices

In a distributed environment, a service has to be found by a client entity (human
and/or program) before it can be used. Therefore, a potential service client con-
tacts any form of service registry (e.g. UDDI registry, Bluetooth SDP Database,
JINI Lookup-Service or Corba Trader), and requests the availability of providers
which have been registered with the service registry to offer services with spe-
cific characteristics. These characteristics are usually classifications of a common



Towards Autonomous Context-Aware Services for Smart Mobile Devices 281

ontology well known to both parties. An overview of typical protocols in use for
service discovery can be found in [2] or [3].

Most architectures for distributed systems silently imply the existence of
a reliable, wired network which interconnects all hosts involved in distributed
operations. In the wireless world, important additional aspects like limited band-
width, cost of bandwidth, sometimes unavailable network connections etc. have
to be taken into account. Whereas the network layers are usually designed to
handle these differences to the wired world very well, the consideration of them
in the service layers is often totally insufficient.

In fast-changing contexts [6, 17] such approaches are not sufficient. Thus, to
handle at least some of these dynamic context issues and to enable the most
possible seamless operation of services on devices with occasionally unavailable
network connection of any type and intermittent failures, we suppose an architec-
ture element shown in fig. 1, where an instance of a service registry is running on
a mobile device. In [11, 19] the authors showed the several advantages of having
a service registry instance on a mobile device, whether in short range or wide
range networks. This makes our approach different from other mobile service
architectures like the Capeus [16], the Centaurus [10] or the Ninja [9] system,
where the service registry (sometimes also named Trader or Broker) respectively
the offer-demand-matcher resides in the wired part of the network.

BaseStation BaseStation

MobileDevice

ServiceOffer

ServiceOffer

Service
Registry

Context
aware offer

filter

...Service Usage...

Fig. 1. Service Registry on the Mobile Device

Mobile devices like mobile phones or personal digital assistants (PDAs) are
predominantly limited devices with respect to computational power and both
volatile and persistent storage (memory). These limitations make it impossible
to follow “heavyweight” approaches like CORBA or JINI for distributed service
discovery and distributed service usage, even if they have attractive solutions in
some areas. One architecture [21] tries to handle dynamic environments by vir-
tual services which are composed using some flow language and bound to some
physical services at runtime to reflect reconfigurations of the current situation.
The scenario behind the architecture of [21] is not mobile device centralized,
wherefore the proposed protocols and other architecture elements are not de-
signed to be used on usually very resource-limited mobile devices. The MOCA
architecture [1], whose design has the most similarities to ours, claims to be a
service framework for small mobile computing devices. But having the service
registry on the device is not sufficient. So is MOCA’s invocation model for remote



282 Thomas Strang

services based on dynamically downloaded bytecode, RMI or IIOP and custom
Java classloaders, all together not available on typical wireless information de-
vices. As the authors state in [15], MOCA addresses mainly back-end application
logic, and a typical MOCA application is either implementing “traditional Java
technologies such as the AWT” or “on the use of servlets that are hosted under
MOCA”, which are both too heavyweight for small mobile devices. The aspect
of context-awareness (see section 3) is not handled within MOCA.

Instead of this, we propose an architecture in the following sections based
on Web Services, a technique incorporating HTTP as the default transport pro-
tocol and XML as the representation format for data of any type. XML offers
a platform-neutral view of data and allows hierarchical relationships to be de-
scribed in a natural way. Compared to other architecture models, HTTP and
XML are less resource consuming and, therefore, supported by upcoming smart
mobile devices (see section 6).

The discovery of web services is usually performed by contacting a UDDI
registry located somewhere in the network, but typically not on the same host as
the client performing the search query. As explained, to be able to answer search
queries even in times where no network connection is available, it is necessary to
have a service registry running on the mobile device itself. Just running an UDDI
registry on a mobile device is insufficient for several reasons, mainly because of its
missing volume control features and its context-unawareness. Instead, we propose
an Advanced Mobile Service Registry (AMSR) according to fig. 2 running on the
mobile device.

Network Communication Manager

GSM BluetoothWLANGPRS IrDA

Search
Interface

IMSP Manager

IMSP
IMSP

IMSP

Invocation
Interface

Register
Interface

Code Snippet DB

Context
aware offer

filter

Registrations

Context aware
service matcher

Mobile Application Suite

AMSR

Service Module Service Module Service ModuleData

Sensor Processing

Fig. 2. Advanced Mobile Service Registry (AMSR)



Towards Autonomous Context-Aware Services for Smart Mobile Devices 283

The design of this architecture leans towards a CORBA object trader, e.g.
allowing one to apply constraints, as well as a JINI lookup server by enabling
code deposition at the registry, but also enables service discovery and execution
on mobile devices even in cases of poor or no network connection. The adapta-
tion to the various different types of (usually wireless) network interfaces is done
by the Network Communication Manager. This module handles network spe-
cific issues like adressing in ad-hoc networks or interfacing to SDPoverIP when
peering to Bluetooth devices.

Service offers (see section 4) are announced to the AMSR from the network
(or the mobile application suite itself, if it also implements corresponding ser-
vices) through a Register Interface, which routes such offers to a context aware
offer filter (see section 3). Any search for a service with specific characteristics is
performed using the Search Interface, and the demand is tried to match against
any entry in the registration, where all the offers reside which passed the offer
filter constraints. If the search is successful, an instance of a generic Intermediate
Service Provider (IMSP) is created, which can be accessed using the Invocation
Interface to perform an Abstract Service Invocation (see section 5).

3 Context-Awareness through Context Sensors

The effectiveness of discovery is heavily affected by the quality of information
mutually exchanged to describe the requirements on and the capabilities of a
service. In a human conversation, the listener uses context information as an
implicitly given additional information channel to increase the conversational
bandwidth. By enabling access to context information during but not restricted
to service discovery, we improve the amount of transinformation from service
provider to service user (human or application) and thus the quality of offer-
demand-matching. Changes in context during service execution may directly
affect a service’s output.

We rely on the term context as defined in [6], which is “any information that
can be used to characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant [..]”. Context information is obtained
by observing relevant entities with context sensors (CS). Each CS is responsible
for acquiring a certain type of context information and encapsulates how the
information is actually sensed. It represents the state of a specific context type
against user- and system-services.

Even if most publications like [14] rely on the current geographical position
of a mobile device as the most important context information, there is more to
context than location [17]. A substantial amount of entities may be observed by
CS which base on hardware or pure software sensors. Most of the characteristics
of a CS (high degree of individuality, adaptation-ability and autonomy) are also
known as the main characteristics of software agents [8]. Thus part of our work
is to analyze the requirements of an agent platform on mobile devices [20], and
how a CS may be implemented following the agent paradigm. We assume agent-



284 Thomas Strang

based CS to be a much more flexible concept to perform context sensing and
processing than for instance the concept of Cues [18].

The AMSR architecture introduced in the last section enables access to the
context during service discovery and service execution by using a bank of context
sensors, thus our architecture is context-aware regarding the definition of context-
awareness given in [6].

4 Service Offer Descriptions

A lot of research has been done on service discovery and associated protocols.
They all can be used to determine interoperability like supported interfaces or
valid value ranges. Only some of these protocols try to consider the context of
the requesting entity (application or user). This is of key interest in mobile usage
scenarios, where the current context has a strong impact to the needs of a mobile
user. Different aspects of context like the position, time, personal preferences or
costs should be considered in order to discover a service which matches the user’s
needs best.

As an instrument for describing a service demand containing context depen-
dent constraints one can use demand descriptions like Content Aware Packets
(CAPs) [16]. CAPs may be “used as communication units between service re-
quester and service provider”, and are predominantly designed to “describe a
demand from the consumer perspective” [13].

Even less research has been done in context-dependent service offer descrip-
tions. Service availability may be restricted to certain places or times. The result
quality of a service may depend on network conditions, type of contract with
the provider, availability of sub-services and so on. A concrete example is a
printer which announces by an offer description to be available for print jobs
in principle, but if a context sensor indicates a “toner low” state, this offer is a
“non-preferable” one.

Any demand description must be analyzed and matched against the service
offers known to the AMSR. To become a service candidate, the service provider
or a representative entity called registrar is required to announce the service’s
availability, it’s requirements and capabilities to the AMSR. For this purpose
we propose the usage of offer descriptions called “Rich Service Offer” (RSO)
according to fig. 3.

Offer Description

Software Interface Signature
List of Addressable Instances
Property Value Ranges (optional)
Dependency Declarations (optional)
Cost Indications (optional)
Code Snippets (optional)

Fig. 3. Rich Service Offer

It is important to notice that each MicroService/MacroService must be an-
nounced by at least one RSO to ensure its “visibility” to the AMSR.



Towards Autonomous Context-Aware Services for Smart Mobile Devices 285

4.1 Commit on Software Interfaces and Addressable Instance

During service discovery the first thing all participating entities have to commit
on are the signatures of the software interfaces in use (signature interoperability).
Thus a primary element of any RSO is a software interface signature, expressed
as a WSDL port type identifier [4]. WSDL port types together with a names-
pace identifier are perfectly suitable to express in an open and extendable way,
how to invoke a service, which input parameters are required and which output
parameters can be expected.

If the service instance applying to be a candidate for being discovered is
running somewhere in the network, but not on the mobile device (standard case
for web services), this is the location identifier of the running instance, e.g. the
content of the <soap:address ...> tag of the port definition of a WSDL document
[4]. If the issuer of the RSO knows about the existence of an AMSR-local service
implementation (e.g. by sending a code snippet along with the RSO), this may
also be a location identifier pointing to a local implementation.

4.2 Classification Ontology

Beneath information about implemented interfaces and addressable interfaces,
it is essential to characterize the offered service with properties any interested
entity is able to evaluate (semantic interoperability), meaning those properties
share a code space known to both parties (often called Ontology). Each property
is expressed as a valid code out of a common taxonomy or identifier system. A
taxonomy is defined as a set of categories, whereas a identifier system is defined
as a set of identifiers, according to

taxonomyA = {cat1, cat2, cat3, ..catn} (1)

identifiersystemB = {id1, id2, id3, ..idm} (2)

Samples for (1) are industry codes like NAICS, product and service classifications
like UNSPSC or geographic location codes like ISO 3166. Samples for (2) are
unique identifiers like Dun & Bradstreet D-U-N-S or phone numbers.

The most simple implementation of properties are key-value pairs, attached
to an offer. A typical extension is to group a set of key-value pairs together, build-
ing a template of parameters (see UDDI tModels or JINI LUS entry attributes).
Another extension are dynamic properties, where the value of the property is
not held within the service registry itself, but is obtained on-demand from an
entity nominated by the registrar (see CORBA trading object service or Blue-
tooth SDP). Known variations of key-value properties are models which take
into account the hierarchical relationship of typical classifications. A sample for
this is the CORBA service object ServiceType model or the Bluetooth SDP
ServiceClassIDList.

If two or more service offers are evaluated by their properties to be a service
candidate, this means those services fulfill the minimum requirements regarding
technical (e.g. implemented software interfaces) and quality level (e.g. minute-
precision departure times) constraints from the client’s perspective.



286 Thomas Strang

The minimum requirements itself may be expressed as threshold values for
each evaluated property. Book [12] gives samples how to classify different service
characteristics, how to project general deterministic, probabilistic and statistical
properties to a common metrical base, and how to calculate the distance between
any combination of {request(propertyi), offerj(propertyi)} pairs, which allows
one to specify an overall graduation of service offers with respect to a specific
service request. This book gives also a good overview of different metric models
with the interesting observation that a complex metric model is not necessarily
a guarantee for the best result.

4.3 Costs of Usage

An important part of any service offer is the indication of the costs of usage. [7]
postulates any service to have a nominal price, which is defined as a charge for the
service being provided. We would refine this requirement by a distinction between
the price indication for service usage (cost of usage) and a price indication for the
content (cost of content). A sample for the first one is a reservation-processing
fee, and the latter one is a ticket price for the same train ticket reservation
service.

For any non free-of-charge service, the service offer must contain information
about all applicable payment systems (e.g. eCash, credit card), payment channels
(e.g. network, phone) and beneficiary, which is the entity to which the payment
is addressed. It should be noted that we concentrate here on the cost of usage.
The cost of content may base on the same debit system, but is negotiated on
the service level.

Most payment systems require online validation of any account data (e.g.
remaining credit units on a prepaid account, or credit-standing of a visa account).
Service implementations described by offers containing cost indications for these
payment systems thus require an established online connection at the time of
validation, which is usually at the time of execution of the service, and hence
these services cannot be executed offline.

For MacroServices cost indications are accumulative, meaning that cost in-
dications of the composed MicroServices are merged. The service user typically
requires a valid account at least at one payment system announced in the offer
of any engaged MicroService.

4.4 Dependency Declarations

It is important to notice that in cases where services are offered which internally
make use of other services - “visible” to the AMSR or not - this dependency
has to be indicated to the AMSR. For instance if a service announced by the
current RSO is able to perform its task without any network connection, but
makes use of other services via the AMSR, those other services may require a
network connection.



Towards Autonomous Context-Aware Services for Smart Mobile Devices 287

If those sub-services indicate to be non-free in the cost-sense, any budget
which has been granted during service discovery for the service represented by
the current RSO must be splitted and shared with all non-free sub-services.

4.5 Code Snippet Deposition

In cases where a service implementation does not require an existing online con-
nection to perform its operation (e.g. a credit card number validation service),
a code fragment implementing the operation can be deposited at the AMSR
for usage. These snippets must follow some common code exchange format, like
interpretable code (e.g. Java Bytecode, JavaScript) or abstract rendering direc-
tives (e.g. XML/XSLT files defining a GUI as a service front-end [15]) Note that
it must be ensured that a proper execution handler for the code snippet exists on
the mobile device (e.g. Java VM, Scripting handler or Renderer). One may apply
an additional protocol to negotiate a proper format. In our case this information
can be obtained from the User-Agent HTTP header field.

In principle and in comparison to JINI full service proxies, code snippets may,
but need not be, a marshaled form of an already instantiated object. The AMSR
is required to instantiate the local implementation if a service demand matches
with this offer and the offer is not marked as a static service. Some devices may
have a Virtual Machine which does for security reasons not allow the execution
of bytecode which has not been present at the time of installation of the calling
application (closed late binding) [20]. In this case, the usage of code snippets is
limited to non-Java scripting.

4.6 XML encoding of RSOs

RSOs make use of XML respectively XML schemas as its canonical base to
describe service offers with the characteristics shown in the previous sections
because of XML’s platform and application independent, structure preserving
and extensible capabilities. It is reputable to use XML as a base for service
or content descriptions, as one can compare with e.g. CAPs [16] or Centaurus’
CCML [10]. The example in fig. 4 may illustrate the content of a RSO.

<?xml version="1.0" encoding="UTF-8"?>
<rso xmlns="urn:schema-RSO.xsl">
<interface name="urn:position-service#getPosition" portType="PositionPortType"

wsdl="http://foo.com/wsdl/position.wsdl"/>
<instance port="http://foo.com/soap/servlet/rpcrouter"/>

<property codesys="DUNS" code="12-345-6789" title="WGS84">
<restriction class="region" type="country">DE</restriction>
<precision min="1m" max="30km" shape="sector"/>

</property>
<dependency interface="urn:math#gaussKruegerToWGS84"/>
<cost type="perRequest">

<option system="LHMilesAndMore" beneficiary="foo.com" price="3" unit="miles"/>
<option system="Visa" beneficiary="foo.com" price="5" unit="cents"/>

</cost>
</rso>

Fig. 4. RSO sample



288 Thomas Strang

5 Abstract Service Invocation

Traditional mediators like the CORBA trading service mediates services in a
distributed environment either according to the operation select or the operation
search. The first one selects one service out of the list of offers which meets the
requirements best, the latter one list all service offers meeting the minimum
requirements to the requesting entity for further decisions (which is in fact a
delegation of a selection decision). The mediator itself is not involved in the
service invocation procedure after either operation has been performed.

5.1 A new operation: Spread & Join

We would like to introduce a third mediator operation which we called spread&join.
This operation engages a group up to all services (best n) meeting the minimum
requirements of a given request. The services are executed in parallel (spreaded,
see fig. 5), and after a set of conditions (e.g. quality threshold passed) are reached,
all results are collected and reworked (joined, see fig. 5) in a result object, to
which the service requestor is holding a reference.

Service Implementation

IMSP

< spread >

Service Implementation

IMSP

< join >

Abstract Service
Invocation

SmartResult

Fig. 5. Spread and Join operations

In this constellation the mediator becomes an active part of the service invo-
cation procedure as well: It acts as a single service provider against the service
requesting entity, and as a service requestor against any addressable instance.
Thus, we call this entity a generic intermediate service provider (IMSP). In-
spired by the concept of virtual services in [21], each IMSP instance can be seen
as an abstract service invoked by the client. At least one implementation of the
abstract service is contributed by the service implementation registered for the
corresponding matching offer.

Spreading a service operation over a group of n service providers according
to their service offers means invocation of the same operation on n address-
able instances in parallel, which leads to m ≤ n results reported to the IMSP.
Spreading a service operation requires a budget splitting according to a distri-
bution reasonable to the IMSP, if the operation has been restricted by a budget
granted to the IMSP.

One problem is the increased the amount of exchanged messages caused by
this kind of operation, especially when using expensive wireless network links.



Towards Autonomous Context-Aware Services for Smart Mobile Devices 289

Thus an interaction between the IMSP and the Network Communication Man-
ager shown in the AMSR (see fig. 2) is required to handle the trade-off between
minimizing the costs of network connections and maximizing the gain of join-
ing multiple results. Additionally it makes sense to hierarchically cascade the
IMSP facilities over the time-variant network infrastructure, which enables the
spreading of an operation partly in the wired part of the network, which is much
less expensive. Cascading AMSRs and its integrated IMSP facilities guarantees
a store-and-forward functionality optimal for a variable network situation. Al-
though any results are optimal in the local context of the reporting node, they are
re-evaluated after reported to the next level of the hierarchy. Any AMSR/IMSP
in the hierarchy tree is responsible to act in a sense as the calling entity en-
visioned, e.g. not exceeding any budget granted for a specific operation [5]: If
necessary, budgets have to be splitted between service providers (cost sharing).

For any service invocation request received from a client the IMSP Manager
manages an instance of a control structure named SmartResult object contain-
ing the elements RequestProperties, ListOfAddressableInstances, Budgets, Cur-
rentBestResult and AllResults. The control structure is updated when any new
information is available with relevance to the particular operation. This may
be the receipt of a new result, or a new context situation (e.g. transition from
connected to not connected), or something else. So the spread&join operation
relates very much to context-aware service discovery and execution.

An interesting option is enabled by the AMSR/IMSP’s autonomy in com-
bination with object references. If the situation, which has been the base for
distance vector calculations, changes (e.g. the user moves into a new spatial con-
text or a network link is broken), the metric for any related SmartResult object
has to be re-calculated. And even if a result has already been reported to the
calling entity, a “better” result stated by the re-calculated metric can be signaled
to the calling entity if this entity is still interested. This affects result updates
as well as result revocations.

5.2 Selecting or Merging

If more than one result from a spreaded service operation is available, it is the
IMSP’s task to join them into a single result for the client. Figure 6 gives an
overview of the available options.

If the return value expected by the client is a single primitive data type, the
IMSP must extract one result out of the received results. If the return value
expected by the client is a single object(-reference), the task of the IMSP is
the same, extended by the ability to adopt values from a modified result object
upon following sub-results with a postponed distributed object access. If the
return value expected by the client is an array of primitive data types, it may be
desirable to merge the sub-results, or to select a sub-result along certain criteria
(e.g. longest array). If the return value expected by the client is a collection
object like the Java Vector, the facilities of merging or selecting sub-results and
distributed object access are combined.



290 Thomas Strang
client expects join options

single primitive data type (e.g. integer) select one sub-result

single object data type (e.g.
java.lang.String)

select one sub-result (may be
updated when reference given)

array of primitive data type (e.g.
integer[]) or array of objects (e.g.
java.lang.Boolean[])

merge sub-arrays or select one
sub-array

collection object of primitive data type
(e.g. java.lang.Vector containing integer

elements) or collection object of object
data type (e.g. java.lang.Vector containing
java.lang.String elements)

merge sub-collections or select
one sub-collection (may be up-
dated when reference given)

Fig. 6. IMSP join options

Different strategies may be followed to perform this join, depending on the
termination condition specified by the client as well as the type of return value
and the desired quality. If the client specified to be interested in any result in
a given period of time (e.g. the first result the IMSP receives within the next
2 seconds), the join strategy is pretty simple. But much more often a client
claims results according to certain quality parameters. This requires the IMSP
to re-order all sub-results according to a given metric.

Any parameter which is required during the calculation of distance vectors
(which is the base operation for any metric) must be given by the client together
with the call itself, either implicit (e.g. input parameter of a function) or explicit
(e.g. vector distance procedure identifier or timeout value). Because the quality of
the operation which a service performs may differ from the quality level promised
during registration, additional taxonomy or identifier system codes attached to
the sub-results may help the IMSP to adapt better to the calling entity’s desired
result.

6 Implementation prototype

A prototype of the AMSR is currently under development, based on Java2 Mi-
cro Edition (J2ME), whose Virtual Machine (CVM/KVM) is designed to run on
resource constraint devices from SetTopBoxes down to mobile phones or PDA’s.
Devices with the most restrictive limitations are covered by the Mobile Infor-
mation Device Profile (MIDP) on top of the Connected Limited Device Config-
uration (CLDC), which define the subset of Java classlibraries a CLDC/MIDP
compliant device must support.

To not overstrain the computational power, network and memory resources
of small mobile devices running CLDC/MIDP, a lot of functionality known from
full Java (Standard or even Enterprise Editions) have been omitted. For instance
the late binding concept of Java has been restricted to be able only to load
classes at runtime, which have been downloaded and installed at the same time
as the application itself (closed late binding). Thus it is impossible to use a
service on a mobile device, whose implementation is loaded from the network
at runtime, which is the standard procedure e.g. in a JINI network. But even



Towards Autonomous Context-Aware Services for Smart Mobile Devices 291

if full late binding would be possible on CLDC/MIDP compliant devices, JINI
like approaches would not work because of the lack of standard network access
via sockets: The only available protocol is HTTP in client mode. Additional
profiles may contribute additional functionality, but devices targeted by J2ME
will always be more restricted than devices in the fixed wired world.

Hence, our AMSR implementation considers this situation and is built us-
ing an XML parser on top of HTTP as transfer protocol. An XML parser is
a valuable application type for Java equipped mobile devices, and there exist
several different implementations (kXML, NanoXML etc.). As described in sec-
tion 1, our approach employs the web service technology of SOAP and WSDL,
both based on XML and HTTP, and the footprint of the current prototype (still
missing the Network Communication Manager block) is about 75 KB.

7 Summary, Conclusions and Further Work

We have presented a new concept for service discovery and execution on resource
constraint programmable mobile devices. Discovery and execution of services is
provided if connected, but also if not connected to a backbone system. Discov-
ery and execution procedures are sensitive to context changes. This is achieved
by running a service registry called AMSR on the mobile device itself, which
is updated with service announcements called RSO. Multiple service providers
are, if available, employed to fulfill a service request concurrently. This parallel
execution of services is hidden to the user by the abstract service interface, which
is invoked by the client, and delivers the optimal result from the AMSR after
execution.

First results with the prototype implementation showed that the concept is
valuable and outputs the desired results.

Further work has to be done in the area of RSO schema definition. Several
strategies to prioritize service offerings have to be worked out and compared
to decide which fits best to the limits in storage space and processing power
of the target devices. Scalability and inter-system tests have to be performed,
and a wider range of sample services must show if all aspects are covered and
reasonable. Further investigation has to be done if results from agent systems
can be applied to our system (e.g. when comparing spread&join with an agent
federation architecture), and if approaches for automated service chaining can
be utilized in our approach.

References

[1] Beck, J., Gefflaut, A., and Islam, N. MOCA: A service framework for mobile
computing devices. In Proceedings of the ACM International Workshop on Data
Engineering for Wireless and Mobile Access, August 20, 1999, Seattle, WA, USA
(1999), ACM, pp. 62–68.

[2] Bettstetter, C., and Renner, C. A comparison of service discovery protocols
and implementation of the service location protocol. In In Proceedings of Sixth



292 Thomas Strang

EUNICE Open European Summer School - EUNICE 2000 (Twente, Netherlands,
September 2000).

[3] Chakraborty, D., and Chen, H. Service discovery in the future for mobile
commerce. http://www.cs.umbc.edu/∼dchakr1/papers/mcommerce.html, 2000.

[4] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. Web
Services Description Language (WSDL). http://www.w3.org/TR/wsdl, 2001.

[5] Dalmeijer, M., Hammer, D., and Aerts, A. Mobile software agents.
http://wwwis.win.tue.nl/∼wsinatma/Agents/MSA.ps, 1997.

[6] Dey, A. K. Understanding and using context. Personal and Ubiquitous Comput-
ing, Special issue on Situated Interaction and Ubiquitous Computing 5, 1 (2001).

[7] Dumas, M., O’Sullivan, J., Heravizadeh, M., Edmond, D., and ter

Hofstede, A. Towards a semantic framework for service description.
http://sky.fit.qut.edu.au/∼dumas/publications.html, April 2001.

[8] Franklin, S., and Graesser, A. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages (1996), Springer-Verlag.

[9] Gribble, S. D., Welsh, M., von Behren, R., Brewer, E. A., Culler, D. E.,

Borisov, N., Czerwinski, S. E., Gummadi, R., Hill, J. R., Joseph, A. D.,

Katz, R. H., Mao, Z. M., Ross, S., and Zhao, B. Y. The ninja architecture
for robust internet-scale systems and services. Computer Networks, Special Issue
on Pervasive Computing 35, 4 (March 2001), 473–497.

[10] Kagal, L., Korolev, V., Chen, H., Joshi, A., and Finin,

T. Project centaurus: A framework for indoor mobile services.
http://www.cs.umbc.edu/∼finin/papers/centaurus/.

[11] Kammann, J., Strang, T., and Wendlandt, K. Mobile services over short
range communication. In Workshop Commercial Radio Sensors and Communica-
tion Techniques - CRSCT 2001 (Linz/Austria, August 2001).

[12] Linnhoff-Popien, C. CORBA - Communications and Management. Springer,
September 1998.

[13] Michahelles, F. Designing an architecture for context-aware service selection
and execution. Master’s thesis, University of Munich, 2001.

[14] Nord, J., Synnes, K., and Parnes, P. An architecture for location aware
applications. In Proceedings of the Hawai’i International Conference on System
Sciences, Big Island, Hawaii (January 2002), IEEE.

[15] Romn, M., Beck, J., and Gefflaut, A. A device-independent representation
for services.

[16] Samulowitz, M., Michahelles, F., and Linnhoff-Popien, C. Capeus: An
architecture for context-aware selection and execution of services. In New devel-
opments in distributed applications and interoperable systems (Krakow, Poland,
September 17-19 2001), Kluwer Academic Publishers, pp. 23–39.

[17] Schmidt, A., Beigl, M., and Gellersen, H.-W. There is more to context than
location. Computers and Graphics 23, 6 (1999), 893–901.

[18] Schmidt, A., and Laerhoven, K. V. How to build smart appliances. IEEE
Personal Communications (August 2001).

[19] Steingass, A., Angermann, M., and Robertson, P. Integration of navigation
and communication services for personal travel assistance using a jini and java
based architecture. In Proc. GNSS ’99 (Genova, Italy, October 1999).

[20] Strang, T., and Meyer, M. Agent-environment for small mobile devices. In
Proceedings of the 9th HP OpenView University Workshop (HPOVUA) (June
2002), HP.

[21] Wang, Z., and Garlan, D. Task-driven computing, May 2000.


	Towards Autonomous Context-Aware Services for Smart Mobile Devices
	Thomas Strang
	Introduction
	Services in Distributed Systems
	Service Discovery and Interaction on Mobile Devices

	Context-Awareness through Context Sensors
	Service Offer Descriptions
	Commit on Software Interfaces and Addressable Instance
	Classification Ontology
	Costs of Usage
	Dependency Declarations
	Code Snippet Deposition
	XML encoding of RSOs

	Abstract Service Invocation
	A new operation: Spread & Join
	Selecting or Merging

	Implementation prototype
	Summary, Conclusions and Further Work



