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Abstract. Nonnegative Matrix Factorization (NMF) has received con-
siderable attention due to its psychological and physiological interpre-
tation of naturally occurring data whose representation may be parts-
based in the human brain. However, when labeled and unlabeled images
are sampled from different distributions, they may be quantized into
different basis vector space and represented in different coding vector
space, which may lead to low representation fidelity. In this paper, we
investigate how to extend NMF to cross-domain scenario. We accom-
plish this goal through TNMF - a novel semi-supervised transfer learn-
ing approach. Specifically, we aim to minimize the distribution divergence
between labeled and unlabeled images, and incorporate this criterion into
the objective function of NMF to construct new robust representations.
Experiments show that TNMF outperforms state-of-the-art methods on
real datasets.

Keywords: Nonnegative matrix factorization · Transfer learning ·
Image representation

1 Introduction

The development of online images and videos has created a compelling demand
for advanced technologies for organizing and analyzing the multimedia con-
tent. As a powerful technique for finding succinct representations of stimuli and
capturing high-level semantics of visual data, Nonnegative Matrix Factoriza-
tion (NMF) can represent images using the combination of nonnegative low-
dimensional “basis” vectors. This makes NMF an ideal dimensionality reduction
algorithm for image processing [1], face recognition [2,3], and image clustering
[4], where it is natural to consider the object as a combination of the parts.

One major problem of NMF is how to improve the quality of the part-
based representation while maximally preserving the signal fidelity. To achieve
this goal, many works have been proposed to leverage more knowledge. Kuang
et al. [4] provide a symmetric NMF method for clustering based on graph. Ding
et al. [15] proposed a semi-nonnegative NMF while relaxing the constraint on
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the basis vectors. Ding et al. [16] also show that when the Frobenius norm is
used as divergence, NMF is equivalent to a relaxed form of K-means clustering,
which justifies the use of NMF for data clustering. However, when unlabeled and
labeled data are sampled from different distributions, they may be quantized into
different coding vectors corresponding to different low-dimensional feature rep-
resentations. In this case, the basis vectors learned from the feature space of
labeled images cannot effectively indicate the features of unlabeled images with
high fidelity, and also the unlabeled images may reside far away from the labeled
images under the new representation. This distribution difference will greatly
challenge the robustness of existing NMF algorithms for cross-distribution image
classification problems [23].

Transfer learning [5] has recently become a hot research topic that the labeled
training data and unlabeled test data are sampled from different probability dis-
tributions. This is a very common scenario in web applications, since training
and test data are usually collected in different time periods, or under different
conditions. In this case, standard classifiers trained on the labeled data may
fail to make reasonable predictions on the unlabeled data. To boost the gen-
eralization performance of supervised classifiers across different distributions,
Pan et al. [6,7] proposed to extract a low-dimensional feature representation
through which the probability distributions of labeled and unlabeled data are
drawn close and achieves much better classification performance by explicitly
reducing distribution divergence.

Inspired by recent efforts in both matrix factorization and transfer learning,
this paper presents a novel Transfer Nonnegative Matrix Factorization (TNMF)
algorithm to construct robust representations for classifying cross-domain images
accurately. We aim to minimize the distribution divergence between labeled and
unlabeled images with a nonparametric distance measure. Specifically, we incor-
porate this criterion into the objective function of TNMF to make the new rep-
resentations of the labeled and unlabeled images close to each other. In this way,
the induced representations are made robust for cross-distribution image classi-
fication problems. Moreover, to enrich the new representations with the intrinsic
nonlinear structure of data space, we also incorporate the Hessian regularization
term of coefficients [9,11,12] in our objective function. Different from Lapla-
cian term [8,14], Hessian has a richer null space and drives the solution varying
smoothly along the manifold. Experimental results verify the effectiveness of the
TNMF approach.

2 Related Work

In this section, we review related efforts including NMF and transfer learning.
Recently, NMF has been a hot research topic of computer vision. Ding

et al. [15] proposed a semi-nonnegative algorithm where only one matrix factor
is restricted to contain nonnegative entries, while it relaxes the constraint on the
basis vectors. Ding et al. [16] also show that when the Frobenius norm is used as
a divergence, NMF is equivalent to a relaxed form of K-means clustering, which
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justifies the use of NMF for data clustering. Heiler et al. [17] derive optimization
schemes for NMF based on sequential quadratic and second order cone program-
ming. Our work aims to discover a shared basic matrix which can encode both
labeled and unlabeled data sampled from different probability distributions. To
improve the quality of low-rank representation, researchers have modified the
nonnegative constraint [18], adding graph regularization [8], etc. Our approach
aims to construct robust low-dimensional representations for image classification
problems across domains, which is different from the previous works.

Aiming at transfer knowledge between the labeled and unlabeled data sam-
pled from different distributions, transfer learning [5] has received extensive
research focus. To achieve this goal, Pan et al. [7] proposed a Transfer Com-
ponent Analysis (TCA) method to minimize the reconstruction error of the
input data by reducing the discrepancy between the labeled and unlabeled data.
Quanz et al. [19] have explored knowledge transfer of sparse feature, which is a
more restricted procedure and prone to overfitting. In addition, Wang et al. [20]
extends NMF to cross-domain senario. They assume that a small set of the target
domain data are labeled and an SVM classifier is learned across domains. Differ-
ent from them, our approach is based on the setting that there is no labeled data
in the target domain, which is more restricted. Moreover, our work additionally
incorporates the Hessian term of coefficients [9] in the objective function, which
can discover more discriminating representations for classification tasks.

3 Preliminaries

In this section, we briefly introduce a basic knowledge of NMF and Hessian
Regularization.

3.1 Nonnegative Matrix Factorization

Non-negative Matrix Factorization (NMF) [2] is a matrix factorization algorithm
that focuses on the analysis of data matrices whose elements are nonnegative.
Given data matrix X = [x1, . . . , xN ] ∈ RM×N , each column of X is a sample
vector. The goal of NMF is to find a basic matrix U = [uik] ∈ RM×N and a cod-
ing matrix V = [vjk] ∈ RN×K and the production of them can well approximate
the original matrix X:

X ≈ UV T .

The commonly used cost function is the square of the Euclidean distance between
two matrices give by:

min
U,V

‖ X − UV T ‖2=
∑

i,j

(
xij −

K∑

k=1

uikvik

)2

. (1)

The objective function in Eq. (1) is convex in either U or V. Therefore, it can be
solved by alternatingly optimizing one variable while fixing the other one.
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3.2 Hessian Regularization

To make the basis vectors respect the intrinsic geometric structure underlying
the input data, Cai et al. [8] proposed a Laplacian regularized NMF (we call it
LapNMF) method which is based on the assumption that if two data points xi

and xj are close in the intrinsic geometry of data distribution, then their coding
vectors vi and vj are also close.

Table 1. Notations and descriptions used in this paper

Notation Description

X Input data matrix

U Basic matrix

V Coding matrix

M MMD matrix

H Hessian regularization matrix

Dl,Du Labeled/unlabeled data

nl,nu Labeled/unlabeled example index

m Dimensionality of shared feature space

λ Trade-off parameter of Hessian regularization

μ Trade-off parameter of MMD regularization

However, Laplacian regularization is short of extrapolating power. The null
space of the graph Laplacian is a constant function along the compact support
of the marginal distribution and thus the solution of the Laplacian regulariza-
tion is biased toward a constant function. In contrast to Laplacian, Hessian can
properly exploit the intrinsic local geometry of the data manifold and has a
richer nullspace to make the learned function vary linearly along the underlying
manifold [9,10]. The discretization of the Hessian regularization for encoding the
local geometry of unlabeled samples is achieved as follows [9,11,12]:

(1) Finding the k-nearest neighbours Np of the j-th unlabeled sample xj and
centralizing the neighbourhood by taking xj off from the k-nearest neigh-
bours. This centralization makes xj to be the origin of the tangent space
Txj

(M).
(2) Estimating the orthonormal coordinate system of the tangent space Txj

(M)
by the eigenspace U of the neighborhood Np of p associated with the largest
d eigenvalues. This can be implemented by conducting singular value decom-
position on Xj = [xi −xj ]ki=1, where in xi is the i-th sample in the k-nearest
neighbours Np.

(3) Using Gram-Schmidt orthonormalization, we take the (d + 1)-dimensional
nullspace off from the matrix Hj = [1, u1, . . . , u1u1, . . . , udud] and get Ĥj .
Therefore, the Frobenius norm of Ĥj is given by (Ĥj)T Ĥj .
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(4) Accumulating (Ĥj)T Ĥj over all images and then resulting the Hessian reg-
ularization matrix H.

Inspired by the recent progress of Hessian regularization method [11–13], in
this paper, we integrate the minimizing criterion tr(V HV T ) for preserving the
geometric structure into Eq. (1) and get the Hessian Regularized NMF (HeNMF)
given by:

min
U,V

||X − UV T ||2 + λtr(V HV T ) (2)

where λ is the regularization parameter to trade off the weight between NMF
and geometric preservation.

4 Transfer Nonnegative Matrix Factorization

In this section, we will present the Transfer Nonnegative Matrix Factorization
(TNMF) algorithm for image representation, which extends HeNMF by taking
into account the minimization of distribution divergence between labeled and
unlabeled data.

4.1 Problem Definition

Given labeled data Dl = {(x1, y1), . . . , (xnl
, ynl

)} with nl examples, unlabeled
data Du = {xnl+1, . . . ,xnl+nu

} with nu examples, denote X = [x1, . . . ,xn] ∈
R

m×n, n = nl + nu as the input data matrix. Assume that the labeled and
unlabeled data are sampled from different probability distributions in an m-
dimensional feature space. Therefore, we can define the problem our problem as
follows:

Problem 1 (Transfer Nonnegative Matrix Factorization): Given labeled data
Dl and unlabeled data Du under different distributions, we aim to learn a coding
matrix V , and basic matrix U , to construct a robust representation for original
images sampled from Dl and Du.

Notations and descriptions used frequently in this paper are summarized in
Table 1.

4.2 Proposed Approach

In order to make NMF capture the representation across different distributions,
we expect that the basis vectors can represent the shared knowledge underlying
both labeled and unlabeled domains. However, the difference of extracted cod-
ing vector spaces between labeled and unlabeled data will still be significantly
large. Thus a major computational problem is to reduce the distribution dif-
ference by explicitly minimizing some predefined distance measures. To achieve
this goal, a common strategy is to make the probability distributions of labeled
and unlabeled data close to each other in the low-rank representation. There-
fore, by representing all data points X with the learned coding matrix V , the
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probability distributions of the coding vectors for the labeled and unlabeled data
should be close enough. In this paper, we adopt the joint distribution adaptation
Maximum Mean Discrepancy [14,23] as the nonparametric distance measure to
compare different distributions, which minimize both the distance of marginal
and conditional distribution divergence between labeled and unlabeled data in
the coding vector spaces:

∥∥∥∥∥∥∥

1

n
(c)
l

∑

xi∈D(c)
l

vi − 1

n
(c)
u

∑

xj∈D(c)
u

vj

∥∥∥∥∥∥∥

2

=
n∑

i,j=1

vT
i vjM

(c)
ij = tr

(
V M (c)V T

)

where M (c), c ∈ {1, 2, . . . , C} are MMD matrices given by:

M
(c)
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

n
(c)
l n

(c)
l

, xi, xj ∈ D
(c)
l

1

n
(c)
u n

(c)
u

, xi, xj ∈ D
(c)
u

− 1

n
(c)
l n

(c)
u

,

{
xi ∈ D

(c)
l , xj ∈ D

(c)
u

xj ∈ D
(c)
l , xi ∈ D

(c)
u

0, otherwise

(3)

Therefore, the joint distribution adaptation MMD matrix can be computed as
M =

∑C
c=0 M (c), where n

(0)
l = nl, n

(0)
u = nu, D

(0)
u = Du, D

(0)
l = Dl. Integrating

the MMD regularization into Eq. (2), we obtain the objective function of TNMF:

O = min
U,V

∥∥X − UV T
∥∥2

+ tr
(
V (λH + μM)V T

)
(4)

where μ is the trade-off adaptation regularization parameter weighting between
HeNMF and distribution matching. Setting μ to 0, the TNMF degenerates to
HeNMF. Hence, the geometric preservation and distribution matching is unified
into the NMF objective.

Moreover, the adaptation regularization in Eq. (4) is significant to make
TNMF robust across different probability distributions. According to [25], MMD
will asymptotically approach zero if and only if the two distributions are the
same. By minimizing this adaptation regularization, TNMF can match the dis-
tributions between labeled and unlabeled data based on the coding vector space.

4.3 Optimization

We use gradient descent as optimization algorithm for minimizing the objective
function in Eq. (4). For this problem, gradient descent leads to the following
update rules:

uik ← uik + ηik
∂O1

∂uik
(5)

vjk ← vjk + δjk
∂O1

∂vjk
(6)
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where ηik and δjk referred as step size parameters. As long as ηik and δjk are
sufficiently small, the objective would reduce gradually to the desired minimum.
We can use some tricks to set size parameters automatically. Following [8], we
let ηik = −uik/2

(
UV TV

)
ik

, hence, we can write Eq. (5) as

uik + ηik
∂O1

∂uik

= uik − uik

2 (UV TV )ik

∂O1

∂uik

= uik − uik

2 (UV TV )ik

(−2 (XV )ik + 2
(
UV TV

)
ik

)

= uik
(XV )ik

(UV TV )ik

(7)

Similarly, the update formulation of Eq. (6) can also be get easily. It is clear
that the updating rules in this problem are special cases of gradient descent
with an automatic step parameter selection. The multiplicative updating rules
guarantees that U and V are non-negative and Eqs. (5) and (6) would ultimately
converge to a local minimum.

5 Experiments

In this section, we perform image classification experiments on benchmark
datasets widely used for visual domain adaptation to evaluate TNMF.

5.1 Dataset Description

USPS1 dataset consists 9,298 images of size 16 × 16. MNIST2 dataset has
70,000 examples of size 28×28. From Fig. 1, we see that USPS and MNIST follow
very different distributions. They share 10 semantic classes, each corresponding
to one digit. Following [14], we randomly sample 1,800 images in USPS to form
the training data and 2,000 images in MNIST as test data to construct a dataset
USPS vs MNIST. We rescale all images to size 16×16 and represent each image
by a 256-dimensional feature vector.

MSRC3 dataset contains of 4,323 images and 18 classes, provided by
Microsoft Research Cambridge. VOC20074 dataset contains 5,011 images anno-
tated with 20 concepts, collecting from digital photos on Flickr5. The MSRC
and VOC2007 datasets used in our experiments share the following 6 seman-
tic classes: aeroplane, bicycle, bird, car, cow, sheep. Following [21], all 1,269

1 http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html.
2 http://yann.lecun.com/exdb/mnist.
3 http://research.microsoft.com/en-us/projects/objectclassrecognition.
4 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007.
5 https://www.flickr.com.

http://www-i6.informatik.rwth-aachen.de/~{}keysers/usps.html
http://yann.lecun.com/exdb/mnist
http://research.microsoft.com/en-us/projects/objectclassrecognition
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007
https://www.flickr.com
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Fig. 1. First line shows examples of USPS, MNIST, MSRC, VOC2007 Second line
shows examples of Caltech256, Amazon, Dslr and Webcam

images in MSRC and all 1,530 images in VOC2007 are selected to construct
the dataset MSRC vs VOC. We uniformly rescale all images to be 256 pixels in
size and extract 128-dimensional dense SIFT features with VLFeat [22]. A 240-
dimensional codebook is created, where K-means clustering is used to obtain the
codewords.

Caltech2566 is a standard database for object recognition consists of 30,607
images and 256 categories. Office [24] dataset consists of three domains: Ama-
zon (images from online merchants), Webcam (low-resolution images by a web
camera), and DSLR (high-resolution images by a digital SLR camera). It has
4,652 images with 31 classes. In these experiments, we adopt the 800-dimensional
SURF features released by Gong et al. [24]. By randomly selecting two differ-
ent domains as source domain and target domain, we construct 12 cross-domain
datasets, e.g., Caltech vs Amazon, Caltech vs Webcam, . . . , Dslr vs Webcam.

5.2 Performance on Cross-Domain Datasets

We compare our TNMF approach with three NMF related competing rivals and
basic NN classifier for image recognition problems:

(1) 1-Nearest Neighbor Classifier (NN)
(2) Nonnegative Matrix Factorization (NMF) + NN
(3) Laplacian regularized NMF (LapNMF) [8] + NN
(4) Hessian regularized NMF (HeNMF) + NN

In our experiments, we choose NN as the base classifier since it does not
require tuning parameters for cross-validation. NN classifier is trained on the
labeled source data for classifying the unlabeled target data. Since labeled and
unlabeled data are sampled from different distributions, it is impossible to tune

6 https://www.eecs.berkeley.edu/∼jhoffman/domainadapt.

https://www.eecs.berkeley.edu/~{}jhoffman/domainadapt
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Table 2. Accuracy (%) on cross-domain datasets

NN NMF LapNMF HeNMF TNMF

USPS vs MNIST 36.50 29.45 31.01 37.45 39.20

MSRC vs VOC 25.95 26.86 26.67 27.06 28.82

Caltech vs Amazon 21.82 29.85 29.96 30.27 31.00

Caltech vs Webcam 13.90 16.27 17.63 18.98 22.03

Caltech vs Dslr 8.92 19.75 20.38 21.66 23.57

Amazon vs Caltech 24.31 26.98 27.43 28.41 29.03

Amazon vs Webcam 24.07 21.69 17.29 21.02 21.69

Amazon vs Dslr 18.47 19.11 21.66 23.57 28.03

Webcam vs Caltech 24.31 20.48 20.93 22.80 22.44

Webcam vs Amazon 27.35 27.66 27.56 28.39 29.12

Webcam vs Dslr 56.05 54.14 52.87 52.87 57.32

Dslr vs Caltech 22.26 25.73 25.20 25.91 26.36

Dslr vs Amazon 21.71 24.74 24.63 25.89 26.30

Dslr vs Webcam 44.07 51.19 54.24 49.15 55.59

the model parameters using cross-validation. Therefore, we evaluate all meth-
ods by grid search for the optimal parameter settings which gives the high-
est classification accuracy on all datasets, and report the best results of each
method. We set the trade-off parameter of Hessian regularization λ by search-
ing λ ∈ {

10−2, 10−1, 1, 10, 102
}

and adaptation regularization parameter μ by
searching μ ∈ {

10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104
}
. Our proposed TNMF

is run 5 times independently and we report their average. The classification accu-
racy on test data is used as the evaluation metric, which reads

Accuracy =
|x : x ∈ Dt ∧ f(x) = y(x)|

|x : x ∈ Dt| (8)

where Dt is the set of test data, y(x) is the ground truth of x, f(x) is the label
predicted by the classification algorithm.

The classification performance of TNMF as well as baselines on all datasets
are listed in Table 2. When comparing with the baseline methods, we set the
Hessian regularization trade-off parameter λ as 0.1, and the MMD regulariza-
tion trade-off parameter μ as 1. The number of iterations is set to 300. From
the results, we can find that on all datasets TNMF gaining an improvement of
6.55% compared to HeNMF and significantly improves 19.36% than NN, which
illustrates the significant role of adaptation regularization. Moreover, the classi-
fication accuracy of HeNMF improves 4.02% than LapNMF which reflects that
Hessian can exploit more intrinsic geometry than Laplacian.
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Fig. 2. Macro-F1 measure on cross-domain datasets

Moreover, we choose F1 measure to evaluate the performance of our proposed
method as well as baselines. Due to the fact that the datasets have more than 2
classes, macro-averaged evaluation is considered, which is given as follows:

Macro − F1 =
2 ∗ Macro − Precision ∗ Macro − Recall

Macro − Precision + Macro − Recall
(9)

where Macro-Precision and Macro-Recall are obtained respectively as:

Macro − Recall =
∑c

i=1 Ri

c
(10)

and

Macro − Precision =
∑c

i=1 Pi

c
(11)

where c is the number of classes, Ri and Pi are recall and precision for the i-th
class. The results of Macro-F1 score of each methods on all the cross-domain
datasets are shown in Fig. 2.

From Fig. 2, we can observe that our method perform better than all the
baseline methods as a whole, while a little weak on several datasets. On average,
the Macro-F1 measure of TNMF is 1.49% higher than HeNMF and 3.17% than
the basic NN classifier.

6 Conclusion

In this paper, we extend NMF to cross-domain scenario and propose a
novel Transfer Nonnegative Matrix Factorization (TNMF) approach for low-
dimensional image representation. An important advantage of TNMF is that it
can explore as many necessary learning objectives as possible in cross-domain
image representation task, yet still remain simple to implement practically.
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Experimental results on several benchmark datasets show that TNMF outper-
forms state-of-the-art NMF methods.
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