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Abstract

Tony Marrero Barroso
Colour Local Feature Fusion for
Image Matching and Recognition

This thesis investigates the use of colour information for local image feature
extraction. The work is motivated by the inherent limitation of the most widely
used state of the art local feature techniques, caused by their disregard of col-
our information. Colour contains important information that improves the
description of the world around us, and by disregarding it; chromatic edges
may be lost and thus decrease the level of saliency and distinctiveness of the
resulting grayscale image. This thesis addresses the question of whether colour
can improve the distinctive and descriptive capabilities of local features, and if
this leads to better performances in image feature matching and object recogni-
tion applications. To ensure that the developed local colour features are robust
to general imaging conditions and capable for real-world applications, this
work utilises the most prominent photometric colour invariant gradients from
the literature. The research addresses several limitations of previous studies
that used colour invariants, by implementing robust local colour features in
the form of a Harris-Laplace interest region detection and a SIFT description
which characterises the detected image region. Additionally, a comprehensive
and rigorous evaluation is performed, that compares the largest number of
colour invariants of any previous study. This research provides for the first
time, conclusive findings on the capability of the chosen colour invariants for
practical real-world computer vision tasks. The last major aspect of the research
involves the proposal of a feature fusion extraction strategy, that uses grayscale
intensity and colour information conjointly. Two separate fusion approaches are
implemented and evaluated, one for local feature matching tasks and another
approach for object recognition. Results from the fusion analysis strongly indic-
ate, that the colour invariants contain unique and useful information that can
enhance the performance of techniques that use grayscale only based features.
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1Introduction

Human visual attention is determined largely by two complementary psycho-
neural mechanisms: environment-driven bottom-up saliency and knowledge-
driven top-down guidance (Itti et al., 2005). This thesis is concerned with
the bottom-up saliency mechanism of representing the visual form, and in
computer vision, one of the most successful ways to achieve it is with local
invariant image features (Schmid et al., 2005). Local features have become a
vital part of modern computer vision solutions, and amongst the most popular
and researched topics of the field. Their importance, versatility and maturity
can be seen in the many recent applications that utilise image features. These
include image retrieval (Arandjelovic and Zisserman, 2013), object recognition
(Biagio et al., 2014), action recognition (Oneata et al., 2013), tracking (Takacs
et al., 2013), reconstructing camera views and 3D reconstruction (Irschara et al.,
2012, Frahm et al., 2010) and visual odometry (Newcombe et al., 2011).

In the field of computer vision, a local image feature is the name given to a
vector that represents a region of an image. This vector contains information
about the location of the region in the image, its size, and a fingerprint that
describes certain aspects of the region. The extraction of local features is a
technique comprising a detector and a descriptor. The detector finds local
image regions that are deemed salient (interesting) and stable, which are then
characterised by the descriptorwith numerical signatures for subsequent feature
matching tasks. The field has produced a significant number of these features
in the last two decades, and they have proven very successful in their tasks as
they can be made robust to varying imaging conditions such as scale, occlusion,
rotation and perspective changes. Figure 1.1 provides an illustration of the
feature extraction concept, applied on three images with different imaging
conditions.
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The detector in the example, is able to identify the same local image region of the
scene (denoted by the green squares), in images taken with a different scaling,
rotation and viewpoint. A descriptor must also be able to characterise those
three regions with a similar descriptor, in order to identify them as pertaining
to the same region of the scene.

varying viewpoint 

varying 
scale & rotation

Figure 1.1: Illustration of the local feature extraction concept under varying
imaging conditions, where a green square denotes the area of the detected local
feature.

Despite the advances made each year, local invariant features inherently still
have substantial practical limitations. These limitations became apparent at the
early stages of this research, where the work focused on 3D stereo visualisation
(Marrero Barroso et al., 2010) and 2D to 3D video conversion. Local features
were being utilised to find point correspondences in stereo image pairs that
viewed a scene from different viewpoints. The correspondences were necessary
in order to estimate a Fundamental matrix (F) (Hartley and Zisserman, 2004),
which describes the transformation between the coordinate frame of references
of the two images. This matrix can subsequently be utilised to perform stereo
rectification to align the image pair horizontally (analogously to the alignment
of human eyes). The feature matching process however, requires the fitting
of a geometric model in order to reject point mismatches that occur since not
all of the descriptors are sufficiently unique. The matching can thus associate
a local region of the scene from one image, to a different region of the scene
in the corresponding second image. Experimenting with feature matching

2



revealed that it was normal for 40-50% of the features to be inaccuratelymatched.
This conflict of geometric association between the two images results in an
inaccurate F matrix, in which slight perturbations lead to significant changes
in the resulting rectified stereo images. The geometric model that constrains
the matching process is aided by a sampling algorithm that selects the most
optimal set of matches that best fit the model. Random Sampling Consensus
(RANSAC) (Fischler and Bolles, 1981, Hartley and Zisserman, 2004) was the
chosen sampling algorithm, which randomly iterates between sets of matches
until a particular threshold of model fit is reached. The F matrix model depends
on correlating real world 3D points to their projected 2D positions on the two
camera reference frames, thus different models can be obtained depending on
which sub-set of 2D points are chosen.

Experimentation showed that different valid F matrices could be estimated
from the same stereo pair by running the RANSAC algorithm multiple times.
Essentially indicating, that utilising a geometric model to reject incorrect feature
matches is not the most optimal strategy to employ. This research thus began
exploring ways of relying less on RANSAC-like techniques to perform accurate
feature matching, and turned towards making the local features themselves
more unique and distinct. The features that were being used were the Scale
Invariant Feature Transform (SIFT) (Lowe, 2004) and Speeded up Robust Fea-
ture (SURF) (Bay et al., 2008), which have been in practice sufficient for many
computer visions tasks as they are inherently robust and distinct. However,
just like the other state of the art mainstream feature approaches, they were
designed to be used only on grayscale intensity information. In order to develop
more distinct local features, the most apparent research direction to pursue
was seen to be investigating the role of colour. All subsequent work on stereo
rectification ceased and the focus turned to developing colour local features;
the overall goals of this research thus became:

• Finding out why colour was not incorporated in the most popular local
feature techniques.

• Exploring how colour could be used for local feature extraction.

• Determining what benefits, if any, colour information would provide.

3



1.1 Why Colour?

1.1 Why Colour?

Vision is one of the most vital sensory mechanisms for intelligent machines and
living organisms. In evolutionary terms, organisms developed monochromatic
vision long before adapting to perceive colour. As they became better adapted to
their environment, living organisms expanded the range of wavelengths of light
that they were sensitive to by increasing the types of photoreceptors present
in the eye. This enabled them to extract more information from the world in
various specific ways. Bees for example, are sensitive to ultraviolet (UV) light
which aids them in finding nectar in flowers (Michener, 1974). One of the eyes
with the most types of photoreceptors in the animal kingdom belongs to the
mantis shrimp, which has 12 different photoreceptors and enable the shrimp to
see UV and even distinguish polarised light. Though the exact reasons for their
complex visual system is not properly understood, scientists believe that UV
detection can help localise transparent fish on coral reefs, and enable fluorescent
bio-signalling during mating rituals (Mazel et al., 2004). Colour perception is
also an important aspect of primate vision, which is believed to have developed
when primates began eating coloured fruits and vegetables. Research into
biological vision showed that visual form is perceived only from luminance
(Marr, 1982). However experiments show that objects in coloured scenes are
more easily detected, identified and remembered than inmonochromatic scenes
(Geisler, 2008). Other studies suggest that colour in fact, is processed together
with luminance by the same neural pathways to achieve a united and more
robust representation of the visual world (Gegenfurtner, 2003, Gegenfurtner
and Kiper, 2003).

The use of colour in computer vision for extracting bottom-up saliency via
local features is not as common or developed as in the natural kingdom. The
most popular state of the art features used for general tasks are predominantly
based on shape information using luminance intensity, and ignore colour in-
formation despite the wide availability of colour cameras. Ignoring colour is
due to various practical difficulties, such as the extra computational cost of
processing the colour channels. The main reason that colour is not widely used
though, is due to the difficulty in achieving colour constancy and invariance
under a wide range of imaging conditions, as the measured colour values vary
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significantly, especially with illumination changes. Colour is however a very
important quality for describing the world around us, and grayscale image
conversion has a number of undesirable side-effects for local feature extraction.
It is obvious that by disregarding colour values chromatic edges can be lost and
thus decrease the level of saliency and distinctiveness of the converted image
(Van de Weijer et al., 2006a). For example after grayscale conversion, an edge
between a blue and a green region would contain the same saliency as an edge
between two shades of grey. In other cases the difference between colours may
not be visible at all. Grayscale conversions that map colour vectors to scalars
based only on luminance intensity are particularly prone to loosing chromatic
saliency. This is because isoluminant image regions (regions with the same
RGB vector magnitude), will all share the same grayscale intensity value after
the conversion.

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Example of a loss of image saliency when converting two colour
images (a, d) to grayscale. Matlab’s rgb2gray function is used for images (b)
and (e). A standard luminance intensity method is used for the conversions (c)
and (e).
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Examples of this isoluminant loss in chromatic saliency can be seen in Fig-
ures 1.2 and 1.3. In Figure 1.2 two coloured chessboard grids are converted
with two methods, Matlab’s rgb2gray function (middle column), and a method
based on luminance intensity (right column). Figure 1.3 shows the colour con-
version to intensity of the painting Impressionist Sunrise, in which the painter
Claude Monet deliberately makes the sun and the background isoluminant. It
is clear to see in both figures how two very distinct colours can be mapped to
the same or similar shade of gray. Colour to grayscale conversion is essentially
a dimensionality reduction problem, of which there are many different types
(Benedetti et al., 2012), however since all of them map a 3 dimensional colour
vector to a scalar value, a loss of information will always take place. Despite the
difficulty of harnessing colour information, if done appropriately the improved
discriminative performance can justify the extra computational costs incurred.

Results from the literature indicate that colour feature detection improves
results when using luminance descriptors (Stöttinger et al., 2009), and using
colour for both detection and description can also provide a further improve-
ment (Van De Sande et al., 2010, Vigo et al., 2010a, Krylov et al., 2012). Another
positive example can be found in a study performed by the author, that utilised
colour histograms to improve the matching performance of SURF descriptors
(Marrero Barroso and Whelan, 2011). The study found that the use of colour
resulted in performance gains of up to 9%.

Figure 1.3: Grayscale conversion of the painting Impressionist Sunrise, by Claude
Monet. Courtesy of www.artcyclopedia.com
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1.2 Scope of the Research
This research has been conducted focusing on local colour image features, and
the validation study is performed on local image feature matching and object
class recognition tasks. Numerous interest point detectors have been proposed
in the literature that are robust to different image distortions. Local point
detectors can be divided into four main branches that detect corners, blobs,
edges and affine regions. Detectors perform well when they are compatible
with the structures or imaging distortions present in the image, so there is not
one type of detector that is superior in all cases. For the applications of feature
matching and image recognition, corner and blob detectors are generally used
due to the abundance of those features in image and video data, and they will
be the focus of this research. The most successful luminance and colour-based
local image detectors are gradient-based, and rely on scale-invariant corner and
blob detection, like the well known Harris-Laplace (Mikolajczyk and Schmid,
2001) and Laplacian of Gaussian (LoG) (Lindeberg, 1998) detectors. Similarly,
the most prominent photometric colour invariants proposed in the literature
for mitigating the constancy problem across varying imaging conditions also
calculate image derivatives. The scope of this research will not include colour
constancy approaches, whose aim it is to adjust the original image prior to
subsequent processing by correcting the colour of the light source present in the
image. Section 2.4 provides more details on the justification for this approach,
but in summary it is mainly due to the uncertain benefits of using standard
colour constancy algorithms for the selected applications. For all the previous
mentioned reasons, the colour feature extraction (detection and description)
developed in this research employs only gradient-based techniques and ignores
statistical methods of achieving constancy.

Many implemented colour features in the literature have been limited in
terms of their robustness to different imaging conditions. For this reason the
developed local colour features in this research should comply with but not
limited to the following criteria (Tuytelaars and Mikolajczyk, 2008) that apply
to all local image features (grayscale or colour):

1. Photometric Robustness - The features should be robust to photometric
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variations such as changes in exposure and lighting direction, shadow,
shading and specularities.

2. Geometric Robustness - Invariance of the features is also needed with
respect to geometrical changes, such as viewpoint, zoom, and orientation
variations.

3. Generality - The features must be applicable for various applications
such as matching, retrieval and classification. Additionally, they should
be robust to variations in image quality and different types of camera
acquisition.

The previous requirements improve the repeatability of a feature detector, which
means that the same region of a scene can be detected repeatedly in images
which vary in imaging conditions. Additionally, those requirements also in-
crease the discriminative capacity of a feature descriptor to assign a local region
with a numerical descriptor that is robust to variations across different imaging
conditions. To validate the colour features for those requirements, appropriate
datasets have been chosen on which to perform the feature matching and object
class recognition. Four different feature matching datasets are used (see Section
2.5.3) which contain all of the aforementioned imaging variations, alongwith be-
ing acquired with different camera hardware. To ensure greater generality, the
object class recognition is carried out on a vision community standard dataset
of 9,963 images, and employing the well-known Bag-of-Visual-Words (BOVW)
recognition approach (Sivic and Zisserman, 2003). The evaluation framework
used here for both applications is the same as the standardised methods from
the literature. The goal here is to study colour features and compare them with
their grayscale counterpart under the same set of testing conditions. For this
reason, the developed framework has made all the different evaluated local
features compatible, by implementing them with the same source-code base.

1.3 Objectives and Approach
The motivation for using colour for local feature extraction in this research is to
obtain features with increased levels of distinctiveness and repeatability with
respect to grayscale-based counterparts. Numerous colour invariant models
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have been proposed in the literature that aim to robustly use colour in practical
computer vision tasks. Nevertheless, colour feature detection and matching
have not been evaluated sufficiently in the literature and have largely been
disconnected. The literature contains numerous scattered studies, that in some
cases focus on niche applications or only merely prove theoretical concepts.
There have been no clear indicators on the best practices or techniques for
general-purpose local colour feature extraction. Therefore, this research set
out to address the literature’s lack of a substantial evaluation and comparison
of the most prominent colour invariants. The overarching goal, is to provide
insights that would facilitate the integration of colour into mainstream local
feature extraction techniques aimed for general applications.

In this work, colour is applied throughout the entire local feature extraction
process (detection and description). Utilising a compatible geometric colour-
shape approach in both phases of the process is an important difference to much
of the literature, as locating a regionwith a colour detector increases the saliency
that a colour descriptor can then extract from it. The features of this study are
implemented with a scale-invariant colour Harris-Laplace (HL) detector using
the most promising colour invariant gradients from the literature, and for the
description, colour invariant SIFT (Lowe, 2004) is used in order to use the local
features robustly in their tasks. SIFT is a descriptor composed of a histogram
representing the orientations of the image gradients within the local image
region identified by the HL detector. The approach taken in this research has
been:

1. The implementation of a Harris-Laplace detector and algorithm parameters
optimisation. All the development was performed in Matlab.

2. Adapting photometric colour invariants in order to be used with the de-
veloped HL detector.

3. Implementing a SIFT descriptor algorithm, compatible with the used gray-
scale and colour invariant gradients.

4. Selecting appropriate datasets and evaluation frameworks to robustly test
the local features.
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5. Evaluating and comparing the grayscale and colour invariant features within
the same testing framework.

6. Analysing the correlation between the colour and grayscale features.

7. Studying feature extraction fusion techniques to utilise both luminance and
colour information, for image feature matching and recognition tasks.

1.4 Summary of the Research
At this point in the thesis, a brief summary of theworkwill allow for the research
contributions to be better understood. The broader results from the feature
detection experiments demonstrate why colour is not preferred in the literature
when tackling general vision tasks. Luminance (grayscale) features proved to
be the overall best performer when taking into account all the different imaging
distortion types. The colour invariants are more suited in scenarios that contain
illumination variations, but even so there is only one colour invariant that
performs clearly better than luminance under illumination distortions. In the
case of the feature descriptor matching experiments, which tested the ability
of the gradients to generate robust and distinct SIFT descriptors, grayscale
obtained the second best results for general imaging conditions. However the
majority of the colour gradients performed poorly.

The colour invariants in general performed better as descriptors than as
detectors. Luminance, in one of the illumination varying datasets, in fact per-
formed second worst in terms of matching score, which is essentially a measure
of how distinct the descriptors are. The matching study thus proves the negat-
ive effects of loosing chromatic information when converting to grayscale. The
overall conclusions of the substantial feature detection andmatching evaluation
performed in this research, is that there are only two colour gradient types that
should be considered to be used alongside the grayscale. The findings can serve
future works in proceeding in a more clear direction when it comes to local
colour feature extraction.

Since the feature detection and matching results indicated that a grayscale
technique should generally be used unless dealing with varying illumination
conditions, a correlation study was carried out to investigate if colour could
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contribute to enhancing grayscale-based techniques. This is a novel study that
obtained positive results indicating that the colour features are largely uncorrel-
ated with luminance and that each colour invariant produces local features that
are unique (compared to all other colour and grayscale features). Significant
numbers of these unique features produce correct correspondences, therefore
when taking all correct unique and common correspondences into account, their
sum is greater than the correspondences achieved by only using the luminance-
based features. These results motivated an investigation into feature fusion
extraction techniques, that aimed at selecting a set of features from an image
by utilising grayscale and colour gradients in an appropriate manner. Fusion
techniques were proposed for two applications; image feature matching and
image recognition.

The feature matching fusion study, did not obtain favourable results for
the proposed fusion techniques that focused on selecting the strongest subset
across all grayscale and colour HL points. The fusion failed to consistently
select the most appropriate set of interest points that would guarantee overall
better performance. Further analysis was performed in order to investigate
the reasons for the non-optimal fusion. The investigation concluded that the
standard method for ranking the HL points is inadequate to select the best
set from the same extraction technique. This insight into the ranking of HL
points, is another novel contribution arising from this work. Its implication for
the implemented fusion techniques, is that the ranking metric lacks enough
information to qualitatively decide which colour or grayscale points should be
selected for the optimal extracted feature set from an individual image. The
fusion study in the scope of local feature image matching, thus concludes that
despite the possibility of a positive feature fusion, it cannot be achieved with
the standard ranking metric utilised for HL.

For the object class recognition fusion experiments, the fusion strategy fo-
cused on the SIFT descriptors of the features rather than the strength of the
HL points. In the implemented approach, descriptors extracted from gray-
scale and multiple colour invariants are pooled together to represent the visual
vocabulary of the BOVW pipeline. The selection of which descriptors form
part of the visual vocabulary are dictated via K-means clustering, therefore
the inadequate metric previously used to rank the HL points does not impact
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the fusion technique. Luminance proved to be the best overall approach when
evaluating the recognition performance of individual features. However 40%
of the 20 different object classes in the used recognition dataset, obtain a better
result with methods other than luminance. In terms of the fusion recognition
experiments, the proposed feature fusion scheme consistently obtains better
recognition results than using grayscale SIFT descriptors extracted with the
standard dense sampling approach. This is caused by the higher levels of col-
our saliency that can be extracted from an image, since unique information is
combined from different grayscale and colour descriptors.

1.5 Contributions
There are twomain aspects of the contributions arising from this work; compris-
ing a substantial evaluation of photometric colour gradient invariants for image
feature matching and image class recognition applications, and a grayscale and
colour feature fusion investigation aiming at conjointly utilising the best types
of features from various gradient types. The overall evaluation and comparison
of the invariants that is performed here is more comprehensive than previous
works, namely due to utilising more types of invariants and testing on a more
extensive collection of image datasets. The aim of this work is to develop image
features that are able to perform robustly in general computer vision applica-
tions, therefore apart from evaluating on multiple datasets they are here also
evaluated with standardised metrics under the presence of typical imaging
distortions.

In terms of the feature fusion work, this research investigates a new concept
for fusing colour features for feature matching and image recognition. The
literature has utilised colour and grayscale information together for recognition
tasks (focusing on the feature descriptors), but has ignored fusion approaches
for local feature matching. In this work a correlation analysis for feature match-
ing is performed that shows the level of redundancy in the extracted features
between the colour and grayscale-based techniques. The study uncovers the
extent of the useful information that colour can provide to the feature extraction
process. It indicates that there is a strong potential for developing a feature
fusion extraction approach for local feature matching, in which the best features
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Figure 1.4: Flowchart of the main research activities. Contributions are in green,
existing methods in red and input/outputs are in blue.

from grayscale and colour-based techniques can be conjointly extracted from
an image.

The second part of the fusion work of this research focuses on image recog-
nition, the recognition fusion strategy results in an overall set of descriptors
(from multiple gradient types) that are more salient than a set extracted only
from grayscale information. The proposed recognition feature fusion tech-
niques obtain superior recognition results than the standard method used in
the literature, which comprises of a dense random sampling grayscale-based
feature extraction. This is due to the combination of features from multiple
colour invariants which can each provide unique distinct descriptors, and thus
increase the information content and complexity of the visual vocabulary of the
BOVW framework. A diagram of the main research pipeline is shown in Figure
1.4 with areas of contribution denoted in green, existing methods in red, and
inputs (I/P) and outputs (O/P) in blue. The specific individual set of research
contributions are as follows:

1. This research has selected to extract local image features from colour in-
variants that are amongst the most promising and under-evaluated colour
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invariant gradients from the literature. Most of those invariants are utilised
for local image features here for the first time.

2. In this work the strategy employed for the local feature extraction, uses colour
in both the detection and description phases of the process. Whereas the
majority of previousworks conducted disjointed studies, mainly using colour
in the description phase only.

3. All the colour invariants that are evaluated here, are implemented as local
features that are robust to the standard imaging conditions studied by the
field. Whereas certain colour invariants have previously only been evaluated
for edge or non-scale invariant corner detection.

4. A comprehensive feature matching evaluation is performed in this research,
which utilises four different local image feature matching datasets with sub-
stantial numbers of images. Moreover, they contain the imaging distortions
that are most widely tested for in the literature (i.e. scale, viewpoint, blurring,
JPEG compression and illumination). This approach is in contrast to previous
studies that use a single dataset, fewer number of image examples, or evalu-
ate a limited variety of imaging distortion conditions. Having more datasets
ensures this evaluation is unbiased to particular conditions contributed by
the hardware of the acquisition, and a greater number of image examples
improves the statistical significance of the reported results.

5. The feature matching evaluation framework that is implemented here, also
addresses further limitations of many previous works, by evaluating colour
features more rigorously using the metrics that are employed in the testing of
state of the art luminance features. Furthermore, the image class recognition
study that is carried out by this research is performed on one of the most
popular recognition datasets of the community which is also particularly
challenging for colour-based approaches.

6. A novel local feature correlation analysis is performed here, which is based
on actual experimental results in order to investigate the potential benefit of
using colour and luminance together. It reports the number of unique correct
points that each gradient type can generate and identifies which gradient
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types could be used conjointly to obtain a better overall feature matching
performance.

7. This research proposes feature fusion techniques for feature matching tasks
that focus on the strength of the HL corner points. The investigation indic-
ates that even though there are potentially significant numbers of unique
features available for fusion, the proposed technique fails to select the most
appropriate set of points from each feature type (colour or luminance) using
the standard ranking of HL points. The contribution that arises, is the discov-
ery that the metric used to determine the strength of a corner (which is the
standard HL ranking method), is not a sufficient indicator for the robustness
of the point, and thus not suitable to differentiate between the best subset of
grayscale and colour features.

8. A second feature fusion strategy is proposed, applied to image class recog-
nition and focusing on fusing the information from the SIFT descriptors.
The performed evaluation demonstrates that the two proposed fusion tech-
niques outperform standard grayscale-based recognition approaches. This
successfully proves the concept of using complementary grayscale and colour
information together for local feature extraction.

1.6 Thesis Outline
The literature review is presented in Chapter 2, where the relevant previous
studies are discussed in the areas of grayscale and colour feature detection, and
grayscale and colour feature description. The focus of the chapter is not on
implementation details or background theory, but on a conceptual high-level
discussion and comparison of the state of the art. The necessary background the-
ory will be provided in the relevant contribution chapters, to make the chapters
self-contained and more easily understood. Chapter 2 has one section (Section
2.5) related to the background, which covers the datasets used in this research
and the evaluation framework and metrics employed. That section supports the
narrative of the research contributions and is necessary to compare the work
carried out in this work with that of the literature. The chapter ends with a
summary of the negative aspects of the literature and the necessity for this
research, it highlights how this work addresses the limitations of the prior art
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and the differences between it and the work performed here.

Chapter 3 presents the colour adaptation of grayscale local features. It out-
lines the Harris-Laplace algorithm, the implementation utilised in this work,
and the optimisation study that was carried out to find the optimum set of
algorithm configurations. The colour adaptation examines the photometric
invariant theory utilised in this work, and outlines how the theory is implemen-
ted to obtain colour local image features. The evaluation of these features is
then covered in Chapter 4, which details the experiments carried out on local
image matching. The first experiments look at the performance of the various
detectors, examining their ability to reliably detect the same local regions of a
scene across varying imaging conditions. A correlation study then follows, that
examines the data from the detection experiments and quantifies the level of
effective correlation between the luminance and colour invariants. The third set
of experiments evaluate the colour descriptors in a feature matching task. The
number of correctly matched descriptors and the matching score are presented.
The last part of the chapter, is a study on colour feature fusion for local feature
matching. Two fusion strategies are outlined along with the experimental res-
ults.

Chapter 5 provides the last set of contributions, which examine the object
class recognition aspects of the research. The chapter discusses relevant back-
ground information on BOVW, and outlines the recognition pipeline that is
implemented in this work. Two experimental studies are presented, the first
evaluates the recognition performance of individual gradient types. In the
second experiment, the proposed fusion techniques for BOVW are evaluated
and compared with the standard random grayscale dense sampling approach
used in the literature. The thesis ends with Chapter 6, which summarises the
contributions of the research and outlines some possible directions for future
work.
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Since colour is an important component for the distinction between objects,
a large body of work has been proposed in the literature for utilising colour
information in recognition and classification tasks. However the high variab-
ility of colour image values from a scene under varying imaging conditions,
necessitates a solution to the colour constancy problem. This has impeded the
full utilisation of colour for general unconstrained applications. Colour has
had more success and attention in the field of image retrieval, especially in
tasks that do not require a solution to be robust to occlusions or varying scales
and imaging viewpoints. Such problems have traditionally been addressed
with colour description approaches that neglect the geometrical characteristics
of objects. They globally extract zero-order image representations like colour
histograms and employ colour spaces that are perceptually uniform (e.g. CIE
Lab) to suppress the level of variation of the colour values. For more general
recognition tasks however, a local feature extraction method is necessary in
order to provide robustness and invariance to geometrical variations such as
translation, rotation, scaling, and affine/projective transformations. Local fea-
tures are generally based on geometrical invariant approaches and extracted
around highly informative regions like corners or blobs.

The feature extraction process involves two parts: The detection phasewhere
local salient image regions or keypoints are identified (location and scale) and
the description phase, where each detected region is characterised with a dis-
criminative numerical signature (e.g. a histogram descriptor). Most of the
geometrical invariant local feature extraction approaches in the literature are
based on grayscale intensity information, as colour adds another layer of diffi-
culty represented in the constancy problem. Colour also normally increases the
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computational load of a vision algorithm, and unless utilised appropriately, the
added benefits of using colour can be negligible. If colour is utilized appropri-
ately however, the improved discriminative performance can justify the extra
computational costs incurred.

Colour counterparts have been available to the community for some time
although not widely used in general applications. In the context of local fea-
ture extraction, features should also be invariant with respect to photometric
variations such as illumination direction, illumination intensity, illumination
colour, and shadows and highlights. Various colour photometric invariants have
thus been proposed to maximize the robustness to these variations. However,
most of them have not received sufficient attention, making their contribution
not fully explored in the context of local features. In works that use colour
for local feature extraction, the majority apply colour in the description phase.
Such colour descriptions can be either geometric approaches, or non-geometric
based. The latter are usually used in conjunction with grayscale-based geomet-
ric descriptors.

In the past fewyears, BOVWapproaches have significantly advanced object class
recognition results (Chatfield et al., 2011). Most methods use the well-known
SIFT descriptor (Lowe, 2004), thus they are based on local intensity shape (geo-
metric) information. It has been shown that colour can also be a very useful cue
within the BOVW framework for some image classification tasks (Van De Sande
et al., 2010, Burghouts and Geusebroek, 2009, Vigo et al., 2010a, Van de Weijer
and Schmid, 2006b). However, the efficient combination of multiple image cues
is still an open problem because the relevance of each individual cue (colour,
shape, texture, etc.) is highly dependent on the importance of colour in the
data set (Khan et al., 2009). For example, colour information is necessary for
discriminating football players from two different teams. On the other hand
shape information is more essential to separate yellow bananas from yellow
apples, while both types of cues are required to discriminate between types
of flowers. The performance gain obtained by colour ranges from gains of up
to 20% (Van de Weijer and Khan, 2013), on colour-dominant flower and sports
datasets, to only a few percent on the shape-dominant PASCAL Visual Objects
Challenge (VOC) data set. Colour can be applied to the BOVW framework in
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two stages. Firstly, feature detection can be enhanced by choosing highly inform-
ative colour regions. Secondly, the feature description phase which typically
focuses on shape, can be improved with a colour description of the local feature.
Although both approaches have been shown to improve results, the combined
merits have not been widely evaluated in the literature.

Only a small minority of previous works have utilised colour in both the
detection and description phases (Abdel-Hakim and Farag, 2006, Gossow et al.,
2010, Krylov et al., 2012), some use colour for feature detection but grayscale
intensity for the description (Stöttinger et al., 2012, Vigo et al., 2010a). How-
ever, most approaches localise interest points first with a grayscale detector and
then apply a colour descriptor, such studies have been applied to image feature
matching (Van de Weijer and Schmid, 2006b, Burghouts and Geusebroek, 2009,
Fan et al., 2009, Van De Sande et al., 2010, Jalilvand et al., 2011, Krylov and Sor-
okin, 2011, Song et al., 2013), image retrieval (Van de Weijer and Schmid, 2006b)
and object class recognition (Burghouts and Geusebroek, 2009, Van De Sande
et al., 2010, Khan et al., 2009). Other object class recognition studies apply colour
description on densely sampled regions (Bosch et al., 2008, Wengert et al., 2011,
Chu and Smeulders, 2012, Zhang et al., 2012). This thesis focuses on applying
colour to both the detection and description of local image features, and the
remainder of this review chapter will outline the most relevant works from
the literature that utilise colour in the context of local feature extraction for the
application of image matching and recognition.

Section 2.1 lays the foundation for local feature detection and the reasoning
behind the direction that was taken for the development of the colour detector
used in this research. Section 2.2 outlines the various colour interest point
detectors that have been implemented in the literature, explaining their benefits
and shortcomings. Section 2.3 briefly discusses the trend of local grayscale
descriptors, covering the most important descriptors of the state of the art, and
the justification for choosing the descriptor utilised in this research. In Section
2.4, the colour descriptors proposed in the literature are discussed. Section 2.5
explains the feature matching evaluation framework employed in this research,
and all the datasets that are used. The chapter then ends in Section 2.6 with
a recapitulation of the literature, putting it in context with the work carried
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out in this research and highlighting the necessity for its more comprehensive
evaluation of colour invariant local features.

2.1 Luminance Detectors
The Harris detector was introduced in 1988 and it has become the most widely
used corner detector. It locates corners reliably using the eigenvalues of the
second-moment matrix (also called the structure tensor or auto-correlation mat-
rix), but its use is limited since it is not scale invariant (Mikolajczyk and Schmid,
2001). To have scale-invariance in local features, Lindeberg (1998) proposed
a more unified concept for automatic scale selection. This approach detects
blob-like structures at their characteristic scales using the circularly symmetric
scale-normalised LoG operator. It obtains a scale-space stack representation by
successively filtering the original input image with LoGs having Gaussian de-
rivative kernels of varying standard deviations. By searching for local maxima
across scale-space in an image stack of LoG responses, it is then possible to find
the characteristic scale of an interest point.

Mikolajczyk and Schmid combined this scale-space approach with the Har-
ris corner detector and refined it to create two robust and scale-invariant feature
detectors, the Harris-Laplace (Mikolajczyk and Schmid, 2001, 2004), and the
Hessian-Laplace (Mikolajczyk and Schmid, 2004). The Harris-Laplace uses the
scale-adapted Harris measure to locate corners of various sizes. The Hessian-
Laplace applies the determinant of the Hessian matrix to detect blob-like struc-
tures. For both detectors, the scale normalised LoG response determines the
scale of the extracted interest points.

Matas et al. (2004), introduced the Maximally Stable Extremal Regions
(MSER) detector, which extracts homogeneous intensity regionswith awatershed-
like segmentation algorithm. MSER was amongst the top performing detectors
identified by Mikolajczyk et al. (2005b), working best for structured scenes that
facilitate segmentation. It is amongst the fastest of the affine-invariant detectors
and has mostly been used in wide baseline matching. MSER provides relatively
few blobs but it is robust to geometric transformations, however it performs
poorly under lighting distortions (Mikolajczyk and Schmid, 2005), and for object
class recognition (Mikolajczyk et al., 2005a).
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The trend during the last number of years, has been to create more compu-
tationally efficient detectors using essentially the same theoretical foundations
as the early pioneering work. By increasing the complexity of the algorithms, it
has advanced their performance and robustness to imaging distortions. Lowe
(2004) proposed a more efficient approach for blob detection that approximates
the LoG operator with the Difference of Gaussian (DoG). Using the DoG de-
tector can significantly accelerate the detection without causing a substantial
reduction in accuracy. This work introduced the well known SIFT approach,
and arguably it has been to date the most robust local image feature that has
been developed. Continuing the trend of improving computational efficiency,
Bay et al. (2008) proposed a fast Hessian detector that detects blob-like ob-
jects more efficiently than DoG, their detection-description approach is named
SURF. SURF uses integral images and haar-wavelet operators to approximate
the determinant of the Hessian which, similarly to the LoG, also estimates the
characteristic scale of a blob (Lindeberg, 1998). The accuracy of the scale estim-
ation of these three methods (LoG, DoG and Hessian) largely depends on the
selection of the scale sampling rate (Lowe, 2004).

A more recent corner detector, popular for real-time applications was pro-
posed by Rosten et al. (2010). It is named the FAST detector, and builds on
similar concepts to the classic SUSAN (Smith and Brady, 1997) corner detector.
This type of detector has high spatial precision and low computational costs, but
it lacks scale invariance and is less robust to high viewpoint distortions. Various
other works have improved on its scale invariance capability, including AGAST
(Mair et al., 2010) and Binary Robust Invariant Scalable Keypoints (BRISK) (Leu-
tenegger et al., 2011). Despite their real-time capabilities, these detectors are less
compatible for a colour adaptation. Compatible approaches utilise raw multi-
channel colour gradients that can then be further combined and manipulated
to introduce photometric invariance.

Despite its introduction two decades ago, the theory underpinning the
Harris-Laplace detector is still intensively researched to achieve better robust-
ness and invariance to image distortions. However it has been less popular than
more recent techniques, that not only are computationally more efficient but
also employ more sophisticated algorithms for point localisation. Despite this,
in comparative studies involving different detectors (Mikolajczyk and Schmid,
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2004, Mikolajczyk et al., 2005b), the performance of the Harris-Laplace was
comparable to the top performers, with a good balance between localisation
accuracy, repeatability scores and number of points extracted. The Hessian-
Laplace (Mikolajczyk and Schmid, 2004), detects blobs instead of corners and
has in general more stability and higher repeatability than the Harris-based
counterpart. This is so because using the determinant of the Hessian reduces
the detection of elongated ill-localised structures (Bay et al., 2008). They both
detect similar locations however, and some approaches prefer to use the Harris-
Laplace for visual recognition tasks (Zhang et al., 2007, Stöttinger et al., 2012), as
the Hessian generates additional interest points that reduces the distinctiveness
of the overall set of extracted features and can thus lead to a decreased prob-
ability of good matches. Second-order derivatives are also necessary for the
Hessian, which could lead to inaccurate point localisation when using colour
data which is inclined to contain more noise. For the aforementioned reasons,
the Harris-Laplace was chosen for the development of the colour detection in
this research.

2.2 Colour Detectors
The most successful grayscale intensity local image features are gradient-based,
and rely on scale-invariant corner and blob detection. For this reason the major-
ity of previous works, alongwith this research, focus on colour feature detection
with gradient-based approaches. In the case of colour detectors, the most stable
and robust to illumination variations as shown in Gouet and Boujemaa (2001),
have been based on the colour Harris introduced by Montesinos et al. (1998).
That approach replaces the intensity gradients in the second-moment mat-
rix, with summations of squared RGB gradients. Van de Weijer et al. (2005)
extended the colour Harris by proposing a set of photometric variants and
quasi-invariant gradients which are less susceptible to shadows and specularit-
ies. Their evaluation focused on the accuracy of Canny edge detection when
using their invariant gradients. Van deWeijer et al. (2006a) then introduced two
full-invariants, which were evaluated by measuring the stability of non-scale-
invariant Harris corner detection when subjected to varying levels of Gaussian
noise.
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Faille (2005) proposes a colour Harris corner detector based on the m-colour
ratios of Gevers and Smeulders (1999) which is invariant to specularities, shad-
ing and colour illumination. However themethod uses fixed scales formatching
images under illumination distortions, making their interest points non-scale-
invariant. Unnikrishnan and Hebert (2006) detect scale and rotation invariant
points with the LoG operator using two illuminant invariant scalar functions,
one invariant to a 3x3 perturbation of the RGB space and one invariant to inde-
pendent scalings of the channels. Results showed that the version that is only
invariant to independent scalings of the RGB channels is better under rotation
and scale changes. A limitation of their study is the lack of an evaluation of
their detector under viewpoint changes, and while they demonstrate that their
colour LoG can work better than an intensity LoG detector, they do not perform
a comparative evaluation.

Forssén (2007) proposes a colour extension of the MSER detector (Matas
et al., 2004). It achieves higher repeatability rates than the original MSER for
blurring and viewpoint distortions, but it is not evaluated for illumination
changes. A similar approach is proposed by Penas and Shapiro (2009), that
utilises the HSV colour space for their MSER adaptation and evaluates it for
image matching and object classification. The authors obtain a gain in precision
with respect to MSER for the Caltech 256 dataset (Griffin et al., 2004), but their
image matching evaluation on the Oxford dataset (Mikolajczyk, 2004) is unclear.
Their results show if a homography could be estimated between image pairs, but
do not evaluate the repeatability or the number of correct point correspondences
obtained, which has become the standard method for evaluating detectors.
Furthermore, this is another study in which robustness to illumination changes
is not examined.

Ming and Ma (2007) propose a multi-scale colour blob detector by substitut-
ing the derivatives in the Hessian matrix (for point localisation) by a weighted
sum of RGB derivatives, and use the LoG for scale selection. Their weighting
for each colour channel per pixel is the normalisation of the channel with the
intensity. Their evaluation of the detection is not explained however, and only
5 images are used for their experiment. Shi et al. (2008) argue that with such
an approach, the summation can lead to derivatives being cancelled out. They
instead propose the use of quaternions to overcome this flaw, though this re-

23



2.2 Colour Detectors

quires the calculation of the eigenvalues from the quaternion Hessian matrix,
which is computationally demanding (Le Bihan and Sangwine, 2003).

In the study of Gossow et al. (2010), the authors detect colour SURF points
by analysing the determinant of the Hessian on separate colour channels as
opposed to just the intensity channel like the standard SURF approach. Their
approach also contains a colour description element which will be discussed
further in Section 2.4. In another colour blob detector, Corso and Hager (2005)
locate interest points in DoG responses obtained from three linear projections of
RGB space. The technique essentially locates stable regions across scale-space
that are homogeneous in colour content. Their technique provides scale, transla-
tion and affine invariance. The evaluation was performed on an imagematching
task and compared results when the images were subjected to changes in aspect
ratios. The colour technique was inferior to an intensity-based approach on
undistorted images, and only when the aspect ratio was halved did the colour
achieve a marginally better performance.

Van de Weijer et al. (2006b) study colour derivative statistics from large im-
age datasets and show that the distributions are dominated by a principal axis
of maximum variation caused by the luminance intensity, and two minor axes
of chromatic changes. This implies that changes in intensity are more probable
to occur than chromatic changes and the authors argue that luminance intensity
therefore has less information content. They estimate a 3x3 diagonal matrix
that transforms an image to boost the effect of colour derivatives, and name
their method colour saliency boosting. The boosting matrix parameters are
estimated such that the original colour space of an image is rotated and aligned
to the axis of major variation of the trained dataset. The approach transforms
the original distribution to a more homogeneous one, aiming for intensity and
chromatic changes to have more equal information content. The strength of
the gradients of the boosted image relate to the saliency of the data, and the
authors claim that this remapping increases the probability of detecting salient
colour points.

Sebe et al. (2006) evaluate a Harris-Affine scale invariant colour detector using
the saliency boosting of Van de Weijer et al. (2006b) on the Opponent Colour
Space (OCS) and the m-colour ratio space (Gevers and Smeulders, 1999). They
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perform feature detection experiments on 5 sequences of the Oxford dataset.
The m-colour ratio detection performed worse than the opponent colour, and
thus will not be considered for this research. The opponent colour results are
mixed when compared with the grayscale detector. Under blurring distortions,
the colour was 10% superior except for the most intense condition. Under all
illumination variations however, the grayscale intensity performed better. Both
grayscale and colour opponent detectors performed comparably for sequences
with viewpoint or scale/orientation distortions.

Stöttinger et al. (2007) adapt the Harris-Laplace detector to utilise colour
from various colour space representations: RGB, Hue-Saturation-Intensity (HSI)
and OCS. Harris corners are identified by summing colour channel spatial
derivatives, and their characteristic scale is estimated using the LoG operator
on a boosted image. This boosted image is obtained via a Principal Component
Analysis (PCA) of the covariance matrix of colour channel derivatives from
the entire image (after a transformation to a chosen colour space), the final
single-channel image results from the dot product of the principal eigenvector
with the original 3-channel colour image. This work is continued by Stöttinger
et al. (2009), where Harris-Laplace interest points obtained from the HSI colour
space are named Light Invariant Colour (LIC) points, they also evaluate a colour
boosted detector on the OCS. Their point detection experiments use the Oxford
dataset, they run an image retrieval evaluation on the Amsterdam Library of
Object Images (ALOI) dataset (Geusebroek et al., 2005), and lastly object class
recognition is performed on the PASCAL VOC 2007 (Everingham et al., 2007)
using grayscale SIFT descriptors and BOVW. The LIC points perform better
on the detection repeatability compared to the grayscale Harris-Laplace. In
the image retrieval experiments it also performs significantly better when 500
or less points are extracted per image. Recognition precision is comparable
or marginally improved to the grayscale detection, but only half the amount
of colour points are necessary. The final contribution in this line of work is
presented by Stöttinger et al. (2012), though this is very similar to the previous
work they carried out. In that study the LIC corners are obtained from summing
saturation derivatives with hue derivatives which are weighted with the value
of the saturation. While the corners are detected using colour information, the
scale selection for the corners is estimated using the LoG operator on a boosted
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single-channel image. It is not examined however, what role this boosting has on
the performance of the extracted features, and howmuch can be attributed to the
LIC colour invariant. The recognition experiments evaluate other descriptors
other than SIFT and compare dense feature sampling to sparse LIC points. The
recognition results show that dense sampling is the best performer overall but
by a small margin, however using a grayscale Harris-Laplace detector gave
comparable results to LIC. In the detection experiments using images under
illumination variation, colour boosted points prove to be less repeatable than the
LIC points, due to the saliency function being sensitive to luminance changes.

Vigo et al. (2010b) extend the LoG detector to utilise colour saliency by
means of an adaptation to the colour saliency boosting of (Van de Weijer et al.,
2006b). To estimate the boosting function for a particular image (and not from
an entire dataset) the authors use Independent Component Analysis (ICA) on a
covariance matrix of image derivatives. Their LoG detector uses RGB gradients
and is evaluated on feature matching tasks on the Oxford dataset, with gray-
scale SIFT descriptors and the C-SIFT from Burghouts and Geusebroek (2009).
Results indicate the colour points achieve an average improvement of 10% over
a grayscale LoG detector. Vigo et al. (2010a) focus on improving image class
recognition by using their colour boosted detector fromVigo et al. (2010b). Their
recognition uses the Color Attention method (Khan et al., 2009), which allows
to sample regions from an image in varying spatial concentrations by analysing
the image’s colour attention saliency map. The description step uses SIFT to
build a shape vocabulary and colour names (Van deWeijer et al., 2009) with hue
descriptors (Van de Weijer and Schmid, 2006b) for the colour vocabulary. Stand-
ard SIFT-based BOVW is performed and compared to using the colour attention
method which combines both shape and colour information at the recognition
stage. Results on the Flowers dataset (Nilsback and Zisserman, 2006) with SIFT
BOVW, show that using only the boosted colour detector gives a 1% precision
improvement over using only an intensity detector, and identical results when
using both detectors simultaneously. The Colour Attention approach achieves
a 16% improvement over BOVW, and using a combined intensity and boosted
detection is 4% better than using only an intensity detector. On the PASCAL
VOC 2009 experiments, using the combined detection is always superior to only
boosted or intensity detection. The colour attention method is here again better
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than BOVW, but by a lesser margin of 4%.

Despite various works applying a colour boosting function, minor improve-
ment results are obtained in the BOVW recognition study of Vigo et al. (2010a).
Results from Sebe et al. (2006) and Stöttinger et al. (2012) indicate that in image
matching tasks the boosting is not robust to illumination distortions, which is
an invariance that is of interest to this research. Furthermore, this boosting is
global in nature and to estimate the boosting parameters it requires either the
use of PCA to decorrelate the colour channels of an image or the derivative
analysis of large datasets. This work focuses instead on evaluating raw local
colour invariant gradients on their own merits, without using any higher level
derivative statistics.

2.3 Luminance Descriptors
The keypoint detection is the fist step of the feature extraction process, which is
required in order to then describe that image region with a feature vector. The
descriptor vector/histogram must contain a representation that is robust and
invariant to varying imaging conditions in order for the feature to be matched
across multiple images. Although a good detector is important for allowing
salient and potentially discriminative regions to be located, it is the descriptor
which ensures that the feature can actually be utilised for practical vision tasks.
Its vital importance has inspired a myriad of solutions in the literature, of which
the most important in the context of local feature matching will be discussed
here.

The most popular descriptor and arguably the most robust, is the SIFT
proposed by Lowe (2004). It is based on obtaining Histograms of Oriented
Gradients (HOG) from a grid surrounding the centre of the keypoint. The
full dimensionality of the resulting descriptor after the concatenation of the
HOGs is 128, and its discriminative power and robustness have made it the
reference descriptor for the community. Since its introduction, the majority
of the efforts have been to design a descriptor that performs comparatively to
SIFT, but with a lower computational overhead and that can facilitate a faster
matching algorithm. An example of the large SIFT-like family of descriptors
that have been proposed, is the PCA-SIFT of Ke and Sukthankar (2004) that
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reduces the descriptor to 36 dimensions using PCA. While the matching time
is reduced, the time required to decrease the dimensions results in small gains
in efficiency and a drop in the discriminative ability of the resulting descriptor.

One of the most popular descriptors after the introduction of SIFT, has been
the SURF proposed by Bay et al. (2008). It cleverly approximates both the detec-
tion and description components of SIFT by applying Haar-wavelet filtering to
obtain the HOGs and integral images to approximate the determinant of the
Hessian needed to locate the keypoints. SURF’s performance is comparable
with that of SIFT, and much depends on their implementation and on the data
onwhich they are tested. In general though, SIFT is regarded to bemore discrim-
inative and robust to imaging distortions as it has inherently less approximated
calculations. SURF is however much faster than SIFT, although it still cannot
be generally classified as a real-time descriptor when using standard hardware.
Some improvements to SURF were proposed by Agrawal et al. (2008), with the
Modified-SURF (M-SURF) descriptor and using the center-surround detector
(CenSurE). M-SURF employs a two-stage Gaussian weighting scheme, making
it more robust and better suited to suppressing descriptor boundary effects.
Alcantarilla et al. (2012) introduce the KAZE feature, an adaptation of the SURF
detection and description approach within a non-linear scale space framework.
M-SURF is used for their description, and by applying non-linear diffusion
filters they can obtain scale invariant features that improve the repeatability
and distinctiveness of previous features that are based on the Gaussian scale
space.

The novel description development of recent years (similarly to the detectors)
has steered away from gradient-based techniques and focused on creating more
compact and computationally efficient descriptors. This family of descriptors
are comparison-based, and are derivations of the Local Binary Pattern (LBP)
descriptor of Ojala et al. (1996). To generate an LBP-like descriptor, pixel intens-
ities are compared from pairs of neighbourhood pixels around a centre pixel,
the comparison results in a binary string. The size of the neighbourhood and
the sampling strategy to generate the binary descriptor changes from method
to method. The significance of binary descriptors is that their matching strategy
is significantly faster than previous SIFT-like descriptors. Instead of utilising
a distance metric like the Euclidean Distance to match descriptors from differ-
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ent images, it is possible to use the Hamming distance (a bitwise XOR and a
bit count operation) with a binary descriptor, which is computationally con-
siderably more efficient. These runtime advantages make binary descriptors
better adapted for real-time applications andmobile devices. Amongst the most
well-known binary descriptors in the literature are: Binary Robust Independent
Elementary Feature (BRIEF), Oriented Fast and Rotated BRIEF (ORB), Binary
Robust Invariant Scalable Keypoints (BRISK), Fast Retina Keypoint (FREAK)
and Local Difference Binary (LDB).

Calonder et al. (2010) propose the BRIEF descriptor, obtained via a Gaussian
distributed random sampling of 512 pixel pair intensity comparisons. The
resulting descriptor is not invariant to rotation or scale changes on its own,
it has to be linked to information from the detector. The next development
was by Rublee et al. (2011), which improved BRIEF’s invariance to noise and
rotation. Further improvements in scale and rotational invariance came with
BRISK, proposed by Leutenegger et al. (2011) and which employs a concentric
equally spaced circular sampling pattern. A more efficient retinal sampling
pattern is used for FREAK (Alahi et al., 2012), this sampling sets a higher density
on the centre of the region which then drops outwards exponentially similarly
to the photoreceptors of the eye. One of the most recent descriptors is the
LDB proposed by Yang and Cheng (2014), which improves both the matching
accuracy and matching speed of previous binary descriptors.

Many versions of implementations and comparisons exist of all the aforemen-
tioned descriptors, but in general it is clear to see the difference between binary
and SIFT-like descriptors. BRISK’s performance is comparable but not superior
overall to SIFT or SURF (Leutenegger et al., 2011). FREAK performs slightly
worse than BRISK while achieving better computational efficiency (Alahi et al.,
2012), the paper’s results also show SIFT to be overall better than SURF. Yang
andCheng (2014) compare LDB-64 and LDB-32with ORB-32, BRISK-64, FREAK-
64 and SURF-64 (descriptor versions of 32 and 64 dimensions), the matching
performance of LDB was better on all the tested image-sets. Despite that per-
formance, LDB was not compared with the full SURF or SIFT descriptor which
comprise of 128 dimensions. In general it is evident that binary descriptors have
closed the performance gap and are sufficient for most real-time applications,
but the traditional SIFT-like descriptors are more robust, distinct, and still the
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best choice for applications needing invariance for more challenging imaging
distortions. This is one of the main reasons for why SIFT is the descriptor of
choice for this research. Additionally all colour invariant methods have em-
ployed gradient-based SURF or SIFT descriptors, in order to be compatible with
the colour invariants of the literature.

2.4 Colour Descriptors
The use of colour for description purposes has received more attention than
using colour for detection, specially in more recent years. Traditionally there
have been three ways to introduce colour into feature descriptors, with non-
geometric, semi-geometric and full geometric chromatic information. The first
approach consists of normalising the colour channels to provide a level of
photometric invariance and creating a zero-order histogram descriptor from
the resulting chromatic information (Van de Weijer and Schmid, 2006b, Van
De Sande et al., 2010, Mojsilovic, 2005, Finlayson et al., 1998). Due to the weak
spatial and geometric information content within such descriptors, the reported
results show that shape-based geometric descriptors like SIFT are generally
always superior in image matching or recognition tasks. The second (semi-
geometric) approach, successfully applied in Van deWeijer and Schmid (2006b),
Tang et al. (2012), and Diplaros et al. (2006), extracts two types of descriptors
from an interest region, one containing shape/geometric information and the
other the chromatic histograms mentioned previously. The shape information
uses intensity information, to generally obtain SIFT descriptors. These two
types of descriptors then get concatenated, and the performance of the resulting
descriptors are superior to using only the colour histograms. Such a fusion
strategy is particularly favoured for image retrieval and recognition rather than
for image feature matching applications. This is due to the invariance to stand-
ard imaging distortions being diluted by a non-geometric colour component,
this effect impacts less on the recognition. The third way of applying colour
to feature descriptors, is to extract colour descriptors like SIFT which will then
contain compatible spatio-geometric and chromatic information in the same
representation. This is achieved by either applying the descriptor algorithm
directly onto individual colour channels and then concatenating the resulting
descriptors (Bosch et al., 2006, Van De Sande et al., 2010), or developing colour
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invariant gradients from multiple channels which can then be compatible with
SIFT (Abdel-Hakim and Farag, 2006, Burghouts and Geusebroek, 2009). This
section focuses on previous works that employ semi or fully geometric methods
of introducing colour into local feature descriptors.

Van deWeijer and Schmid (2006b) combine colour and shape information by
concatenating histograms of hue or photometric invariant values with the gray-
scale SIFT descriptor. Hue is invariant to lighting geometry and specularities,
however it is unstable near the gray axis (when saturation is low). Van deWeijer
and Schmid (2006b) thus apply an error analysis to weigh the contribution of
different hues while histogramming its values, it is based on how the certainty
of the hue of a pixel is inversely proportional to its squared saturation. Their im-
age matching evaluation is performed on three image-sets, two taken from the
Oxford dataset (with viewpoint and illumination variations) and another image
set with illumination variations. The matching results show that combining
colour and shape is always significantly better than using the colour histograms
alone. Compared to using grayscale SIFT on the viewpoint varying dataset, the
colour hybrid descriptors perform 20% better. In the illumination varying sets
however, colour improves the matching score by only 1-3%. They perform a
further experiment of image classification on the Birds (Lazebnik et al., 2005)
image dataset (6 classes, 600 total images) and a football (Van de Weijer and
Schmid, 2006a) dataset (7 classes, 280 images). The classification results prove
that adding non-geometric colour information to the SIFT descriptor improves
its discriminative power, their approach is clearly superior to the grayscale SIFT
in classification precision, and it is clearly better for this task than for image
matching.

Abdel-Hakim and Farag (2006) propose a SIFT descriptor built using hue
colour gradients based on a H-invariant from Geusebroek et al. (2001), which
utilises the Gaussian Colour Model. They perform feature matching experi-
ments on the ALOI dataset (Geusebroek et al., 2005); which contains images
of objects under different illumination conditions. Feature matching results
show that their CSIFT descriptor is more robust than the standard grayscale
SIFT with respect to colour and photometric variations.

Burghouts and Geusebroek (2009) evaluate multiple colour invariants pro-
posed by Geusebroek et al. (2001) for the purposes of feature matching (on the
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ALOI dataset) and object class recognition (on PASCAL VOC 2006). The ALOI
set comprises of 1,000 objects, imaged under different conditions: blurring,
JPEG compression, illumination direction, viewpoint change and illumination
colour. In their feature matching experiments, a non-standard and limited eval-
uation framework is employed. They use a grayscale Harris-Affine detector
to find candidate local regions from each image of a set, from those only one
region is manually selected (the most visible across all the varying viewpoint
conditions of the set). Descriptors are then extracted for the selected singular
regions across all imaging conditions of the set, and repeated for all the sets
of objects in the dataset. The region at the first imaging condition, is matched
against regions from other conditions across multiple other objects (including
a region from the same object). The matching aim is to find the region be-
longing to the same object. Precision-Recall curves are calculated by matching
the descriptors of each region with 100 or 500 other random regions from the
rest of the dataset, in a 1000-fold cross validation. The regions are described
by concatenating SIFT descriptors from different invariants and reducing the
dimensionality of the overall descriptor to match the 128 dimensions of the
original SIFT. The C-Invariant performs best overall for the matching tasks, in
the object class recognition experiments it was compared against the standard
grayscale SIFT and also achieved a better performance.

Various state of the art colour image descriptors are evaluated in the study
of Van De Sande et al. (2010). The study uses the ALOI dataset to evaluate
robustness to viewpoint and illumination changes and the PASCAL VOC 2007
for object class recognition. Amongst the descriptors tested were the HSV-
SIFT used by Bosch et al. (2008), the colour moments used by Mindru et al.
(2004), Hue-SIFT (Van de Weijer and Schmid, 2006b), C-invariant SIFT (C-SIFT)
(Burghouts and Geusebroek, 2009) and Opp-SIFT, which is a concatenation of
SIFT descriptors of the O1, O2 and O3 opponent channels of the OCS. Results
showed that SIFT-based colour descriptors outperform histogram-based and
moment-based descriptors. Additionally while the relative performance of the
descriptors was data-specific, C-SIFT performed best in the recognition task,
achieving a 4% gain in precision over standard SIFT.

Gossow et al. (2010) extend the SURF descriptor to the colour domain us-
ing the C and W colour invariants proposed by Geusebroek et al. (2001). The
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descriptors are formed by concatenating SURF descriptors taken from different
colour channels and invariants, and the optimum approach uses different in-
variant combinations for detection and description. Their feature matching is
evaluated on a subset of the ALOI dataset and the Oxford dataset (Mikolajczyk,
2004), and results indicate that their best COLOR SURF candidate achieves
better robustness to photometric distortions. The difference in the results are
marginal however, and the implementation of their detector is not sufficiently
explained.

Cui et al. (2010) propose the Perception-based Color SIFT descriptor (PC-
SIFT), which provides geometrical and photometric invariance and is built
using the perception-based colour space of Chong et al. (2008). They detect
DoG interest points from each channel of the colour space, and the descriptors
are formed from 3 dimensional colour gradients. Their feature matching exper-
iments are carried out on the ALOI dataset and evaluate the robustness against
colour lighting changes and illumination direction changes. Results show that
PC-SIFT performed better compared with the CSIFT of Abdel-Hakim and Farag
(2006) and grayscale SIFT. However their paper does not explain clearly how
their SIFT descriptors are obtained from the 3 dimensional gradients.

Krylov and Sorokin (2011) propose a colour description extension of their
grayscale keypoint extraction method based on Gauss-Laguerre circular har-
monic functions. They utilise the invariant theory proposed by Geusebroek
et al. (2001) to obtain colour descriptors. The results that are shown in their
study are very limited however, and the usefulness of the approach is thus
unclear. The authors follow up their work in the study (Krylov et al., 2012),
which introduces a colour blob detector using the Hessian matrix. The detector
sums weighted RGB spatial derivatives to obtain the gradients for the Hessian
matrix, the weight per pixel for each colour channel derives from its 2nd order
spatial derivative magnitude. Their evaluation dataset contains two parts, one
with 28 image pairs that allow keypoints to be detected stably before and after
grayscale conversion, and one part with 16 image pairs in which keypoints
become less distinguishable after grayscale conversion. Detection results show
a marginal improvement in the first dataset using the colour keypoints, and a
significant improvement in the second set of images, but only after the number
of extracted points per image is above 2000. In general, the authors claim that
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using colour for both detection and description is the most beneficial strategy,
as when using a grayscale descriptor the difference between using a colour or
grayscale detector becomes minimal.

Jalilvand et al. (2011) use the C invariant from (Geusebroek et al., 2001) to
create a colour SURF (Bay et al., 2008) descriptor. They utilise the ALOI dataset
in their feature matching experiments and obtain better precision and recall
results than the standard SURF. Fan et al. (2009) propose a colour-grayscale
hybrid descriptor for local feature matching with one part composed of the
standard grayscale SURF, and the other consisting of a colour histogram quant-
ised from the YUV colour space with a Gaussian kernel. They employ different
matching metric distances, the Euclidean distance matches the SURF and the
Bhattacharyya distance matches the colour histogram. The colour histogram is
only used to match the features that fail the matching threshold of the SURF
descriptors. In a similar study, Geodemé et al. (2005) propose using a 3D col-
our descriptor based on colour moments, to filter out incorrect grayscale SIFT
matches.

Song et al. (2013) propose compact local descriptors that encodes the colours
in a region and their spatial distribution. These descriptors are designed to be
robust to photometric variations that can be modelled by an affine transform
in RGB colour space. They characterise each pixel of an interest region with 5
coordinates, two spatial (x, y) and three for the colour space (R, G, B), and ap-
proximate two affine transforms to go between the image and colour space and
vice versa. Each of those transforms is used to generate two colour descriptors.
For example for their ITC descriptor (image to colour), the pixels of elliptical
interest regions are mapped to parallelograms in the colour space, and the
colour descriptor is composed of the corner locations of these parallelograms.
ITC has 36 dimensions and is robust to affine spatial distortions, CTI (colour
to image) has 48 and is robust to photometric variations. They perform feature
matching experiments on ALOI using the evaluation framework of Burghouts
andGeusebroek (2009), and object class recognition on the Birds (Lazebnik et al.,
2005), Flowers (Nilsback and Zisserman, 2006) and Football (Van de Weijer and
Schmid, 2006a) datasets. Their approach is compared with RGB-SIFT, Hue-
SIFT, Opp-SIFT, HSV-SIFT, C-SIFT and standard SIFT. The best results on the
matching task are obtained by concatenating ITC and CTI, whereas the overall
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top performer (best in 2 of the 3 datasets) in the recognition experiments is
ITC. Their descriptors performed particularly well considering the significantly
smaller size in their dimensions.

Apart from the aforementioned techniques that obtain illumination invariant
image descriptors, there exists another approach in computer vision for solving
the problem of varying illumination conditions across images. This field is
called Colour Constancy, and focuses on estimating the colour of the light source
of an imaged scene (Gijsenij et al., 2011). Once the light source is determined,
the image can be corrected to appear as if it was taken under an ideal white
canonical light source.

Although a significant body of colour constancy work exists in the literature,
few have studied the effects of colour constancy correction for local image
feature extraction applications. Kanan et al. (2010) study the effects of standard
colour constancy algorithms on face and object recognition (using the ALOI
dataset), and compare recognition rates by extracting SIFT features on various
colour spaces with and without the colour constancy correction. Results on
the ALOI dataset indicate that the results from the colour corrected descriptors
improve the recognition accuracy by 2%, compared to using non-corrected
RGB-SIFT descriptors. In a similar study by Joze and Drew (2010), that utilises
the BOVW recognition approach on the PASCAL VOC 2007 dataset; the same
observation is concluded regarding the comparison of standard RGB-SIFT and
colour constancy corrected counterparts. That study however, found that C-SIFT
and Opp-SIFT performed better than the colour constancy corrected techniques.

The constancy approach was thus not followed in this research, due to the
uncertain benefits of using standard colour constancy algorithms, and because
more complex constancy techniques require datasets calibration and performing
statistical analysis similar to the colour boosting strategies. The concluding
remarks of the literature review are given in Section 2.6, which summarise the
differences between the state of the art and the work proposed in this research.
Theywill serve tomore easily highlight the contributions of this work compared
to the literature and provide the reasoning for the direction taken here.
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2.5 Evaluation Framework of Image

Features

Mikolajczyk and Schmid (2005) propose a framework to evaluate the quality of
local interest point detection and matching using robust metrics, where the first
image of a sequence is matched in turn with images of varying levels of image
distortions. This framework simulates the conditions of a real-world feature
matching application significantly better than the one employed by Burghouts
and Geusebroek (2009). In the framework of Mikolajczyk and Schmid (2005),
all the extracted features from an image are considered in the matching pro-
cess. Since the homographies between the first image of each sequence and all
subsequent images are known, these are used to identify which feature corres-
pondences are correct. To provide standardised results and employ a robust
local feature extraction evaluation, this research follows the same framework as
it has become the standard method in the field. Three metrics are used in the
local feature matching evaluation, the repeatability index (Section 2.5.1), the
matching score and precision-recall curves (Section 2.5.2).

The local feature matching evaluations of this research are carried out on
four datasets: The Oxford dataset (Mikolajczyk, 2004) which has become the
de facto database to evaluate local grayscale features. The Middlebury Stereo
dataset which is amongst the most widely used in its field. The ALOI objects
database, utilised predominantly for image retrieval and studies dealing with
illumination varying conditions. The fourth one is the PHOS dataset (Vonikakis
et al., 2012), comprising of sets of objects imaged under varying illumination
conditions and rarely used within the literature.

Despite the benefits of his evaluation approach, Krystian Mikolajczyk men-
tioned at his opening talk of the CVPR 2009 feature benchmark (Mikolajczyk
et al., 2009), that his framework contained a number of drawbacks. Firstly that
larger regions have more of an advantage compared to smaller ones. Secondly,
that a dense feature extraction will always obtain higher repeatability rates.
The framework and datasets that are compatible with it also do not allow for
evaluating the applicability of local features to increasingly general conditions.
A suitable way to test for those scenarios, is to run a large scale recognition
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experiment which is also performed in this research. For the object class recogni-
tion experiments, this study uses the testing framework from the PASCAL VOC
(Visual Objects Challenge) (Everingham et al., 2007), and the 2007 version of the
dataset. Since the PASCAL VOC’s first appearance it has become the standard
and most popular framework for testing recognition approaches (especially
BOVW). Only in more recent years have other datasets and challenges started
to become more important in the image recognition community, such as the IM-
AGENET challenge (Russakovsky et al., 2014) that contains millions of images.
These types of datasets can be used with Deep Learning approaches (Bengio,
2009, Simonyan and Zisserman, 2014), that utilise Neural Networks and have
become to represent the state of the art in object class recognition. This research
is not interested in developing state of the art machine learning algorithms
however. It focuses on colour invariant local feature extraction, and the BOVW
approach to evaluate the PASCAL VOC is still one of the most common and
valid recognition techniques that utilises local feature extraction.

2.5.1 The Repeatability Index

The repeatability index is a metric proposed by Mikolajczyk and Schmid (2005),
to measure the ability of a local feature detector to reliably detect the same
points within an image scene across varying imaging conditions. It is defined
as the ratio between the number of correct corresponding points between two
images and the total number of possible points available to be matched. This
total number is obtained from the minimum number of points (out of the two
images) that occur in the overlapping scene area common to both images.

repeatability =
#correspondences

#totalpoints
(2.1)

In the study of Mikolajczyk and Schmid (2005), two regions are said to
correspond if their areas overlap by more than 60%. Each region is expressed
as an ellipse, and the overlapping areas are calculated by mapping (with a
homography) an ellipse from the first image to the corresponding frame of
reference of the second image. Feature detectors have higher repeatability
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rates when they detect regions of more uniqueness, leading to fewer points
being unmatched. A detector can have high repeatability with low numbers
of correspondences, but optimum detectors should have both high numbers of
correspondences and repeatability rates.

2.5.2 Precision-Recall

The typical matching strategy found in the literature uses a particular error dis-
tance metric to identify the nearest neighbours (NN) of the descriptors between
two images. The firstNNof a descriptor in the corresponding image is then selec-
ted as amatch, if the error distance ratio of the first two neighbours (NN1/NN2)
is below a certainmatching threshold. This study utilises the Euclidean distance
as the error metric. By varying that threshold it is possible to obtain precision-
recall curves for the matching results, which are calculated with Equations 2.2
and 2.3. These curves convey a more detailed representation of the distinctive-
ness of the descriptors, as a good descriptor should obtain a high precision for
all matching thresholds.

recall =
#correctmatches

#correspondences
(2.2)

precision = 1− # f alsematches
#correct + f alsematches

(2.3)

Apart from the precision-recall curves, this study also provides results for the
matching score. This allows to measure the maximum correct matches that
each colour invariant can potentially achieve without the need to optimise the
matching strategy. To obtain the matching score, all the first NNs are picked
as candidate matches, and since the homographies between the two matching
images are known, it is possible to quantifywhich of thematches are correct. The
matching score is here defined as the percentage of correct descriptor matches
with respect to the correct number of correspondences from the detection stage.
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2.5.3 Datasets

Oxford

Mikolajczyk’s Oxford dataset1 consists of image-sets with various distortions:
blurring, zoom and rotation, JPEG compression, illumination and viewpoint
changes. All sets are used here (7 colour sets), except the black and white set
which is not relevant to this study. The 6 images in each Oxford sequence are
subjected to increasing levels of distortions, examples of images contained in the
7 sets are shown in Fig.2.1. The image set leuven contains illumination changes,
bikes and trees are subjected to blurring, bark to zoom and rotation, the set Jpeg
Compression is compressed with increasing levels, and wall and graffiti contain
viewpoint distortions.

Figure 2.1: Oxford image sequences from the sets: graffiti (viewpoint), leuven (il-
lumination), bikes (blurring), bark (scale orientation), UBC (JPEG compression),
trees (blurring) and wall (viewpoint).

1www.robots.ox.ac.uk/ vgg/research/affine/
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Middlebury

The Middlebury Stereo dataset2 provided by Scharstein and Pal (Scharstein and
Pal, 2007), consists of multiple sets of stereo images of natural scenes which
vary in illumination conditions. In order to carry out the tests of this work, 5
sequences of 8 images (from different scenes) were compiled, which contain
varying illumination but no viewpoint changes. The used image sequences are
shown in Fig. 2.2.

Figure 2.2: Middlebury images sequences from the sets: Art, Drumsticks,
Dwarves,Moebius, and Monopoly

2http://vision.middlebury.edu/stereo/data
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Amsterdam Library of Object Images (ALOI)

The ALOI dataset3 comprises of 1000 single objects (against a dark background)
under supervised imaging conditions that include viewpoint changes, illumin-
ation direction changes and illuminant colour variations. For this research, 30
image sequences were selected of objects under 8 different illumination direc-
tion conditions, some examples are shown in Fig. 2.3. The 30 image sequences
were selected by visual inspection, choosing the sets that were not too similar
to each other and primarily those that contained visually richer scenes where
the objects had sufficient levels of texture.

PHOS

The PHOS dataset4 comprises of 15 sequences of multiple objects per scene
(against a white background) under different illumination direction conditions
from the same viewpoint. Here, 11 images per sequence were selected which
visually appear to contain increasing levels of scene illumination, examples are
shown in Fig. 2.4.

PASCAL VOC 2007

The PASCAL VOC (Visual Objects Challenge) has been for many years the most
challenging dataset to perform object detection and classification tasks, only
more recently have other more substantial datasets been introduced comprising
up to a few million images. The VOC 2007 dataset5 (Everingham et al., 2007)
was chosen for this research, primarily because the majority of relevant colour
studies utilised it (Biagio et al., 2014, Khan et al., 2013, Stöttinger et al., 2012,
Khan et al., 2012, Zhang et al., 2012, Fernando et al., 2012, Van De Sande et al.,
2010, Joze and Drew, 2010, Stöttinger et al., 2009, Khan et al., 2009), and that the
recognition aspects of the VOC dataset have not changed significantly since 2007
as the numbers of classes has remained 20 and the latest version only has 1500
more images in total. Another reason for choosing the VOC dataset, is that it
contains objects in real-world settings and allows to evaluate the colour features
for general scenarios. Consequently the VOC is particularly challenging for
colour approaches, since it contains many man-made objects that are mainly
shape-dominant (Khan et al., 2009).

3http://aloi.science.uva.nl/
4http://utopia.duth.gr/ dchrisos/pubs/database2.html
5http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
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Figure 2.3: ALOI images sequences; the last column shows individual examples
from 8 other sets.
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Figure 2.4: Examples of image sequences from the PHOS dataset.
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The focus of this research is on the image object class recognition task, and not
the object detection, the set contains 20 object classes in total, comprising 5,011
training images and 4,952 test images, Figure 2.5 shows some examples of these.
The VOC challenge stipulates to split the dataset into two parts, each containing
approximately 50% of the images for the training/validation and 50% for the
testing. The distribution of classes are equal across both parts, though the
number of objects per class is not, i.e. there are more images of persons than of
chairs etc. In total, the dataset contains 12,608 objects, and the assumption is
that each test image contains at least one object of the class being searched for.
The aim of the PASCAL VOC challenge is to query each image of the testing set,
and detect the presence of all the 20 VOC classes in turn. The VOC challenge is
evaluated by measuring the Average Precision (AP) that an algorithm obtains
when querying for a particular class. The APmetric considers the ranked results
from the retrieval, it is the average precision calculated at the position of all
correct images from the ranked list. The first rank of this list is the image with
the strongest probability of containing the searched class. The AP in geometric
terms, is the area under the precision-recall curve. The final metric to evaluate
the overall performance of an approach, is the mean Average Precision (mAP)
from all of the 20 AP results.

Figure 2.5: PASCAL VOC 2007 image examples from all the 20 different classes.
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In general the PASCAL VOC dataset is challenging for colour-based ap-
proaches. Apart from the many black and white, underexposed or blurred
images, the difficulty lies in that the classes all contain similar intra-class geo-
metric characteristics, but vary significantly in colour information. This is why
it was the chosen dataset for this research, as it tests the ability of the colour
invariants to function in a more general real world scenario.

2.6 Summary and Discussion
In this thesis, the colour invariants proposed byVan deWeijer et al. (2005, 2006a),
and variations of those in Stöttinger et al. (2012) and Geusebroek et al. (2001),
are utilised to create local image feature detectors and descriptors. The main
reason why the invariants proposed by Van de Weijer et al. (2005, 2006a) are
used in this work, is that they have not been applied before to local features
despite showing promise in terms of their colour invariance theory. In the work
of Stöttinger et al. (2012), the LIC gradients are used solely to locate corners,
and a boosted image is used in the scale selection. This research utilises the LIC
invariant in both corner detection and scale selection to isolate the benefits of
the LIC invariant and evaluate it on its ownmerit. From the invariants proposed
by Burghouts and Geusebroek (2009), only the C-SIFT has been previously used
for recognition tasks. In this research, the top three types of invariants proposed
by Burghouts and Geusebroek (2009) are implemented.

To achieve the 3 main goals of this research (outlined in the introduction
of Chapter 1), all the aforementioned invariants need to be implemented and
evaluated by addressing the limitations of their earlier adoptions. An important
aspect of their evaluation, is for the invariants to be compared within the same
robust testing framework, andultimately discover if andwhere can they enhance
featurematching and object recognition tasks. Here follows themain limitations
to the studies carried out in the literature, which are then summarised in Table
2.1.

1 - Lack of Scale-Invariance

Some colour invariants were only implemented as edge or corner detectors
(Van de Weijer et al., 2005, 2006a), or without scale invariance (Faille, 2005).
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2 - Limited Distortions

Other studies did not test the robustness to all the standard set of varying
imaging conditions. Unnikrishnan and Hebert (2006) did not test for viewpoint
distortions and illumination changes were not taken into account in the study
of Forssén (2007).

3 - Suboptimal Evaluation Framework

Not all local feature studies (Corso and Hager, 2005, Penas and Shapiro, 2009,
Burghouts and Geusebroek, 2009, Van De Sande et al., 2010, Song et al., 2013,
Krylov et al., 2012), have evaluated their approaches with the de facto standard
robust framework of Mikolajczyk and Schmid (2005). For example, Burghouts
andGeusebroek (2009) do not detect multiple regions per image and thenmatch
them across different distortion conditions. This does not robustly evaluate the
tested colour invariants in a real world feature matching context. Several studies
like those of Van De Sande et al. (2010) and Song et al. (2013) also followed the
same approach.

4 - Inferior Image Data

Many previous studies were conducted using an inferior quantity of image
data, compared to what is used in this research. A richer variety and greater
number of images is necessary in order to test approaches under more realistic
conditions. Examples of evaluations that were limited in this regard include
those carried out by: Van de Weijer and Schmid (2006b), Ming and Ma (2007),
Van De Sande et al. (2010), Krylov and Sorokin (2011), Krylov et al. (2012).

5 - Colour-biased Datasets

Some classification studies were only implemented on small-medium datasets
which favoured colour-based techniques (Van de Weijer and Schmid, 2006b,
Song et al., 2013).

6 - Few Datasets

The reliance of only testing on one dataset in the works of Sebe et al. (2006),
Abdel-Hakim and Farag (2006), Vigo et al. (2010b), Cui et al. (2010), Jalilvand
et al. (2011), limit the generality and confidence of their results.

7 - Colour Detection with Description

Only a few works have utilised colour in both the detection and description
phases of their feature extraction (Abdel-Hakim and Farag, 2006, Gossow et al.,

46



2.6 Summary and Discussion

2010, Krylov et al., 2012). As documented by Krylov et al. (2012), if a grayscale
descriptor is used it will diminish the benefits of using a colour detector.

Table 2.1: Summary of the limitations in the literature.

Suboptimal Evaluation Framework Tests Lacking Scale Invariance
Corso and Hager (2005); Jalilvand et al. (2011)
Burghouts and Geusebroek (2009) Faille (2005)
Van De Sande et al. (2010); Song et al. (2013) Van de Weijer et al. (2005)
Penas and Shapiro (2009); Krylov et al. (2012) Van de Weijer et al. (2006a)
Faille (2005); Abdel-Hakim and Farag (2006)

Inferior Quantities of Data/Datasets Tests Lacking Illumination Invariance
Ming and Ma (2007); Corso and Hager (2005)

Ming and Ma (2007); Cui et al. (2010) Forssén (2007); Krylov et al. (2012)
Van De Sande et al. (2010); Sebe et al. (2006) Van de Weijer et al. (2005)
Krylov and Sorokin (2011); Song et al. (2013) Van de Weijer et al. (2006a)
Abdel-Hakim and Farag (2006) Penas and Shapiro (2009)
Vigo et al. (2010b)
Jalilvand et al. (2011); Krylov et al. (2012) Tests Lacking Viewpoint Invariance
Van de Weijer and Schmid (2006b) Unnikrishnan and Hebert (2006)
Forssén (2007) Van de Weijer et al. (2006a)

Van de Weijer et al. (2005)

As can be seen, despite there being a substantial body of work in the literat-
ure, there has not been a comprehensive robust evaluation of colour features
that provides sufficiently conclusive results. Prior to this study, there was not
enough information on the performance of colour invariants to know which
were suitable for colour detection, colour description, or for both. No study
has solely evaluated and compared all the prominent colour gradient invari-
ants together. As a result, colour has remained underused in modern feature
extraction approaches, and determining the suitability of colour invariants for
the task still remains unanswered in the literature. The work presented in this
thesis addresses all the aforementioned issues of the literature.

The first three aforementioned issues are addressed by developing standard
scale and geometric invariant local features, and using the testing framework
of Mikolajczyk and Schmid (2005) with all the standard imaging distortions.
Regarding Issues 4 and 6, a substantial amount of image data is used for the
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evaluation and testing of features on 4 different image matching datasets and
one large classification dataset. Additionally, using the shape-dominant PAS-
CAL VOC dataset ensures this research is tested more rigorously and in a more
general context than the approaches from issue no. 5. Finally, the last major
difference between the literature, is that this study applies colour to both the
detection and description phases of the feature extraction. In this way it is
possible to know which invariants are more suitable for detection, description,
or both.
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3Colour Invariant Local Image
Features

This chapter outlines the colour invariant local features developed in this re-
search. The features are detected with a colour adaptation of the Harris-Laplace
and described with colour SIFT descriptors. Details of the HL detection al-
gorithm are provided, along with results from the performed optimisation
study. The colour space transformations employed for the colour feature extrac-
tion are explained here and visualised as 3D colour point clouds in order to
perceive and compare their variations with changing illumination conditions.
A brief account on the necessary photometric invariant background theory is
given, before detailing how the colour invariants are directly obtained from the
respective colour spaces.

3.1 Harris Corner Detection
The Harris-Laplace (Mikolajczyk and Schmid, 2001) has been one of the most
widely used gradient-based detectors, and shown to be reliable under rotation,
scale and illumination changes along with limited perspective deformations
(Mikolajczyk and Schmid, 2004). It was an improvement upon the standard
Harris corner detector, which is not repeatable when encountering images with
scale changes as it only performs the detection using filters of one size. The scale-
adapted Harris was introduced in order to address this issue, by convolving
the original image with derivative kernels of varying sizes and thus locating
differently sized corner-like structures. The scale-adapted Harris constitutes
the first step in the Harris-Laplace algorithm. The Harris detector is based on
the second moment matrix (also known as structure tensor or auto-correlation
matrix), that is often used to describe local image gradient distributions. For an
image, the scale-adapted structure tensor at position x is given by Equation 3.1:
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H(x,σI,σD) = σ
2
DG(σI)⊗

 L2
x(σD) LxLy(σD)

LxLy(σD) L2
y(σD)

 (3.1)

The image gradients (Lx, Ly) are computed by convolution with the first
derivatives of the Gaussian kernel with standard deviationσD (differentiation
scale). These derivatives are then convolved with G(σI), the Gaussian kernel
with standard deviation σI (integration scale). The eigenvalues of H at each
image position measure the point’s two principal signal changes in orthogonal
directions. Corner-like structures and junctions will exhibit significant intensity
variations in both directions, and in those cases both eigenvalues will be large.
The Harris cornerness energy (Equation 3.2) is used to identify the points on the
image that have corner-like characteristics. This measure ensures that points
have greater cornerness energy if both eigenvalues are large. Following the
original approach of Mikolajczyk and Schmid (2001), the factor k is set to 0.04
to achieve optimal results, and 3σD = σI .

E(x,σI,σD) = det (H(x,σI,σD))− k · trace2 (H(x,σI,σD)) (3.2)

3.2 Characteristic Scale Selection
A local feature must have a scale associated with it so that a scale-invariant
descriptor can correctly characterise the local image region. The scale essentially
determines the neighbourhood size of the interest region around the spatial
location of the interest point. Mikolajczyk and Schmid (2001) report that unlike
the LoG, their multi-scale Harris responses (Equation 3.2) rarely attain maxima
in 3D scale-space (2D spatial + 1D scale), which is required for the selection of
a stable characteristic scale for the interest points. To achieve scale invariance,
they proposed to estimate the characteristic scale based on Lindeberg’s method
(Lindeberg, 1998). This method uses the scale-normalised LoG response (Equa-
tion 3.3) to determine the stable scale for the local structures identified by the
multi-scale Harris.

The LoG response is indicative of the similarity between the LoG kernel
and the local image structure on which it is being convolved with. When the
response results in a local 3D maxima across scales, then a characteristic scale
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for that local structure exists at that location in scale-space. Examples of the
profile of LoG responses across scale-space (at fixed image spatial locations)
are shown in Figures 3.3 and 3.4 The scale-normalised Laplacian is obtained as
follows:

|LoG(x,σi)| = σ2
i |Lxx(x,σi) + Lyy(x,σi)| (3.3)

where Lxx(x,σn) denotes the response at image location x of the convolution
of the second derivative of the Gaussian (in the x-direction, with std. dev. σn)
with the original input image. The response to this operator attains an extrema,
when the size of the LoG kernel matches the size of the blob-like local image
structure. It is more accurate to estimate the characteristic scale of blobs using
the LoG operator as it has a certain affinity towards them due to its circular
symmetry, but the LoG is also well suited to identify the scales of other local
structures such as junctions, edges and corners.

3.3 Harris-Laplace Algorithm
An illustration of the developed Harris-Laplace detector algorithm is shown
in Figure 3.1. To summarise the HL detector, Equations 3.1 and 3.2 are used to
detect corners of various sizes and Equation 3.3 allows for a characteristic scale
to be estimated for those corners. To achieve scale-invariance, two image stacks
are constructed, a Harris energy stack and a LoG response scale-space stack.
The LoG stack is obtained by convolving the input image multiple times with
derivative kernels of increasing σ . Each scale provides an image of derivatives,
that after applying Equation 3.3 becomes a LoG response image. A series of LoG
images derived from all the scales used, then provides the 3D scale-space image
stack. The Harris energy stack is similarly obtained, by applying Equation
3.1 followed by Equation 3.2 for successive varying scales. This complement-
ary approach of the HL detector, provides the robust scale-invariance that is a
characteristic of the LoG blob detector. Additionally due to the Harris corner
measure, the HL can also detect more textured regions of higher variability and
distinctiveness than many of the blobs detected by the LoG.
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H

Figure 3.1: Diagram of the implemented Harris-Laplace algorithm.

In this research the number of scales being searched for is n = 15, it was
chosen as it lies in between the range seen in the literature where 10 scales are
used by Stöttinger et al. (2012) and 17 are used by Mikolajczyk and Schmid
(2001). The integration scale σI , is varied at each layer of the scale-space stack
with the following formula: σi = tiσo, where i = 0, 1, ... n, t denotes the scale
change factor and is set to

√
2 similarly to Mikolajczyk and Schmid (2001), σo is

the initial scale and is set to 1. The derivative scale σD must be varied also at
each layer of the scale-space stack with the relationship 0.333 ∗σi. With known
values forσI andσD for each scale level, Equation 3.1 is used to obtain a structure
tensor for each location of the stack layers. Equation 3.2 will then generate an
image of Harris corner energies for each scale in the stack. Interest points are
detected in each scale by performing Non-Maximum Suppression (NMS) on
the Harris energy stack in order to find 2D local maxima. For each layer in
the stack, a local neighbourhood centred on each image pixel is compared. If
that centre pixel has the maximum value within that neighbourhood, then it is
deemed to be a local maxima. The size of this neighbourhood was varied in the
optimisation study, described later in Section 3.4.

At this point the algorithm has identified all the local image structures
at scales up to σn. The last part of the process involves searching for their
characteristic scales. For each extracted corner (Harris energy local maxima),
the LoG response value at its 2D image location across the |LoG(x,σn)| stack, is
tested for a scale-space local maxima. The various methods for detecting the
LoGmaxima that were investigated, will be discussed in the optimisation study.
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3.4 Algorithm Optimisation
In the original HL algorithm (Mikolajczyk and Schmid, 2001), local 3D maxima
in the LoG stack are identified with the NMS method illustrated in Figure 3.2.
When checking if a point P(x,y,σi)

is a local maxima, the value of that point is
compared with the values of a 3×3 neighbourhood (Wi) centred at P(x,y,σi)

, and
encompassing the scalesσi−1,σi andσi+1. To be considered a local maxima, the
centre value must be higher than all the other neighbours and also be above
a certain threshold T. Candidate P(x,y,σi)

points, are selected by performing a
similar 2D NMS on the Harris stack for each scale.

x

y

scale

P(x,y,σi)

σi

σi+1

σi-1

Figure 3.2: 3D local maxima Non-Maximum Suppression diagram of the ori-
ginal HL algorithm.

Since there are multiple variations of how to perform the NMS and the
scale-space sampling, and various ways of obtaining spatial derivatives, it was
necessary to perform an optimisation study to discover the most appropriate
parameters for the specific algorithm that was implemented here. It is known
that 99.73% of the data of a normal Gaussian distribution, lies within 3σ of the
mean. The Gaussian derivative kernels employed here are designed to contain
that 99.73%, therefore the actual width of the kernels in pixels is 6σ . In the
optimisation experiments, the NMS was performed varying the Wi size from
a 3×3 kernel to a 6σi×6σi, the scale selection varied also with three different
methods. The summary of the optimisation settings is shown in Table 3.1. There
are 15 different HL settings, the parameter LoG-NMS refers to the half-window
size of Wi for the NMS used in the LoG stack, Harris-NMS refers to the half-
window size used in the stack of Harris energies, and the LoG-Method refers
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Table 3.1: HL algorithm parameters for the optimisation study.

HL (LoG-NMS, LoG-Method, Harr-NMS) HL (LoG-NMS, LoG-Method, Harr-NMS)

type1 2 , NeighPyr , 2 type5 2 , NeighPyr , 3
type2 3 , NeighPyr , 3 type6 2 , NeighPyr , 5
type3 5 , NeighPyr , 5 type7 2 , NeighPyr , σ-based
type4 σ-based , NeighPyr , σ based

type8 3-Scales , orig. HL , 2 type12 NO-NMS , ALL-Scales , 2
type9 3-Scales , orig. HL , 3 type13 NO-NMS , ALL-Scales , 3
type10 3-Scales , orig. HL , 5 type14 NO-NMS , ALL-Scales , 5
type11 3-Scales , orig. HL , σ-based type15 NO-NMS , ALL-Scales , σ-based

to the type of scale selection that was employed on the LoG stack. For the
parameters in LoG-NMS and Harris-NMS, 2 equals a total size for Wi of 3×3, 3
equals 7×7, 5 equals 11×11, and σ-based means the size is 6σi×6σi and varies
according to the scale. For the setting 3-Scales of the LoG-NMS, the original
Harris-Laplace method illustrated in Figure 3.2 is used both for scale selection
and NMS.

The two other scale selection methods tested were NeighPyr which stands
for Neighbourhood Pyramid, and All-Scales. In the method NeighPyr, for each
Harris maxima location P(x,y,σi)

, 2D LoG maxima are compared in a neighbour-
hood (Wi) centred at P(x,y,σi)

across all n scales. It was found that for Wi, a
half-width of 2*i worked best, the search area essentially forms a pyramid with
the base at the biggest scale n of the LoG stack. For each scale, the biggest LoG
response value of Wi is chosen (even if it’s not the centre pixel) to represent
the LoG response for scale i in the vector R(P, i). This 1D vector represents the
scale-space response profile for the point P(x,y,σi)

across all scales, examples
of R(P, i) plots are shown in Figures 3.3, 3.4 and 3.5. If R(P, i) attains a local
maxima at scale i, then the characteristic scale of the point is σi. If there is no
local maxima then that point is rejected. In the case of the method All-Scales,
the vector R(P, i) is obtained by taking the LoG value at location P(x,y,σi)

for all
scales, therefore no local 2D NMS is performed on the LoG stack.

As mentioned in Section 2.5, Mikolajczyk’s evaluation framework is biased
towards an approach that generates a dense clustering of points. To counteract
this drawback, the penultimate step of this HL detector algorithm is to prune
the final set of points by merging clustered points which overlap in area by
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3.4 Algorithm Optimisation

more than 90% (keeping the point with the highest Harris energy). Finally,
the top N points with greatest Harris energies are chosen to be the final set of
Harris-Laplace points for the image.

(a) Singular Peaks
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(b) Multiple Peaks
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Figure 3.3: Log scale-space response plotswith localmaxima. Column (a) shows
correct scale selection for profiles with only one maxima. Column (b) shows
scale selection of the peak with the highest LoG response. The green square
denotes the location of the estimated characteristic scale.

Figure 3.3 shows the LoG scale-space local maxima detection results (high-
lighted by the green square). The process of finding the peaks of the scale-space
profile R(P, i) in this research, uses first order difference information to identify
the trend of the profile. The trend between two data points is given by the sign
of their backwards difference, and a peak occurs when the trend of the profile
changes from a positive to a downward one. In the case of flat segments that
have a trend sign of 0, the trend of the profile is back-propagated and replaces
the flat segment in order to have a trend composed only of +1’s or -1’s. The
implementation of the peak detection algorithm used in this work, is Matlab’s

55
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findpeaks function. The parameterminpeakdistance of the Matlab function (which
sets a limit to the proximity between two peaks) is set to 3, and this value was
chosen from visual inspection of all the output peaks from one image. Figure
3.3a shows examples of when R(P, i) contains only one local maxima, in the
cases where there are more than one as shown in Figure 3.3b, the peak with the
highest LoG response value is chosen. Those examples demonstrate the types of
cases in which the implemented scale selection method performs successfully,
however not every profile contains a local maxima, and the function findpeaks
can at times output erroneous results. False positives are obtained in cases such
as in Figure 3.4a, where a green square signifies the location of the incorrectly
detected local maxima. The method can however, correctly identify scenarios
where there are no local maxima such as the examples in Figure 3.4b.

(a) False Positives
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(b) Correct Rejection
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Figure 3.4: Log scale-space response plots without any local maxima. Column
(a) shows cases where false positives are obtained from the scale selection.
Column (b) showswhere no peakswere identified, and thus the point is correctly
rejected.
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Apart from the disadvantages of not being able to consistently correctly
detect or reject the local maxima of R(P, i), the other unoptimised aspect of
the implemented scale detection technique, is the varying levels of accuracy
that can be achieved in estimating the characteristic scale of a point. The level
of accuracy depends on the sampling density of the scale-space around the
location of the peak. In Figure 3.5a for example, it can be seen that the sampling
is dense and there is distinct visible location for the local maxima which the
method accurately estimates. In Figure 3.5b, the peaks occur in the larger scales
which are sampled with a higher separation, therefore the data point of a more
accurate estimation of the peak does not exist. The scale sampling is performed
according to the optimal guidelines of Mikolajczyk and Schmid (2001), and thus
were not changed in this research. A more accurate scale could be achieved by
simply increasing the scale sampling, but thatwould incur bigger computational
costs.

(a) Accurate Scale
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(b) Inaccurate Scale
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Figure 3.5: Accuracy of the scale estimation. Column (a) shows accurate scale
estimations due to a dense sampling of the scale-space. Column (b) shows
profiles in which the estimated peak occurs in a sparser sampled region, and
the scale is thus less accurate.
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This concludes the detailed explanation of the implemented HL algorithm
and its various parameter settings. The last part of this section summarises the
performance of the 15 different detector designs from Table 3.1, and the results
are presented in Figures 3.6,3.7, 3.8 and 3.9.
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Figure 3.6: Summary of the optimisation study on the Oxford dataset with 90%
error threshold.
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Figure 3.7: Summary of the optimisation study on the Oxford dataset with 60%
error threshold.

To evaluate the detectors, a point correspondence experiment was carried
out on all the imagesets of the Oxford and Middlebury dataset (Section 2.5.3).
Only the grayscale information was utilised to extract 500 points from each
image from the Oxford dataset and 300 points from the Middlebury. The test
compared the number of correct point correspondences and the reliability of
the detection. Figure 3.6 presents the results of the Oxford optimisation study
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Figure 3.8: Summary of the optimisation study on the Middlebury dataset with
90% error threshold.

with a strict matching error threshold, for two corresponding points in separate
images to be regarded as correctly matched, their overlapping areas must be
more than 90%. Results with a laxer overlap threshold of 60% as has been the
practice in most previous studies, are presented in Figure 3.7, and the perform-
ance nearly doubles in this case. The Middlebury results for both thresholds
are shown in Figures 3.8 and 3.9. There are clear distinctions in performance
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Figure 3.9: Summary of the optimisation study on the Middlebury dataset with
60% error threshold.

between the various detector types, and how their relative performance changes
with a different threshold and with a different dataset. This is not surprising as
it can be deduced that the various HL parameters would favour the detection
of different types of corners, and the optimal HL algorithm is thus dataset
dependant. There are some observations that can be made however, in order
to select the parameters that will be used in this research. The original HL
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3.5 Colour Photometric Invariants

algorithm (Mikolajczyk and Schmid, 2001) denoted as type8 in this experiment,
is in fact amongst the worst performers and will thus not be considered. The
best choice must perform well for both datasets and for both thresholds. There
is not a significant difference among the top performers however, and many
of them can be considered for this research. The best detector in the Middle-
bury dataset (type11), does not perform well in the Oxford set. The ones that
perform well under all the results are type14 and type15, due to a balance of
high repeatability and number of correspondences in both threshold settings.
However, the detector chosen for the final HL algorithm used throughout this
thesis is type15, as it varies the Harris-NMS windowing size with the scale σ
(which makes more sense intuitively). To summarise, the most important result
that arises from the optimisation study is that the original method proposed
by Mikolajczyk and Schmid (2001) is clearly inferior. Additionally, although
there is a minor difference amongst the top performing parameters, the actual
optimised HL algorithm can only be dataset-specific.

3.5 Colour Photometric Invariants
Much of the relevant early work on colour was dedicated to global colour fea-
tures for object recognition and image retrieval, Swain and Ballard (1991) for
example used colour histograms for image description. Their method is not
invariant to lighting geometry however, and they recommended the use of
normalised RGB histograms to obtain the required invariance. Normalised
histograms remain variant however to changes in the illuminant. A subsequent
technique addressing that issue is the illuminant invariant indexing method of
Funt and Finlayson (1995), which assumes a Lambertian reflectance model but
still does not provide invariance to lighting geometry. Finlayson et al. (1998)
combined aspects of the methods proposed by Swain and Ballard (1991) and
Funt and Finlayson (1995), to propose an image indexing method invariant to
both illuminant changes and shading. Full lighting geometry invariance was
still not achieved as specularities needed also to be taken into consideration.
Specular invariance was introduced by Gevers and Smeulders (1999) along with
invariance to illuminant changes. That work on invariance was then extended
by physical-based approaches that utilise the derivative structure of images

62



3.5 Colour Photometric Invariants

(Geusebroek et al., 2001, Van de Weijer et al., 2005).

Apart from being able to achieve invariance to light geometry and illuminant
variations, using image derivatives allows photometric colour invariants to be
used for edge and corner detection. It is these types of colour invariants which
are of interest to this research, as the goal is to extract local salient features from
an image, which in general require the manipulation of image derivatives. This
thesis employs the colour photometric invariants proposed by: Van de Weijer
et al. (2005, 2006a), Stöttinger et al. (2012), Geusebroek et al. (2001). They are
derived from two illumination reflection models that are more sophisticated
than the Lambertian model: the dichromatic reflection model (Shafer, 1985);
and the Kubelka-Munk reflection theory of coloured bodies (Wyszecki and
Stiles, 1982). The background theory of the two models and their derived
photometric invariantswill be detailed in the next section, while the colour space
transformations needed to achieve these invariants are discussed in Section 3.5.3,
and the actual implementation of the local colour features is described in Section
3.6.

3.5.1 The Dichromatic Reflection Model

Unlike the Lambertian reflectance model, which assumes that a surface reflects
light with isotropic intensity in all directions, the dichromatic model accounts
for optically inhomogeneous materials and splits the reflection of light from an
object into a specular (interface) component and a diffuse (body) component
(Shafer, 1985). At the air-surface boundary, some of the light is immediately
reflected out as a specular component, the rest of the light is refracted into
the material and partially absorbed and diffusely reflected out as the body
colour component. The angles of incident and outgoing rays depend on the
spatial refractive indexes of the carrier medium and the object material, these
indexes are wavelength dependant. A useful assumption that can be made is
having neutral interface reflectance, which treats all refractive indexes to be
constant with respect to the light wavelength and thus simplifies the geometric
modelling of the reflected light. With a second assumption of having an ideal
white light source ci with a smooth spectrum of equal energy at all wavelengths,
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3.5 Colour Photometric Invariants

the RGB vector f= (R, G, B)T at a particular image location, can be modelled
as a weighted sum of two vectors:

f = e(mbcb + mici) (3.4)

cb represents the colour of the body (i.e. the diffuse reflectance), and ci the
colour of the specular surface reflectance. Their scalar magnitudes are denoted
by mb and mi, and e is the intensity of the light source. Lambertian reflection
would apply for matte surfaces for which there would be no interface (specular)
reflection (i.e. mi = 0), and the model would thus simplify to:

f = embcb (3.5)

To obtain first-order photometric derivative information of an image, the spatial
derivatives of Equation 3.4 must be computed. The spatial gradients of the RGB

image vectors are then represented by:

fx = embcb
x + (exmb + emb

x)cb + (emi
x + exmi)ci (3.6)

where, the subscript x indicates spatial differentiation, and as a known illu-
minant is assumed with neutral interface reflection, ci is independent of x. The
vector fx represents the gradients in an image which are essentially made up of
three causes: a body reflectance change in the direction cb

x, a shadow-shading
change in the direction cb, and lastly a specular change in the direction ci. In
the case of the shadow-shading component, exmb refers to changes in intens-
ity which lead to a shadow edge, and emb

x denotes a change in the geometry
coefficient that causes a shading edge. Van de Weijer et al. (2005) estimate the
direction of cb, by analysing the Lambertian reflection case of matte surfaces
represented by Equation 3.5, which contains no specular components. They
deduce that the shadow-shading component cb has a direction parallel to f and
coincides with f̂, where .̂ denotes a unit vector:

f̂ =
1√

R2 + G2 + B2
(R, G, B)T (3.7)

The specular direction ci is where changes in the specular geometry coef-
ficient occur, and is composed of emi

x which represents changes in the angles
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between the camera viewpoint, object and the light source; and a second com-
ponent exmi which represents a shadow edge on top of a specular reflection.
The unit vector ĉi is approximated by Van de Weijer et al. (2005) with a white
light source:

ĉi =
1√
3
(1, 1, 1)T (3.8)

The third relevant directional component from Equation 3.6 that influences
the appearance of edges in an image, is perpendicular to cb and ĉi. Van de
Weijer et al. (2005) name it the hue direction b̂ which is related to changes in
body reflectance, this direction is used to form the shadow-shading-specular
quasi-invariant, instead of the body reflectance direction ĉb

x due to its simpler
calculation:

b̂ =
f̂× ĉi∣∣f× ci

∣∣ (3.9)

These three edge inducing directions b̂, cb and ĉi, are the basis of the photo-
metric variant and invariant spatial derivatives proposed by Van de Weijer et al.
(2005). Variants are obtained by projecting the image gradients fx = (Rx, Gx, Bx)

on the aforementioned directions. The shadow-shading variant is obtained by
projecting fx on the cb direction, the specular variant by the projection with ci,
and thirdly the shadow-shading-specular invariant is obtained by a projection
on the hue direction b̂. The variants have invariant counterparts, which are
estimated by Van de Weijer et al. (2005) as quasi-invariants, and by Van de
Weijer et al. (2006a) as full-invariants. The shadow-shading variant SV

x and
invariant SQ

x are calculated from Equation 3.10, where in the first expression
the dot denotes the vector inner product, and the outer f̂ specifies the direction
of the variant. The quasi-invariant (indicated by subscript Q) is obtained by
subtracting the variant from the overall image derivative expression:

SV
x =

(
fx · f̂

)
f̂ , SQ

x = fx − SV
x (3.10)

The invariant SQ
x is the component of the image derivatives not caused by

shadow-shading edges, it is mainly comprised of hue and specular edges. A
similar approach is taken to obtain the variants and quasi-invariants of the other
two image gradient-causing directions. Equation 3.11 shows the expression for
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the specular variant and the quasi-invariant which is not affected by highlight
edges.

OV
x =

(
fx · ĉi

)
ĉi , OQ

x = fx −OV
x (3.11)

The third expression is the specular-shadow-shading quasi-invariantHQ
x shown

in Equation 3.12, which is obtained by projecting fx on the hue direction b̂.
This quasi-invariant represents the true colour of a body, and is not affected by
specular or shadow-shading edges. The calculation of the variantHV

x does not
follow the same procedure as SV

x andOV
x (i.e. simply projecting on b̂), since b̂ is

in the direction of the invariant and not the variant. The variantHV
x is obtained

by subtracting the invariant derivatives from the image derivatives:

HQ
x =

(
fx · b̂

)
b̂ , HV

x = fx −HQ
x (3.12)

Before ending this section on the invariants derived from the dichromatic
reflection model, two other invariants proposed by Van de Weijer et al. (2006a)
will be discussed. These are the shadow-shading full-invariant sx and the
shadow-shading-specular full-invariant hx, expressed in Equation 3.13. The
full shadow-shading invariant is obtained by normalising the quasi-invariant
SQ

x by the image luminance intensity magnitude |f|. Lastly, the full shadow-
shading-specular invariant is obtained by by dividing the quasi-invariantHQ

x by
the saturation (s). This last invariant however, will not be used in this research
as it is the hue derivative, which is unstable when the saturation is low and can
produce very high gradients in locations where there may not be any.

sx =
SQ

x

|f| , hx =
HQ

x

s
(3.13)

3.5.2 Kubelka-Munk Colour Model
The Kubelka-Munk reflection model of coloured bodies (Wyszecki and Stiles,
1982) is similar to the dichromatic model. It assumes isotropic scattering of the
incident light on a material, and characterises the material by a wavelength scat-
ter coefficient and a wavelength absorption coefficient. The reflected spectrum
of light E(λ, x), viewed by a camera is modelled as:
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E (λ, x) = e (λ, x)
(
1− ρ f (x)

)2
R∞ (λ, x) + e (λ, x)ρ f (x) (3.14)

where x denotes the image pixel position, λ is the wavelength of the light,
e(λ, x) refers to the illumination spectrum, ρ f is the Fresnel reflectance, and
R∞(λ, x) is the material reflectivity. Geusebroek et al. (2001) utilise this model
to propose four sets of photometric colour invariants. The first is the H in-
variant, designed for objects under imaging conditions of equal energy but
uneven illumination. The second invariant set C, are valid for illuminations
of equal energy but uneven illumination and assuming the objects have matte
or dull surfaces. The third set W, are invariant for planar matte objects under
equal energy and uniform illumination. The last invariant set N will not be con-
sidered in this research, due to being invariant to varying coloured illumination.

H Invariant:

In the case of the H invariant, assuming an equal energy illuminant across
the imaged scene makes the spectral components of the light source e(λ, x) to
be constant with respect to the wavelength and only variable over the spatial
location x. By differentiating Equation 3.14 once with respect to λ obtains the
expression for the first spectral derivative Eλ shown in Equation 3.15, differen-
tiating twice produces Equation 3.16. Under the aforementioned assumption
only the term R∞ is a variable of λ. All subsequent subscripts of λ and x will
refer to a differentiation, spectrally in λ or spatially in x.

Eλ = e
(
1− ρ f

)2(δR∞
δλ

)
(3.15)

Eλλ = e
(
1− ρ f

)2(δ2R∞
δλ2

)
(3.16)

Dividing Equation 3.15 by Equation 3.16 indicates that the resulting expression
is a spectral derivative function of the surface reflectance term R∞ only, as the
terms e

(
1− ρ f

)2
are cancelled out. This reflectance property is denominated

as the H invariant, which is related to the hue of the material. Summarising
this invariant, for a surface with neutral interface reflection and under ideal
white illumination, the ratio of the first and second spectral derivatives of the
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incident light produce the H invariant. This invariant is independent of the
light intensity, incident angle, view direction and of specular highlights.

H =
Eλ
Eλλ

(3.17)

In order for this spectral (chromatic) invariant to be useful for extracting local
image features, it must be related to the spatial domain in order to obtain image
derivatives. Differentiating Equation 3.17 up to the first spatial derivative and
up to the second spectral order (Geusebroek et al., 2001), results in Hx which is
the spectral-spatial H-invariant utilised in this thesis:

Hx =
EλλEλx − EλEλλx

E2
λ + E2

λλ

(3.18)

C Invariant:

This invariant adds a further assumption to that of H that all surfaces are matte.
For a matte surface there is no specular component thus ρ f (x) ≈ 0, which
means E(λ, x) can be modelled as: E(λ, x) = e(x)R∞(λ, x). Differentiating this
expression spectrally results in:

Eλ = e
(
δR∞
δλ

)
(3.19)

The ratio of Eλ and E results in the C invariant, which depends only on a spectral
derivative function of the surface reflectance R∞ :

C =
Eλ
E

=
e
(
δR∞
δλ

)
e(R∞)

=

(
1

R∞
)
δR∞
δλ

(3.20)

This means the C invariant depends on the camera view direction, and also
neither on the intensity or the direction of the illuminant. Two separate spectral-
spatial invariants can be derived from C, which are needed for the local feature
extraction. Differentiating in the first spectral order and first spatial order
obtains Cλx, and with respect to the second spectral order results in Cλλx :

Cλx =
EλxE− EλEx

E2
, Cλλx =

EλλxE− EλλEx

E2
(3.21)
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W Invariant:

The W invariant is calculated differently from H and C, in that it is built from
the spatial derivative x instead of the spectral derivative λ. For this invariant, an
ideal illuminant is assumedwhich is spatially uniform, alongwith a Lambertian
surface reflectance (i.e. ρ f (x) ≈ 0). This illumination means that e(λ, x) is
treated as a constant e, and the expression for the incident light on the camera
becomes: E(λ, x) = eR∞(λ, x). Differentiating this expression spatially in x

results in:

Ex = e
(
δR∞
δx

)
(3.22)

The W invariant is then obtained by a ratio of Ex and E, which depends only
on a spatial derivative function of the surface reflectance R∞. Since it is a spatial
derivative the invariant will be denoted with a subscript x as:

Wx =
Ex

E
=

e
(
δR∞
δx

)
e(R∞)

=

(
1

R∞
)
δR∞
δx

(3.23)

This invariant expression describes an object’s reflectance, independent of the
intensity level of the illuminant. Wx is already a spatial invariant that can
be used to extract local features, but two other invariants can be extracted by
differentiating up to the first and second spectral orders:

Wλx =
Eλx

E
, Wλλx =

Eλλx

E
(3.24)

In summary, this thesis uses the aforementioned three photometric invariants
proposed by Geusebroek et al. (2001). H is shadow, shading and highlight
invariant. C is an invariant to shadow and shading, and W is illumination
intensity invariant. The highest level of invariance is associated with H, which
in turn means less discriminative power. The feature matching and recognition
experiments in this thesis will discover what level of invariance performs better.
All the required theoretical background on the photometric invariants used in
this thesis has now been covered, the next section describes the relevant colour
spaces that are involved and how they relate to an estimation of the theoretical
invariant expressions given in this section.
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3.5.3 Colour Spaces

The previously discussed photometric components of the incident light seen
by a camera, like shading, shadows and specularities, are all correlated in the
common RGB colour model. Numerous colour transformations have been
proposed in the literature to represent colour information in other models that
have different characteristics and benefits. In this way certain photometric
properties can be partially separated and distinguished. A colour space type
thatwill not be considered in this research, referred to as a "perceptually uniform
colour space" inwhich perceptual distances between two colours correspond to a
Euclidean distance, has arguably been one of the most successful types of colour
spaces in the field for certain applications. The most widely used colour spaces
of this type are the CIE L*a*b and CIE L*u*v (Chong et al., 2008), they however
have been extensively used primarily in segmentation applications and image
retrieval techniques that employ zero-order histogram-based colour descriptors;
and not for obtaining colour invariant gradients. No such works are reported
in the comprehensive colour invariant review of Muselet and Funt (2013), and
only one relevant colour study (Cui et al., 2010), has been found by the author
that utilises a perceptually uniform colour space to obtain SIFT-like descriptors.
However, as stated in Section 2.4, that work is not considered here due to
insufficient detail in the publication about the descriptor’s implementation.

The original works that propose the invariants used in this thesis derive their
colour gradients from four colour spaces, which this research will thus also
utilise: The Spherical Colour Space (SCS) (Van de Weijer et al., 2005), which is
obtained from the RGB space with Equation 3.26. The Opponent Colour Space
(OCS) shown in Equation 3.28 (Van de Weijer et al., 2005). The Hue Saturation
and Intensity (HSI) of Equation 3.30 (Van de Weijer et al., 2005). The fourth
colour representation is the Gaussian Colour Model (GCM) (Geusebroek et al.,
2001), shown in Equation 3.31.

Spherical Colour Space:
This space is obtained by an orthogonal transformation from the RGB space.
There are two colour channels in the SCS,θ andϕ, and themagnitude of the light
intensity is the third channel r which points in the shadow-shading direction.
The derivative rx is therefore the shadow-shading variant SV

x , and its quasi-
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3.5 Colour Photometric Invariants

invariant counterpart SQ
x exists in a perpendicular plane to r (Van de Weijer

et al., 2005). This θϕ-plane is calculated via:

∣∣∣SQ
x

∣∣∣ = r
√
(ϕx)2 + (sin(ϕ)θx)2 (3.25)

SCS =


r

θ

ϕ

 =


√

R2 + G2 + B2

arctan( R
G

)
arcsin(

√
R2+G2√

R2+G2+B2

)
 (3.26)

Opponent Colour Space:
The opponent space results from an orthonormal transformation from RGB,
which results in decoupling the specular information of the light. Channels
o1 and o2 contain the chromatic information split into opponent red-green
and blue-yellow components, o3 carries the achromatic luminance intensity
information. The specular variantOV

x is in the direction of o3 and the invariant
OQ

x is formed from a combination of o1 and o2.

∣∣∣OQ
x

∣∣∣ = √o12x + o22x ,

∣∣∣OV
x

∣∣∣ = o3x (3.27)

OCS =


o1

o2

o3

 =


(R− G)/

√
2

(R + G− 2B)/
√
6

(R + G + B)/
√
3

 (3.28)

HSI Colour Space:
The HSI colour space is formed from a polar transformation on the first two
axes of the OCS. The intensity i is the same luminance channel as o3. h stands
for hue, which characterises the colour of the light, s is the saturation and
signifies the strength of the hue colour. With increasing s values, the colour
becomes whiter, whereas with lower saturations the light colour appears more
grey until it becomes black at zero saturation. In Section 3.5.1, the direction b̂

of the specular-shadow-shading quasi-invariant HQ
x , was described as being

perpendicular to the shadow-shading direction cb and the specular direction ĉi.
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3.5 Colour Photometric Invariants

This constraint is satisfied by the HSI colour transformation (Van deWeijer et al.,
2005), and is why b̂ is named the hue direction. Therefore the hue derivative hx

represents the invariantHQ
x as shown in Equation 3.29. The multiplication with

the saturation, is needed as the hue is undefined on the grey-axis where the
saturation is low, with this weighting unstable hue derivatives at low saturations
will be suppressed.

∣∣∣HQ
x

∣∣∣ = s · hx (3.29)

HSI =


h

s

i

 =


arctan( o1

o2

)
√

o12 + o22

o3

 (3.30)

Gaussian Colour Model:

The explanation on Section 3.5.2 regarding the invariants of Geusebroek et al.
(2001), dealt with the theoretical aspects of obtaining spectral-spatial photomet-
ric invariants. Those expressions explored the infinitely dimensional Hilbert
space of spectra with an infinitesimally small spatial spacing. However, those
spectral-spatial energies are in practice only measurable at a certain spatial
resolution range and spectral bandwidth. The Gaussian Colour Model is used
to probe the spatial and spectral dimensions at a selected spectral bandwidth,
analogously to image Gaussian scale-space analysis. In order to model E(λ),
which is the energy distribution of the incident light seen by the camera, a
Gaussian G(λ0,σλ) at spectral scale σλ positioned at λ0, is the function that
is used to probe the spectral-spatial space. The spectral energy distribution
can then be approximated by a Taylor expansion at λ0 in terms of the spectral
derivative quotients E(λ), Eλ(λ) and ,Eλλ(λ).

Expressions can then be derived which allow these quotients to approximate
the Hering basis (Hering, 1964) of human colour vision when being truncated
at second order and assuming the parameters λ0≈520 nm and σλ ≈55 nm. The
Hering human colour basis is represented by the CIE 1964 XYZ colour space,
which can be obtained from the RGB space via a linear transformation. This
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3.5 Colour Photometric Invariants

allows for a direct linear transformation to be found that projects RGB values
to the Gaussian Colour Model, shown in Equation 3.31. This transformation
approximates the spectral derivative quotients of E(λ),Eλ(λ) and ,Eλλ(λ), the .̂

above the quotients in the equation denote that they are approximations:

GCM =


Ê

Êλ
Êλλ

 =


0.06 0.63 0.27

0.3 0.04 −0.35

0.34 −0.6 0.17




R

G

B

 (3.31)

This model generates a three-channel image, with E containing the illumin-
ant intensity, and the two other components containing opponent chromatic
information. To obtain the spectral-spatial derivatives needed to implement the
local feature invariants, the images Ê, Êλ and Êλλ can simply be convolved with
Gaussian derivative filters to obtain the image gradients. Before detailing in the
next section how all the aforementioned invariants are utilised to implement
local image features, this section will close with illustrations of the colour distri-
butions of the four relevant colour spaces along with the standard RGB space.
Images from the same scene are chosen, but varying in illumination conditions.
The colour distribution plots extracted from each image are 3D point clouds
where each pixel in the image populates the 3D colour space with its colour.
These plots will serve to compliment the discussed mathematical transforma-
tions and theory, by explicitly showing the visual differences between them.

Figure 3.10 shows the distributions of the RGB space. It is difficult to capture the
essence of a dense 3D plot with a 2D representation, but the correlated nature
of the RGB space can still be seen. The relative spatial relationships between
the RGB colours across the various illumination conditions, vary more than in
the other colour spaces. In contrast, the HSI plots of Figure 3.11 show how the
colours are organised along the hue axis and maintain their relative positions
in that axis across varying illumination.
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Figure 3.10: RGB colour space distributions across examples of the moebius
scene.
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Figure 3.11: HSI colour space (left column), and spherical colour space (right
column) distribution examples.
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Figure 3.12: Opponent colour space (left column), and Gaussian colour space
(right column) distribution examples.
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3.6 Colour Invariant Features
The colour local image features developed in this research, are composed of a
Harris-Laplace detection step followed by a SIFT description. It is straightfor-
ward to adapt these two techniques to colour, by identifying appropriate colour
gradients to replace the grayscale gradients that those algorithmswere designed
to work with. In the case of the HL detector, the chosen colour invariants will
be used for the first order Lx and second order Lxx image derivatives terms in
Equations 3.1 (structure tensor) and 3.3 (LoG operator). The Lx derivatives are
also used within the SIFT descriptor algorithm, which in this research is imple-
mented by modifying the code by Kovnatsky (2010). That particular version of
the SIFT algorithm is chosen for the adaptation, because it was implemented in
Matlab and allows access to the image gradients with relative ease.

Table 3.2 summarises the implementation of all the nine chosen colour gradi-
ents, from their respective colour spaces. Since the HL and SIFT algorithms
work with single-channelled gradients, the magnitude of the colour invariants
are used in order to combine the gradients from multiple channels. The first
five gradient types are from the works of Van de Weijer et al. (2005, 2006a). The
shadow-shading quasi-invariant SQ

x from Equation 3.25, is denoted as SSINV in
Table 3.2.

Table 3.2: Summary of the implementation of the colour invariants.

SPINV SPSSINV SSF−INV

Lx
√
(o1x)2 + (o2x)2 |hxs|

√
(ϕx)2 + (sin(ϕ)θx)2

Lxx
√
(o1xx)2 + (o2xx)2 |hxxsx|

√
(ϕxx)2 + (sin(ϕx)θxx)2

SSINV SPSSVAR LIC

Lx r
√
(ϕx)2 + (sin(ϕ)θx)2

√
(ix)2 + (sx)2

√
(hxs)2 + (sx)2

Lxx rx
√
(ϕxx)2 + (sin(ϕx)θxx)2

√
(ixx)2 + (sxx)2

√
(hxxsx)2 + (sxx)2

CINV HINV WINV

Lx

√(
ÊÊλx−Êλ Êx

Ê2

)
2

+
(

ÊÊλλx−Êλλ Êx
Ê2

)
2

√(
Êλλ Êλx−Êλ Êλλx

Ê2λ+Ê2λλ

)
2

√(
Êx
Ê

)
2

+
(

Êλx
Ê

)
2

+
(

Êλλx
Ê

)
2

Lxx

√(
ÊÊλxx−Êλ Êxx

Ê2

)
2

+
(

ÊÊλλxx−Êλλ Êxx
Ê2

)
2

√(
Êλλ Êλxx−Êλ Êλλxx

Ê2λ+Ê2λλ

)
2
√(

Êxx
Ê

)
2

+
(

Êλxx
Ê

)
2

+
(

Êλλxx
Ê

)
2
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The specular quasi-invariant OQ
x from Equation 3.27 is denoted as SPINV .

SPSSINV is the specular-shadow-shading quasi-invariant HQ
x from Equation

3.29. Its variant counterpart HV
x (Van de Weijer et al., 2005), called SPSSVAR in

the table is not an invariant gradient but it is included here for a more complete
evaluation and comparison of the invariants alongside the luminance intensity.
The shadow-shading full invariant sx (Van de Weijer et al., 2006a), given in
Equation 3.13 is referred to in the table as SSF−INV . The Light-Invariant Colour
(LIC) gradient proposed by Stöttinger et al. (2012) is similar to SPSSINV but it
has the additional saturation derivative. The last three invariants CINV , HINV

and WINV are based on the work of Geusebroek et al. (2001) and they use the
Gaussian Colour Model. WINV is invariant to illumination intensity, and in this
implementation it is a summation of Wx from 3.23 with Wλx and Wλλx from 3.24.
CINV is invariant to shadow and shading effects, formed from a summation
of Cλx and Cλλx from Equation 3.21. The final gradient type HINV , is shadow,
shading and highlight invariant, referred to as Hx in Equation 3.18.

The invariants developed by (Van de Weijer et al., 2005, 2006a) were adapted
from their released code6 (Color Feature Detection I & II). The LIC, SPINV , SSINV ,
SPSSVAR and SSF−INV invariants are composed of square roots of two summed
components, these colour components are scaled so an equal contribution for
the gradient magnitude is provided by each. This implementation of the C and
W invariants differs from the evaluation of Burghouts and Geusebroek (2009),
in that here the invariants are composed of the combined gradient magnitudes
of the separate Cλx, Cλλx, Wx, Wλx and Wλλx invariants. There is no scaling per-
formed on these components before calculating the magnitude, as experiments
revealed this deteriorated the results.

The term Lx in Table 3.2 refers to the Lx of the structure tensor (Equation 3.1)
and the derivatives used for the SIFT descriptor, the x subscript denotes the
first order derivatives in the x-direction. To obtain the second order derivatives
for the LoG operator, the expressions for Lxx in Table 3.2 are used. The second
order derivatives used here for C, H and W are different from the original work.
Three different methods for each of the three invariants were implemented and
tested in a point correspondence experiment on the Middlebury dataset. The

6http://cat.cvc.uab.es/ joost/software
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3.6 Colour Invariant Features

first methodwas the original second order spatial derivatives, denoted as the set
δ
δww

in the work of Geusebroek et al. (2001). The secondmethod simply involved
convolving the Lx gradient images with a first order Gaussian derivative kernel.
Lastly, the method shown in Table 3.2 replaces all first derivative terms from Lx

with their second order counterparts. Results of the test are shown in Figure
3.13, and the methods denoted as CINV , HINV and WINV in the figure prove
superior due to having generated a greater number of correct correspondences.
The reason for why the original second order invariants of Geusebroek et al.
(2001) perform worse than the simplified variations proposed in this work, can
be attributed to the complexity of the original second order invariant expres-
sions. They contain many more partial derivative and second derivative terms,
which introduce more instabilities than the invariants proposed here.
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Figure 3.13: Variations of the second order spatial derivatives of the C, H and
W invariants.
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Figures 3.14, 3.15, 3.16 and 3.17 show the visual results of applying the vari-
ous gradient types on two different images. The two images contain shadows,
shadings (colour change within an object) and specularities, and it is easy to
visually detect the extent of the invariance that each of the gradients can achieve.
The visualisation is not a completely accurate comparison, as weak edges might
not be visible, but it nonetheless highlights themain general differences between
the gradients. In Figure 3.14, the specular invariant |OQ

xy| can be seen to detect
the shadows under the red ball and yellow ring and the shading transitions of
the bottom yellow and green cubes, but the highlights on those same objects are
less apparent than in the majority of the other gradients, especially compared
to the luminance |Ixy| on Figure 3.15. In contrast, the shadow-shading invariant
|SQ

xy| in Figure 3.14, can be seen to be invariant to shadows and shadings but not
to the highlights. Its full invariant |sxy|, detects the specularities and internal
edges of each object to a lesser extent.

Shadows, shadings and highlights are not detected in the specular-shadow-
shading invariant |HQ

xy|, only the boundary of each object is visible. Its variant
counterpart |HV

xy| detects most of the image gradients. The light-invariant col-
our invariant |LICxy| in Figure 3.15, provides a good balance of invariance to
shadows, shadings and specularities, while detecting the boundaries of the ob-
jects. |Cxy| obtains good results in terms of invariance to shadows and shading,
and |Hxy| behaves as expected by not detecting any shadows or specularities
despite generating weaker gradients. The illuminant intensity invariant |Wxy|,
detects the object boundaries better than the intensity |Ixy|. Even though |Wxy|
is not invariant to shadow-shadings or specularities, its invariance comes into
play when the scene varies in illumination intensity. In summary, all 9 colour
gradients in Figures 3.14 and 3.15 behave as expected for that particular image.
Other examples of the gradient’s behaviour on a more complicated image, are
shown on Figures 3.16 and 3.17.
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Original |OQ
xy|

|SQ
xy| |sxy|

|HQ
xy| |HV

xy|

Figure 3.14: Visual examples of the colour invariant gradients.
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Original |Ixy|

|LICxy| |Cxy|

|Hxy| |Wxy|

Figure 3.15: Visual examples of the colour invariant gradients.
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Original |OQ
xy|

|SQ
xy| |sxy|

|HQ
xy| |HV

xy|

Figure 3.16: Visual examples of the colour invariant gradients.
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Original |Ixy|

|LICxy| |Cxy|

|Hxy| |Wxy|

Figure 3.17: Visual examples of the colour invariant gradients.
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3.7 Summary
This concludes this chapter, which has covered both background information
and work contributions related to the Harris-Laplace detection algorithm and
the photometric colour invariants. A detailed explanation of the implemented
colour features is given in this chapter, which saw the optimisation of the HL
algorithm parameters, the adaptation of the invariants from the literature and
the visual results of their behaviour on two example images.

In the HL optimisation study, different Non-Maximum Suppression and
characteristic scale estimation techniques were tested. Visual results of the scale
estimation processwere provided, alongwith the advantages anddisadvantages
of the implementedmethod. The optimisation study resulted in an optimum set
of parameters which for the specific implementation of this research, proved to
be better than the original method presented byMikolajczyk and Schmid (2001).
The colour invariant sections of this chapter, discussed the theory of obtaining
three types of photometric colour invariants: shadow-shading, specular and
illumination intensity invariants. The colour spaces necessary for obtaining
these theoretical invariants were outlined, and their 3D distributions visually
compared under varying illumination conditions.

A precise account of this research’s implementation of the invariants is given,
highlighting any differenceswith the original works and providing justifications
for any changes. One such change regards the second order spatial derivatives of
C, H and W; in which the final implementation method proposed here achieves
better results than the original work by Geusebroek et al. (2001). The next two
chapters give the account of the experimental results and the evaluation of the
invariants, for feature matching in Chapter 4, and object class recognition in
Chapter 5.
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4Feature Detection and
Matching

The first part of this chapter presents the evaluation of the colour invariant gradi-
ents when applied to local feature detection andmatching tasks, the second part
presents the investigation of the colour feature fusion. The feature detection
and matching experiments are performed on the four image matching datasets
discussed in Section 2.5.3, and examine the number of correct point correspond-
ences, the number of correctly matched descriptors, the detection repeatability
and the descriptor matching score; which were explained in Section 2.5.

In the feature fusion investigation, a novel concept of a feature correlation
analysis is presented that investigates the number of unique correctly detected
features from each gradient type, and the similarity between the gradient types
by calculating how many of the same features are mutually extracted between
them. The last part of the fusion investigation, proposes fusion techniques that
utilise multiple gradient types conjointly in the HL feature detection process.

4.1 Feature Extraction Visualisation
The visual output of the feature detection process is shown in Figures 4.2, 4.3
and 4.4. These figures show the extracted local regions for two images from the
setMoebius. The images allow to see and compare the types of image structures
that are deemed to be features by the various types of HL detectors, and show
examples of how the selection of those features can change once the illumination
condition is varied. The goal of the feature detection evaluation is to compare
the first image of an image-set of the same scene with all other subsequent
images containing different imaging conditions, and detect how many local
features correspond at the same scene location in both of the images. In the
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feature matching evaluation, the testing concept only differs in that it is the
descriptors of each feature that are matched in both images, and a match is
considered to be correct only if the features’ locations are deemed to correspond
to the same scene position. Examples of the feature matching are provided in
Figure 4.1, where a subset of grayscale intensity feature matches are shown
for image pairs of the image-sets Graffiti and Art. The descriptor regions are
indicated by the red squares, and their main orientations (needed for the SIFT
descriptor) are denoted by the internal line.

Matched Features Between Art−1 and Art−4

Matched Features Between Graffiti−1 and Graffiti−2

Figure 4.1: Illustration of local feature matching results of a subset of grayscale
intensity descriptors.
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I - image 2 I - image 5

LIC - image 2 LIC - image 5

SPINV - image 2 SPINV - image 5

Figure 4.2: Visual illustration of the local feature extraction results on two
different imaging conditions of theMoebius set, using three separate gradient
types: Luminance, LIC and SPINV .
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SSINV - image 2 SSINV - image 5

SPSSINV - image 2 SPSSINV - image 5

SSF−INV - image 2 SSF−INV - image 5

Figure 4.3: Visual illustration of the local feature extraction results on two
different imaging conditions of theMoebius set, using three separate gradient
types: SPSSINV , SPSSINV and SSF−INV .
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CINV - image 2 CINV - image 5

HINV - image 2 HINV - image 5

WINV - image 2 WINV - image 5

Figure 4.4: Visual illustration of the local feature extraction results on two
different imaging conditions of theMoebius set, using three separate gradient
types: CINV , HINV and WINV .
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4.2 Feature Detection Evaluation

Mikolajczyk and Schmid (2005) propose an approach to evaluate the quality of
local interest point detection using robust metrics, the approach has become the
most widely used evaluation framework for testing state of the art local features.
As outlined in Section 2.5, the same evaluation method is followed in this
work to provide standardised results. In the work of Mikolajczyk and Schmid
(2005), two local features from separate images are considered to correctly
correspond if the area of the scene that they describe overlaps by more than
60%. In this evaluation, a more strict threshold of 90% overlap is set to evaluate
the localisation stability of the colour gradients more robustly.

Figures 4.5 and 4.6 show the summary of the results for the mean number of
correct correspondences across all imaging distortion levels for all four datasets.
Figures 4.7 and 4.8 present the results of the detection repeatability rates. For
the presented results, different number of HL points were extracted from the
images of each dataset according to the size of the images and image content.
A study was performed in order to determine the appropriate number of HL
features that would be extracted from the images. This study is presented in
Appendix A, and the results show the number of correct correspondences and
repeatability rates achieved by extracting varying numbers of HL points on
the Middlebury dataset (Figures A.1, A.2, A.3, A.4 and A.5), and shows the
repeatability rates achieved on the Oxford dataset in Figure A.6. The points
were varied from 500 to a total of 3,000 in increments of 500, and the aim of
the study was to select the parameter that achieved the highest repeatability
rates. On the Middlebury set, the best parameter proved to be 500 points, as it
performed better for 40% of the results and was equal to the top performers for
another 40% of the results in Figures A.1, A.2, A.3, A.4 and A.5.

In the Oxford results of Figure A.6 it can be seen that extracting 500 to 2000
points per image achieves very similar repeatability rates. The chosen parameter
for the Oxford dataset was thus 1000 points, since the Oxford images are larger
than the Middlebury ones. As to the other datasets, 300 points were extracted
from the ALOI dataset due to its images containing a texture-less background
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and being of similar size to the Middlebury images. The PHOS dataset also
contains images with a texture-less background but it was decided to extract 500
points per image as the image sizes are larger. Visual inspection of the settings
for the PHOS and ALOI HL extractions also contributed to the final choice of
parameters, as the chosen number of extracted features adequately covered all
of the objects in the images. In all the feature matching results of this chapter,
the presented data points for each distortion level (x axis of the plots) is the
average of all the results for that distortion level from all the image-sets of that
database. The Oxford dataset contains 7 image-sets, Middlebury contains 5,
ALOI 30 and PHOS contains 15 sets. The standard deviation plots of the results
are presented in Appendix A.

Table 4.1 presents the overall results for the feature detection evaluation, com-
bining the sum of all the correct correspondences and the repeatability rates
from all the imaging distortions of all the datasets. The table allows for a high
level comparison of the 10 different feature types. The WINV colour invariant
clearly obtains the superior overall performance, followed by the grayscale in-
tensity I, and the specular-shadow-shading variant SPSSVAR. These combined
results however, are taken from datasets that are subjected to a majority of
illumination distortions, for which the colour invariants have an advantage. In
the case of the Oxford dataset which contains a variety of standard imaging dis-
tortions, the results in Figure 4.5a indicate that for general imaging conditions,
I and SPSSVAR are in fact better gradients for local detection than the colour
invariants.

Table 4.1: Cumulative sum of the feature detection evaluation results.

Metric I LIC SPINV SSINV SPSSINV SPSSVAR SSF−INV CINV HINV WINV

correspondences 3929 2289 3072 3041 1428 3885 2654 2630 2333 4056
cumulative
% repeatability 706 438 589 576 270 699 500 511 424 744
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(a) Oxford
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(b) Middlebury
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Figure 4.5: Summary of the correct correspondences analysis for the Oxford (a)
and Middlebury (b) datasets.
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(a) ALOI
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(b) PHOS
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Figure 4.6: Summary of the correct correspondences analysis for the ALOI (a)
and PHOS (b) datasets.
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(a) Oxford
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(b) Middlebury
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Figure 4.7: Summary of the repeatability analysis for the Oxford (a) andMiddle-
bury (b) datasets.
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(a) ALOI
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(b) PHOS

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
Avg. Repeatability − 500 Pts

%
 r

ep
ea

ta
bi

lit
y

illumination condition

 

 
I
LIC
SP

INV

SS
INV

SPSS
INV

SPSS
VAR

SS
F−INV

C
INV

H
INV

W
INV

Figure 4.8: Summary of the repeatability analysis for the ALOI (a) and PHOS
(b) datasets.
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4.3 Feature Matching Evaluation

All colour invariants except for WINV , perform significantly inferior to grayscale
in the Oxford dataset as they prove to be less robust to imaging distortions,
namely scale and viewpoint changes. These results demonstrate the necessity
to evaluate colour invariants under a more general set of imaging conditions
other than just illumination. In the results for the illumination varying datasets
of Figures 4.5b and 4.6, only one colour invariant (WINV) is overall superior to
the grayscale intensity. The adequate robustness of luminance to general and
varying illumination distortions can be attributed to the fact that the greatest
image variations occur in the gray-axis of a colour space (Van de Weijer et al.,
2006b), which are able to be detected more prominently by the grayscale intens-
ity. This results in an extraction of abundant image gradients which help to
mitigate the effects of imaging distortions.

The reported results of this substantial evaluation thus provide clear evid-
ence to why grayscale is the preferred method in the literature for local feature
detection. This evaluation also discovered that the WINV invariant is the best
performer for feature detection under illumination conditions, and has adequate
robustness to general imaging conditions. Variations of the WINV invariant have
been ignored in the studies made by: Van De Sande et al. (2010), Abdel-Hakim
and Farag (2006); though in the study of Burghouts and Geusebroek (2009) it
proved to be amongst the top invariants when evaluated as a descriptor.

4.3 Feature Matching Evaluation

Two metrics are presented here for the local feature matching results, the num-
ber of correct matches and the matching score which essentially provides a
qualitative result for the ability of the gradient types to generate distinct and ro-
bust descriptors. Table 4.2 presents the overall results for the feature descriptor
matching evaluation, combining the sum of all the number of correct matches
and the matching score (m-score) from all the imaging distortions of all the
datasets.
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4.3 Feature Matching Evaluation

Table 4.2: Cumulative sum of the feature matching evaluation results.

Metric I LIC SPINV SSINV SPSSINV SPSSVAR SSF−INV CINV HINV WINV

matches 14,907 9,734 14,523 12,917 9,623 14,930 10,409 13,273 8,010 17,500
cumulative
% m-score 13,404 13,814 15,004 14,190 13,388 14,108 13,640 14,849 12,196 14,576

Similarly to the table of detection results, Table 4.2 shows that the WINV

colour invariant is the best overall performer in terms of number of matches,
followed by the specular-shadow-shading variant SPSSVAR, and the grayscale
intensity I. The description results however, differ from the detection results in
that the matching score of the colour descriptors perform differently relatively
to intensity, than their relative performance in the repeatability rates evaluation.
The overall matching score results in Table 4.2, show that the intensity is in fact
amongst the worst performers for generating distinct descriptors.

The descriptive quality of each invariant is represented by the matching
score, which is a measure of how many of the extracted descriptors produce
a correct match. The results here indicate that colour invariants are in general
better descriptors than detectors. Intensity’s relatively poor performance is an
expected result even though the intensity is able to find sufficient numbers of
gradients to detect (and thus obtain a high number of matches). However due to
a lack of chromatic information, the intensity descriptors loose distinctiveness
and obtain higher rates of mismatched features. Figures 4.9 and 4.10 present the
summary of the results for the number of correct matches, showing the mean
number of matches across all distortion levels for each of the four datasets.
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(a) Oxford
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(b) Middlebury
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Figure 4.9: Summary of the number of correct feature matches for the Oxford
(a) and Middlebury (b) datasets.
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(a) ALOI
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(b) PHOS
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Figure 4.10: Summary of the number of correct feature matches for the ALOI
(a) and PHOS (b) datasets.
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Similarly to the detection, the results for the Middlebury, ALOI and PHOS
datasets are not monotonically decreasing as in the Oxford dataset because
the illumination varying image sequences are not organised to have increasing
levels of the same distortion type. The Middlebury and PHOS image sequences
are arranged from the darkest lighting to the most exposed lighting condition,
although there is not a smooth transition of the same lighting effects from one
image to the next (lighting direction and exposure vary independently). In
the ALOI sequences, the first 5 images are obtained by sequentially changing
the direction of one light source, and it is why results in Figure 4.10a decrease
linearly for the first 4 matching results. The remaining 3 images are taken with
multiple simultaneous light sources and thus the effects on the results are not
linear.

The three best overall performers in terms of number of matches are WINV ,
the grayscale intensity I and SPSSVAR. The colour invariants are significantly
inferior in the Oxford set compared to I and SPSSVAR, except for WINV which
in fact performs comparatively to intensity and closes the margin as the dis-
tortions increase. A surprising result arises from the Oxford matching results
in that SPSSVAR proves to be the best candidate, this is a significant finding
as this gradient type has not been implemented as a local feature or evaluated
previously in the literature.

For the illumination varying datasets ofMiddlebury, ALOI and PHOS,WINV

obtains the most number of feature matches overall. I and SPSSVAR however,
perform comparably with the other colour invariants despite having limited
photometric invariance. They perform well compared to the colour invariants
as the number of matches heavily depend on the detection phase, essentially
on being able to localise gradients of sufficient strength across different con-
ditions. The worst performers are mainly those which contain the most level
of invariance, such as SPSSINV , HINV and SSF−INV . Too much invariance has
decreased their distinctiveness by reducing the available colour gradients that
are present in an image. The descriptive quality of each invariant is represented
by the matching score results shown in Figures 4.11 and 4.12, and the precision-
recall curves which are shown for completeness in Appendix B. The standard
deviation of the matching results are also presented in Appendix B.
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(a) Oxford
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(b) Middlebury

1 2 3 4 5 6 7
30

40

50

60

70

80

90

100
Avg. Matching Score − 500 Pts

%
 m

at
ch

in
g 

sc
or

e

illumination condition

 

 
I
LIC
SP

INV

SS
INV

SPSS
INV

SPSS
VAR

SS
F−INV

C
INV

H
INV

W
INV

Figure 4.11: Summary of the matching score results for the Oxford (a) and
Middlebury (b) datasets.
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(a) ALOI
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(b) PHOS
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Figure 4.12: Summary of the matching score results for the ALOI (a) and PHOS
(b) datasets.
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4.3 Feature Matching Evaluation

The relative performance of the colour invariants with respect to intensity,
is better for the matching score than for the repeatability rates of the detection
study. This can be seen from the overall results in Table 4.2 and Figures 4.11
and 4.12. Intensity’s relative matching score performance is worse than for
the number of matches study, in the ALOI set it is in fact the second worst
performer. SPSSVAR on the other hand fares better due to having the colour
saturation component (refer to Table 3.2). Overall the matching score is high for
all methods, and the difference in performance is smaller than in the number
of correct matches study indicating most of the colour invariants have potential
to be used as descriptors. The best three methods for the feature matching are
I, SPSSVAR and WINV , although other methods like SPINV and CINV are better
suited for the ALOI dataset in terms of descriptor distinctiveness. This implies
that for some colour invariants, it is best only to use them as descriptors in
certain cases, either for only image recognition tasks or feature matching tasks
where the features are detected with a different gradient, such as the grayscale
intensity.

This concludes the local feature detection and matching evaluation of this
research, which determined that grayscale features are the best candidate for
general imaging conditions. As previously stated, the overall dominance of
intensity-based features, can be largely attributed to the luminance axis contain-
ing the majority of the variation in the RGB-cube (Van de Weijer et al., 2006b),
and the stability of the localisation of its gradients. For these reasons only un-
der varying illumination conditions should colour gradients be considered for
local feature matching. The overall performance of the majority of the tested
colour invariants is insufficient to merit their independent adoption for general
local feature matching tasks. However, they perform well as descriptors and
in certain cases outperform grayscale features under illumination conditions,
WINV for example is generally always better than intensity in those cases. Due
to colour invariants inherently containing different information than intensity,
a study was required to investigate if colour could be utilised to enhance the in-
tensity for feature extraction tasks. Thus in this way discover if a feature fusion
extraction was possible, in which the most appropriate grayscale and colour
gradients are utilised conjointly. The next section presents the feature fusion
study that was carried out in this research for feature matching applications.
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4.4 Feature Fusion for Image Feature Matching

4.4 Feature Fusion for Image Feature

Matching
This section is organised as follows: Section 4.4.1 presents the feature correlation
study that was performed to investigate the number of unique features that
each gradient can extract; which have the potential to be used in a feature fusion
extraction approach. Section 4.4.2 outlines the proposed feature fusion strategies
for local feature detection and the results of their evaluation. In Section 4.4.3,
the ranking metric for obtaining the strongest HL corner points are examined,
and their suitability to be used in an optimum fusion strategy is discussed.

4.4.1 Uniqueness and Correlation Analysis

The correlation of the gradients are here experimentally obtained by performing
a feature detection experiment similar to the one presented in Section 4.2. The
difference here is that the features from each detector type are also compared
to all the other 9 gradient types in order to obtain the number of unique correct
correspondences at each imaging condition of the image-sets. The approach is
carried out as follows: The HL points from the first image of each image-set are
compared in turn to the points from the same gradient type of all subsequent
images of the set (at varying imaging conditions). The correct corresponding
points for each imaging condition of the set, are then compared to the points
from all other gradient types (at the same imaging condition). The same region
overlap area error threshold of 90% is used here to determine a correct feature
correspondence, as was done in the detection experiments of Section 4.2. After
this comparison to all other gradient types, the HL points that do not find
correspondences are thus unique. The number of HL points that correspond
to other gradient types are used to calculate the level of correlation between
them. The correlation between a gradient type A and B is calculated here by
the percentage of correctly matched points that are common between them,
from the lowest number of total correct points obtained from type A or B. The
unique correspondence results are shown in Figures 4.13 and 4.14, which show
the average number of unique correct points for all 4 datasets.
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(a) Oxford
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(b) Middlebury
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Figure 4.13: Summary of the unique correspondences analysis for the Oxford
(a) and Middlebury (b) datasets.
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(a) ALOI
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(b) PHOS

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
Avg. Unique Correct Points Comparison

# 
of

 p
oi

nt
s

illumination condition

 

 
I
LIC
SP

INV

SS
INV

SPSS
INV

SPSS
VAR

SS
F−INV

C
INV

H
INV

W
INV

Figure 4.14: Summary of the unique correspondences analysis for the ALOI (a)
and PHOS (b) datasets.
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The average correlation matrix plots are presented in Figures 4.15 and 4.16.
The standard deviation results of the number of unique points are shown in
Appendix C. The results presented in Figures 4.13 and 4.14 prove that there is a
substantial amount of useful information inherent in the colour invariants that
are not shared by the grayscale intensity gradients. This can be deduced by the
significant number of unique correct correspondences obtained by the colour
gradients. The standard Oxford detection results of Figure 4.5a show that the
intensity obtains 290 correct correspondences in the first distortion level and 80
for the last distortion. By analysing the unique correspondences of Figure 4.13a,
it can be seen that the total number of unique correct points from all gradients
types in the first distortion level amounts to 394, when adding to this the number
of non-unique correct grayscale intensity points (290 total − 76 unique = 214),
it results in a total of at least 608 potential correct correspondences if all 10
gradient types are utilised together in a fusion approach. Such an ideal fusion
thus results in a 109% improvement upon the grayscale intensity’s performance
on the first distortion level of the Oxford image-sets. In the last distortion level,
a fusion approach has the potential for improvement of 97%. When analysing
the Middlebury unique correspondence results of Figure 4.13b and comparing
them to the standard detection results of Figure 4.5b, the potential improvement
of a feature fusion extraction is estimated to be 252% in the first distortion level,
and 240% in the most severe illumination condition.

Results from all four datasets clearly indicate that the capacity to incorporate
colour features alongside grayscale intensity for successful feature detection
is thus significant. This implies that an appropriate feature extraction fusion
approach could potentially select from an image a set of detected features that
are more robust to distortions, more numerous and more unique than utilising
only intensity information. The other set of results that back the previous
conclusion, is the correlation matrices presented in Figures 4.15 and 4.16. The
correlation results indicate that the colour invariants are highly uncorrelated
to the intensity and are thus capable of positively influencing the performance
of intensity if used conjointly. For each image, the correlation between two
gradient types is calculated here as the percentage of the number of correct
points that are common among the two detectors, out of the minimum number
of total points extracted between the two detectors.
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(a) Oxford

(b) Middlebury

Figure 4.15: Summary of the correlation analysis for the Oxford (a) and Middle-
bury (b) datasets.
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(a) ALOI

(b) PHOS

Figure 4.16: Summary of the correlation analysis for the ALOI (a) and PHOS
(b) datasets.
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That iswhy the correlationmatrices appear symmetrical. The variant SPSSVAR

is the most strongly correlated since half of its gradient composition contains an
intensity component. WINV is the second most correlated to intensity, which is
expected as it performed the best out of all the colour invariants. While the exact
correlations differ according to the specific dataset, overall the same relative
correlations are apparent throughout all the results.

4.4.2 Fusion Strategies and Results

Two feature fusion techniques are proposed in this section and evaluated in a
local feature detection experiment. The two techniques are based on selecting
HL points from different gradient types based on the Harris cornerness energy
strengths of the points (Equation 3.2). Traditionally in the literature, HL points
have been selected by setting a threshold value to the Harris energies of the
available points. In this research a fixed number of points from each image is
extracted via a ranking of the strength of the Harris energy. In order to rank
using this metric, certain normalisations must be performed before any fusion
can take place. The different gradient types are scaled appropriately when
extracting HL points from each gradient type. The magnitude of the highest
response from each type then falls in range with all the others. This ensures that
the Harris energies from the colour invariants are not weaker than the energies
from the grayscale intensity and are therefore able to have an equal opportunity
of being selected during the ranking.

The scaling factors for the gradients used to generate both the Harris and
LoG image stacks, are obtained for each individual image using information
from all the gradient types. For each gradient type the scaling process finds
the highest LoG response and first derivative magnitude across all the scale
space, then an individual scaling factor is given to each gradient type so that
the maximum gradient magnitude achievable for each type is the same as all
the other gradient types. Figure 4.17 shows the comparison of histograms of
the scaled Harris energies from all gradient types for one image of the Art

image-set.
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Figure 4.17: Histograms of the scaled Harris cornerness energy strengths of
each gradient type.

However, these energies cannot be used together easily in a fusion tech-
nique as their values are non-linearly distributed and a sufficient overlap in the
energies of the various gradient types is not guaranteed. Little detail can be
distinguished in the plots of Figure 4.17 because a minority of the points have
significantly greater energy values than the rest and their bin count it too low
to be visible. In order to distribute the original Harris energies (H) more evenly
to improve the fusion, the Harris energy distributions are stretched by taking
their natural logarithm as shown in Equation 4.1.

Hs = ln (H) (4.1)

Figure 4.18 shows the effect of performing this operation. The stretching to
Hs makes the energy distributions between the gradient types more compatible,
which facilitates that all gradient types contribute to the fusion. The first fusion
technique that is proposed and presented here, is named Max H.E Fusion and
involves maximising the Harris energy of all image locations by combining
multiple gradient types. The structure tensor shown in Equation 3.1 is com-
posed of Lx, Ly and LxLy gradients components. Max H.E Fusion carries out
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Figure 4.18: Histograms of the stretched Harris cornerness energy strengths,
obtained by applying the natural logarithm of the original energy distributions.

permutations of Equation 3.1 with all possible combinations from different
grayscale and colour gradients. The highest Harris energy that results from the
permutations, is then assigned to that image location in the Harris energy stack.
The reasoning for proposing this technique is that by utilising multiple gradi-
ents simultaneously (which vary in their strengths according to the imaging
conditions) and optimising for a suitable metric, it increases the probability
that under varying imaging conditions there will be a combination of gradients
that ensures a strong response for the optimised metric (in this case the Har-
ris energy). The second fusion technique is H.E Ranked Fusion, which pools
together individually extracted HL points from different gradient types into
a list of candidate points. The technique then ranks the points based on the
Harris energy and selects the top N points, which could have been extracted
arbitrarily from different gradient types. The evaluation results of the fusion
techniques presented in Figure 4.19, were carried out on theMiddlebury dataset.
Max H.E Fusion − AFJ is obtained by utilising the top three gradient types
(A = I, F = SPSSVAR and J = WINV), H.E Ranked Fusion− AFJ selects the top
HL points only from those three types, and H.E Ranked Fusion− ALL selects
the top 500 points from all of the 10 gradient types. In the other fusion types,
the C denotes the invariant SPINV and D refers to SSINV .
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Figure 4.19: Comparison of the correspondences results of the proposed fusion
techniques.

The fusion techniquewith the best performance is H.E Ranked Fusion− JCD.
When considering all 10 gradients in the fusion of H.E Ranked Fusion− ALL,
the overall performance deteriorates compared to when only three gradient
types are considered. Max H.E Fusion is arguably the worst of the fusion
techniques, as it performs particularly poorly on the first few distortion levels
of the image-sets.

4.4.3 Analysing the Harris Energy as a Metric for

Fusion

In order to investigate the reasons why the previously presented feature detec-
tion fusion techniques are not successful, a detailed study was performed on
the effect that ranking HL points by the Harris energy has on the repeatability
results of the detection process. This section outlines this investigation and the
obtained results. From the fusion results in Figure 4.19, it can be deduced that
the method Max H.E Fusion is not able to accurately capture the underlining
corner structures of an image as it cannot locate the same corner locations of
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the image scene across varying illumination conditions. This could be due
to noisy Lx or Ly gradients, that when utilised for only one type of HL point
extraction it reduces the probability of a strong corner being detected since both
directional gradients have to be compatible to form a corner. However when a
corner is formed by fusion from multiple gradient types, some noisy gradients
from different gradient types could combine to generate a false reading for the
presence of a strong corner.

In the case of the technique H.E Ranked Fusion, using 3 gradient types per-
formed better than when the selection could choose amongst all the types. This
result indicates that high corner energy HL points from the worst performing
colour invariants were not positively contributing to the selection of the most
optimum set of HL points for an image. The other observation that AFJ and
ACD performed very similarly to I and SPSSVAR, indicates that the colour
points seem to be largely overshadowed in the fusion process. The analysis of
the previous fusion study thus concludes that the Harris corner energies may
not be the most appropriate metric to rank and select the best set of HL points
amongst all the possible grayscale and colour candidates. The investigation in
this section aims to prove if the aforementioned hypothesis is correct.

The HL ranking evaluation experiments were conducted on the Middle-
bury dataset for each of the 10 gradient types. The 500 HL points of each type,
were separated into subsets in terms of their Harris corner strengths, after first
stretching the distributions as outlined in the previous section. The points were
organised into percentile subsets according to the relative strength of the Harris
energies, with respect to the maximum value of the 500 points. The subsets of
HL points were evaluated in a feature detection experiment, and the results of
the repeatability rates are presented in Figures 4.20, 4.21 and 4.22. In the plots,
the subset 90-100% for example, contains the HL points which have energy
strengths ranging from 90% to 100% of the maximum value and thus are sup-
posed to be the strongest corners of the 500 total points. The evaluation analyses
the repeatability rates, in order to verify the robustness of the detection and
the probability that the points will produce correct correspondences. Results
indicate that the subset of points performs relatively differently across each
gradient type.
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4.4 Feature Fusion for Image Feature Matching
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(d) HINV
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Figure 4.20: Detection repeatability of HL points of varying Harris energy
ranges: (a) SSF−INV , (b) LIC, (c) CINV and (d) HINV .
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(a) I
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(b) SPSSVAR
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(c) WINV
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Figure 4.21: Detection repeatability of HL points of varying Harris energy
ranges: (a) Grayscale luminance intensity, (b) SPSSVAR and (c) WINV .

117



4.4 Feature Fusion for Image Feature Matching
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(b) SSINV
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(c) SPSSINV
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Figure 4.22: Detection repeatability of HL points of varying Harris energy
ranges: (a) SPINV , (b) SSINV and (c) SPSSINV .
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4.5 Summary and Discussion

The general trend is for the lowest 30% range of energies to obtain signi-
ficantly lower repeatability rates, and for the top 30% to obtain the highest.
This trend does not apply however in the case of WINV , which is particularly
problematic since it is the best performer from the colour invariants. This ex-
plains why H.E Ranked Fusion− AFJ in Figure 4.19 performs similarly to the
intensity, as few of the WINV are actually selected. The reason for why the
other H.E Ranked Fusion types do not manage to consistently outperform the
intensity, is that the Harris energy ranking evaluation shows that there is not a
substantial difference in repeatability rates amongst the points selected in the
top 30-40% range of energies. The gradient type that arguably performs closer
to the ideal scenario is the grayscale intensity, but the probability of selecting a
correct point in the 90-100% range is only higher than 50% in 2 of the 7 different
imaging conditions. The intensity energy ranges of 70-90% obtain a probabil-
ity of selecting a correct point higher than 50% only once. Therefore even for
the grayscale intensity, the ranking via the Harris cornerness energy does not
indicate a strong probability of selecting points that will be repeatable at the
same scene location across varying imaging conditions. Other experiments that
have been omitted from this thesis, performed the same analysis utilising the
LoG response as the ranking metric for the HL points, and obtained similarly
negative results. The study outlined in this section thus concludes that in or-
der for a successful extraction fusion technique for local feature detection and
matching tasks, a more appropriate ranking metric other than the Harris energy
or LoG response must be found. Some possible further research directions for
the ranking of the points are outlined in the future work section of 6.2.

4.5 Summary and Discussion
This chapter presented an evaluation of the performance of colour photometric
invariants in the context of local feature detection and matching. This evalu-
ation obtains more conclusive results on the performance of colour invariants
for the aforementioned applications, when compared to previous studies in the
literature. The main reasons for this are due to the utilisation of the more ap-
propriate evaluation framework developed by Mikolajczyk and Schmid (2005),
the testing on multiple datasets, and because the evaluation includes colour
invariants that have never been implemented as local features before in the liter-
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4.5 Summary and Discussion

ature. Additionally, the testing was done on datasets containing the typical set
of imaging distortions encountered in real-world applications. Thus this work
has evaluated the colour invariants with the same level of rigour that state of the
art grayscale intensity-based features have been evaluated with in the literature.
Furthermore, this evaluation has implemented all features using the same code
base and tested them within the same framework, ensuring an accurate com-
parison that provides more certainty than previous studies, on what role colour
invariants have in the performance of local feature detection andmatching tasks.

The detection results of Section 4.2, indicate that there are only three gradi-
ent types that consistently perform robustly across all imaging distortions (I,
SPSSVAR and WINV). In the Oxford dataset which allows the testing of all the
distortion types, the gradients of the grayscale intensity and specular-shadow-
shading variant SPSSVAR performed the best, followed by the colour invariant
WINV with an approximately 10% drop in the number of correspondences. The
same colour invariant on the other hand, outperforms all other feature types in
two of the three other illumination varying datasets used in the evaluation. All
colour gradients apart from WINV , perform poorly for general types of imaging
conditions and it is thus recommended here to not use them individually for
feature detection tasks. Despite not outperforming in all of the illumination
varying tests, the grayscale intensity and SPSSVAR nonetheless perform ad-
equately and at times comparatively with with the best colour counterpart. The
results therefore validate why grayscale is generally preferred in the literature
for local feature detection, and only under varying illumination conditions
should the colour gradient WINV be considered.

There is a limitation of the evaluation that must be mentioned, in terms of
the extent of the generalisation that can be inferred from the feature matching
results. This observation arises from the results of the HL optimisation study
presented in Section 3.4. It was shown that although there was not a substantial
difference amongst the top performers, the results indicated that the optimisa-
tion was dataset-dependant. Additionally, the optimisation was done using
only luminance gradients. Therefore, it is possible to obtain a different set of
optimum parameters for each gradient type on each of the evaluating datasets.
Different parameters could potentially change the relative performance of the
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4.5 Summary and Discussion

gradients compared to what is presented in this thesis (in both detection and
matching results). The purpose of the evaluation however is not to compare
each optimised colour gradient with each other, it is instead to evaluate and
compare them under equal conditions with an appropriate feature extraction
algorithm. Furthermore, the optimisation study used the luminance as it rep-
resents the highest variability in the image data. Overall, the low variations in
performance seen in the optimisation results of Section 3.4 and the consistently
overall performance of the luminance, SPSSVAR and WINV in the results of this
chapter, convey confidence in that they would remain the top performers even
if another set of HL parameters would be used. However it must be pointed
out that the results are indeed biased but the impact of this inherent bias is un-
known. Results are biased firstly towards the luminance, and secondly towards
the Oxford and Middlebury datasets since only they were used for selecting
the optimal HL parameters. The results for the PHOS and ALOI datasets, can
therefore be regarded as a better representation of a general scenario application
that does not utilise any data priors.

Section 4.3 presented the feature matching evaluation, which combines both de-
tection and description matching and represents the most common real-world
application for local image features. Thematching results are thusmore signific-
ant than the detection results and provide a greater indication for the usability
of colour invariants. A surprising result arises from the Oxfordmatching results
in that SPSSVAR proves to be the best candidate, this is an important finding as
this overlooked gradient type has never been implemented as a local feature or
evaluated previously in the literature. The best colour invariant in the Oxford
results is WINV , which performed comparatively to the intensity with a 13%
drop in number of matches in the first distortion level and obtaining the same
number of matches in the last distortion. For the illumination varying datasets
WINV again obtains the best results. It can thus be concluded that it has the best
balance of invariance amongst all other colour types, in contrast to HINV which
contains too much invariance and fails to robustly detect enough gradients as
can be seen in the visual examples of Figures 3.15 and 3.17.
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4.5 Summary and Discussion

Overall, SPSSVAR obtained only a slightly higher number of matches than
intensity, but a substantially higher matching score. The matching score of
grayscale intensity was in fact the second worst from all the 10 gradient types,
confirming quantitatively that the conversion from colour to grayscale looses
information and lessens the distinctiveness of the image data. Comparing
accurately the results of this evaluation with the literature is not possible, as
the evaluation frameworks and tested invariants generally vary. Burghouts and
Geusebroek (2009) implement their own evaluation framework, but in their
precision-recall descriptor matching results the WINV was amongst the top
performers and therefore shares a similarity with this work. The study of (Van
De Sande et al., 2010) evaluates SIFT descriptors with a variant of CINV and
Abdel-Hakim and Farag (2006) uses only a variant of HINV , they therefore both
ignore WINV and also use the framework of Burghouts and Geusebroek (2009).

In the work of Gossow et al. (2010), different variations of the C and W

invariants are used simultaneously for SURF feature extraction and matching.
Jalilvand et al. (2011) evaluate the HINV and WINV invariants also for SURF
descriptor matching with the framework of Burghouts and Geusebroek (2009)
on the ALOI dataset, and report that WINV is the better invariant. The last
comparison regards the version of the LIC gradient from the study of Stöttinger
et al. (2012). The original LIC implementation used a boosted image to generate
the LoG stack of the HL detector which resulted in improved performance in
some situations. In this research LIC was used without the colour boosting
in order to isolate the effect of the invariant itself, and the results show that it
performs poorly under all the tested conditions.

Due to the relatively low number of correct feature correspondences and
matches achieved by the majority of the colour invariants, a novel feature correl-
ation analysis was devised and presented in Section 4.4. The correlation study
investigates how colour and grayscale information can be utilised simultan-
eously for local feature extraction in the detection phase. Despite their overall
inferiority when utilised individually, the correlation study obtained promising
results and strongly indicates that colour invariants have a substantial potential
to be used for feature fusion extraction, as they are uncorrelated to the intensity
and generate a considerable number of correct unique point correspondences.
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4.5 Summary and Discussion

When analysing the overall performance of the feature detection, the pro-
posed fusion techniques do not prove to be superior to all the other individual
colour gradient features. However a detailed analysis on the standard rank-
ing metric used in the literature for HL points, provides some answers as to
why the proposed fusion techniques do not perform as expected. The analysis
concludes that the Harris cornerness energy strength, is not an accurate metric
for the ranking of HL points, and therefore should not be used in fusion tech-
niques. The investigation on the ranking of HL points via the Harris energy is
another completely novel aspect of this research which has been overlooked in
the literature, and provides an interesting direction of future research for the
field.
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5Object Class Recognition

This chapter is concerned with object class recognition, which is arguably
amongst the most important application areas in computer vision (along with
image feature matching), where local image features are used. The goal of ob-
ject recognition is to determine what types/classes of objects are present in an
image (e.g. building, person, car); whereas the goal of image retrieval (another
important application) is to find the same image or the same object within a
query image (e.g. The Colosseum), in a database of unknown images. Object
recognition techniques must extract discriminative information from images
and during the training phase be able to identify the information that is mutu-
ally shared amongst the same class of objects (intra-class similarity), and which
in turn is unique and not similar to other classes (inter-class dissimilarity).

During most of the last decade, Bag-of-Visual-Words (BOVW) (Sivic and
Zisserman, 2003) has arguably been the most successful approach in the area
of image recognition (Chatfield et al., 2011), while also obtaining excellent res-
ults for object detection (Vedaldi et al., 2009) and image retrieval (Nister and
Stewenius, 2006). The BOVW approach extracts the discriminative information
from images with local image features, with the majority of techniques employ-
ing the SIFT descriptor (Lowe, 2004). BOVW represents a dataset of images with
a visual vocabulary, where every word of said vocabulary is a feature descriptor
(i.e. SIFT). Images are then encoded as a frequency histogram where each bin
is represented by a visual word, the histograms of words are then used as the
image descriptors for the training and classification phases.

More recently, with the popular resurgence of neural networks in the field of
machine learning due to a rise in computational power and abundance of data,
approaches like Deep Learning (Bengio, 2009, Simonyan and Zisserman, 2014)
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have come to the forefront of image recognition and are now considered to be
the state of the art in terms of recognition accuracy. Deep learning techniques
do not use local image features, they instead learn the most appropriate set
of low-level image structures for a particular class. As a consequence, deep
learning relies on large volumes of image data, and the results are heavily
influenced by the type of data that is trained on. Another disadvantage to
this approach is the computational requirements and time needed to train
a recognition system. Despite achieving the best recognition rates for image
classification, deep learning is not ubiquitously usedwithin the computer vision
community, BOVW techniques are still commonly being researched in areas
where computational power is limited or when the scale of the image database
of the task does not comprise of millions of images.

Three representative examples of applications that utilise BOVW are: ac-
tion recognition (Iosifidis et al., 2014), efficient visual search on mobile devices
(Chen et al., 2014, Chen and Girod, 2014), andmap loop closure in Simultaneous
Localisation and Mapping (SLAM) techniques (Mur-Artal and Tardós, 2014). In
this research, BOVWwill serve as the evaluation framework for investigating
if the colour invariants that were tested in the previous chapter, can positively
contribute to object recognition tasks. The findings of this work will also have
implications on other applications that utilise BOVW and local image features.

Recognition with BOVW has predominantly been based on extracting local
shape information with grayscale intensity gradient information, although the
use of colour has been proven to improve some image classification tasks (Van
De Sande et al., 2010, Vigo et al., 2010a). The improvement in performance
attributed to colour generally depends on the importance of colour in the data
set. However, the best way to combine different image cues (colour, shape,
texture, etc.) within the same recognition pipeline, remains an unanswered
research problem. The efforts to finding an optimal fusion strategy have in-
creased in recent years (Khan et al., 2011, Fernando et al., 2012, Khan et al.,
2012). Two main approaches exist for combining colour and shape (geometric)
information into the BOVW framework: early fusion and late fusion where the
nomenclature depends on whether the fusion is performed prior or after the
vocabulary generation.
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Early fusion involves utilising colour and grayscale local image descriptors
together and fusing them to create a single shape-colour vocabulary of the
dataset. Late fusion approaches obtain separate image vocabularies and when
an image is encoded to form a histogram of words, the final descriptor can then
comprise of a concatenation of a shape histogram and a colour histogram, or
the two descriptors can also be combined at the classifier stage. In late fusion, a
parameter is commonly used to balance the relative contribution of colour and
shape. The recognition of object classes that are colour-shape dependant (i.e. a
red-white stop sign) are generally better served with an early fusion strategy;
whereas classes which have colour and shape independence (i.e. cars, cats,
dogs) are better represented with late fusion.

In this research, a standard BOVW recognition pipeline is implemented
using the VLFeat open source toolkit Vedaldi and Fulkerson (2008). The aim is
not to provide state-of-the-art results but rather to evaluate the colour invariant
features and compare them under the same conditions. A sparse feature extrac-
tion technique versus a dense random sampling feature extraction will also be
compared. Colour will provide its contribution to the recognition pipeline by
being utilised in both the detection and description phases of the feature extrac-
tion process. Two recognition studies are performed here, the first evaluates
all 10 gradient types individually, and the second is an early fusion approach
which combines the best performing gradient types together. The proposed
fusion technique relies solely on the discriminative power of the colour SIFT
descriptors, and is thus not affected by the limitations of the Harris energies as
discussed in the previous chapter.

Section 5.1 discusses the different methods of extracting features for BOVW
recognition and Section 5.2 outlines the recognition pipeline that is used here.
The evaluation details of the PASCALVOC 2007 challenge are covered in Section
5.3 before presenting the individual recognition results in Section 5.4. The
implementation details and results of the colour fusion technique is presented
in Section 5.5, and the chapter ends with a summary and discussion in Section
5.6.
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5.1 Feature Extraction

In the early years of BOVW-based recognition approaches, the image vocabulary
of a dataset was obtained by extracting sparse local features in the standard
way as outlined in Chapter 4. The goal was to find salient image regions us-
ing a detector and characterise those regions with a suitable descriptor. All
grayscale-based descriptors were geometric like SIFT or SURF, whereas they
could vary in the case of colour descriptors with some techniques utilising
a mixture of grayscale SIFT with histograms of colours (Van de Weijer and
Schmid, 2006b, Van De Sande et al., 2010) and others obtaining geometric colour
descriptors by applying SIFT on individual colour channels (Bosch et al., 2006,
Van De Sande et al., 2010). In terms of the detection strategy, it was found that
results could be improved when combining several different types of detectors
together (Mikolajczyk et al., 2006, Sivic et al., 2005).

The current feature extraction approach is to disregard the initial detection
step altogether, and to essentially extract all of the information from an image
by covering the entire image with local image regions which are then character-
ised with a feature descriptor. This approach is called dense random feature
extraction and involves making a grid of image positions, and centring on each
position local image regions of various sizes in such a way that every area of
the image is encapsulated by at least one descriptor. From a pool of all possible
descriptors for an image, a random set of descriptors then gets selected. The
current general trend is toward increasing the number of extracted descriptors
from an image (Zhang et al., 2007, Nowak et al., 2006, Tuytelaars and Schmid,
2007). While dense feature sampling has been shown to obtain better results
in image classification than sparse features (Nowak et al., 2006), the strategy
essentially relies on the machine learning part of the pipeline for disregarding
the non discriminative descriptors when formulating the visual vocabulary.

Figure 5.1 demonstrates the differences between the sparse and dense feature
extraction approach used in this research. Figure 5.1a shows 100 sparse interest
points detected using the developed HL algorithm, Figure 5.1b shows 100
random local regions selected from the pool of 1,000 total regions shown in
Figure 5.1c.
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5.1 Feature Extraction

(a) Sparse Interest Points

(b) Sparse Random Points

(c) Dense Pool of Points

Figure 5.1: Local feature extraction approach comparison: (a) Top 100 sparse
HL points, (b) 100 random point and (c) a pool of 1000 random dense points.
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5.2 The Recognition Pipeline
The BOVW recognition pipeline that was developed for this research is derived
from the standard code examples of the VLFeat toolkit (Vedaldi and Fulker-
son, 2008). Figure 5.2 shows the diagram of the overall recognition process
that is used here. Step 1 collects a representative subset of information from
an image dataset, needed for the visual vocabulary generation. A number of
local features are extracted from each image of the dataset, descriptors are then
obtained from each local region and are accumulated in a large vector con-
taining all the extracted descriptors. Step 2 generates the actual vocabulary by
clustering (discretising) all the extracted descriptors from step 1 in the 128x128
dimensional SIFT descriptor space. This step is also referred to as vector quant-
isation, where for each cluster that is detected a new descriptor representing
the information from the entire cluster is created by quantising the information
of all the descriptors around the centre of the cluster. The quantised descriptors
then become the words of the vocabulary, which are denoted as W1...WN in
Figure 5.2.

SIFT
descriptors

w1

w2
w3

w4

128x128MdescriptorMspace

visualMvocabularyMgeneration
viaMK-MeansMclustering

featureMextractionMforMtheMvisualMvocabulary

car

other

1Mvs.MAllMtrainingMV
classificationMviaMSVM

w1 w2 w3 wN

training

classification

imageMencodingMwith
histogramMofMvisualMwords

1

2

3

4

5

queryingMimageMof
unknownMclass

Figure 5.2: Diagram of the bag of words recognition pipeline.
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In the experiments presented in this chapter, the clustering of the vocabulary
is performed with the K-Means algorithm and the vocabulary size consists of
1,000 words. Therefore the histogram of words descriptor that is obtained for
each image has 1,000 bins. This image descriptor is depicted in steps 3 and 5 of
the recognition diagram. During the training phase of the recognition process,
each image of the training dataset is encoded as a histogram over the visual
vocabulary. Each of the feature descriptors extracted from an image arematched
to one of the words of the vocabulary which increases that bin count of the
histogram of words. The matching is performed by calculating the Euclidean
distance between a descriptor and all the 1,000 words, and selecting the word
with the smallest distance.

Since the training dataset is labelled (the types of classes in each image are
known), it is possible to train a classifier for each class by feeding the classifier
with known instances of histograms that pertain to that class and histograms
that do not, this is depicted in step 4. A 1-vs-All Support Vector Machine (SVM)
Shalev-Shwartz et al. (2011) classifier is used in this work with a linear kernel,
which is able to obtain a linear hyperplane that separates the histogram ofwords
descriptors into two categories; one that pertains to the class being trained for
(e.g. car) and another category for all the other classes. During the classification
stage in step 5, all the images from the evaluation dataset (also labelled) are
encoded with histograms of words and are projected into a trained classifier
to determine if it belongs to a particular class or not. Since all the dataset is
labelled, it is possible to verify if a classification is correct.

The main focus of the implementation was to evaluate all the invariants within
the same framework, prove the concept of the proposed feature fusion and
utilise a well-known recognition toolkit to ensure the recognition experiments
were performed correctly. Obtaining state of the art BOVW recognition results
was not a goal of this work since this research is not concerned with developing
machine learning techniques. This implementation is therefore not sufficiently
optimised. In order to improve the results a number of tactics can be employed
that may or may not necessarily affect the relative performance of the colour
invariants with respect to the grayscale intensity. Furthermore the evaluation
aims at investigating the role of colour features in their purest form, and not to
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dilute their individual effect by employingmore sophisticatedmachine learning
techniques. As the study of Chatfield et al. (2011) demonstrates, each step of
the recognition pipeline (feature extraction, image encoding, classifier method)
and their specific tuning parameters substantially influences the recognition
results.

One such technique that improves recognition results is Spatial Pyramidal
Matching (SPM) (Lazebnik et al., 2006). This splits up the image into multiple
segments of decreasing sizes, and then a histogram of words is generated for
each individual segment, which are all then concatenated to form the final
image descriptor. SPM is thus able to embed spatial information into the BOVW
representation by essentially creating a form of local histograms of words. In
the results shown in this research, only one image segment (the entire image
itself) is used to generate the histograms of words.

Another optimisation method that could be employed is to generate a very
large vocabulary size (e.g. 50,000 words), or to perform a more advanced vector
quantisation with for example a Gaussian Mixture Model (GMM) and obtain a
vocabulary of Fisher Vectors (Perronnin et al., 2010). The GMM does not only
contain the descriptor located at the centre of a cluster, but also other statistical
information like the mean vector and covariance matrix of the cluster which
adds to the discriminative capacity of the vocabulary. The image encoding step
can also be improved by performing a soft-assignment of each feature descriptor
of an image to the histogram of words descriptor. The current implementation
performs a hard-assignment, where one feature descriptor only contributes to
the increment of a single word in the histogram. A soft-assignment is where
a descriptor can contribute to the bin-count of more than one word, with the
weight of the contribution depending on the Euclidean distance between the
words and the feature descriptor. Finally, using a non-linear kernel for the SVM
classifier will also tend to improve recognition results (Chatfield et al., 2011).
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5.3 The PASCAL VOC 2007 Challenge
The PASCALVOC (VisualObjects Challenge)7 (Everingham et al., 2007), consists
of two main tasks; object detection and object classification. This research
focuses only on the classification task, which involves predicting if images from
real-world scenes contain a particular class of object (car, bus, person etc.). The
2007 VOC dataset contains 20 object classes, 5,011 training images, 4,952 test
images and is known to be predominantly shape dominant (colour has a lesser
impact than geometric information). The challenge specifies the list of training
and testing images that must be used for each of the 20 classes, so that the
challenge is always performed with the same data in order to compare different
techniques equally. Therefore, each object class contains two lists of image
names, a list of names for all the images that will be used to train the classifier
for that class, and a list for the images that will be used during the testing. Since
the numbers of different object types are not equally distributed throughout
the dataset (i.e. there are many more instances of persons than any other object
class), the training and testing lists for a class vary in terms of the number of
positive images (containing objects of the class) and negative images it contains.
For the class Bus for example, there are 4996 training images of which 3.9%
contain instances of a bus, and there are 4770 testing images with 3.6% positive
image samples. Most of the other classes also train and test on approximately
half of the entire dataset, maintaining equal proportions of positive samples
in both training and testing at around 5%. Some examples of the proportion
of positive samples are: Aeroplane = 4.3%, Car = 16%, Cat = 7%, Horse = 5.8%,
Motorbike = 4.7%, Person = 70%, Potted− plant = 4.7% and Train = 5.5%.

The PASCAL VOC challenge is evaluated with precision-recall curves for
each object class, then obtaining an average precision (AP) per class and a mean
average precision (mAP) for the final result of all the 20 classes. When a classifier
must retrieve from a list of images those which contain a specific object class, the
number of retrieved images are controlled by thresholding the scores from the
SVM classification results. True positives (tp) are instances where an object was
correctly classified in a retrieved image, and false positives ( f p) are instances
where the recognition incorrectly retrieved an image as pertaining to the class.

7http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
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False negatives ( f n) on the other hand, are recognition instances where an image
containing the object class was incorrectly not retrieved. The precision can then
be defined as: precision = tp

tp+ f p , and the recall as: recall = tp
tp+ f n . Therefore

precision measures the probability of accuracy of the prediction, and the recall
measures the proportion of correct retrieved instances from all the total available
positive instances in the database. The evaluation of the challenge is performed
by ranking the retrievals by decreasing classifier scores, then calculating the
precision and recall for the first ranked result, then the first two results, then
the first three and so on until all the retrieval ranks are taken into account. The
AP result for each class is obtained by averaging all the precision values of the
precision-recall curve.

5.4 Recognition Results
The first set of recognition experiments evaluates and compares the individual
suitability of each feature extraction method, i.e. the 10 different gradient type
HLdetectors and a randomdense feature extraction approach. The overallmean
average precision results (mAP) of each extraction type is shown in Table 5.1.
These results are obtained with a visual vocabulary of 1,000 words, during the
vocabulary formulation phase the top 100 features (ranked by Harris cornerness
energy) were extracted per image, creating a total of 996,300 features that were
clustered using K-Means. Various tests were carried out on a subset of the
dataset which varied the number of words in the vocabulary from 1,000 to
6,000. A vocabulary of 1,000 words was chosen due to a small difference in
the performance and because a larger vocabulary requires more computational
time. The purpose of the experiments was not in maximising the performance
however, but to evaluate the colour gradients in a comparable manner. The
choice of extracting 100 features per image for the individual evaluation, partly
arose out of memory constraint problems that occurred at the time of clustering
all of the points extracted from the dataset. The maximum number of features
that could be obtained per image was approximately 300, but 100 was selected
in order to reduce the time required to perform the training. This number is
however still significantly larger than in the study of van de Sande et al. (2010),
who extract 20 features per image in their evaluation.

133



5.4 Recognition Results

Table 5.1: Mean average precision results using 1,500 features per image.

Method I LIC SPINV SSINV SPSSINV SPSSVAR SSF−INV CINV HINV WINV DENSE

mAP 23.85 16.82 17.92 17.96 13.63 22.22 16.91 18.25 13.63 22.47 22.17

During the image encoding phase, the number of features that are extracted
per image was fixed at a maximum of 1,500. This number was chosen because
the maximum number of HL points that could reliably be detected per image
was approximately 1,500. However, not all methods were able to consistently
extract that number of features for all the images.

For the random dense extraction approach (denoted as DENSE in the tables
andplots), only grayscale intensity features are considered. The randomsampler
selects points from a pool of regions containing the same distribution of scales
as the HL sparse detector (averaged from each image of the entire dataset).
The final set of random points are generally uniformly spread throughout the
image, visual results of the random feature extraction can be seen in Figures
5.1(b and c). The dense results are obtained with the same conditions as the
sparse features, and the dense results shown are the mean of 6 repetitions. The
individual AP results for each class are presented in Table 5.2.

Visual examples of the top ranking retrieved images (grayscale features) for 6
classes are shown in Figures 5.3, 5.4 and 5.5. Those figures clearly convey the
output of the recognition process and demonstrate how, visually similar but
different objects can be classified together, and in other cases how clearly differ-
ent objects can still be interpreted to be in the same class. A useful observation
that can be made from the visual results is that the background appears to have
a strong impact on the recognition process. This is evident in the Aeroplane
class for example, where in the dataset many images of this class contain a
texture-less background of the sky. In the results of Figure 5.3a, many of the
incorrectly retrieved images also contain a texture-less background; like the two
bird images, the car, the skier and the woman. The last set of example results
are presented in Figures 5.6 and 5.7, that show the precision-recall curves of the
top 6 gradient types for 4 object classes.
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Table 5.2: Average precision results per class using 1,500 features per image.

Method I LIC SPINV SSINV SPSSINV SPSSVAR SSF−INV CINV HINV WINV DENSE

Aeroplane 43.28 23.09 25.24 27.32 16.46 46.93 27.17 24.26 32.60 44.75 43.26
Bicycle 28.35 13.54 13.95 10.65 9.05 16.73 16.29 13.12 12.57 20.55 23.61
Bird 14.25 11.50 12.94 13.48 10.39 15.05 12.14 12.5 15.06 16.22 13
Boat 33.74 16.13 18.6 26.07 10.66 31.85 15.69 21.92 16.20 28.34 32.19
Bottle 8.77 7.32 8.8 8.23 7.24 9.47 6.45 8.01 8.42 10.61 8.43
Bus 19.54 12.99 13.40 16.37 7.96 21.68 12.77 13.73 11.87 20.16 16.88
Car 45.55 35.80 38.72 37.26 30.18 44.63 36.09 39.24 38.64 47.16 45.74
Cat 19.29 13.05 13.49 11.21 10.58 15.41 10.56 14.73 11.88 13.85 18.9
Chair 28.51 23.43 23.33 24.88 16.18 26.90 24.93 25.52 25.16 27.96 26.82
Cow 11.68 5.79 6.35 6.53 6.03 8.54 5.65 4.46 7.19 7.04 9.87
Dining
Table

15.07 12.47 11.23 9.21 8 11.42 7.65 8.49 10.97 11.46 12.12

Dog 15.32 11.20 12.43 12.22 11.52 14.04 12.82 13.96 13.42 14.75 15.16
Horse 26.29 26.18 26.72 24.42 17.78 27.90 17.74 22.72 20.35 25.61 25.45
Motorbike 19.57 12.14 14.73 15.03 8.91 17.85 13.06 16.77 17.14 25.14 16.53
Person 60.45 58.45 59.47 57.88 55.51 59.36 57.89 61.26 60.83 60.36 57.87
Potted
Plant

8.18 7.66 7.03 7.52 6.88 6.64 6.13 6.53 7.02 7.27 7.55

Sheep 11.73 8.71 8.54 6.56 8.31 10.13 9.76 7.04 7.52 7.57 8.69
Sofa 17.06 12.02 15.96 14.39 7.82 14.02 12.68 13.03 13.15 15.49 16.32
Train 30.72 13.60 15.42 16.46 13.15 27.34 18.27 22.16 21.28 29.49 29.54
TV
Monitor

19.74 11.35 12.01 13.49 10.01 18.46 14.38 15.47 12.70 15.64 15.38

mAP 23.85 16.82 17.92 17.96 13.63 22.22 16.91 18.25 13.63 22.47 22.17
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(a) Aeroplane

(b) Bicycle

(c) Cat

Figure 5.3: Examples of the top 30 ranked images of the classification results
for the classes: a) Aeroplane, b) Bicycle and c) Cat.
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(a) Car

(b) Horse

(c) Motorbike

Figure 5.4: Examples of the top 30 ranked images of the classification results
for the classes: a) Car, b) Horse and c) Motorbike.
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(a) Sheep

(b) Sofa

(c) Train

Figure 5.5: Examples of the top 30 ranked images of the classification results
for the classes: a) Sheep, b) Sofa and c) Train.
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Figure 5.6: Precision-Recall curve examples for the classes Aeroplane and Bi-
cycle.
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Figure 5.7: Precision-Recall curve examples for the classes Person and Motor-
bike.
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5.5 Feature Fusion for Object Recognition

Grayscale intensity proves to be the superior method overall, but there are
8 classes (40% of the challenge) that are better represented by other colour
gradients. The fact that nearly half of the challenge can be improved by using
colour is a major significant finding, that justifies why the main goal of this
work was to investigate the impact of colour on local image features. This result
thus clearly proves that colour can benefit image recognition tasks and that
the tested colour gradients should be considered for local feature extraction.
What is an entirely unique contribution of this research however, is that the
best colour gradient types are shown to be SPSSVAR and WINV , which have
previously never been utilised for image recognition in the literature.

The random feature extraction performed comparatively to SPSSVAR and
WINV although it did not obtain the best results for any individual class. The
usefulness of the random extraction is only apparent when the sampling of
features is very dense. This study thus concludes that the proposed sparse
colour feature extraction techniques have the potential to be used in a fusion
approach to improve the recognition results of grayscale features. The next
section of this chapter continues the evaluation by investigating if a BOVW
feature fusion extraction can enhance the recognition rates of a grayscale only
feature extraction.

5.5 Feature Fusion for Object Recognition
Dense random feature sampling has shown in the past to improve the results of
BOVW recognition (Nowak et al., 2006). In general the current trend for BOVW
image classification has been toward increasing the number of densely sampled
points or combining several types of detectors. Even though dense sampling has
been effective, these approaches essentially shift the task of discarding the non
discriminative points to the machine learning algorithms and therefore diluting
the impact that computer vision tools can make to the recognition process.

The goal of this section is to investigate if using a feature fusion extrac-
tion method with different colour invariant detectors selects more discriminat-
ive interest regions than a randomised dense sampling approach. The fusion
would thus benefit image class recognition by providing a more salient set of
descriptors to the machine learning algorithms (i.e. clustering and classific-
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ation). This section evaluates the performance of a grayscale dense random
feature extraction approach as the number of encoding features are increased,
and compares it with two fusion extraction approaches (random and sparse),
that incorporate features from grayscale and multiple colour gradient types.
In the feature detection studies of Chapter 4, it is shown that the colour invari-
ants extract a significant number of unique features that are correctly matched
and can be of value in a feature fusion extraction approach for image feature
matching tasks. This section tests the hypothesis that the same unique f eatures

concept from Chapter 4 holds in a BOVW framework, and if the different colour
descriptors when combined will enhance the classification of object classes.

The proposed feature fusion strategy is implemented in its raw form to prove
the hypothesis in a direct manner and focus the analysis on the local features
themselves, limiting the role ofmore high-level information ormachine learning.
The fusion that is implemented is therefore in the category of early-fusionwhere
the different feature types are combined prior to obtaining the vocabulary. The
same number of features are extracted from different colour invariants, and all
are used together for both the vocabulary formulation and the histogram of
words encoding. BOVW results improve by increasing the number of extracted
features, by combining themaximum 1,500 number of features from each colour
invariant, it is possible to increase the effective number of features for encoding
for the sparse fusion technique. A dense representation is thus obtained by
fusing the results of separate sparse interest point detectors.

The feature fusion combinations are composed of the top performing extrac-
tion types from Table 5.1, and the clustering step is performed using approx-
imately 50 features per image for each feature type. This parameter is chosen
due to the memory constraints that were previously mentioned, where the
maximum number of features that can be extracted per image is approximately
300. The maximum number of gradient types used simultaneously in the fusion
is 7, therefore in that case each gradient type extracts 43 (300/7) features per
image. In all the other fusion techniques the clustering is performed using 50
features, in order to maintain the fusion results comparable.

Results of the fusion experiment are shown in Figure 5.8, with the number
of encoding points varying up to a maximum of 10,500 and equally distrib-
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5.5 Feature Fusion for Object Recognition

uted amongst the feature types in each fusion. A more detailed comparison is
presented in Table 5.3, that contains the results per each object class of the top
methods from Figure 5.8, at 6,000 encoding points. The experiment compares
the standard dense random sampling approach using grayscale (I DENSE)
and colour random dense approaches (SPSSVAR DENSE and WINV DENSE)
to various fusion extraction techniques. There are two random dense fusion
techniques (I +WINV DENSE and I + SPSSVAR +WINV DENSE), that are ob-
tained similarly to the other dense methods but each gradient type contributes
equal number of descriptors to the final set of extracted features.
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Figure 5.8: Results ofmultiple fusionmethodswith varying number of encoding
points.

All the other fusion types combine the sparse features extracted with the HL
detector. The most important result that arises from this experiment, is that the
standard dense sampling (using intensity SIFT only) obtains consistently worse
results compared to the proposed fusion combinations for the same number
of encoding points. Only at the last parameter of 10,500 points does I DENSE

obtain comparable results, indicating it is a far less optimal solution to object
recognition, especially in a system with constrained resources or real-time
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performance requirements. The dense sampling can achieve better recognition
rates than a single individual sparse feature extractor such as I, but only when
the encoding points are increased above 2,000. The colour fusion random
techniques were able to achieve the best precision rates of all the approaches, at
the highest number of encoding points. The technique I + WINV DENSE on
average also achieved comparable results to the best sparse fusion technique at
the lowest number of encoding points.

SPSSVAR DENSE obtained the worst results out of the individual ran-
dom dense approaches, which is likely to be one of the reasons for why I +

SPSSVAR + WINV DENSE did not perform better than I + WINV DENSE, des-
pite having an extra gradient type in the fusion. The best sparse fusion method
is I + SPSSVAR + WINV + LIC + SSINV despite only being able to extract a
maximum of 7,500 points. It is also better than the combination of the top 5
individual methods (I,WINV , SPSSVAR,CINV , SSINV). It can thus be deduc-
ted that the results for both the random fusion and sparse fusion techniques
indicate that increasing the number of gradient types does not improve the
overall recognition results, and that the fusion schemes need to be more soph-
isticated to optimise the impact of each colour invariant and avoid the inclu-
sion of intra-class inconsistent points. Evidence of the lost potential of the
fusion, can be seen in the results of Table 5.3, where each of the methods ob-
tains the best results for at least one of the 20 classes. For example method
J (I + SPSSVAR + WINV + CINV + SSINV + SPINV + SSF−INV), while overall
performing the worst of the 7 methods in terms of mAP, still obtains the best
precision for 3 of the classes. This indicates that fusing multiple gradients types
can be beneficial, but due to its localised positive impact it suggests that the
current fusion strategy cannot harness the full potential benefit of fusing all the
colour invariants.

In the random dense fusion, the information from the different gradient
types are combined via a K-Means algorithm, the sparse fusion also depends
on the K-Means but prior to that the feature descriptors are selected with the
HL detection, which favours regions with discriminative gradient information.
The benefit of adding more discriminative regions to the BOVW vocabulary is
apparent from the results, as the random extraction of I DENSE performed
worse than the sparse colour fusion. However, when analysing the results of
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the random dense fusion techniques, the discriminative information added
by the colour can be seen to be enough to compensate for the randomness of
the extraction, as it improves the recognition rates compared to the standard
approach of I DENSE. The comparative results of the sparse and random
colour fusions, indicates that the background of an image and the regions of
low texture can substantially influence the recognition results. In the object
classes similar to Aeroplane, Boat and Bird, the same types background are
frequently present in the images (e.g. sky and sea), and are thus an important
cue for their recognition. The sparse HL feature detection focuses on textured
regions, generally inside and around the boundaries of objects, whereas the
random extraction can extract regions from every part of the image.

Table 5.3: Average precision results per class for the fusion techniques.

Method D E F G H I J
Aeroplane 60.90 60.29 58.32 58.27 51.15 54.90 55.21
Bicycle 35.10 30.40 34.95 34.64 34.95 35.77 37.52
Bird 24.68 22.40 20.56 23.92 23.13 22.09 20.23
Boat 47.71 50.15 47.22 50.48 50.44 47.55 46.97
Bottle 10.12 11.64 12.93 12.55 10.46 9.35 10.11
Bus 35.40 29.55 25.85 33.74 27.08 32.08 28.77
Car 59.43 58.32 56.38 54.86 53.71 54.48 52.29
Cat 25.42 27.44 22.57 24.66 23.49 25.60 22.42
Chair 37.28 35.79 34.83 36.60 36.18 35.74 35.11
Cow 15.46 14.83 12.76 20.97 14.82 11.68 15.16
Dining
Table 19.86 20.08 16.52 18.61 18.26 16.46 14.68

Dog 19.38 15.89 18.47 19.43 17.84 19.11 19.77
Horse 48.46 46.00 50.63 50.02 53.20 50.08 51.35
Motorbike 36.10 35.61 30.73 34.42 32.19 33.32 31.13
Person 67.56 67.41 67.28 70.10 69.49 70.05 70.95
Potted
Plant 9.59 8.48 9.01 10.64 9.23 9.92 9.58

Sheep 11.46 13.83 14.79 15.00 14.16 16.46 16.15
Sofa 24.84 25.97 23.11 21.61 23.57 20.76 21.44
Train 50.07 49.78 50.29 48.88 46.33 47.13 49.87
TV
Monitor 25.89 25.97 29.62 24.38 28.28 24.12 25.77

mAP 33.24 32.49 31.84 33.19 31.90 31.83 31.72
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From the obtained experimental results, when comparing the proposed
sparse and dense colour fusions, the overall results are not improved by perform-
ing a HL detection step prior to obtaining the BOVW vocabulary or encoding
the histogram ofwords. However from the results in Table 5.3, it can be seen that
11 of the classes (55% of the challenge) are better represented by sparse fusion
techniques. Therefore the HL detection step does increase the distinctiveness
of the visual vocabulary in certain cases. The HL detection apart from largely
ignoring the background, may detect many of the same regions across different
colour gradient types apart from also detecting unique regions. This duplica-
tion therefore can at times contribute useful additional colour descriptors, or at
other times contribute to conflicting and noisy descriptors that at the moment of
clustering via the K-Means, can result in a detrimental effect to the recognition.

5.6 Summary and Discussion
The work in this chapter has evaluated the performance of local features from
colour photometric invariants with SIFT descriptors, in the context of Bag-
of-Visual-Words (BOVW) object class recognition on the PASCAL VOC 2007
challenge. Colour is used in both the detection and description phases of the
feature extraction process, such a strategy has not been widely investigated
before in the literature. Two recognition experiments were carried out, one to
show the potential benefits of individual colour invariants (Section 5.4) and
another to test this potential via a feature fusion scheme (Section 5.5). The
individual results showed that despite the intensity achieving the overall best
performance, 40% of the VOC’s 20 classes obtain better results with methods
other than grayscale intensity. This was an important result and a key finding of
the overall research, which clearly demonstrated the value of using the colour
gradients and indicated that the best colour gradients could be used together
to enhance the performance of grayscale features in a fusion approach. The
second experiment evaluated raw feature fusion schemes that combine features
extracted from separate colour invariants. The proposed sparse and dense
feature fusion schemes obtained consistently better precision results than using
random dense sampling with grayscale intensity SIFT descriptors. Overall the
experimental results strongly demonstrate that the tested colour invariants
improve the recognition results of the BOVW framework, and that a random

146



5.6 Summary and Discussion

dense fusion using grayscale intensity I and WINV descriptors, obtains the best
recognition precision results.

Contrary to the standard dense sampling used in the literature that ran-
domises the selection of regions, the aim of the proposed sparse fusion feature
extraction was to select a dense representation with higher levels of colour
saliency. This was based on the hypothesis of detecting and combining salient
features from multiple colour invariants which could each provide unique in-
formative descriptors, and thus increase the information content and complexity
of the visual vocabulary of the BOVW pipeline. This hypothesis is supported by
55% of the results from Table 5.3, but for the overall results the random dense
fusion techniques are the best performers. If all the best precision results for
each class (taken from different techniques) were summed and averaged, it
would provide an indication for the maximum mAP that could be obtained if
the fusion was optimised. That mAP amounts to 35.00, which is 4.81% higher
than I + WINV DENSE, and 14.75% higher than I DENSE. The full extent of
the increase in performance achievable by any future optimal fusion techniques,
can not be predicted however.

The best sparse fusion technique (I + SPSSVAR +WINV + LIC + SSINV) per-
forms comparatively to the I +WINV DENSE for the same number of encoding
points, however only two gradient types are needed to achieve the random
fusion. Additionally, I + WINV DENSE obtained better results overall as it
was able to increase the precision rates by extracting more points, whereas
I + SPSSVAR + WINV + LIC + SSINV was limited to a maximum of 7,500 en-
coding points. The success of the dense random fusion extraction, indicates that
a random sampling strategy with an automated machine learning algorithm
like K-Means is sufficient to fuse the colour information and achieve a per-
formance gain. The overall conclusion of this chapter, is that there is much
scope for improving the way that the gradient types (especially I, SPSSVAR and
WINV ) are used conjointly for object class recognition. In order to maximise
the performance, the vocabulary formulation and image encoding steps must
be optimised to utilise all the gradient types in a more complimentary manner.
Another optimisation must also be performed at the feature detection stage,
in order to combine elements from both the random sampling and the sparse
region extraction.
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6Conclusions and Future Work

There is one major research question which this thesis has dealt with: how does
colour information contribute to the local image feature extraction process? The
motivation for this research derives from the observed limitations of state of the
art local feature matching, specifically their high rates of feature mismatches
that are partly due to the insufficient discriminative power of feature descriptors.
One important commonality among the most widely used feature extraction
techniques from the literature, is that they were designed to work specifically
with grayscale intensity information. This research aimed to investigate, if the
inclusion of colour information increased the distinctiveness of local features,
and if this influenced the actual performancemetrics of two important computer
vision applications.

Colour feature detection and matching have not been sufficiently evaluated
in the literature prior to this research. Numerous works proposed colour invari-
ants for various applications but unlike many other areas in the computer vision
field, the colour features area lacked comprehensive comparative studies that
would allow for a certain level of maturity to be reached. Upon inspection of
the literature, it was unclear how to proceed in order to increase the distinctive-
ness of local features. The literature studies which proposed colour invariants
generally focused only on their own implementations or on a very limited com-
parison. Studies also generally evaluated applications and scenarios that were
advantageous to their proposed technique but left many unanswered questions.
It was important to address those issues in this research, and obtain a more
definitive conclusion on the role of colour in local image feature extraction.

The scope of the research has been limited to colour techniques that only
take into account the local gradient structure of images, in order to be com-
patible with the most successful grayscale-based feature extraction methods.
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Consequently, numerous colour constancy and colour boosting approaches
that utilise statistical techniques to achieve a level of colour invariance, were
not regarded in this research. The contributions arising from this work can be
grouped in two main categories: evaluation and fusion.

6.1 Contributions Arising
The first set of contributions in the evaluation category, are presented in Sections
4.2 and 4.3 where feature detection and feature matching experiments evaluate
and compare the chosen colour invariant gradients. The second evaluation con-
tribution is presented in Section 5.4, where the invariants are tested in an object
recognition task. In the fusion category, Section 4.4 presents an investigation
on colour feature fusion for local feature detection, and Section 5.5 presents the
proposed BOVW feature fusion extraction for object recognition. A conclusion
of the main contributions of this research is presented next.

6.1.1 Choice of Colour Invariants
This research was able to obtain a more definitive conclusion on the usefulness
of colour invariants for feature matching and recognition, since it has evaluated
and compared within the same framework a substantial number of colour gradi-
ent invariants. The work uses the biggest number of different colour gradient
invariants out of all the studies found in the literature. Experimental results
demonstrate that for most of the tested gradient types, there is not enough
evidence to justify their individual use for feature matching or recognition.

Of note, is the discovery that SPSSVAR proved to be the best candidate for
feature matching tasks under general imaging conditions (varying viewpoint
etc.), achieving the best balance of correct number of detections and descriptor
matches. Since that gradient type has never been implemented as a local feature
in the literature, the finding highlights the necessity for the comprehensive
evaluation performed in this work. In regards to the other gradient types, res-
ults indicate that grayscale intensity is the overall top individual performer for
feature detection in general imaging conditions, and WINV is preferred for both
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detection and matching tasks when requiring invariance to changing illumina-
tion conditions. The grayscale intensity features performed comparatively to
the colour invariants under certain illumination conditions, and was also the
best performer for 60% of the object recognition challenge when used individu-
ally. Therefore in summary, colour can make a positive contribution in a limited
range of scenarios, and should only be considered either individually when the
feature matching application requires an invariance to illumination variations,
or when colour is appropriately used alongside grayscale in image recognition
applications.

6.1.2 Implementation of Robust Colour Features

Many of the tested colour gradients were only implemented as non scale-
invariant corner detectors or edge detectors in the literature, which meant
their applicability for general local feature extraction was unknown. In this
work the gradient types were utilised to extract Harris-Laplace points which
are considered to be robust local regions, invariant to a limited range of ima-
ging distortions like scale, rotation and viewpoint variations. The experimental
results in this research show that most of the colour invariants are not robust to
geometric distortions or even sufficiently invariant to illumination variations,
whereas in the literature the invariants obtained positive results in the tasks
that they were tested on.

Local gradients impact different applications in various specific ways, and
the discovery that most of the colour invariants were unsuitable for individual
use for general feature extraction was possible due to the manner that the colour
gradients were implemented in this research. In the case of the LIC invariant,
the work of Stöttinger et al. (2012) did utilise it to extract robust HL points,
however their use of colour boosted images in their generation of the LoG stack
masked the actual impact that the invariant had on the results. In this work, the
actual impact of the LIC invariant is evaluated and the results show that it in
fact performs poorly.
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6.1.3 Rigorous Evaluation

The previous contribution allows for the evaluation of this research to be valid
in order to test the invariants’ suitability for robust feature extraction in general
computer vision applications. The evaluation also needs to be rigorous and
comprehensive however, and this work achieves these aims due to three key
aspects of the work: 1) Utilising sufficiently large and diverse datasets. 2) Ap-
plying standardised metrics and testing frameworks for feature matching like
the one proposed by Mikolajczyk and Schmid (2005). 3) Conducting the most
widely used object recognition challenge (PASCAL VOC).

This allows this work’s results and conclusions to have greater generality
and increase the probability that they reflect how the colour invariants will
perform in real-world scenarios. Most colour gradient types (except WINV and
SPSSVAR) performed poorly in the Oxford dataset, which contained the typical
set of imaging distortions encountered in real-world applications.

In the Middlebury tests WINV was clearly the best performer, achieving nearly
100% more feature matches in the last distortion level than the second-best
gradient type. WINV was also the best gradient for the ALOI dataset, although
the performance margins were greatly reduced. Results were muchmore mixed
for the PHOS dataset, which saw SPSSVAR perform better in the majority of
the distortion conditions, closely followed by WINV and the grayscale intensity.
The feature matching experiments thus obtained different results for each of the
tested datasets, highlighting the need to test on multiple datasets and showing
that the grayscale intensity in fact, exhibits adequate robustness to illumination
variations. With regards to the object recognition study, the invariants were
tested on a large dataset of 9,963 real-world images, which are particularly
challenging for colour-based approaches since objects of the same class for the
most part share their physical shape but not their colour. Despite the dataset
being biased to grayscale-based techniques, in the individual recognition tests
colour proved that it can have a significant impact on recognition, since 40% of
the classes obtained the best results with a colour feature extraction.
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6.1.4 Colour Correlation
Since the experimental results strongly indicated that the majority of the col-
our invariants were not optimal to be used individually in general real-world
scenarios, an investigation was performed to determine if colour could still
contribute to the feature extraction process in a complementary capacity. This
investigation comprised of a correlation analysis on the local features that were
detected from all the different gradient types. The analysis quantified the simil-
arity between the gradients by identifying how many of the extracted features
were shared amongst the gradient types, and how many features were unique
only to one gradient type. Experiments showed that each detector located sub-
stantial numbers of correct unique HL points, which if used conjointly; would
significantly improve the results of the feature correspondence. Furthermore,
the data indicated that the colour invariants were largely uncorrelated with the
grayscale intensity, the invariant with the biggest correlation was WINV with
approximately 25%, and the variant SPSSVAR showed a correlation of 52%. The
performed correlation and unique features study is a novel idea within the local
image feature extraction domain, and has identified that colour can indeed be
used to compliment and enhance the grayscale-based feature matching process.

6.1.5 Fusion for Feature Matching
The potential for using grayscale and colour gradients conjointly for feature
matching applications, was tested in this research with a fusion technique
focusing on selecting the best subset of HL points extracted with multiple
gradient types. The metric used for the ranking of the points was the Harris
cornerness energy, which quantifies the strength of the detected corners. The
goal of the testing was to be able to locate repeatable HL points (those that
would appear at the same scene location across varying imaging conditions).
Despite the significant number of repeatable points available to be selected
among the different gradient types, the proposed fusion techniques were not
able to consistently select them. This prompted a study on the suitability of the
Harris energy for the selection of the optimum points. Results indicated that
generally, the repeatability rates of the points did increase if they had higher
Harris energies, but the best probability of selecting a repeatable point (at the
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highest range of Harris energies) was seen to be only around 50% on average.
Therefore despite the general apparent trend that higherHarris energies provide
more repeatable points, the rankingmetric proved to be too imprecise to achieve
consistent optimal fusion and is thus unsuitable to use on its own in fusion
techniques.

Another element that destabilised the fusion, is that WINV behaved differ-
ently to the other gradient types as there was a lot more uniformity in the
performance achieved by different ranges of Harris energies. The ranking met-
ric was therefore more unsuitable for WINV , which is particularly problematic
since it was the best performer from the colour invariants and the best candidate
for fusion alongside I and SPSSVAR. Similar conclusions were seen when the
same ranking study was performed on the LoG response, which is a metric that
can be used to rank SIFT features. The performed analysis on the ranking of
the features has never been documented before in the literature, and it provides
an important insight into the theoretical limitations of HL and LoG feature
detection, which will aid future developments of the field.

6.1.6 Fusion for Object Recognition

Sparse and randomBOVW colour feature fusion extraction techniques were pro-
posed in Section 5.5 and evaluated on the PASCAL VOC recognition challenge.
The fusion is based on an early-fusion methodology, and relies primarily on
the K-Means algorithm to select an appropriate grayscale/colour hybrid visual
vocabulary. The fusion therefore does not rely on the ranking of HL points
using the Harris energy metric, and as a consequence the recognition results
were consistently better with the colour fusion approaches than when using
only the grayscale information for the feature extraction process. The preferred
technique that was tested is I + WINV DENSE, which is a random feature ex-
traction utilising equal numbers of grayscale intensity and WINV descriptors.
The sparse and random fusion techniques achieved comparable results for the
lowest number of encoding points, but I + WINV DENSE is not limited to any
maximum number of points and was thus able to achieve better recognition
rates above 7,500 points. Despite the positive results from the fusion, the overall
analysis indicates that the employed fusion strategy has substantial scope for
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improvement, as currently the K-Means clustering on its own is not sufficient to
optimally fuse multiple gradient types. There is not enough control to optimally
and automatically determine which descriptors should be considered during
the clustering and which ones will cause a detrimental effect to the BOVW
recognition.

6.2 Directions for Future Research
There are two main topics of this work that are worthy of extension and further
investigation. These are focused on obtaining an improved strategy for fusing
the colour and grayscale information for the two computer vision tasks that this
work was evaluated on. The first direction that can be taken would address the
ranking of HL points in order to obtain an appropriate fusion for local feature
matching applications. The second direction would concentrate on an optimal
colour feature fusion extraction for image recognition applications.

In regards to the first research direction, various ideas exist in previous stud-
ies that can be employed in the development of a better ranking strategy for HL
points. Comer and Draper (2009) study the repeatability rates of Harris-Laplace
points by ranking optimal subsets of points using the determinant and the
first and second eigenvalues of the structure tensor (Equation 3.1). In another
study, Lemuz-López and Estrada (2008) rank corner points using the angular
difference between dominant edges, they introduce a new ranking metric by
weighing the Harris energy with the angular difference.

Another type of metric that can be used to quantify the information content
of local features relates to the saliency of the extracted regions. Kadir et al.
(2004) propose a saliency-based detector based on calculating the entropy of the
local regions. Other saliency measures utilise the property of local image jets
(Schmid and Mohr, 1997, Montesinos et al., 1998), which are vectors containing
different types of grayscale or colour information for each pixel location that
include; colour values, image derivatives and their combinations. The saliency
of the region can be said to be inversely proportional to the probability of the
occurrence of the local-jets. Therefore if a region contains local-jet information
that is rarely found anywhere else on the image, it will have a high level of
saliency.
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Elements from all the aforementioned studies could be utilised and tested
in the development of a suitable HL point ranking approach, that would aim
to improve the probability of selecting repeatable features using grayscale and
different types of colour gradients. From all the experience gathered throughout
this research on the implementation and characteristics of the Harris-Laplace
detector, the author foresees particular challenges in developing a ranking
metric that is sufficiently robust to scale variations. As mentioned in Chapter
3, the scale-adapted Harris corner is not as suitable for scale-invariance as the
LoG response. This fact may decrease the likelihood of success for developing
a ranking approach using elements of the structure tensor. The best strategy to
pursue, is thus seen to involve a colour saliency measure that is able to achieve
stability in the scale-space domain.

A problematic nature of colour saliency approaches however, relates to
their reliance on certain amounts of global image information, i.e. statistical
information from the whole or large parts of the image must be gathered in
order to assign a local region with a saliency measure. Such an approach
would thus to a certain extent, be contrary to the benefits of local features
that should be located only with local information in order for them to be
robust to different scales and geometric distortions. The reduction of the local
nature of the extracted features would not be the only obstacle, as the colour
saliency measure must also be stable and robust to varying imaging conditions
and it is unclear how colour statistics would behave in those circumstances.
An optimised ranking of colour points will therefore not be a trivial task to
accomplish.

As to the future development of the BOVW feature extraction fusion technique,
an interesting aspect of the work to focus on would be mitigating the way that
each object class responds better to a specific gradient type. In the proposed
BOVW fusion techniques each gradient type makes an equal contribution of
descriptors to the fusion, this may work well as a proof of concept but it is worth
revisiting to find out if a more adaptive approach can maximise the benefits of
the fusion. Oneway to address the issue of a sub-optimal visual vocabulary, is to
examine the generation of a specific vocabulary for each object class, aswas done
in the study of Fernando et al. (2012). During the vocabulary generation of each
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class, a set of weights could also be obtained to quantify the level of suitability of
each gradient type for the particular object class. The individual weights can be
tuned similarly to an optimisation problem that employs a Gradient-Descent or
Levenberg-Marquardt algorithm. The tuning for example, can involve a process
of obtaining a visual vocabulary and evaluating it on a trained dataset; and
iteratively vary the weights and repeat the process until the weights ensure
the maximum precision performance for each class of the dataset. Apart from
adaptively changing the relative contribution that each gradient type has on the
generation of the visual vocabulary and the image encoding, another area that
should be examined further is the integration of randomly sampled descriptors
and the descriptors extracted with the sparse HL detector. Table 5.3 showed
that 55% of the classes were better classified with a sparse fusion technique,
and 45% were more suited to a random sampling approach.

Therefore the experimental evidence clearly indicates that both strategies
should be used together in order to maximise the overall recognition perform-
ance. The author recommends that the aforementioned fusion approach, would
be more suitable to general recognition applications that do not have prior
knowledge of the objects that need to be identified. Such applications include
robotic navigation, where the SLAM algorithm must be able to recognise if
the robot has returned to a previous location and adjust the map information
accordingly (loop-closure). In conclusion, the further developments that can be
made to the colour feature fusion of this work, would largely depart from the
computer vision discipline, as the most apt tools to solve the fusion problem
involves machine learning and data analytics.

6.3 Concluding Remarks
The overall goal of this work was to investigate if colour could increase the
discriminative capabilities of local image features, and induce a gain in perform-
ance for applications that rely on local feature extraction. This proved to be a
considerable challenge with potentially major implications for the field since
the use of local features has become so ubiquitous in computer vision. The re-
search began with uncertainties as to which direction to pursue, and what type
of colour information to consider for the creation of the features. Ultimately
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the work centred around the evaluation of the most prominent colour invari-
ant gradients found in the literature, and testing their suitability for general
real-world scenarios by evaluating them on two important applications; image
feature matching and object recognition. The general aims of this research were
stated in Chapter 1 to be:

1. Finding out why colour was not incorporated in the most popular local
feature techniques.

2. Exploring how colour could be used for local feature extraction.

3. Determining what benefits, if any, colour information would provide.

These aims have been successfully accomplished during the course of this re-
search, via the conclusive answers that were obtained from the evaluation of the
colour invariant gradients. With regards to aim no. 1, the experimental results
clearly show that the majority of the colour invariant features perform substan-
tially worse than the grayscale intensity features, for both feature matching
and recognition. Grayscale information proved to be sufficiently robust even
under illumination variations, and overall it was evident to see why the use of
colour has not been more prominent in state of the art local feature extraction
approaches. The implication to the field that arises from these findings, is in
knowing with greater certainty which colour invariants should be considered
in any future investigation related to either feature matching or recognition.

With regards to aim no. 2, two aspects of the experimental results provide
answers to the question of how can colour still be used to enhance local features
despite its unsuitability in general scenarios. The first aspect of the results is
the correlation study and unique detection correspondence analysis that was
presented in Chapter 4. Those results strongly indicate that the colour gradients
are uncorrelated and have the capacity to detect substantial numbers of repeat-
able HL points that are unique with respect to each other. The colour gradients
can therefore be used in conjunction with grayscale intensity to extract a more
distinct and robust set of local features from an image. This is a significant
contribution since the concept of applying a feature extraction fusion approach
to image feature detection and matching applications is proposed here for the
first time.
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The second aspect of the results that addresses aim no. 2, is the object
recognition results from Chapter 5. The concept of using colour and grayscale
descriptors for recognition has already been studied in the literature, however
the specific implication of the recognition study of this work is to show that the
tested colour invariants also improve the recognition results of a BOVWpipeline.
Since many of the colour invariants are evaluated here for the first time, their
suitability for object recognition was not previously known. The data from both
the individual and the fusion recognition experiments comprehensively prove
that the recognition results can be improved, by employing a fusion extraction
strategy utilising multiple types of colour invariants.

Finally, aim no. 3 has been for the most part answered by the experimental
results of this thesis, although the full extent of colour’s benefit could not be
ascertained by the proposed fusion techniques. The fusion would have to
be adequately optimised in order to consistently harness all the advantages
of using colour; which were apparent in certain conditions of the evaluation.
When using the colour gradients individually, WINV proved to be the best can-
didate in feature detection and matching under illumination conditions, and
obtained the best precision results for 20% of the classes of the recognition chal-
lenge. SPSSVAR was the preferred gradient for 15% of the recognition challenge
and performed marginally better for feature matching under general imaging
conditions. From the unique correspondence analysis of Section 4.4.1, results
indicated potential improvements in detection results of 97-109% (under general
imaging conditions) if a fusion strategy would be utilised, and improvements
of 240-252% for scenarios under varying illumination conditions.

In the case of the BOVW fusion for recognition, it is harder to estimate the
potential improvements that a fully optimised fusion technique would achieve.
From the results presented in Table 5.3 however, the indicative maximum mAP

that could be obtained by taking the best precision results per class, amounts
to 35.00 which is 4.81% higher than I + WINV DENSE and 14.75% higher than
I DENSE. These gains are substantial in the object recognition field where
each year the state of the art results improve by only a few percentages. These
research aims were able to be achieved by addressing the 7 main limitations of
the prior art, which were stated in Section 2.6:
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1 - Lack of Scale-Invariance

This limitation of some previous studies was addressed in this work by using
the colour gradients for the Harris-Laplace detector, that extracts scale-invariant
local interest regions which are also robust to a limited range of other imaging
conditions such as varying rotation and viewpoint.

2 - Limited Distortions

The evaluation carried out in this research subjected the colour features to the
same set of varying image conditions as the state of the art grayscale-based
feature studies. This was done using the Oxford dataset, as opposed to other
colour studies that were tested on datasets that only had images with varying
illumination conditions.

3 - Sub-optimal Evaluation Framework

By using the robust metrics and testing framework of Mikolajczyk and Schmid
(2005) and conducting the VOC recognition challenge, the evaluation carried
out in this research was able to simulate more realistic scenarios and determine
how the colour features would perform in more general real-world applications.

4 - Insufficient Data

The rigour of the evaluation of this work was further strengthened, by utilising
datasets that contained sufficient number of images in order to obtain more
statistically significant findings.

5 - Colour-biased Datasets

All the datasets used in this thesis for both the image matching and recognition
experiments, did not specifically favour colour-based approaches. They were
picked because they contained a large range of real-world objects and scenes
that would provide a good representation of the conditions found in a natural
real-life environment.

6 - Few Datasets

An additional aspect of ensuring that the statistical significance of the results
would be maximised, is the use of multiple datasets for the image matching
experiments. This ensured that the evaluation tested the colour features on
images of varying quality and which were acquired with different camera
hardware.
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7 - Colour Detection with Description

This research used colour throughout the whole feature extraction process to de-
tect and describe the local features with the same colour invariants. This made
it possible to evaluate the suitability of the invariants separately for detection
and description purposes. Additionally, in the recognition fusion experiments,
using different colour gradients to detect local features meant that more variet-
ies of features were able to be extracted than if only grayscale would have been
used for the detection. This resulted in various sparse fusion techniques being
able to obtain the best recognition for individual VOC classes.

The answers to the aforementioned three general aims of the research, constitute
the major contributions of this thesis to the computer vision field. The work
has established that colour should generally only be used in a complimentary
capacity to enhance the performance of grayscale features. This work proposes
that this complementarity be accomplished via a colour feature fusion extraction
approach, and advocates for futureworks to continue developing the integration
of grayscale intensity and the best colour invariants that were tested. This
recommendation is backed up by promising results which are able to prove
that with the chosen colour invariants, a fusion approach improves the overall
performance of object recognition applications. Furthermore, there is strong
evidence to indicate that there is sufficient low-level image information in both
image feature matching and recognition applications, that could be utilised
by an optimum fusion approach. Such an approach would then be capable
of consistently improving results under all types of object classes or imaging
distortions.

The immediate practical implication of this research can be summarised
as: For general feature matching applications, the local image feature imple-
mentation should utilise the SPSSVAR colour gradient. When the application
requires robustness to varying illumination conditions, then the WINV gradient
should be used to construct the image features. Finally for object class recogni-
tion applications, this research shows that the evaluated colour invariants have
the potential to significantly improve the performance of Bag-of-Visual-Words
recognition techniques, although the optimal fusion between the grayscale and
colour gradients remains an open problem.
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Appendix A

This appendix contains supplementary results from the local feature detection
experiments of Section 4.2. The presented results of FiguresA.1, A.2, A.3 andA.4
show the number of correct correspondences and repeatability rates achieved by
extracting varying numbers of HL points from the Middlebury dataset. More
results showing the effect on the repeatability rates by varying the number of
extracted points on the Oxford dataset are presented in Figure A.6. Figures
A.7 and A.8 show the standard deviations of the detection results presented in
Section 4.2.
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Figure A.1: Detection correspondences and repeatability results, varying the
number of extracted HL points on the Middlebury dataset.
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Figure A.2: Detection correspondences and repeatability results, varying the
number of extracted HL points on the Middlebury dataset.
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Figure A.3: Detection correspondences and repeatability results, varying the
number of extracted HL points on the Middlebury dataset.
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Figure A.4: Detection correspondences and repeatability results, varying the
number of extracted HL points on the Middlebury dataset.
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Figure A.5: Detection correspondences and repeatability results, varying the
number of extracted HL points on the Middlebury dataset.
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(c) 1500 points
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(d) 2000 points
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(d) 3000 points
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Figure A.6: Detection repeatability results, varying the number of extracted HL
points on the Oxford dataset.
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(a) Std. Dev. of # corresp. (Oxford)
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(b) Std. Dev. of # corresp. (Middlebury)
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(c) Std. Dev. of # corresp. (ALOI)
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(d) Std. Dev. of # corresp. (PHOS)
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Figure A.7: Standard deviation of the detection correspondence results.
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(a) Std. Dev. of % repeat. (Oxford)
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(b) Std. Dev. of % repeat. (Middlebury)
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(c) Std. Dev. of % repeat. (ALOI)
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(d) Std. Dev. of % repeat. (PHOS)
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Figure A.8: Standard deviation of the repeatability results.
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Appendix B

This appendix contains supplementary results from the local feature matching
experiments of Section 4.3. Figures B.1, B.2 and B.3 show the precision-recall
curves at two different distortion levels of the Oxford, Middlebury and ALOI
datasets respectively. Each plot contains the average precision-recall data of
the entire dataset, and two plots are shown for each dataset to compare the
difference when the distortion level is increased (e.g. from Img-3 to Img-6 in
Figure B.1).
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(b) Oxford Img-6
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Figure B.1: Precision-Recall curves for the Oxford dataset
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(a) Middlebury Img-4
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(b) Middlebury Img-8
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Figure B.2: Precision-Recall curves for the Middlebury dataset

170



(a) ALOI Img-4
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(b) ALOI Img-8
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Figure B.3: Precision-Recall curves for the ALOI dataset
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Figures B.4 and B.5 show the standard deviations of the matching results
presented in Section 4.3.

(a) Std. Dev. of # matches (Oxf.)
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(b) Std. Dev. of # matches (Middl.)
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(c) Std. Dev. of # matches (ALOI)
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(d) Std. Dev. of # matches (PHOS)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60
Correct Matches Std. Dev. − 500 Pts

# 
of

 m
at

ch
es

illumination condition

 

 
I
LIC
SP

INV

SS
INV

SPSS
INV

SPSS
VAR

SS
F−INV

C
INV

H
INV

W
INV

Figure B.4: Standard deviation of the number of correct matches.
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(a) Std. Dev. of % match score (Oxf.)
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(b) Std. Dev. of % match score (Middl.)

1 2 3 4 5 6 7
0

5

10

15

20

25
Matching Score Std. Dev. − 500 Pts

m
at

ch
in

g 
sc

or
e 

st
d.

 d
ev

. (
%

)

illumination condition

 

 
I
LIC
SP

INV

SS
INV

SPSS
INV

SPSS
VAR

SS
F−INV

C
INV

H
INV

W
INV

(c) Std. Dev. of % match score (ALOI)
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(d) Std. Dev. of % match score (PHOS)
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Figure B.5: Standard deviation of the matching score results.
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Appendix C

This appendix shows the standard deviations of the results from the unique
point correspondence experiments presented in Section 4.4.

(a) Oxford
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(b) Middlebury
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Figure C.1: Summary of the std. deviation of unique correspondences for the
Oxford (a) and Middlebury (b) datasets.
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(a) ALOI
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(b) PHOS
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Figure C.2: Summary of the std. deviation of unique correspondences for the
ALOI (a) and PHOS (b) datasets.
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