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Abstract
The transformation of DNA sequencing 
technologies has enabled more powerful and 
comprehensive genetic profiling of microbes. The 
sheer number of informative loci provided by 
genome-sequencing allows the investigation of 
structural variation and horizontal gene transfer 
as well as delivering novel insights into genetic 
origins, evolution and epidemiological history. 
Microbial genomes can be sequenced en masse 
at high coverage but have associated challenges 
of high mutation rates and low conservation 
of genome structure. Consequently, detecting 
changes in DNA sequences requires a nuanced 
approach specific to the organism, availability of 
similar genomes, and types of variation. Here, we 
outline the high power of genome-sequencing 
to detect a wide scope of polymorphism classes. 
Samples without related species on which to scaf-
fold a genome sequence require specific assembly 
methods that can be enhanced by progressive 
procedures for improvement. Polymorphism 
identification depends on genome structure, and 
error rates in closely related specimens can be 
reduced by incorporating population-level infor-
mation. The development of genome analysis 
platforms is hastening the optimization of variant 
discovery and has direct applications for pathogen 
surveillance. Robust variant screening facilitates 
more sensitive scrutiny of population history, 
including the origin and emergence of infectious 
agents, and a deeper understanding of the selec-
tive processes that shape microbial phenotypes.

Background
Microbial genomics is driven by the need to 
identify molecular markers and genetic switches 
associated with novel phenotypes. This is most 
extensively applied to address infectious disease 
and evolution but also is used for improving food, 
energy, water and biomolecule production (Suter 
et al., 2006). The core aim is to link the trait of 
interest to a defined cellular signature, principally 
a metabolic or regulatory change. Distinguish-
ing phenotypes at a genetic level provides an 
enhanced resolution of the molecular events asso-
ciated with natural variation due to the density of 
markers.

Variability at the level of amino acids in 
peptides, repetitive DNA copy numbers and indi-
vidual DNA nucleotides can provide sufficient 
power for discriminating traits: sample typing pro-
tocols have been developed on this basis (Wren, 
2000). The most significant limitations for strain 
profiling are an adequate number of informative 
markers and the potential to overlook novel varia-
tion at other loci (Achtman, 2008). Although the 
first microbial genome sequence (RNA virus bac-
teriophage MS2) was completed in 1976 (Fiers 
et al., 1976), and the era of microbial genomics 
was proposed to have begun in 1995 (Rasko and 
Mongodin, 2005) with the bacterial genome 
of Haemophilus influenzae (Fleischmann et al., 
1995), it was the recent development of DNA 
sequencing technologies more efficient than tra-
ditional capillary (Sanger) sequencing that made 
genome-sequencing accessible (Margulies et al., 
2005). Since a 100-fold improvement developed 
for the Mycoplasma genitalium genome (Margulies 
et al., 2005), enhancements have continued and 

Genome SNP Analysis

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/30934825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNCORRECTED PROOF Date: 11:22 Friday 18 October 2013
File: Bioinformatics and Data Analysis 1P

Coughlan et al.52 |

now render the approach amenable for studying 
variation in any organism (Nowrousian, 2010).

The main challenges linked to genome 
sequencing include DNA isolation, genome 
assembly and mutation discovery through read-
mapping (Nielsen et al., 2011). In the context of 
all microbial life (viruses, Archaea, fungi, protozoa 
and algae), most work has been completed on 
bacteria, and consequently this chapter mainly 
concentrates on this class of microorganism. 
Although the major disease burden posed by 
microbial pathogens necessitates a focus on the 
genomics of infection and epidemiology (Walker 
et al., 2012; World Health Organization, 2012), a 
significant asset of genomic technologies is their 
wide applicability to all organisms, including non-
model ones.

A range of characteristics render microbial 
genomes ideal for assessment with genomic tech-
nology and for evolutionary studies. Firstly, their 
compact genome sizes makes genome-sequencing 
cheaper. Secondly, short generation times and 
fast mutation rates mean genetic changes can be 
observed in real time (Wren, 2000) and this can 
be performed in vitro and in vivo to test hypoth-
eses (Blount et al., 2012). Thirdly, microbial 
adaptability to extensive genome rearrangements, 
karyotype changes and gene transfer means that 
the range of mutation types is extensive (Frost et 
al., 2005).

This section highlights the attributes of micro-
bial variants in the context of genome-sequencing. 
The genome of a new microbial species can be 
assembled without the use of a related refer-
ence genome, and this draft sequence can be 
improved. This allows the discovery of all DNA-
level mutations, which include single nucleotide 
polymorphisms (SNPs) where one DNA base is 
replaced by another, as well as larger structural 
variants (SVs): these are alterations of two or 
often many DNA bases. Genome sequences 
can be compared between species and within 
populations, for which unique methods have 
been developed to improve variant ascertain-
ment. De novo polymorphism identification and 
the nuances of SV discovery are explored in par-
ticular. A range of tools and schematics help with 
examining microbial genomic variation: the most 
significant are highlighted here.

Microbial genetic variation and 
genome sequencing
The section outlines the main forms of diver-
sity that can be assessed using whole-genome 
sequencing: SNPs and SVs, as well as other types 
of variation that cannot be resolved using cur-
rent sequencing technologies. Greater inference 
power can be derived from investigating genome-
wide SNP variation rather than with traditional 
approaches like multi-locus sequence typing 
(MLST).

MLST is a scalable DNA-based sequence 
analysis scheme for investigating local and global 
pathogen epidemiology that examines SNPs at 
multiple genes. It was first proposed for Neisseria 
meningitidis in 1998 (Maiden et al., 1998): poly-
merase chain reaction (PCR) is used to amplify 
400 to 600 bp DNA fragments of six to ten house-
keeping genes (Enright and Spratt, 1999; Maiden, 
2006), which are capillary sequenced (Sanger and 
Coulson, 1975; Sanger et al., 1977). The MLST 
variation for each gene is combined to produce an 
allelic profile that defines the sequence type. Allele 
profiles are stored in MLST databases that can be 
accessed through PubMLST (www.pubmlst.org) 
(Enright and Spratt, 1999; Urwin and Maiden, 
2003; Larsen et al., 2012) and can be used for clas-
sification of bacterial types (Cheng et al., 2011). 
MLST is a routine and powerful tool to compare 
isolates on a global scale that has been primarily 
used for bacterial specimens. It has been used to 
examine the evolutionary history of methicillin-
resistant Staphylococcus aureus (Enright et al., 
2002), and the relationship between virulence 
and genotypes of Streptococcus pneumonia (Dic-
uonzo et al., 2002; Brueggemann et al., 2003). 
Methods are being developed to parallelise 
high-throughput genotyping with more efficient 
sample phenotyping using robots (Haase et al., 
2011).

MLST is a costly and time-consuming 
procedure (Larsen et al., 2012) and lacks the 
discriminatory power of genome sequencing 
(Harris et al., 2012). Some of the most pathogenic 
microbes exhibit low levels of DNA diversity and 
are genetically monomorphic – often a reflection 
of their recent rapid spread (Achtman, 2012). 
Examples include Salmonella enterica serovar 
Typhi (Holt et al., 2008), Yersinia pestis (Achtman 
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et al., 1999), Bacillus anthracis (Van Ert et al., 
2007) and the Mycobacterium tuberculosis com-
plex (Sreevatsan et al., 1997). Techniques such as 
pulsed field gel electrophoresis (PGFE), multi-
locus variable number of tandem repeats analysis 
(MLVA) and spoligotyping (spacer oligonucleo-
tide typing) are more suitable for the analysis of 
monomorphic species – as is genome sequencing 
(Achtman, 2008). Furthermore, incorporating 
high-throughput components to assess MLST 
data require comprehensive informatics (e.g. 
Laboratory Information Management Systems). 
And while many bacterial species have MLST 
profiles, few others have copious MLST data. 
Consequently, MLST requires much of the same 
genetics and informatics infrastructure associated 
with genomics but samples far fewer genes.

Recent advances in DNA sequencing can be 
defined as a revolution because of the order of 
magnitude increase in efficiency (Margulies et 
al., 2005) beyond capillary and shotgun sequenc-
ing (Fleischmann et al., 1995). This continued 
transformation enables the rapid sequencing of 
all DNA in a sample. This is being adopted as an 
extension of MLST analysis through the Bacterial 
Isolate Genome Sequence Database ( Jolley and 
Maiden, 2010), where genome-based results can 
be integrated with MLST work. However, genome 
sequencing requires neither previous work nor 
prior information from related species. The cost of 
genome sequencing has dropped approximately 
ten-fold every 5 years (Service, 2006) to the point 
that it is below the cost of MLST (Larsen et al., 
2012). Despite potential informatics limitations 
of data processing, genome sequencing can give 
clinically informative results in a short time frame 
(Glenn, 2011). Consequently, the adoption of 
genome sequencing as the standard method of 
microbial profiling can provide additional infor-
mation not obtainable through MLST.

One of the major advantages of whole genome 
sequencing is that it can be used to detect SVs, 
which moderate gene expression in a different 
and dose-dependent manner more frequently 
than SNPs (Medvedev et al., 2009, 2010). 
Genome sequencing is conducted using DNA 
reads with a saturation of coverage, and so most 
SVs can be inferred from where the coverage 
changes significantly (Nielsen et al., 2011). SVs 

are polymorphisms that affect the number of 
nucleotides in the genome, and are defined here 
to include insertions, deletions, translocations, 
inversions and copy number variation (CNVs) 
(Fig. 3.1). An insertion is a sequence in the sample 
genome that is absent in the reference sequence, 
and can be caused by errors in DNA replication 
due to DNA polymerase slippage at repetitive 
sequences. The opposite, when a sequence in the 
reference is not present in the sample, is called a 
deletion – insertions and deletions (indels) can 
range from single to many bases. CNVs are the 
repetition of a locus: tandem duplications are 
the simplest form of CNV; but if the duplicated 
element exists on another chromosome, it is a 
translocation. Inversions are the re-orienting 
of a locus in the reverse direction, often due to 
homologous recombination.

The comprehensive profiling of SNP and 
SV changes provided by genome sequencing 
enhances our understanding of drug resistance, 
virulence factors and enables more accurate 
pathogen tracing. Although DNA microarrays can 
capture a larger panel of variants than MLSTs and 
have been successfully applied to viral infections 
(Chiu et al., 2008), they are inherently limited by 
not discovering novel mutations. The origin and 
spread of viral infections like influenza has been 
investigated more robustly using genomics (Smith 
et al., 2009). For bacteria, this has been success-
fully applied to the study of adaptive evolution 
of Staphylococcus aureus during chronic cystic 
fibrosis infection (McAdam et al., 2012). It has 
documented global transmission of Vibrio cholerae 
and its acquisition of antibiotic resistance elements 
(Mutreja et al., 2011). The E. coli O104:H4 draft 
genome was completed just three days after DNA 
isolation during an outbreak, and the consensus 
genome sequence was reconstructed within two 
days (Rohde et al., 2011). Hospital transmission 
and control of a methicillin-resistant Staphylococ-
cus aureus (MRSA) outbreak was implemented 
using genome sequencing, which implicated a 
single carrier as the likely originator of the disease 
(Harris et al., 2012). Given the low cost of bacte-
rial genome sequencing, estimated at just £95 
(~$160) per isolate for MRSA, affordable routine 
genome-based surveillance would have detected 
the outbreak earlier. These studies highlight 
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another salient benefit of genome-sequencing of 
small genomes: many samples can be pooled on a 
single lane of a sequencing machine, each having 
its own unique set of DNA reads with a short 
DNA adaptor tag added during library prepara-
tion. These sample barcodes do lead to some loss 
of total output, but dramatically increase the total 
number of samples that can be processed per lane 
to 96 or more. Multiplexing can also be adopted 
to conduct large-scale pooling, a form of high-
throughput MLST (O’Roak et al., 2012).

Horizontally inherited DNA and 
genome sequencing
A major component of microbial genetic variation 
is horizontal gene transfer (HGT, also known as 
lateral gene transfer). This is the movement of 
genetic material in a way not facilitated by vertical 
transfer (sexual or asexual reproduction) – usually 
by transformation, transduction or conjugation 

(Ochman et al., 2000). HGT can be considered in 
terms of a core genome – a set of genes encoding 
fundamental metabolic functions different to the 
non-essential accessory genome (Schmidt and 
Hensel, 2004). The accessory genes are significant 
because they frequently encode traits associated 
with drug resistance, virulence, and the ability 
to degrade xenobiotic compounds. This can con-
tribute to the adaption of a microorganism to its 
environment and also to its diversification ( Juhas 
et al., 2009). Classical vectors of HGT are plas-
mids and bacteriophages, which can be detected 
from whole genome sequencing. A plasmid is a 
self-replicating double stranded DNA molecule 
(replicon) that is typically circular. However, 
linear plasmids with either a covalently closed 
hairpin loop or attached protein at each end have 
also been discovered in spirochaetes, Gram-posi-
tive and Gram-negative bacteria (Hinnebusch and 
Tilly, 1993; Frost et al., 2005). Phage genomes 
can be up to several hundred kb in length and are 

Figure 3.1 Types of (a) simple and (b) complex structural variant mutations. A reference sequence with five 
loci (A, B, C, D, E): (a) Simple SVs: a deletion (no B); an insertion (W); an inversion (A and B switched); a 
dispersed duplication (B repeated between C and D); a tandem duplication (C repeated between C and D); 
and a linked gain (small C element repeated between C and D). (b) Complex SVs: Shown in this diagram 
are co-occurrence of a deletion and an insertion (no B and W entered); co-occurrence of a deletion and an 
inversion (no C and A and B switched); co-occurrence of an inversion and an insertion (W entered and A and 
B switched); an inversion within a copy number gain (C duplicated and Cb and Cc switched); and a deletion 
within a copy number gain (C duplicated and Cb deleted).

LOW RESOLUTION
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composed of single- or double- stranded DNA 
(Pedulla et al., 2003). Temperate bacteriophages 
mediate HGT during lysogenization: the phage 
DNA integrates into the bacterial chromosome as 
a prophage and replicates with it, though in some 
cases the phage can replicate independently as a 
circular or linear plasmid (Canchaya et al., 2003; 
Frost et al., 2005).

In addition, an increasingly diverse array of 
mobile genetic elements (MGEs) such as genomic 
islands, mobilizable transposons and conjugative 
transposons have been discovered (Osborn and 
Boltner, 2002) that can encode genes enabling 
HGT within or between bacterial cells (Frost et 
al., 2005). Genomic islands (GIs) are gene clus-
ters of between 10 and 500 kb acquired by HGT 
(Osborn and Boltner, 2002). They were first dis-
covered in uropathogenic E. coli as virulence genes 
with distinctive GC content and codon usage pat-
terns compared to adjacent DNA (Hacker et al., 
1983). GIs can include a broad range of MGEs 
such as prophages, integrative conjugative ele-
ments, integrons, conjugative transposons and 
integrated plasmids (Langille et al., 2010) and 
are usually chromosomally inserted near transfer 
RNA genes flanked by short direct repeat struc-
tures. GIs contain genes associated with mobility 
(Langille et al., 2010) and include pathogenicity, 
fitness, symbiosis, metabolic or resistance islands 
depending on their functional gene composition 
(Hentschel and Hacker, 2001).

Although horizontal inheritance is common in 
prokaryotes, it is also prevalent in some eukary-
ote microbes as well. The protozoan parasites 
Leishmania infantum and Leishmania major can 
exchange eukaryotic episomes of 45+ kb (Coelho 
et al., 2012): these are formed by homologous 
recombination between repeats and are small 
extra-chromosomal pieces of closed circular DNA 
that can replicate independently of the genome 
(Leprohon et al., 2009; Downing et al., 2011). 
They are analogous to plasmids in prokaryotes but 
differ from prokaryotic episomes that integrate 
into host chromosomes (Hinnebusch and Tilly, 
1993).

Whether mediated by plasmids, bacte-
riophages, MGEs or GIs, HGT results in a mixed 
agglomeration of genes with different origins on 
a contiguous chromosome. By examining the 

phylogenetic distribution of mutations at these 
loci, genes resulting from HGT can be identified 
where they have sharply distinct genetic signatures 
(Lawrence and Ochman, 1998). Bacteria have 
characteristic patterns of substitutions (Hooper 
and Berg, 2002), codon bias (Sharp and Matassi, 
1994), GC content (Muto and Osawa, 1987) and 
oligomer frequencies (Burge et al., 1992) due to 
different environmental selection and mutational 
pressures (Sueoka, 1988; Rocha and Danchin, 
2002). These characteristics can be used to 
identify foreign DNA where it has a composition 
that differs from those of the host genome. For 
microbes with extensive tolerance of HGT that 
resemble ecotypes more than species, the core 
genome will gradually diminish and the accessory 
genome continually expand as more strains are 
sequenced (Achtman, 2008). Consequently, only 
genome sequencing provides a complete picture 
of HGT signals, which can be tested using tools 
like Pyphy (Sicheritz-Ponten and Andersson, 
2001), AMPHORA (Wu and Eisen, 2008) and 
PhyloNet (Than et al., 2008).

Alternative genotyping 
approaches
Although genome-sequencing can provide a 
higher total density of molecular markers, it has 
low sensitivity for detecting variation in highly 
repetitive regions (Medvedev et al., 2009). This 
section details the limitations of genome sequenc-
ing and discusses some alternative methods for 
distinguishing microbial strains based mainly on 
restriction enzyme digestion of DNA, repeat-
counting and protein polarity. These methods 
have differing levels of resolution: pulsed field gel 
electrophoresis (PFGE) and clustered regularly 
interspaced palindromic repeat (CRISPR) analy-
sis index variation at rapidly evolving loci and so 
are more applicable to population-level analysis. 
MLST as well as multi-locus enzyme electro-
phoresis (MLEE) and multi-locus microsatellite 
typing (MLMT) examine diversity at conserved 
housekeeping genes likely to be selectively neutral 
and so document deeper evolutionary history 
(Maiden, 1998; Singh et al., 2006). The first 
widely used method of characterizing bacterial 
SNPs used the 16S rRNA gene: this contains 
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nine hypervariable regions (V1–V9) (see Fig. 
9.1) flanked by highly conserved regions for PCR 
primer design (Van de Peer et al., 1996) that can 
be used for species identification.

PFGE separates DNA fragments by size on 
agarose gels using alternately pulsed electric 
fields (Schwartz and Cantor, 1984). The DNA 
is digested with restriction enzymes to produce 
fragments (Schwartz and Cantor, 1984; Singh 
et al., 2006): if the restriction enzymes cut the 
DNA at different positions, a different banding 
pattern for each isolate is obtained. PFGE can be 
modified by varying an electrical pulse applied 
to the gel (Singh et al., 2006) – though contour 
clamped homogenous electric field is the most 
widely used approach (Goering, 2010), other 
techniques based on field inversion (Carle et 
al., 1986), orthogonal fields (Carle and Olson, 
1984) and transverse alternating fields are also 
used (Gardiner et al., 1986). PFGE results can 
be shared (PulseNet, www.cdc.gov/pulsenet) 
and standardized protocols for pathogen surveil-
lance, including E. coli O157:H7, non-typhoidal 
Salmonella serotypes, Listeria monocytogenes and 
Shigella have been developed (Swaminathan et 
al., 2001). Although PFGE is a simple and inex-
pensive method, it can take days to complete and 
the reproducibility of results varies between labs 
(Noller et al., 2003). Moreover, PFGE requires 
longer strain culturing than genomics (Lindstedt, 
2005), which has moved from requiring 2 ng of 
material (Carter et al., 2003) to only 10–20 cells 
(~100 pg in humans) (Peters et al., 2012).

CRISPR elements are a family of 21 to 37 bp 
DNA repeats found in many prokaryotes and 
most Archaea (Haft et al., 2005) and were first dis-
covered in E. coli K12 (Ishino et al., 1987). They 
are separated by highly variable non-repetitive 
spacers encoding small RNAs (Haft et al., 2005) 
about the same size as the repeats ( Jansen et al., 
2002). These spacers originated from MGEs and 
mutate rapidly (Haft et al., 2005). CRISPR-asso-
ciated genes encode conserved proteins (Haft et 
al., 2005; Al-Attar et al., 2011) that act as acquired 
immunity against viruses and conjugative ele-
ments by recognizing and inactivating foreign 
DNA (He and Deem, 2010). Spoligotyping ampli-
fies the whole CRISPR region using the direct 
repeat region as a PCR target and is primarily 

used for genotyping Mycobacterium tuberculosis. 
The DNA product is hybridized to a membrane 
containing oligonucleotides homologous to 
the spacer sequences that differentiate samples 
based on spacer type presence and absence (van 
Soolingen et al., 1993; Kamerbeek et al., 1997; van 
der Zanden et al., 2002; Al-Attar et al., 2011). M. 
tuberculosis has CRISPR loci consisting of 36 bp 
repeats and unique spacers of 35–41 bp (Groenen 
et al., 1993). Mycobacterium spoligotype variation 
originates from IS6610 insertion element trans-
position, homologous recombination (Groenen 
et al., 1993) and replication slippage that deletes 
spacers (Driscoll, 2009). However, spoligotyping 
has less discriminatory power than IS1160 RFLP 
typing (Kamerbeek et al., 1997; Kremer et al., 
1999).

Microsatellites are short variable number 
tandem repeats (VNTRs) of one to six bases 
that mutate at rates several orders of magnitude 
higher than SNPs (Ellegren, 2000). Polymerase 
slippage during DNA replication in the absence of 
DNA repair can result in changes in the number 
of repeat units (Strand et al., 1993). MLMT is 
particularly useful for genetically monomorphic 
organisms and is also used for examining eukary-
otic microbes such as Trypanosoma (Llewellyn 
et al., 2009) and Leishmania (Bulle et al., 2002). 
Conserved flanking regions provide a PCR tem-
plate for MLMT profiling of the whole repeat 
region based on size – the same principle applies 
to VNTR and MLVA, which have character-
ized pathogens Neisseria meningitidis (Schouls 
et al., 2006), Legionella pneumophila (Pourcel 
et al., 2007) and Leptospira interrogans (Slack et 
al., 2007). MLVA has equivalent sensitivity but 
higher specificity compared to PFGE for E. coli 
O157:H7 (Noller et al., 2003).

Although MLEE was first used to analyse 
genetic variation in Drosophila (Hubby and 
Lewontin, 1966; Lewontin and Hubby, 1966), it is 
a standard method for exploring bacterial genetic 
diversity and epidemiology (Selander et al., 
1986). MLEE discriminates the electrophoretic 
mobilities of 20 or more intracellular housekeep-
ing enzymes where amino acid diversity affecting 
the electrostatic charge is present (Enright and 
Spratt, 1998; Stanley and Wilson, 2003). MLEE 
has been used to examine Yersinia (Dolina and 
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Peduzzi, 1993), E. coli (Souza et al., 1999), Sal-
monella (Beltran et al., 1988), Trypanosoma brucei 
(Stevens and Tibayrenc, 1995), Plasmodium falci-
parum (Abderrazak et al., 1999) and Leishmania 
(Hamarsheh, 2011). MLEE too has a number of 
limitations: it is time-consuming, largely ignores 
variation at non-charged amino acids, and can be 
difficult to replicate (Enright and Spratt, 1998; 
Gil-Lamaignere et al., 2003).

Genome assembly: methods, 
tools and improvement
The construction of a draft genome sequence is a 
crucial step for understanding the biology of all 
species. The discovery of novel viral and bacterial 
samples means that de novo genome assembly can 
discover novel chromosomal architecture. Moreo-
ver, samples with known reference sequences 
that possess flexible plastic genomes (with high 
concentrations of repetitive sequence or exten-
sive HGT) deserve additional scrutiny using the 
unbiased assessment provided by de novo genome 
assembly. Additional motivation for improved 
reference assemblies stems from the numbers 
of incomplete genomes compared to that of 
permanent drafts (14,743 bacterial genomes 
versus 1,781 drafts; 265 versus 40 for Archaea; 
2,769 versus 34 for eukaryotes; taken from 
the Genomes OnLine Database in April 2013, 
www.genomesonline.org) (Pagani et al., 2012). 
Genome sequencing typically produces overlap-
ping redundant reads that are aligned against a 
related genome (Eisenstein, 2012), or are used to 
construct a minimal set of consensus sequences – 
this is genome assembly (Fig. 3.2). The genome 
assembly problem is where the DNA reads have to 
be aligned against one another: it typically arises 
in the context of non-model microbes lacking a 
closely related reference genome.

Genome assembly methods
Experimental design, read quality and read length 
are major determinants of assembly results (Salz-
berg et al., 2012). Genome-sequencing platforms 
deliver short reads whose ends can be paired by 
sequencing both 5′ and 3′ parts of a single frag-
ment of DNA. Although longer read lengths 
provide better scope for developing a map of 

the entire genome, paired reads are essential for 
developing an informative assembly because 
they link disparate elements (Miller et al., 2010). 
Paired-end reads are oriented towards each other 
separated by an un-sequenced insert component 
that may be 200–600 bp with a low variance in 
size for a given mean insert length (Medvedev et 
al., 2010) (Fig. 3.3). Less commonly, paired-end 
reads can also overlap each other such that each 
has a shared segment of 20 bases.

Mate-pair reads are oriented away from each 
other and because they have much longer insert 
sizes, often of the order of 4–6 kb, they provide 
additional resolution (Medvedev et al., 2010). 
They are created by selecting long DNA fragments, 
circularising these sequences with an internal 
adaptor, and selecting the DNA fragments con-
taining the internal adaptor after random shearing 
for amplification. If one of the mate pair reads can 
be uniquely mapped, untangling repetitive regions 
longer than paired-end read insert sizes is possible 
(Li and Homer, 2010). In prokaryotes, resolution 
may be improved by using shorter insert sizes for 
mate pairs (< 1 kb) determined by the genome’s 
repetitiveness (Wetzel et al., 2011). A broad 
range of genome-wide repeat sizes requires a 
more extensive array of insert sizes: consequently, 
assemblies created from multiple libraries with 
a wider range of insert sizes are more accurate 
(Flicek and Birney, 2009).

De novo genome reconstruction by assembly 
of DNA reads can be carried out using overlap-
layout-consensus (OLC) (Flicek and Birney, 
2009) or de Bruijn graph methods that use 
subsequences to reduce computational memory 
requirements through a smaller search space (Li et 
al., 2012). A k-mer is short sequence of a defined 
length (k) that is odd value to avoid palindromes 
and is smaller than the DNA read length. DNA 
sequenced using capillary sequencing methods 
can be assembled by OLC-based methods where 
there are sufficiently long homologous regions 
between the sequences for unique overlaps. For 
this process, the potential overlap between the 
reads is computed by global or local nucleotide 
alignment: this is based on the seed-and-extend 
approach where the matching sequences are itera-
tively joined together (Altschul et al., 1990) (Fig. 
3.4). These distances are quantified as a graph or 
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Figure 3.2 Genome assembly and variant discovery overview. An outline of genome assembly and variant 
discovery, which can be performed on individual specimens or on large sample sets. Genome assembly: 
DNA reads generated by genome sequencing are trimmed and corrected before assembly to produce an 
initial contig set (Fig. 3.4) that can be contiguated. Once these contigs are iteratively base-corrected and 
gaps are minimized, reads are re-mapped to assess the level of improvement. This is a repeatable process 
that can combine multiple DNA read libraries (Fig. 3.3) as well as other data sources like capillary reads, 
BACs, fosmids, optical maps and genetic maps to produce a draft genome sequence. Variant calling: DNA 
reads for each sample are mapped against the reference genome, with optional local re-assembly and re-
mapping where required. This produces mutation sets for individual samples, and for population panels: 
population data can be iteratively recalibrated to improve the overall quality using genotype likelihoods. 
Linkage between mutations and the extended local haplotype can be used to further improve the population-
wide mutation set. Finally, the individual and/or population variation should be filtered and repetitive regions 
should be masked out.

Figure 3.3 Paired-end and mate-pair read types. (a) Paired-end reads of 100 bases (grey) face each other 
(arrows) and are comprised of either overlapping pairs of reads (left) or have an insert element of 300–500 
bases between the read sequences (right). (b) Mate pair reads have larger insert elements during sequencing 
(1–10 kb).
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tree during the layout phase to produce initial sets 
of contigs of at least one read length. Then during 
the consensus step, the contigs are iteratively 
aligned to minimize redundancy.

De Bruijn graph methods align the sub-
fragments (k-mers) rather than whole reads and 
are more effective than OLC for shorter reads 
(Zerbino and Birney, 2008). However, this non-
exhaustive search depends on the user-defined k 
such that mapping accuracy is generally improved 
by increasing k but the total read coverage may 

be lower, reducing nucleotide-level accuracy. 
Consequently, the optimal k-mer depends on the 
uniqueness of the genome: this can be assessed 
by determining what fraction of the genome is 
unique for different k values. Multiple assemblies 
can also be combined from the same set of reads 
but for different values of k. Assembly methods 
using multiple k values are superior compared to 
those using only a single k (SOAPdenovo-MK, 
trans-ABySS and Oases-MK versus SOAPdenovo, 
ABySS, Oases and Trinity) (Zhao et al., 2011). 

mate 2
mate 1

mate 1
mate 1

mate 1 mate 1

mate 1

mate 1
mate 2

mate 2
mate 2 mate 2

mate 2

mate 2

mate 1
mate 1

mate 1 mate 2
mate 2

mate 2

Contigs improved

Scaffold

Contig A Contig B

d)

c)

b)

a)

Figure 3.4 Scaffolding and contig extension. (a) Mate pair reads (grey) connect contigs A and B (black) with 
their long insert sizes (black) to (b) produce a consensus scaffold where gaps are denoted by unknown 
bases (N). (c) Paired-end reads (grey) are mapped locally to these gaps extend the contigs and shorten or 
close the gaps to reduce the gap (d) (gap closed interval shown in grey).
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Determining the unique sequence path in a set 
of reads using string graph algorithms represents 
a third assembly approach beyond OLC and de 
Bruijn graphs and may be faster (Myers, 2005).

Further stages may improve overall output: 
trimming the ends of reads can improve results – 
this applies particularly to Illumina reads where 
the polymerase-DNA synchrony declines with 
read length. As a result, sequence quality declines 
from 5′ to 3′ and so excluding low-quality por-
tions may improve the assembly. In addition, both 
unprocessed reads and draft contigs should be 
aligned against contaminant and vector sequence 
databases, and orphan contigs not assigned to 
scaffolds can be compared against related species 
genome sequences for classification (Altschul et 
al., 1990). Optical maps provide sequence data 
digested by a restriction enzyme chosen in accord-
ance with the genome nucleotide composition 
(Valouev et al., 2006). Optical maps can remove 
mis-assembled contigs because they are generated 
from individual ordered chromosomes. Process-
ing optical map sequences can be integrated with 
short-read assembly (Lin et al., 2012). For micro-
biome samples, iterative approaches exists for the 
genome assembly of multiple species (Sharon et 
al., 2012)

The assembled contigs must be aligned, 
ordered and oriented with respect to one another: 
this is called contiguation. This transforms the 
consensus sequences into trans-contig genome 
units called scaffolds – these should approximate 
chromosomes for high-quality assemblies. Scaf-
folds are assigned to karyotyped chromosomes: 
genome size and thus mean read depth can be 
inferred from Feulgen image analysis densitom-
etry (Hardie et al., 2002). Assembly size is can be 
summarized as the minimum contig length in the 
set of contigs covering at least 50% of the genome 
(N50).

Genome assembly and 
improvement tools
Assembly accuracy varies widely and is only 
loosely linked to contiguity (Salzberg et al., 2012). 
Many genome assembly and analysis tools have 
been designed for long mammalian genomes with 
low mean read coverage (5- to 15-fold). For short 
microbial genomes computational efficiency is 

not a significant limitation – similarly, coverage is 
generally saturated. Consequently, understanding 
the nuances of these tools can improve power by 
optimizing the assembly. A comprehensive list of 
assembly tools based on de Bruijn graph, OLC 
and string graph algorithms and their compara-
tive performance has been collated (Fonseca et 
al., 2012): see also http://assemblathon.org 
(Earl et al., 2011) and www.jurgott.org/linkage/
ListSoftware.pdf (Miller et al., 2010). Newbler 
(http://contig.wordpress.com) operates on 
long reads from the Roche 454 platform and 
can split DNA reads between contigs (Table 
3.1). Novoalign (www.novocraft.com) uses the 
Needleman–Wunsch OLC algorithm with gaps 
(< 7 bases) to map long and paired-end reads 
with high levels of mismatches accounting for 
base quality parameters. For genome assemblies 
of S. aureus (2 Mb in length) and Rhodobacter 
sphaeroides (4 Mb), ALLPATHS-LG (Gnerre 
et al., 2011) tended to have a higher N50, fewer 
errors and a lower total number of contigs than 
ABySS (Simpson et al., 2009), String Graph 
Assembler (SGA) (Simpson and Durbin, 2012), 
SOAPdenovo (http://soap.genomics.org.cn) 
and Velvet (Salzberg et al., 2012). ABySS has out-
performed Velvet and SOAPdenovo for a small 
genome sequenced at high depth with paired-end 
reads (Lin et al., 2011).

Several additional steps can be implemented to 
enhance draft assemblies. The first is contiguation: 
for large insert size assemblies (1+ kb), scaffold 
structure can be optimized by examining the 
assembly output for multiple libraries (Hunt et al., 
in press; www.sanger.ac.uk/resources/software/
reapr/) or data sources (Darling et al., 2011). 
Likelihood-based assembly methods can evalu-
ate assembly quality based on base error rates, 
the insert size distribution, and on the coverage 
uniformity (such as CGAL, http://bio.math.
berkeley.edu/cgal/; Rahman and Pachter, 2013). 
Additionally, partially guided algorithms can opti-
mize contiguation using read-pair information, 
such as ABACAS (http://abacas.sourceforge.
net/; Assefa et al., 2009) and SSPACE (Boetzer 
et al., 2011). This has been extended to automate 
complete genome assembly using unguided 
assemblies without any laborious parameter 
optimization: A5 (Andrew And Aaron’s Awesome 
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Assembly) has produced assemblies close in qual-
ity to SOAPdenovo and can assemble a typical 
bacterial genome on a generic computer within a 
day without supervision (Tritt et al., 2012).

The second improvement step is the local 
assembly of reads at contig edges to iteratively 
extend and join contigs: over-extension should be 
avoided. This can be carried out with IMAGE (Tsai 
et al., 2010) and GapFiller (Nadalin et al., 2012). 
The third component is to improve nucleotide-
sequence level accuracy after initial draft assembly 
development either by iterative re-mapping of 
reads (ICORN, http://sourceforge.net/projects/
icorn/; Otto et al., 2010), or by computing read 
quality values (e.g. Quake, www.cbcb.umd.edu/
software/quake; Kelley et al., 2010). The fourth 
aspect is the automated annotation transfer 
between related species with optional manual 
improvement, which accelerates functional analy-
sis of novel genome assemblies: such tools include 
RATT (http://ratt.sourceforge.net/; (Otto et al., 
2011)), Glimmer (Aggarwal and Ramaswamy, 
2002), xBASE (Chaudhuri and Pallen, 2006) and 
DIYA (Stewart et al., 2009). Finally, advances in 
genome visualization can render chromosome 

structure, composition, genes and function for 
manual checking and interpretation of assembly 
information with tools like GenomeVX (http://
wolfe.gen.tcd.ie/GenomeVx/) and DNAPlotter 
(www.sanger.ac.uk/resources/software/dnaplot-
ter/; Carver et al., 2009). These improvement 
tools are complementary and some have been 
packaged as a unit for nucleotide correction, gap-
closing, contiguation, assessment and annotation 
mapping as a semi-ordered but iterative process 
(e.g. the Post Assembly Genome Improvement 
Toolkit; www.sanger.ac.uk/resources/software/
pagit/; Swain et al., 2012): for example, this has 
been implemented on Mycobacterium (Ho et al., 
2012).

Mapping and filtering DNA 
reads
A high-quality draft genome sequence represents 
a reference point against which the sequence 
data of other strains can be compared. DNA read 
bases are aligned against the genome sequence to 
compute the probability of a match and thus their 
best mapping location. This is a nucleotide-level 

Table 3.1 Popular genome assembly tools
Algorithm type Tool name Reference

de Bruijn graph ABySS Simpson et al., 2009
ALLPATHS-LG Gnerre et al., 2011
DNAbaser www.dnabaser.com
Euler-SR Chaisson and Pevzner, 2008
SOAPdenovo http://soap.genomics.org.cn
Velvet Zerbino and Birney, 2008

OLC Arachnae2 Jaffe et al., 2003
Celera Myers et al., 2000
Maq Li et al., 2008a
Mira3 Chevreux et al., 2004
Newbler http://contig.wordpress.com
Novoalign www.novocraft.com
PCAP Huang et al., 2003
Telescoper Bresler et al., 2012

String graph SGA Simpson and Durbin, 2012

Tools are listed according to the type of algorithm used to compare reads: de Bruijn graph, OLC (overlap-layout-
consensus) or string graph. A more comprehensive list of assembly tools (Earl et al., 2011) and their performance 
is available (Fonseca et al., 2012).
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comparison, distinct from mapping that relates 
the reference and sample regions covered by the 
reads (Li, 2011). Longer reads are not required 
if the reference and comparison strain are closely 
related, so short reads are sufficient to discover 
most chromosomal, SNP and structural muta-
tions (Fig. 3.2).

Mapping DNA reads to a reference 
genome
To increase computational efficiency, read-map-
ping tools first create an index of the reference 
genome sequence, colloquially termed a hash 
index. This is a set of short subsequences whose 
size (k) is defined (generally < 21) and sampled 
across the genome using the seed-and-extend 
algorithm (Altschul et al., 1990). Read-mapping 
tools identify matches between the hash index 
sequences and the reads – the accuracy of map-
ping can be improved by increasing the hash 
index k and its sampling density at the cost of 
more memory usage. For short genomes, compu-
tational speed is not an issue, but for short read 
libraries (< 50 bases) a higher hash sample density 
is advised. These tools map the sequence reads 
from a fastq file to an indexed reference hash of 
the genome fasta file to produce SAM (sequence 
alignment/map) and BAM (binary alignment/
map) format output files. These tools generally 
expect that a known the distribution of read insert 
sizes: this can be determined with tools like Picard 
(http://picard.sourceforge.net/).

The choice of read mapping tool depends on 
the genome’s architecture (Fonseca et al., 2012). 
A subset of read mapping tools adopt the more 
efficient Burrows-Wheeler transform of the hash 
index for alignment (Graf et al., 2007) to increase 
in processing speed, these include SOAP3 (Li 
et al., 2008b; Liu et al., 2012), BWA (Li and 
Durbin, 2009) and Bowtie2 (Langmead et al., 
2009b; Langmead and Salzberg, 2012). BWA 
was initially designed for short (< 200 bp) reads 
but was extended for longer (but not paired-
end) ones (BWA-SW) (Li and Durbin, 2010). 
BWA includes indels in the genome-read align-
ment, and computes mapping quality scores (the 
chances of the read mapping uniquely) across the 
genome, and so is computationally slower than 
other tools. BWA-SW can tolerate higher rates of 

mismatch as the read length increases, making it 
useful for error-prone reads, detecting structural 
variants, and also improving assemblies de novo. 
Bowtie2 can map 50–1000 base reads including 
gaps and can be used to perform local mapping 
(http://bowtie-bio.sourceforge.net/bowtie2). 
Bowtie2 has advantages compared to BWA for 
the incorporation of base quality values into 
mapping accuracy and can require less 3′ DNA 
read trimming. SOAP3 maps across gaps, and 
for high-identity data (0–3 mismatches per read) 
performs marginally better than BWA and Bowtie 
in addition to being more computationally rapid 
(Li et al., 2008b; Liu et al., 2012).

Smalt uses a banded Smith–Waterman algo-
rithm to locally align reads, and has a three to 
five-fold lower error rate and maps a greater total 
number of reads compared to BWA for 100 bp 
reads with 0.5–1.0% mismatches (www.sanger.
ac.uk/resources/software/smalt; Ponstingl and 
Ning, 2010). CLC Assembly Cell may be more 
computationally efficient than BWA, Bowtie or 
Smalt, but this may not reflect contig quality (www.
clcbio.com/wp-content/uploads/2012/10/
whitepaper-on-CLC-read-mapper.pdf). For 
mapping reads from a divergent species (> 1% 
mismatches) to a reference genome, this may not 
only assist assembly contiguation (e.g. Stampy, 
www.well.ox.ac.uk/project-stampy; Lunter and 
Goodson, 2011) but also SV discovery (e.g. 
CUSHAW2, http://cushaw2.sourceforge.net; 
Liu and Schmidt, 2012).

Filtering out platform, amplification 
and coverage sequencing errors
The stochastic nature of sequence amplification, 
alignment and mutation detection means that 
read output and mapping results vary (Malhis 
and Jones, 2010). Significant sources of error 
for microbial mutation discovery are the DNA 
amplification steps during library preparation and 
cluster generation, the sequencing machine ver-
sion used and the variance in coverage. These can 
be reduced by examining sequence quality metrics 
produced by read mapping tools: these screens 
compute for each site the number and quality of 
reference and variant bases at the site, proximity 
of other mutations and the number of erroneous 
reads. Metrics for examining individual samples 
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are outlined below (those exploiting population-
wide information are detailed later):

1	 The proximity of SNPs to SVs: SNPs and 
indels are more prevalent at larger SVs, which 
reduces power to accurately infer any muta-
tion type.

2	 The minimum and maximum coverage 
(4–1000 reads) (Li et al., 2008a).

3	 The insert size range where reads have pairs.
4	 The base quality – based on the log-trans-

formed fluorescent wavelength pattern 
unique to each nucleotide given the expected 
distribution (Brockman et al., 2008). This 
can be extended to examining base quality 
variation across the read.

5	 The mutation (SNP) quality score: this is 
effectively an analogue of the base quality 
score – the probability the genotype is the 
major non-reference allele (Ning et al., 2001).

6	 Mapping quality: the probability of a sig-
nificantly unique alignment of a read with the 
candidate mutation to a single locus derived 
from the observed base quality across the 
set of mapped reads. A substantial minority 
of reads at a site may have mapping quali-
ties significantly lower than the other reads 
(DePristo et al., 2011). The difference in 
mapping quality for the reference and variant 
alleles may also differ.

7	 An excess of errors may be present at contig 
edges and chromosome ends.

8	 The inclusion of contaminant DNA as an 
additional set of contigs during read-mapping 
can exclude foreign reads more similar to the 
contaminant sequence.

9	 Masking repetitive, homopolymeric and low-
complexity sequence by inferring the local 
distribution of uniqueness (e.g. with Tantan; 
Frith, 2011).

10	 Sites with extreme coverage assuming a quasi-
normal distribution of chromosome-wide 
coverage, this can also include a depth-
adjusted quality score (DePristo et al., 2011).

11	 PCR duplicate reads can be identified from 
their quality uniformity.

12	 Allele (strand) bias reflects errors induced 
during prior PCR amplification of the reads 
and can be identified where the errors are 

present on one (forward or reverse) strand 
only: true mutations will be present on mul-
tiple reads for both strands (Schmitt et al., 
2012). Tackling this problem requires higher 
coverage and this should be considered when 
inferring heterozygous alleles.

13	 Adjustments to library preparation and clus-
ter generation chemistry may yield errors 
specific to individual sequencing runs pre-
sent in all lanes but absent in other runs.

14	 Sequence artefacts unique to the sequencing 
machine used – caution is advised even for 
analysis including different versions of the 
same platform type.

15	 The mean read position of the variant bases.
16	 The variance in read position of variant and 

reference alleles: a low variance may reflect 
local sequence artefacts.

17	 The frequency of mismatches on reads, par-
ticularly if there is a difference between those 
with the variant base compared to ones carry-
ing reference bases.

18	 The chromosome or whole-genome copy 
number may vary between samples (Garri-
son and G, 2012).

19	 The local GC content (Quail et al., 2012).

Other genotyping approaches such as the 
capillary sequencing of PCR amplicons and allelic-
specific SNP genotyping are used for validation of 
new SNPs discovered during genome-sequencing 
(Manske et al., 2012). However, this neglects the 
differences between these systems in SNP detec-
tion: as a result, the capacity for genome sequence 
data to confirm known variants provides a more 
quantifiable measure of precision. Verification 
can be completed by the dose-dependent ampli-
fication of specific loci by quantitative PCR for 
small SVs; by fluorescent in situ hybridization of 
probes to targets for large SVs; or by comparative 
genomic hybridization using arrays for medium to 
large SVs.

Variant discovery using 
mapped reads
A significant asset for identifying mutations is 
the scope to optimize this process by calling 
variants with multiple tools. Different tools have 
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differing sensitivities and specificities for detect-
ing mutations, and so accuracy can be improved 
by examining the properties of shared valid 
mutations. However, this may become overly 
conservative and omit true variants if sensitivity 
is limited. More powerful SNP callers infer likely 
polymorphisms based on the posterior prob-
ability of a non-reference genotype given the 
observed read data (Nielsen et al., 2011). Given 
the observed genotype (O) for each read i at a site 
with n reads, the likelihood of a putative genotype 
(G) can be expressed as

P(Oi |G)
i=1

n

∏

This assumes each read is independent, condi-
tional on Oi. For instance, SOAPsnp computes 
the observed genotypes depending on base 
quality, mismatches and errors (Liu et al., 2012). 
Certain tools account for observed genotype 
dependencies, prior probabilities of variants, and 
call SNPs across a population rather individual 
samples. A further consideration for microbial 
genomes is the assumption of diploidy implicit 
in some (e.g. Samtools mpileup; Li et al., 2009b) 
but not all tools (Garrison and Marth, 2012). 
This likelihood-based genotype inference can be 
used to examine the site frequency spectrum in 
diploid organisms (ANGSD, http://popgen.dk/
software/angsd.html; Nielsen et al., 2012)

There are four established and complementary 
methods of detecting SVs (Table 3.2): depth of 
coverage (DOC), paired-end mapping (PEM) 
using paired reads, split read mapping (SR), and 
assembly based (AS) (Alkan et al., 2011). Assum-
ing coverage saturation to minimize bias (Xie and 
Tammi, 2009), DOC assumes a normal or Poisson 
distribution of read depth values to detect large 
genomic rearrangements (> 1 kb). PEM detects 
smaller events like SNPs or small indels (< 10 bp), 
and reflects the interpretation of gaps by the 
mapping algorithm (Medvedev et al., 2009). SVs 
of 10–50 bp are challenging to discover because 
their length is the same as the insert size variance 
between paired-end reads.

SR and AS are effective for medium-sized SVs 
(> 50 bp) and rely on the pattern of read pairs 
(mates or paired-end) in terms of their depth, 
orientation, insert sizes and uniqueness (Ameur et 

al., 2010). SR mapping is a significant advantage in 
tackling complex SVs, though short split reads may 
cause spurious mapping (Medvedev et al., 2011). 
If one mate of a pair can be uniquely mapped to 
the reference, then the other unmapped mate can 
be efficiently mapped using the insert size (Ye et 
al., 2009). A single read may map to two sections 
of the genome with a long gap between the 5′ and 
3′ parts of the read, which indicates that these sec-
tions are next to each other in the sample genome 
but not the reference. If the distance between the 
reads is significantly smaller than the expected 
insert size, then a segment may be inserted in the 
sample (Fig. 3.5). Correspondingly, a deletion in 
the sample would have pairs mapping further away 
than expected (Xi et al., 2010). Thus, insertions 
occupy the low end of the insert size distribution 
and deletions the upper end. If the insertion is 
bigger than the insert size of the reads, the inser-
tion signature may not be detected (Medvedev 
and Brudno, 2009). For such large insertions 
the read pairs or mates do not map to any locus, 
because they are contained in the inserted region 
in the sample that is absent in the reference. These 
can be confirmed by locally re-assembling the 
insert element (Rausch et al., 2009). Transloca-
tions can be distinguished where the read pairs 
map to different chromosomes. Inversions can be 

Table 3.2 Structural variant discovery methods and 
detection power
Type PEM DOC SR AS

Deletion Y Y Y Y
Tandem 
duplication

Y Y Y Y

Inversion Y – Y Y
Translocation Y – Y Y
Small insertion Y – – Y
Large insertion – – – Y

Established methods of detecting SVs: depth of 
coverage (DOC), paired-end mapping (PEM), split 
read (SR), and assembly based (AS) (Alkan et al., 
2011). Assuming coverage saturation to minimize 
bias (Xie and Tammi, 2009), depth assumes a normal 
or Poisson distribution. PEM interprets gaps with a 
mapping algorithm (Medvedev et al., 2009). SR and 
AS rely on the pattern of read pairs (mates or paired-
end) in terms of their depth, orientation, insert sizes 
and uniqueness (Ameur et al., 2010).
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detected where the read orientation but not the 
insert size has changed (Korbel et al., 2007). For 
tandem duplications, the orientation is reversed 
but some of these mis-oriented reads will overlap 
at the duplication point.

Different types of algorithms often specialize 
in finding distinct sizes and types of SVs, and so 
several different types of algorithms can be inte-
grated: for example, SVMerge refines breakpoints 
using local de novo assembly (Wong et al., 2010). 
Complex SVs can also be reconstructed manually 
with the aid of data visualization software where 
they cannot be interpreted properly (Reese et al., 
2010). Erroneous chimaeric reads mapping to 
homologous disparate loci, or accidentally joined 
during cluster generation, may produce false SVs. 
As a result, the quality of the reference genome 
assembly has a major impact on SV detection 
power.

Indels of less than 10 bp can be detected using 

the same alignment approach used for SNPs and 
a wide range of callers can call indels and SVs 
(Table 3.3), though caution should be advised 
for interpreting indels at homopolymers. Some 
tools perform local assembly on regions with 
unmapped reads to resolve SVs by exhaustively 
exploring the de Bruijn graph network (SOAP-
indel and SOAPsv; Li et al., 2009b). While 
SOAPindel performs better at long indel detec-
tion (> 10 bp) than Dindel (Albers et al., 2011), 
Pindel (Ye et al., 2009) and the Genome Analysis 
Tool Kit (GATK; DePristo et al., 2011), it retains 
a high false positive rate of 10% for indels longer 
than five bases (Liu et al., 2012). Other callers 
find SVs in shotgun sequences (CNV-seq, http://
tiger.dbs.nus.edu.sg/cnv-seq/; Xie and Tammi, 
2009) or target medium size SVs (MoDIL; Lee et 
al., 2009). For more complex SVs involving two 
large gaps – like tandem duplications or inver-
sions – separately mapping the distal 5′ and 3′ 

Figure 3.5 Detecting indels and inversions by mapping paired end reads. The black and grey arrows represent 
DNA paired-end reads from a sample genome mapped to a reference genome following the trajectory of the 
lines connecting the genomes. The distance between the sample read pairs reflects their expected insert 
size. (A) Insertions are denoted where the distance between the reads is less than the insert size (Medvedev 
and Brudno, 2009). (B) Deletions are denoted where the distance between the reads is greater than the insert 
(Xi et al., 2010). (C) Inversions can be detected from changed ordering between read pairs, even though the 
insert size may be the same (Korbel et al., 2007).

LOW RESOLUTION



UNCORRECTED PROOF Date: 11:22 Friday 18 October 2013
File: Bioinformatics and Data Analysis 1P

Coughlan et al.66 |

read-pair ends can improve alignment (Alignment 
with Gap Excision; Abyzov and Gerstein, 2011). 
Notably, the substantial effects of the reference 
genome index format and read-mapping approach 
on variant calling has led to the development of 
integrated pipelines incorporating these key steps: 
for example, Crossbow combines Bowtie for read-
mapping with SOAPsnp for genotype inference 
(Langmead et al., 2009a; Gurtowski et al., 2012).

Detecting population-wide 
variation from mapped DNA 
reads
Genotype inference needs to mitigate biases 
from heterogeneous sequencing technologies 
and coverage levels to remove low-quality false 
positive SNPs (Gronau et al., 2011). These extend 
from the parameters outlined above for individual 
samples that can be computed across the popula-
tion: base, SNP and mapping qualities as well as 
read coverage distributions such as the fraction 
of samples with sufficient depth (Manske et al., 
2012). Population-wide variant calling can be 
improved using a number of approaches in addi-
tion to estimating the individual read base error 

rate. The first is likelihood-based, which estimates 
the prior probability of a variant at a site based 
on the population-wide frequency of the variant 
allele (Nielsen et al., 2011). This can be improved 
by testing genotype confidence using a likelihood 
ratio test, by computing site-specific uncertainty 
due to other non-reference alleles, and testing 
for Hardy–Weinberg equilibrium (Kim et al., 
2011). This will reduce the prior probability 
of observing a homozygous SNP for rare poly-
morphisms, and may ignore the clonal microbes 
(Tibayrenc and Ayala, 2012). Likelihood-based 
approaches can be applied to SVs as well as SNPs 
(Genome STRiP, www.broadinstitute.org/soft-
ware/genomestrip/; Handsaker et al., 2011) and 
without a reference dataset (FreeBayes, http://
bioinformatics.bc.edu/marthlab/FreeBayes; Gar-
rison and Marth, 2012).

Known SNPs can be used to infer the prior 
probability of a variant (McKenna et al., 2010) 
and as a training set for recalibrating the expected 
quality properties of new SNPs (DePristo et 
al., 2011). For example, the GATK (www.
broadinstitute.org/gatk) recalibration protocol 
incorporates read position, base quality, cluster 
cycle, population-level frequency and parental 

Table 3.3 Popular software available for detecting structural variants
Name Indel Inversions Reference

SOAPindel No No Li et al. (2009b)
MAQ < 10 bp No Li et al. (2008a)
MoDiL 10–50 bp No Lee et al. (2009)
Dindel < 50 bp No Albers et al. (2011)
SOAPsv Liu et al. (2012)
Pindel Ye et al. (2009)
GATK Yes No DePristo et al. (2011)
Samtools Li et al. (2009a)
CNVseq Xie and Tammi (2009)
CNV-seq No Yes Korbel et al. (2007), Xie and Tammi (2009)
PEMer Yes Yes Korbel et al. (2007)
BreakDancer Chen et al. (2009)
VariationHunter Hormozdiari et al. (2010)
Cnvnator Abyzov et al. (2011), Mills et al. (2011)

A wide range of callers can all be used to call SVs that vary in their power to detect different SV classes. All listed 
tools compute PE (paired-end) but not SE (single-end) reads except MAQ, which does both, and CNVseq, which 
only does SE reads.
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information by sampling a binomial distribu-
tion to infer the relative chances of the number 
of reads with non-reference allele. GATK also 
uses the transition–transversion ratio (Ti/Tv) to 
calibrate substitution patterns: inter-species com-
parisons suggest a Ti/Tv of ~2.0–2.1 for genomes 
(Ebersberger et al., 2002) and 3.0–3.3 for coding 
SNPs in humans (Freudenberg-Hua et al., 2003). 
However, microbial substitution patterns may 
differ significantly (Tennessen et al., 2012). Ti/Tv 
is important for evolutionary analysis of substitu-
tion rates (Yoder and Yang, 2000): a neutral Ti/
Tv of 0.5 (n) should be observed because there are 
eight possible options for transversions and four 
for transitions (DePristo et al., 2011). Transver-
sions are rarer than transitions because they cause 
a bigger change in the nucleotide molecular shape, 
and so DNA repair mechanisms cannot compen-
sate as easily (Kristina Strandberg and Salter, 
2004), but Ti/Tv may be reduced by sequencing 
errors, alignment artefacts and data processing 
variability. Thus the fraction of false positive vari-
ants (FDR) can be estimated fro

FDR = o−n
e−n

where o is the observed Ti/Tv and e the expecta-
tion (DePristo et al., 2011). Recalibration reflects 
the accuracy of the known SNPs so structurally 
variable regions may bias novel SNP detection 
power without an extensive reference mutation 
database: the lack of variation naturally present in 
certain microbes may also limit inference power. 
Additionally, the requirement of a draft reference 
template may exclude non-model microorgan-
isms with lower quality assemblies.

The second approach is to infer population-
wide parameters: this most important of these is 
to infer allele frequencies using read depth values 
across all samples ( Jiang et al., 2009; Lynch, 2009; 
Futschik and Schlotterer, 2010). By comparing 
the allele frequencies across all reads relative to the 
allele frequencies adjusted for each genotype call, 
sites with significant departures between the mean 
genotype and population allele frequency can be 
discovered. This switch of relating population fre-
quencies straight from read information removes 
biases associated with SNP calling in individual 
samples (Kim et al., 2011). Singleton SNPs are 

more likely to be errors than abundant ones, and 
so comparing their frequency during screening can 
be informative. This can be extended to patterns of 
homozygous and heterozygous SNPs. Computing 
the observed allele frequency spectrum in relation 
to the prior and posterior genotype probabilities 
can inform on the power of the approach to detect 
new SNPs and SVs (Nielsen et al., 2011).

The third is based on the linkage patterns 
between mutations after initial population-wide 
genotype inference (e.g. Beagle; Browning and 
Browning, 2007). For variants on the same chro-
mosome, their tendency to co-occur reflects their 
linkage disequilibrium (LD): the probability of 
co-inheritance. For mutations in high LD, the 
probability of observing one polymorphism affects 
the likelihood of observing the other (Abecasis et 
al., 2012). Extending this to compute haplotype 
scores also allows imputation (phasing) of geno-
types not examined using genome-sequencing 
(Browning and Browning, 2011). For low 
(< 15-fold) coverage data, likelihood-based meth-
ods estimate the population-wide frequencies 
more accurately and improve trait mapping (Kim 
et al., 2011).

A fourth approach for SNP detection adopts 
the local reference-free assembly of reads to 
improve resolution at regions with extensive vari-
ation and avoid the inherent bias associated with 
SNPs unique to the reference (Iqbal et al., 2012a). 
For monomorphic species, de novo local assembly 
can detect more variants (Iqbal et al., 2012b). 
For instance, Cortex compares assemblies with 
low and high k to determine if the patterns of 
homozygous and heterozygous SNPs detected 
with Stampy (Lunter and Goodson, 2011) are 
significantly different (http://cortexassembler.
sourceforge.net; Iqbal et al., 2012b). If the less 
conservative (low k) data present a significant 
change in the ratio of heterozygous to homozy-
gous SNPs, then this may reflect repetitive regions 
that can be resolved better with the lower k. A 
jump in coverage for the reference-free assembly 
can also indicate structural anomalies specific 
to the reference. Inevitably, these may still not 
resolve highly repetitive regions sufficiently, and 
manual interrogation of regions with high concen-
trations of heterozygous SNPs is advised.
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Genome-wide data analysis 
and future trends

Microbial genome analysis 
platforms and databases
A variety of genome analysis platforms are 
available, some of which incorporate a com-
munity-based element for collaboration. For 
example, Galaxy (http://usegalaxy.org) allows 
users to upload, analyse, track and develop 
workflows for genome analysis: this covers moni-
toring sequencing, validating sequence output, 
read assembly, read mapping, variant filtering, 
genotype calling, population-wide recalibration, 
analysis tools and integration with other datasets 
(Goecks et al., 2010). This has been extended with 
more advanced visual analysis tools like Trackser 
(Goecks et al., 2012) and Peas v1.0 (Xu et al., 
2010). Visualization of reads, mutations, coverage 
and annotation for sets of samples as a single group 
is possible with Artemis and Bamview (Carver et 
al., 2010, 2012). The Artemis Comparison Tool 
presents homology alignment scores between 
multiple species’ genomes (Carver et al., 2008), 
and viewing read mapping alignment to the refer-
ence sequence for individual samples is possible 
with Samtools (Li et al., 2009a).

Although developed primarily for human 
genetics, genotype-phenotype genome–wide 
association tests can be applied, visualized and 
shared using Plink and associated tools (http://
pngu.mgh.harvard.edu/~purcell/plink/; Purcell 
et al., 2007). Similarly, examining LD, recombi-
nation and haplotypes is possible by co-opting 
techniques developed for vertebrate genomes like 
Haploview (www.broadinstitute.org/haploview; 
Barrett et al., 2005). There are a wide variety of 
microbial genomics resources, including the DOE 
Joint Genome Institute (http://genome.jgi-psf.
org), Microbes Online (www.microbesonline.
org/), the Genome Encyclopaedia of Microbes 
(www.gem.re.kr), and the Comprehensive Micro-
bial Resource (Peterson et al., 2001). Integrated 
Microbial Genomes (http://img.jgi.doe.gov) is 
a community resource for comparative genomics 
and also analysis of genomes related to the Human 
Microbiome Project (www.hmpdacc-resources.
org/img_hmp; Markowitz et al., 2012a,b). 
GeneDB is an interactive functional database 

of pathogens and comparative genome datasets 
(www.genedb.org; Logan-Klumpler et al., 2012).

Evolution, population structure and 
recombination
Genome sequencing provides a sufficient density 
of markers to provide adequate resolution of evo-
lutionary and population-level variation (Twyford 
and Ennos, 2012). To construct phylogenies, an 
accurate substitution rate is required, which can be 
estimated by calculating the correlation of sample 
isolation time with the root-tip genetic distance. 
If the isolation date varies sufficiently, the dates 
of the ancestral nodes in the phylogeny can be 
estimated. Bayesian sampling of phylogenies from 
multiple loci may also provide a means to infer 
adaptation and historical population variation 
(Drummond and Rambaut, 2007; Drummond 
and Suchard, 2010; Drummond et al., 2012), and 
can include recombination (Didelot et al., 2010). 
Exploring genetic history in diploid genomes can 
be attempted with both multilocus and genomic 
data (Anderson et al., 2005). Unlinked 1 kb 
genome segments can yield genealogical infor-
mation by applying a coalescent-based scheme 
(Burgess and Yang, 2008) to estimate ancient 
population sizes, divergence times and gene flow 
from single samples representative of entire popu-
lations (Gronau et al., 2011). Recent admixture 
can be inferred without estimating LD by exploit-
ing recombination and haplotype switch points 
(Wegmann et al., 2011) and can be extended to the 
origin, dispersal and spread of infectious microbes 
over space and time (Lemey et al., 2010). An 
extensive variety of tools for scrutinizing bacte-
rial population structure and recombination have 
been developed (http://pubmlst.org/software/). 
These extend from studying population structure 
(BAPS; Corander et al., 2008) to examining copy 
number data (BASTA; Marttinen et al., 2009a), 
estimating bacterial community composition (for 
454 data with BEBaC; Cheng et al., 2012), and 
phylogenetics (BANANAS; Siren et al., 2011). 
For species with low recombination observed as 
the absence of LD decay with distance, specific 
tools applicable to MLST or genomic data are 
available (e.g. Clonalframe; Didelot and Falush, 
2007). There are variety of tools that test for 
recombination, such as PHI (Bruen et al., 2006), 
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BRAT (on individual genes; Marttinen et al., 
2009b), BRATNextGen (for genomes; Marttinen 
et al., 2012) and others that integrate multiple 
methods (RDP3; Martin et al., 2010).

More stringent filtering of genotype errors is 
required for the discovery of mutations function-
ally relevant to phenotypically distinct groups 
(Huang et al., 2009). For binary comparisons 
of bacterial strains (such as drug-resistant and 
-sensitive sets), tools have been developed that 
only identify the SNPs differentiating the groups 
(e.g. VAAL, ftp://ftp.broadinstitute.org/pub/
crd/VAAL/; Nusbaum et al., 2009). Comparing 
divergent sequences can be completed through 
alignment, and so a variety of tools have been 
developed to compare genome consensus 
sequences beyond well-established local align-
ment tools like BLAST (Altschul et al., 1990): 
the Robusta version of T-Coffee (Notredame, 
2010), Mauve (Darling et al., 2004) and Merca-
tor (Dewey, 2007). Eukaryotic microbiologists 
can exploit powerful genotype inference tools 
developed for human data, which can examine 
clonal populations (e.g. MuTect; Banerji et al., 
2012), samples taken from the same patient over 
time-course (e.g. Vcf2diploid; Rozowsky et al., 
2011), or infer evolutionary history (Reuveni and 
Giuliani, 2012) to determine SNPs that improve 
assemblies (Catchen et al., 2011) or compare 
pooled samples (Boitard et al., 2012).

The effects of evolutionary selection pres-
sures on allele frequencies can be estimated from 
longitudinal high-coverage genome samples 
(Tsibris et al., 2009; Jabara et al., 2011; Henn et 
al., 2012). This has been applied extensively to 
HIV-1, whose high mutation rate enables the 
effects of selection on allele frequencies to be 
observed over short time periods. HIV-1 genomic 
data have provided information on the timing of 
host immune responses evasion by the virus, and 
also the duration for immune escape mutations 
to revert to the wild-type state in the absence of 
the immune response. The rate at which a mutant 
allele increases in frequency over time from an ini-
tial low level in the viral population can provide a 
means to quantify the strength of selection acting 
on the allele. This is achieved using a method 
based on diffusion models to estimate the selec-
tive coefficient from longitudinal allele frequency 

data (Bollback et al., 2008). This can identify 
regions evolving under the action of positive 
selection by exploiting more accurate estimates of 
allele frequencies from sample sequence barcod-
ing ( Jabara et al., 2011) and avoids biases in PCR 
amplification that can distort allele frequency 
estimates (Kanagawa, 2003).

Future trends
There are a number of emergent trends that may 
affect future microbial genomic analysis. The most 
significant is the increasing sequencing accuracy 
and speed through improved library preparation 
(Fitzsimons et al., 2013) and sequencing chem-
istry (Chaisson and Pevzner, 2008). Using 1000 
base reads delivers assemblies six times more 
continuous than 100 base reads (Kingsford et 
al., 2010). Allele bias during PCR that produces 
errors present on one (forward or reverse) strand 
only can be circumvented using duplex sequenc-
ing (Schmitt et al., 2012). This reduces sequencing 
error rates from 10–3 to 10–9 per base and permits 
investigation of DNA damage, DNA repair and 
mutation rates. New short run-time platforms like 
the Illumina Miseq and the Ion PGM mean short 
genomes (< 10 Mb) can be sequenced within a 
day, though with less efficiency (Didelot et al., 
2012). This increase in speed may be continued 
by nanopore-based machines, which may be able 
to deliver genomes in hours.

Single-molecule real-time (SMRT) sequenc-
ing can obviate library preparation completely, 
though with ten-fold less output (Travers et al., 
2010). It can sequence genome-wide information 
from as little as 1 ng within 8 h – this was tested on 
both viral and bacterial (MRSA) genomes (Coup-
land et al., 2012). SMRT sequencing uses hairpin 
adaptors to sequence double-stranded DNA and 
can circumvent both PCR bias and produce long 
reads, but has a high error rate (Eid et al., 2009).

Strobe sequencing is an application of the 
SMRT approach in which polymerases read 
circularised rather than linear DNA strands: it 
produces a portion of long reads despite an overall 
lower mean length (Lo et al., 2011). A strobe read 
consists of multiple subreads from a single con-
tiguous DNA fragment: if the strobe read has two 
subreads then it is a paired-end reads (with a more 
variable insert size; Raphael, 2012). Those with at 
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least three subreads are akin to paired-end reads 
with multiple partners, and the information from 
multiple subreads can assist with detecting SVs as 
well as performing de novo assembly of complex 
variants in highly repetitive regions or with high 
breakpoint densities (Ritz et al., 2010).

Long SMRT reads can also present a template 
that can be corrected by alignment and assembly 
with short read data to produce a hybrid consensus 
sequence (PBcR in Celera Assembler11; Koren et 
al., 2012). This has been applied to V. cholerae iso-
lates from the Haitian cholera outbreak in October 
2010 for which it resolved new virulence-related 
variants in repetitive regions, further supporting 
the Nepalese origin of this epidemic: this may be 
a general schematic for the automated finishing of 
bacterial genomes (Bashir et al., 2012).

An alternative amplification approach called 
multiple annealing and looping-based amplifi-
cation cycles (MALBAC) improves coverage 
uniformity such that it can be applied to individ-
ual cells lysed to produce picograms of 10–100 kb 
DNA fragments to detect SVs (Zong et al., 2012). 
It works by a two-stage amplification protocol 
causing loops in the amplicons to prevent cross-
hybridization and further amplification. This can 
produce contiguous phased maps of whole chro-
mosomes, resolving linkage and recombination 
patterns between cell replication cycles (Lu et al., 
2012).

Contiguation and genome assembly can be 
improved by utilizing Strand-seq, a strategy that 
uses bromodeoxyuridine (BrdU) bases at the cell 
cycle stage of sister chromatid exchange during 
DNA replication of the temporally single-strand 
DNA fragments (Falconer et al., 2012). Parental 
BrdU-free and progeny BrdU-exposed sequenc-
ing can predict local region orientation, order and 
alignment in comparison to a reference genome 
to refine the assembly. Finally, restriction site-
associated DNA (RAD) sequencing may be useful 
where the total sequence read output may provide 
insufficient coverage for accurate de novo assem-
bly for long or polyploid microbial genomes and 
where there is no relevant relate reference against 
which to map reads or contiguate the contigs.

A second major development is the combining 
of haplotype-based mutation detection in popula-
tions (Salem et al., 2005; Howie et al., 2012) with 

local de Bruijn graph assemblies, which could pro-
vide increased accuracy for genotype imputation 
and detection (Iqbal et al., 2012a). This incorpo-
rates the variation naturally present in a diploid 
reference in terms of the de Bruijn graph topology 
in the population for each allele in a subsequence. 
Long repeats and variants unique to the reference 
are evident in the reconstructed contig align-
ments. An additional asset of this approach is that 
homozygosity can be examined as a linked block 
in a population and not individual mutations in 
different sequence libraries.

A third trend is the increased incorporation of 
gene expression and regulation data into genome 
analysis (Shendure and Aiden, 2012). De novo 
assembly of genomic data presents opportunities 
for amalgamating disparate results from different 
organisms by mapping experimental data from 
one genome to another (Mortazavi et al., 2008). 
Regulatory information in chromatin immuno-
precipitation DNA mapping peaks (ChIP-seq) 
can be locally re-assembled for alignment and 
motif discovery between genetically distinct 
specimens (Pinball, ftp://ftp.ebi.ac.uk/pub/
databases/ensembl/avilella/pinball; Vilella et al. 
in prep.). Combining this with longer reads also 
allows clearer resolution of methylation and thus 
regulatory signatures in pathogenic samples (Fang 
et al., 2012) and also between species (Murray et 
al., 2012) and metagenomic patterns relevant to 
human disease ( Jostins et al., 2012).

Conclusions
Continued improvements in genome sequenc-
ing chemistry and computational tools enable 
the application of these methods to any microbe. 
This chapter explored the scope of microbial vari-
ation, and how assembly is the process of taking 
a large number of short DNA sequencing reads 
to develop a representation of the original chro-
mosomes. Local as well as global genome-wide 
assembly is a powerful tool for inferring variation 
in species and ecotypes. Robust and accurate 
assemblies provide a platform against which SNPs 
and SVs can be inferred, though sensitive quality 
control measures are essential. Bridging variant 
recalibration with population genetic analysis and 
imputation methods (Browning and Browning, 
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2011) are protocols to infer population properties 
allowing for missing data (Ferretti et al., 2012): 
this area has a swift rate of technological advances 
(Baker, 2011; Iqbal et al., 2012a).

Genome sequencing is accelerating the treat-
ment of infectious disease: initial genome-based 
approaches for studying infection progression 
and dynamics focused on short viral sequences 
(Lemey et al., 2007), but have been more widely 
applied for general disease monitoring and sur-
veillance (Walker and Beatson, 2012). These have 
tracked the emergence, transmission (McAdam 
et al., 2012) and population structure (Everett 
et al., 2012) of bacteria in clinical settings where 
clonal epidemics are not sufficiently resolved with 
traditional methods (Harris et al., 2010). This 
increased resolution can be applied to document 
both prospective ongoing outbreaks and to retro-
spective historical evolution and spread (Monot 
et al., 2009). In addition, genomic approaches can 
be more broadly applied to enhancing diagnostics 
and vaccine development (Seib et al., 2012). New 
approaches to public health through the rapid 
real-time analysis of microbes using benchtop 
platforms will change how microbiology research 
is performed in hospitals as well as labs.
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