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Highlights 

 A new integrated miniaturized fibre-coupled solid-state light source is presented. 

 Based on a micropackaged microfabricated light emitting diode micro-array (µLED). 

 Interference filter micropackaged with optical fibre and the µLED array. 

 Demonstrated as excitation light source for fluorescence detection. 
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Abstract 

In this work, a new type of miniaturized fibre-coupled solid-state light source is 

demonstrated as an excitation source for fluorescence detection in capillary 

electrophoresis. It is based on a parabolically shaped micro- light emitting diode 

(µ-LED) array with a custom band-pass optical interference filter (IF) deposited at the 

back of the LED substrate. The GaN µ-LED array consisted of 270 individual µ-LED 

elements with peak emission at 470nm, each about 14µm in diameter and operated 

as a single unit. Light was extracted through the transparent substrate material, and 

coupled to an optical fibre (400µm in diameter, numerical aperture NA = 0.37), to 

form an integrated µ-LED-IF-OF light source component.  This packaged µ-LED-IF-

OF light source emitted approximately 225µW of optical power at a bias current of 

20mA.  The bandpass IF filter was designed to reduce undesirable LED light 

emissions in the wavelength range above 490 nm .  Devices with and without IF were 

compared in terms of optical power output, spectral characteristics as well as LOD 

values.  While the IF consisted of only 7.5 pairs (15 layers) of SiO2/HfO2 layers it 

resulted in an improvement of the baseline noise as well as the detection limit 

measured using fluorescein as test analyte, both by approximately one order of 

magnitude, with a LOD of 1×10-8 mol/L obtained under optimised conditions.  The µ-

LED-IF-OF light source was then demonstrated for use in capillary electrophoresis 

with fluorimetric detection.  Limits of detection obtained by this device were 

compared to those obtained with a commercial fibre coupled LED device.  
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Introduction 

Photometric and fluorimetric optical detection methods are frequently used in 

capillary based separation techniques including capillary electrophoresis (CE) and 

capillary liquid chromatography (cap-LC) [1-6].  While photometric detection is 

generally valuable and the most common detection in CE and cap-LC, the 

combination of the most sensitive detection method of laser-induced fluorescence 

(LIF) detection with CE provides a powerful separation platform with a wide range of 

advantages including speed, high resolution, efficiency, and sensitivity, as well as low 

sample and reagent consumption [7-9], for applications such as glycomics [10-12].  

Traditionally used excitation sources for fluorimetric detection are incandescent or 

arc lamps (halogen or mercury) based on technologies going back over a century, 

and in the last decades on lasers and then increasingly on solid state light sources – 

diode lasers and LEDs [13-20].  Arc and incandescent lamps have an advantage in 

their broadband continuous emission; however due to their size, fragility, heat 

production, relatively low luminosity and optical output stability, they are not suitable 

for miniaturization purposes.  Lasers are commonly used as excitation sources due 

to their high emission intensity, monochromaticity and advantageous spatial 

properties (collimated light, easy to focus), which allow the light to be focused to a 

very small area.  Light-emitting diodes (LEDs) since their discovery in 1907 [21] and 

commercial technology developments from 1960s pushed down the wavelength 

scale from infrared and red to green, blue, violet and ultraviolet [22-25], and are 

nowadays considered as the light sources of the future.  LEDs offer numerous 

advantages including quasi-continuous wavelength coverage, stable intensity, 

robustness including long lifetime, small size, low cost, and ability to be pulsed at fast 
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rates, while their main deficiency is the lack of powerful enough emitters in the deep-

UV (below 300nm) spectral region [26-28].  

In the area of on-capillary detection including CE, LEDs have been used in 

miniaturised low-cost detection systems, both photometric [29-40] and LED induced 

fluorimetric (LED-IF) [41-45], with advantages especially for portable CE instruments 

[46].  A number of LED-IF detection designs for microfluidic chip-based CE [47-50] 

systems have been reported as well.   

As LEDs, which otherwise would be more popular as miniaturised light sources for 

portable devices, are semi-monochromatic and naturally possess bandwidth of 

approx. 20-50 nm, when used as excitation sources in LED-IF for optimal 

performance and low baseline noise they have to be combined with low-pass filters 

[45, 51, 52].  

Miniaturization of the individual optical components (light source, optical filters, 

lenses, mirrors etc.) and their assembly into a functioning optical system is the 

limiting factor when creating a miniaturized CE-LIF design either LIF or LED-IF.  As 

LEDs have wide spatial light distribution, focusing optics is usually required for 

optimal sensitivity of LED-IF detection [45, 53, 54].  Optical fibres directly coupled to 

LEDs (pigtailed LEDs) [47, 55, 56] are a very popular alternative in creating a 

spatially directed LED light source.  Fibre-coupled LED sources with integrated 

interference filter could be an attractive integrated micropackaged fibre-coupled light 

source component for miniaturised optical detection systems.  

The µ-LED arrays [57] provide a quasi-collimated light emission and therefore can  

have a good coupling efficiency to optical fibres.  When integrated and 

micropackaged with an optical fibre, an interference filter can be inserted between 

the µ-LED array and the fibre, by depositing this filter on the back surface of the 
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substrate emitting LED.  Such LED-based integrated and micropackaged optical fibre 

light sources emitting from the fibre spectrally filtered light, could become a new 

option in custom designed optical fibre-coupled light sources for fluorescence 

detection in on-capillary and microfluidic chip separation systems.  The authors to 

their best knowledge are not aware of any other similar work on integrated 

micropackaged fibre-coupled µ-LED array light sources.   

In this work, for the first time an integrated and micropackaged -LED array with 

deposited SiO2/HfO2 interference filter and coupled to an optical fibre (µ-LED-IF-OF) 

was designed, fabricated, characterised and demonstrated using CE as an excitation 

light source for capillary separation techniques with fluorimetric detection.  

Experimental 

Materials.  For the microfabrication of the LED micro-arrays, GaN substrate material 

was purchased from LUMILOG (Sophia Antipolis, France). On the top of this 

substrate, epitaxial InGaN layers were deposited using MOVPE (metal organic 

vapour phase epitaxy) at the University of Cambridge (UK).  Device processing and 

deposition of the integrated filter onto the back side of the LED wafer material were 

carried out in the cleanroom facilities of the Tyndall National Institute in Cork 

(Ireland).  The optical fibre was purchased from Thorlabs (Ely, UK). The fibre had a 

core diameter of 400 µm diameter and a numerical aperture of 0.37 (part no. BFH37-

400).  A perforated silicon platform was used to integrate the µLED chip with the 

optical fibre. This MEMS component was also fabricated in the cleanroom facilities of 

the Tyndall National Institute in Cork (Ireland).  
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The optical transmission spectrum of the glass slides was measured using a white 

light source and an Ocean Optics USB 2000 spectrometer (Ocean Optics, Dunedin, 

FL, USA).  

Chemicals.  Hafnium oxide (HfO2) was purchased from PI-KEM (Tamworth, UK). 

Fluorescein and sodium phosphate were purchased from Sigma Aldrich (Dublin, 

Ireland), ammonium acetate, acetic acid, and 8-aminopyrene-1,3,6-trisulfonic acid 

(APTS) were obtained from Sigma Aldrich (St Louis, MO, USA).  A solution of  

1×10-7 mol/L fluorescein was prepared in sodium phosphate (20 mol/L, pH 9).  

APTS derivatised maltooligosaccharide ladder standard [12] was provided by Prof. A. 

Gutman (Horváth Laboratory of Bioseparation Sciences, Institute of Analytical 

Chemistry, University of Innsbruck, Austria).  Water was purified using a Millipore 

(Bedford, MA, USA) MilliQ water purification system.  

LED micro-array fabrication and characterisation.  LED chips with an area of 

1mm2 were fabricated on FS-GaN wafer material with a peak emission wavelength at 

475nm.  The fabrication started with the opening of the contact area for the n-GaN 

contacts.  A shallow ICP etch was applied to expose the underlying n-GaN layer in 

places where the n-GaN contact was to be deposited.  A multilayer Ti/Al/Ti/Au based 

n-contact was deposited subsequently on the n-contact area by lift-off.  The next step 

was the lithography and subsequent GaN etching to form the parabolic mesa shapes.  

The mesa sidewalls were then covered with an insulating dielectric.  The next level 

was the deposition of a p-contact metallisation on the mesa tops.  A thick layer of 

Cr/Au was then evaporated over both p and n contact areas as the bondpad metal 

for wire bonding.  The next step was to thin and polish the wafers from 500m down  

to 120m.  Once the thinning and polishing were completed, the interference filter 

was deposited on the back.  Around the light emitting window,a multilayer metal was 
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deposited on the back to provide a good thermal contact with the sub-mount.  The 

integrated interference filter was designed with Essential Macleod commercial 

software.  The HfO2/SiO2 layers were deposited using a Leybold Lab600 type 

electron- beam evaporation system.  7.5 pairs of HfO2/SiO2 stack were deposited on 

the back side of the LED wafer and simultaneously on some 0.1 mm thick 

rectangular glass slides. The optical transmission spectrum of the glass slides was 

spectrophotometrically analysed using a white light source.  For this measurement, 

the glass slides were placed in the light beam, perpendicular to the light beam.  The 

measurements were normalized to the transmission of an uncoated glass slide.  

Once the LED micro-array device was fabricated and the filter deposited at the back, 

it was packaged with an optical fibre: it was mounted on silicon submounts with 

perforated holes to host the fibre.  The device was wire bonded to the p and n pads 

and two external wires were soldered for connection to the power supply.  The fibre 

was cleaved at the device end in order to maximize the light coupling.  Subsequently, 

the fibre was inserted through a 500µm diameter hole in the silicon submount and the 

other end was placed across a detector to measure the maximum light output. Once 

the maximum coupling was achieved the fibre (through the hole) was affixed by a 

transparent epoxy and cured.   

CE experiments. CE experiments were carried out using an in-house built CE 

system.  High voltage power supply (Unimicro Technologies, USA) was used to run 

the separation.  Separation took place in a fused silica capillary (375 m O.D., 75 m 

I.D.) with 40 cm total length and 35 cm effective length (to detection window).  Prior 

to the first use, the capillary was flushed with 0.1 M NaOH for 10 minutes followed by 

flushing with 0.1 HCl for 10minutes and background electrolyte for 15 minutes.  For 

CE separation of APTS derivatised maltooligosaccharide ladder, the background 
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electrolyte composed of 50mmo/L acetate buffer (pH 4.75) mixed with commercial 

DNA analysis gel from Agilent Technologies 1:1 (v:v) was prepared as described in 

detail elsewhere [12].  The sample was injected hydrodynamically for 15s at a level 

difference of 7cm and the separation was carried out at -10kV.   

Results and Discussion  

µ-LED array design 

The schematic of the -LED array integrated with band-pass filter and optical fibre is 

shown in Fig. 1A.  An important feature of the design of the individual µ-LEDs is a 

micro-reflector allowing the µ-LED array to emit quasi-collimated light [57].  This is 

shown in the red framed inset of Fig.1A with a single -LED and modelled light 

reflection emitted by the LED chip.  The dimension of the LED chip is approximately  

1mm2, which is quite large compared to a standard surface emitting GaN based LED.  

The cluster size inside the chip area is approx. 450µm in diameter, consisting of 270 

individual µ-LED elements.  The silicon sub mounts are prepared separately to 

provide effective cooling of the -LED chip.  The fabrication involves a self-aligning 

process with 5 different photolithography levels as described in detail in the 

experimental section.  A scanning electron microphotograph of the µ-LED array and 

a photograph of the whole chip are shown in Fig. 1B and Fig. 1C, respectively.  

Integrated interference filter  

It has been shown that for LED-IF i.e. when using an LED as an excitation light 

source for fluorescence detection, the light emission characteristics of the LED can 

be improved  by suppressing the emission at higher wavelengths, where the analyte 

emission intensity is measured, by inserting an excitation low-pass (or suitable band-

pass) filter in front of the LED [45, 51].  Generally speaking, an interference filter is a 
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multilayer system consisting of alternate layers made of materials with high and low 

refractive index.  Hafnium oxide is a suitable material with high refractive index ~1.97 

and good transparency in the blue part of the spectrum, whilesilicon oxide has a low 

refractive index (~1.47), yielding the desired high refractive index contrast needed for  

the interference filters.  HfO2 is a material commonly used to manufacture UV filters 

due to its transparency down to about 250nm.  State-of-the-art commercial filters 

(light transmittance over 90% in the “pass” region, very steep transition to the “no-

pass” region with extremely low transmission down to ca. 10-5) may contain hundreds 

of layers, and include metal layers as well as dielectric layers to form resonant 

cavities [31].  However, in this proof-of-concept work we chose to deposit only a 

relatively small number of layers namely 15 (7.5 pairs) of HfO2 and SiO2 layers each 

of being ¼ wavelength optical thickness in order to cut-off the wavelengths above 

490nm and  to keep the level of experimental complexity at a reasonable level, while 

knowing that the filter characteristics will be inferior to those mentioned for the 

highest quality commercial filters, however being sufficient to demonstrate the 

concept.   

In Fig 2, the black curve shows the transmission of one set of 7.5 pairs of HfO2/SiO2 

layers, and the red curve shows the transmission for three sets equalling 22.5 pairs 

(45 layers). 

Fibre coupling and packaging  

Packaging process is a key element that assures the mechanical rigidity, as optical 

fibre coupling may be challenging especially in the here investigated research stage 

devices.  As conventional materials used for OF fabrication (glass and silica) are very 

fragile and difficult to manipulate when the core jacket is removed, a polymer fibre 

was used in this work.  To enable powering the device at electric currents higher than 
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10mA, a silicon heat sink at the back of the micro fabricated LED μ-array had to be 

employed.  Once the device was fabricated and the filter deposited at the back of the 

device, it was packaged with an optical fibre, with details of this procedure presented 

in the experimental section.  Photographs of finished ready to use packaged device 

or assembly are shown in Fig. 3A and 3B.   

µ-LED-IF-OF device characterisation  

Two devices – with and without IF – were fabricated and characterized in terms of 

emission spectra and optical output and its dependency on bias current.  The 

normalized emission spectra are compared in Fig. 4A, showing the emission maxima 

of the LED at 472nm, with a shift to a maximum at 470 nm.  While this relatively small 

shift was expected for an IF of only 15 layers (7.5 pairs), importantly the relative 

emission spectrum intensity in the area at the LED emission maximum at 474 nm and 

above is considerably diminished for the device with the IF.  Although this device 

provides lower light intensity, the light in the undesirable wavelength range (above  

490nm) was considerably suppressed.  

The optical output of both devices was measured for different bias currents (20, 50 

and 75 mA) (Fig. 4B) and as expected the optical power was proportional to the bias 

current. 

To consider the theoretical maximum optical power that could be coupled into the 

OF, the number of individual µ-LED elements (from the total 270 individual µ-LED 

elements arranged in an array of ca. 450 µm in diameter, each about 14 µm in 

diameter and optical power of ca. 15 µW) have to be considered based on the 

geometrical design: for the utilised 400 µm diameter OF, ca. 219 individual µ-LED 

elements fit into this area, corresponding to a maximum optical power of ca. 3.3 mW.  

The experimentally measured 225 µW from the µ-LED-IF-OF device correspond to 
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less than 10% fraction of the calculated maximum, with losses due to the spectral 

filtering by the integrated IF but likely also due to suboptimal light coupling efficiency 

in this research device.  Although this was not the aim of this proof-of-concept 

exploration, it is likely the optical power of these µ-LED-IF-OF devices can be 

increased substantially, potentially to ca. 3 mW for this device (based on a 400 µm 

diameter OF).   

Flow-through On-capillary detection  

An in-house made fibre optic LED-IF detector as described previously [37] was used 

in this work as shown in the scheme in Fig. 5A.  Microphotographs of the optical fibre 

guiding the light into the centre of an empty capillary and of a capillary filled with 

fluorescein solution are shown in Fig. 5B and 5C respectively.  

To maximize the sensitivity the optimal pickup fibre diameter was selected based on 

detection limits of fluorescein.  A flow-through method was used to determine LODs 

using manual syringe to flush the liquid through the capillary.   

LODs for the non-filtered device were approx. 8x worse than LOD obtained for 

filtered in the case of all three driving currents as well as pick-up OF diameters.  In 

Fig. 5D, the LOD was obtained for fluorescein using a 75 mA driving current.  No 

significant difference between LODs obtained for OFs with diameter of 600 m and 

300 m was observed using the filtered device.  LODs of fluorescein obtained under 

optimal conditions (driving current and pick-up OF diameter) as well as optical 

powers of -LED devices are summarized in Tab.1.  A comparison with commercially 

available pigtailed LED was performed.  The pig-tailed commercial LED (LEDP-

HB01-B_PF1000-050(SMA), Doric Lenses, Canada) used for comparison had an 

emission maximum at 470 nm and was equipped with 1000 m diameter excitation 
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OF.  The measurement showed a significantly lower LOD (ca.100x) due to the 

substantially higher optical output provided by the commercial LED which was 

coupled to an OF with 1000 m diameter.  

Capillary electrophoresis  

Even though the LODs for the devices presented here are higher compared to 

commercial pig-tailed LED, the applicability for CE detection was demonstrated by 

the separation of APTS-labelled malotooligosacchatide ladder under electrophoretic 

conditions as described in detail elsewhere [12]  (Fig. 6).  In comparison with chip-CE 

using a commercial Agilent Bioanalyzer platform with 475 nm LED-IF detection [10], 

under optimized condition, the signal to noise ratio obtained for the highest peak 

(marked with an asterics“ * “ in Fig. 6.) of the maltooligosacharide ladder of here 

studied device was only ca. 2x lower (S/N obtained for chip 1332, for CE with LED 

770).  

Conclusions 

New integrated fibre optics light sources based on an LED micro-array integrated and 

micropackaged with an interference filter and optical fibre (µ-LED-IF-OF) have been 

designed, microfabricated and successfully tested.  They may have a potential as a 

new option of integrated solid-state-optical filter-fibre light source with potentially wide 

applicability including as an excitation source for capillary and microfluidic separation 

techniques.  Fabrication of next generation of µ-LED-OF devices will require 

application of a higher number of IF layers to enhance the spectral properties of the 

interference filter, optimising the OF coupling efficiency, and maximising the 

radiometric power output of the individual micro-LEDs.   
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Tab. 1:  Parameters of the fibre LED sources and resulting LOD values.  

Conditions:  

 

Current 

[mA] 

Optical 

power [mW] 

Pick-up fibre 

diameter [m] 

LOD 

Fluorescein 

[mol/L] 

 Without IF 75 0.400 600 9 x 10-8 

With IF 75 0.225 600 1 x 10-8 

Pig-tailed 

commercial LED 

Exc. OF 

1000 m 

500 8 600 8 x 10-10 
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Figure captions  

 

Fig. 1: A) Scheme of μ-LED with modelled light reflection, Inset: scheme of μ-LED 

device with integrated IF and coupled to OF, B) SEM photograph of the 

µ-LED array, C) photograph of the μ-LED chip. 

 

Fig. 2: Dependence of transmittance on number of deposited HfO2/SiO2 layers. 

 

Fig. 3: A) Photograph of the μ-LED array integrated with band-pass filter and optical 

fibre device, B) Photograph of device in use.  

 

Fig. 4: A) Emission spectra of filtered and non-filtered device, B) Optical power vs. 

driving current for filtered (S19) and non-filtered device (S16).   

 

Fig. 5: A) Scheme of CE-μ-LED-IF-OF setup, B) Photograph of OF focused to the 

empty capillary C) Photograph of OF focused to the capillary flushed with 

fluorescein, D) Limits of detection of fluorescein obtained using different 

pick-up optical fibres (driving current 75 mA).  

 

Fig. 6: Electropherogram of APTS-labelled maltooligosaccharide ladder (50 mg/ml) 

analysed by CE-μ-LED-IF-OF, Conditions: BGE: 50 mM acetate buffer (pH 
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4.75) mixed with commercial DNA analysis gel from Agilent Technologies 

1:1 (v:v), injection: hydrodynamic (15 s, 7 cm), separation voltage: -10 kV.  
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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