
Learning Multiple Views with Orthogonal
Denoising Autoencoders

TengQi Ye1(B), Tianchun Wang2, Kevin McGuinness1, Yu Guo3,
and Cathal Gurrin1

1 Insight Centre for Data Analytics, Dublin City University, Dublin, Ireland
{yetengqi,kevin.mcguinness}@gmail.com

2 School of Software, TNList, Tsinghua University, Beijing, China
wtc13@mails.tsinghua.edu.cn

3 Department of Computer Science, City University of Hong Kong,
Hong Kong, China

Abstract. Multi-view learning techniques are necessary when data is
described by multiple distinct feature sets because single-view learning
algorithms tend to overfit on these high-dimensional data. Prior success-
ful approaches followed either consensus or complementary principles.
Recent work has focused on learning both the shared and private latent
spaces of views in order to take advantage of both principles. However,
these methods can not ensure that the latent spaces are strictly indepen-
dent through encouraging the orthogonality in their objective functions.
Also little work has explored representation learning techniques for multi-
view learning. In this paper, we use the denoising autoencoder to learn
shared and private latent spaces, with orthogonal constraints — discon-
necting every private latent space from the remaining views. Instead of
computationally expensive optimization, we adapt the backpropagation
algorithm to train our model.

Keywords: Denoising autoencoder · Autoencoder · Representation
learning · Multi-view learning · Multimedia fusion

1 Introduction

In many machine learning problems, data samples are collected from diverse sen-
sors or described by various features and inherently have multiple disjoint feature
sets (conventionally referred as views) [1,2]. For example, in video classification,
the videos can be characterized with respect to vision, audio and even attached
comments; most article search engines take title, keywords, author, publisher,
date and content into consideration; images have different forms of descriptors:
color descriptors, local binary patterns, local shape descriptors, etc. The last
example reveals the noteworthy case of views obtained from manual descrip-
tors instead of natural splits. With multiple descriptors, important information
concerning the task, which may be discarded by single descriptor, is hopefully
retained by others [3].
c© Springer International Publishing Switzerland 2016
Q. Tian et al. (Eds.): MMM 2016, Part I, LNCS 9516, pp. 313–324, 2016.
DOI: 10.1007/978-3-319-27671-7 26

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


314 T. Ye et al.

Traditional machine learning methods may fail when concatenating all views
into one for learning because the concatenation can cause over-fitting due to
the high-dimensionality of the features (the curse of dimensionality [4]) and
also ignores the specific properties of each view [2]. Compared with traditional
single-view data, the multi-view data contains significant redundancy shared by
its views. Previous successful multi-view learning algorithms follow two princi-
ples: consensus and complementary principles [2]. The consensus principle aims
to maximize the agreement or shared knowledge between views. The comple-
mentary principle asserts each view may contain useful knowledge that the rest
do not have, and errors can be corrected by this private knowledge.

To generalize over previous multi-view learning approaches, recent works
focused on explicitly accounting for the dependencies and independencies of
views, i.e., decompose the latent space into a shared common one (of all views)
and several private spaces (of each view) [5,6]. The intuition is that each view is
generated from the combination of the shared latent space and a corresponding
private latent space. Although these methods benefit from the idea, they embed
the orthogonality requirement into the objective function with a weight to set its
relative influence, i.e., they encourage rather than restrict the orthogonality. The
main reason is that it is hard to optimize an objective function with complex
constraints. However, in this case, orthogonality may not be satisfied and extra
costly computation effort is needed.

Representation learning, which seeks good representations or features that
facilitate learning functions of interest, has promising performance in single-view
learning [7]. From the perspective of representation learning, multi-view learning
can be viewed as learning several latent spaces or features with orthogonality
constraints. Only very few works have discussed the similarity between repre-
sentation learning, in the form of sparse learning, and multi-view learning [5,8].

In this paper, we propose using the denoising autoencoder to learn the shared
and private latent spaces with orthogonality constraints. In our approach, the
constraints are satisfied by disconnecting every private latent space from the
remaining views. The advantages of our proposed method are: (i) By discon-
necting the irrelevant latent spaces and views, the orthogonality constraints are
enforced. (ii) Such constraints keep the chain rule almost the same, thus sim-
plify training the model, i.e., no extra effort is needed for tuning weights or
complex optimization. (iii) No preprocessing is required for denoising because
the denoising autoencoder learns robust features.

2 Related Work

Existing multi-view learning algorithms can be classified into three groups: co-
training, multiple kernel learning, and subspace learning [2]. Co-training [9]
was the first formalized learning method in the multi-view framework. It trains
repeatedly on labeled and unlabeled data until the mutual agreement on two dis-
tinct views is maximized. Further extensions include: an improved version with
the Bayesian undirected graphical model [10], and application in active multi-
view learning [11]. Multiple Kernel Learning naturally corresponds to different
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modalities (views) and combining kernels either linearly or non-linearly improves
learning performance [12]. Multiple Kernel Learning always comes with diverse
linear or nonlinear constraints, which makes the objective function complex
[13–15]. Subspace learning-based approaches aim to obtain latent subspaces that
have lower dimensions than input views, thus effective information is learned and
redundancy is discarded from views. As those latent spaces can be regarded as
effective features, subspace learning-based algorithms allow single-view learning
algorithms to be capable for learning on multi-view data.

Subspace learning-based algorithms initially targeted on conducting mean-
ingful dimensional reduction for multi-view data [2]. Canonical correlation analy-
sis based approaches, following the consensus principle, linearly or non-linearly
project two different views into the same space where the correlation between
views is maximized [16,17]. Because the dimension of the space to be projected
on equals to the smaller one of the two views, the dimension is reduced by at least
half. Other similar approaches include Multi-view Fisher Discriminant Analysis,
Multi-view Embedding and Multi-view Metric Learning [2].

Unlike other types of subspace learning-based algorithms, latent subspace
learning models resort to explicitly building a shared latent space and several
private latent spaces (a private latent space corresponds to a view). The Factor-
ized Orthogonal Latent Space model proposes to factorize the latent space into
shared and private latent spaces by encouraging these spaces to be orthogonal [6].
In addition, it penalized the dimensions of latent spaces to reduce redundancy.
Similarly, a more advanced version is employed with sparse coding of structured
sparsity for the same purpose [5]. Nevertheless, in their approaches, orthogonal-
ity is encouraged by penalizing inner products of latent spaces or encouraging the
structured sparsity in the objective function. These approaches to not guarantee
orthogonality.

Representation learning focuses on learning good representations or extract-
ing useful information from data that simplifies further learning tasks [18].
A well-known successful example of representation learning is deep learning. By
stacking autoencoders to learn better representations for each layer, deep learn-
ing drastically improves the performance of neural networks in tasks such as
image classification [19], speech recognition [20], and natural language process-
ing [21]. An autoencoder is simply a neural network that tries to copy its input
to its output [7].

Multi-view feature learning was first analyized from the perspective of rep-
resentation learning through sparse coding in [8], but little work has employed
representation learning for studying multi-view data so far, thus far only sparse
coding has been used [5,22]. Since the autoencoder is the most prevalent repre-
sentation learning algorithm, our model enables various existing work on autoen-
coder to inherently extend it to multi-view settings.
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3 Approach

3.1 Problem Formulation

Let X = {X(1),X(2), · · · ,X(V )} be a data set of N observations from V views
and X(v) be the vth view of data, where X(v) ∈ R

N×P (X(v)). P (·) is the number
of columns of the matrix; and D(·) is the number of features that the space
or matrix has. Additionally, Y ∈ R

N×P (Y ) is the shared latent space across
all views; Z = {Z(1), Z(2), · · · , Z(V )} is the set of private latent spaces of each
individual view, where Z(v) ∈ R

N×P (Z(V )). Because the latent spaces are required
to have no redundancy, then P (Y ) = D(Y ) and P (Z(v)) = D(Z(v)). Moreover,
X(v) is expected to be linearly represented by Y and Z(v), D(X(v)) = D(Y ) +
D(Z(v)). Our goal is to learn Y and the Z from X where Y is independent of Z
and the arbitrary two private latent spaces Z(vi), Z(vj) are orthogonal.

3.2 Basic Autoencoder

A standard autoencoder takes an input vector x and initially transforms it to
a hidden representation vector y = s(Wx + b) through an activation function
s and weights W . Note the activation function can be linear or nonlinear. The
latent representation y is subsequently mapped back to a reconstructed vector
z = s(W ′y + b′). The objective is that the output z is as close as possible to x,
i.e., the parameters are optimized to minimize the average reconstruction error:

W �, b�,W ′�, b′� = arg min
W,b,W ′,b′

L(x, z) (1)

where L is a loss function to measure how good the reconstruction is, and often
least squares L = ‖(x − z)‖2 is used. The expectation is that the hidden repre-
sentation y could capture the main factors of data x [23].

3.3 Orthogonal Autoencoder for Multi-view Learning

In the scenarios of multi-view learning, the hidden or latent representation (neu-
ron) is expected to be consist of shared and private spaces. To this end, we
modify the autoencoder such that every private latent space only connects to its
own view. Figure 1 depicts the graphical model of such improved autoencoder
given that the first view has two original features while the second one has three.

Because the first view is disconnected from the second private latent space
(the third hidden neuron), the second private latent space is strictly independent
of the first view. Similarly, the first private latent space is independent of the
second view. In order to maintain orthogonality of private latent spaces, the bias
is disconnected from private latent spaces (proof is given below).

In addition, in order to retain that views are linearly dependent of latent
spaces, the hidden representation before the nonlinear mapping (Wx + b) is
regarded as latent spaces. If the activation function is nonlinear, then y and
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Fig. 1. Graphical model of an orthogonal autoencoder for multi-view learning with two
views.

W ′y + b′ can be considered as mappings of latent representation and reconstruc-
tion of input in a nonlinear space. And the last activation function maps the
W ′y + b′ back to original space.

Also note that the number of neurons representing the shared latent space
equals the dimensions of its features D(Y ) and it is the same for private latent
space, i.e., a neuron represents a feature in the space. Our model is inherently
able to fit in any number of views and arbitrary numbers of features for each
view and latent space.

Following the aforementioned notations, we further define I(A|B) as the
indices of columns of A in terms of B if matrix A is a submatrix of matrix
B and they have same row numbers. The orthogonality constraints on weights
can be formulated as:

WI(Z(v2)|[Y,Z]),I(X(v1)|X) = 0 (v1 �= v2) (2)

W ′
I(X(v1)|X),I(Z(v2)|[Y,Z]) = 0 (v1 �= v2) (3)

bI(Z|[Y,Z]) = 0 (4)

For a matrix A, the symbol AI,· denotes a sub-matrix consisting of row
vectors indexing by I (of A); similarly, A·,I is a sub-matrix from such column
vectors. We provide the rigorous proof that arbitrary two private latent spaces
(Z(v1) and Z(v2)) are orthogonal:
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(Z(v1))T · Z(v2) = (WI(Z(v1)|[Y,Z]),· · x + 0)T · (WI(Z(v2)|[Y,Z]),· · x + 0)

= xT · ((WI(Z(v1)|[Y,Z]),·)
T · WI(Z(v2)|[Y,Z]),·) · x = xT · 0 · x

= 0

[(Z(v1))T ·Z(v2)]ij = 0 indicates that the component [Z(v1)]·,i is orthogonal to
[Z(v2)]·,j . Because any two components of any two different private latent spaces
are orthogonal, the private latent spaces are orthogonal to each other.

Although we do not explicitly restrict Y to be orthogonal to Z, the objective
function (Eq. 1) prefers that the shared latent space is orthogonal to the private
latent spaces. Because if Y contains components from any views, i.e. not orthog-
onal to private latent spaces, then the components of that view will introduce
noise into the others during reconstruction.

3.4 Training of Orthogonal Autoencoder

The autoencoder, intrinsically a neural network, is trained by the backpropa-
gation algorithm, which propagates the derivation of the error from the output
to the input, layer-by-layer [4]. As the 0 values automatically break gradients
passing through that connection, we only need to set Eqs. 5, 6 and 7 after basic
backpropagation as follows:

∂L

WI(Z(v2)|[Y,Z]),I(X(v1)|X)

= 0 (v1 �= v2) (5)

∂L

W ′
I(X(v1)|X),I(Z(v2)|[Y,Z])

= 0 (v1 �= v2) (6)

∂L

bI(Z|[Y,Z])
= 0 (7)

3.5 Orthogonal Denoising Autoencoder for Robust Latent Spaces

The denoising autoencoder was formally proposed to enforce the autoencoder
to learn robust features or latent spaces in our case [24]. The idea is based on
the assumption that robust features can reconstruct or repair input which is
partially destroyed or corrupted. A typical way of producing x̃, the corrupted
version of initial input x, is randomly choosing a fixed number of components
and forcing their values to be 0; while other components stays the same. As a
consequence, the autoencdoer is encouraged to learn robust features which are
most likely to recover the wiped information.

Afterwards the x̃ is fed as input to the autoencoder, then mapped to
the hidden representation y = s(Wx̃ + b) and finally transformed to output
z = s(W ′y + b′). In the process, the aforementioned orthogonality constraints
(Eqs. (2) and (3)) remain the same. In the end, the objective function L enforces
the output z to be as close as possible to the original, uncorrupted x, instead of
input x̃.
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4 Experiments

In this section, we introduce two datasets to evaluate our method: the synthetic
dataset is straightforward to demonstrate the ability of our method to learn
shared and private latent spaces from data with noise; and the real-world dataset
is employed to compare our approach with other state-of-the-art algorithms and
display optimization on the number of neurons for vieww using random search.

4.1 Synthetic Dataset

We evaluated our approach with a toy dataset similar to [6], which can be gen-
erated in 10 lines of MATLAB code (listed in Algorithm1).

Algorithm 1. Toy data generation in MATLAB notation

t = -1:0.02:1;

x = sin(2*pi*t);

z1 = cos(pi*pi*t);

z2 = cos(5*pi*t);

v1 = (rand(20, size(x, 1)+1)) * [x;z1];

v1 = v1 + randn(size(v1))*0.01;

v2 = (rand(20, size(x, 1)+1)) * [x;z2];

v2 = v2 + randn(size(v2))*0.01;

v1 = [v1; 0.02*sin(3.6*pi*t)];

v2 = [v2; 0.02*sin(3.6*pi*t)];

In words, v1 and v2 (first and second views in Fig. 2b respectively) are two
views generated by randomly projecting two ground truths, [x;z1] and [x;z2],
to 20 dimensions spaces. The first component (blue curve in Fig. 2a) of the two
ground truths are shared latent space and their second components (green curves
in first and second ground truth of Fig. 2a respectively) are individual private
latent spaces. The two views are then added to Gaussian noise with standard
deviation 0.01 and correlated noise on their last dimension (both views have 21
dimensions now).

In the experiment, we adopt the Hyperbolic Tangent ( tanh(x) = 1−e−2x

1+e−2x )
as the activation function. Three hidden neurons are used as latent spaces, one
represents the shared space and the other two represent the private ones. Features
of the original data are evenly corrupted for denoising.

The result of our method is depicted in Fig. 2d, where the first graph employs
modified autoencoder while the second one is modified denoising autoencoder.
The shared latent factor is in blue, the private latent factor of first view is in green
and private latent factor of second view is in red. The denoising autoencoder
generates more robust latent spaces than those from the autoencoder.

As expected, Canonical Correlation Analysis (Fig. 2c) extracts the true
shared signal (in blue) and the correlated noise (in red), while fails to discover
the two private signals. Notice that both true recovered signals are scaled and the
correlated noise is even inverted. The reason is that we can multiply a number
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(d) Result of our approach (orthogonal non-
denoising and denoising autoencoder)

Fig. 2. Latent spaces recovered on synthetic data (Color figure online).

and its multiplicative inverse respectively to the latent spaces and corresponding
coefficient to attain same product.

The experiment confirms our approach is able to effectively learn robust
shared and private latent spaces, while CCA is sensitive to noise. Moreover,
we do not need to use PCA like previous work [5]1. Because the local minimum
differs due to the random initialization of weights, methods of optimization, etc.,
Fig. 2d may vary slightly in repeat experiments [25].

4.2 Real-World Dataset

We applied our model to the PASCAL VOC’07 data set [26] for multi-label object
classification, i.e., an image may contain more than one object label. Through
the experiment, we compare the results from using only images, tags, and their
combinations to demonstrate multi-view learning algorithms are capable of using
1 With PCA, CCA can also perform well.
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Table 1. Mean and variance of AP of different approaches (best results of classification
for each class in bold).

aeroplane bicycle bird boat bottle bus car

Images 0.596 ± 0.012 0.367 ± 0.028 0.277 ± 0.044 0.568 ± 0.018 0.127 ± 0.021 0.319 ± 0.023 0.613 ± 0.011
Tags 0.734 ± 0.016 0.539 ± 0.012 0.688 ± 0.003 0.495 ± 0.016 0.237± 0.017 0.430 ± 0.016 0.591 ± 0.003
MKL 0.847± 0.031 0.532 ± 0.030 0.711 ± 0.027 0.596 ± 0.044 0.210 ± 0.032 0.569 ± 0.026 0.694 ± 0.025

SVM2K(0) 0.584 ± 0.157 0.360 ± 0.271 0.576 ± 0.356 0.290 ± 0.290 0.117 ± 0.098 0.116 ± 0.033 0.431 ± 0.115
SVM2K(1) 0.682 ± 0.132 0.385 ± 0.377 0.113 ± 0.356 0.796± 0.122 0.080 ± 0.038 0.133 ± 0.098 0.579 ± 0.292

ODAE 0.837 ± 0.009 0.548± 0.008 0.725± 0.005 0.682 ± 0.020 0.205 ± 0.024 0.588± 0.029 0.714± 0.013

cat chair cow diningtable dog horse motorbike

Images 0.369 ± 0.010 0.364± 0.006 0.225 ± 0.079 0.291± 0.102 0.220 ± 0.019 0.607 ± 0.040 0.394 ± 0.039
Tags 0.715 ± 0.009 0.174 ± 0.004 0.471 ± 0.014 0.106 ± 0.012 0.678 ± 0.006 0.775 ± 0.004 0.607 ± 0.006
MKL 0.722 ± 0.018 0.296 ± 0.018 0.513 ± 0.037 0.193 ± 0.017 0.689± 0.022 0.815± 0.014 0.660± 0.032

SVM2K(0) 0.231 ± 0.307 0.095 ± 0.013 0.089 ± 0.011 0.074 ± 0.034 0.137 ± 0.056 0.068 ± 0.013 0.521 ± 0.305
SVM2K(1) 0.366 ± 0.199 0.311 ± 0.164 0.187 ± 0.170 0.070 ± 0.028 0.486 ± 0.293 0.516 ± 0.353 0.258 ± 0.222

ODAE 0.725± 0.012 0.347 ± 0.011 0.521± 0.015 0.219 ± 0.014 0.665 ± 0.009 0.760 ± 0.015 0.624 ± 0.021

person pottedplant sheep sofa train tvmonitor

Images 0.689 ± 0.016 0.115 ± 0.018 0.163 ± 0.026 0.220 ± 0.016 0.589 ± 0.035 0.230 ± 0.014
Tags 0.686 ± 0.002 0.329 ± 0.012 0.592 ± 0.031 0.180 ± 0.006 0.811 ± 0.005 0.378 ± 0.013
MKL 0.782± 0.028 0.388± 0.047 0.584 ± 0.043 0.225 ± 0.026 0.845± 0.017 0.395 ± 0.022

SVM2K(0) 0.643 ± 0.227 0.053 ± 0.003 0.599 ± 0.329 0.510± 0.404 0.188 ± 0.156 0.711± 0.299
SVM2K(1) 0.739 ± 0.038 0.256 ± 0.308 0.126 ± 0.115 0.151 ± 0.064 0.290 ± 0.214 0.197 ± 0.115

ODAE 0.749 ± 0.015 0.350 ± 0.012 0.644± 0.008 0.244 ± 0.026 0.838 ± 0.002 0.435 ± 0.006

information from different views. We also provide a comparison of our method
to other methods, and test the sensitivity of our model.

The data set contains around 10,000 images of 20 different categories of
object with standard train/test sets provided. The dataset also provides tags
for each image: textual descriptions of the images. A total of 804 tags, which
appear at least 8 times, form the bag-of-words vectors (bit-based) of a view.
15 image features are chosen from [15] as visual descriptors: local SIFT fea-
tures [27]; local hue histograms [28] (both were computed on a dense multi-scale
grid and on regions found with a Harris interest-point detector); global color
histograms over RGB, HSV, and LAB color spaces; the above histogram image
representations computed over a 3 × 1 horizontal decomposition of the image;
and GIST descriptor [29], which roughly encodes the image layout. This pro-
duces two views: a visual modality with 37,152 features; and a textual modality
with 804 features.

The default experiment setup used 6 SVMs (sigmoid kernel) with different
C parameters2 for classification. Table 1 reports the mean and variance of the
average precision (AP) values from these SVMs. For the single modality image
classification (“Images” in Table 1), we report AP using the single visual feature
that performed best for each class.

In Multiple Kernel Learning (MKL), we computed textual kernel kt(·, ·) and
visual kernels kv(·, ·) following [15]. Because the final kernel kf (·, ·) = dvkv(·, ·)+
dtkt(·, ·), where dv, dt > 0 and dv +dt = 1, is a convex combination, the dv and dt

2 C from {10−3, 10−2, 10−1, 100, 101, 102}.
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were chosen by grid search with step 0.1 and C = 1. Instead of original features,
kernels kf (·, ·) were then used in place of the original features.

We tested two variants of SVM2K, both containing two views, since
SVM2K [17] only supports two-view learning. SVM2K(0) concatenates all visual
features into one view, with the other view comprising the textual features;
SVM2K(1) uses only the 2 SIFT-based features. SVM2K contains 4 penalty
parameters: we set the penalty value for the first SVM to 0.2; for the second
SVM to 0.1; tolerance for the synthesis to 0.01; and varied the penalty value for
synthesis in the same way as previously described for linear SVM parameter C.

Our orthogonal denoising autoencoder for multi-view learning (ODAE) uses
the sigmoid function (y = 1

1+e−x ) as the activation function. We reduplicate
the data 10 times and randomly corrupted 10 % of total features each time for
denoising. Random search was used to find the optimal numbers of neurons for
each hidden views [30].

Generally speaking, multi-view learning approaches for object classification
outperform those using only the visual or textual view. SVM2K methods have
the worst performance and are highly unstable among all the multi-view learning
approaches, since they can only accept 2 views. Specifically, the visual view of
SVM2K(0) tends to overfit while that of SVM2K(1) tends to underfit. ODAE
performs best for 7 classes and second best for another 10 classes (slightly worse).

0 2 4 6 8 10 12 14 16 18 20
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

A
P

Index of experiment

Fig. 3. AP values for 20 experiments with random hyperparameters (max 300 SGD
iterations). The number of hidden nodes in each experiment are uniformly drawn from:[
3, 40
]

for the shared view,
[
500, 700

]
for the textual view, and

[
50, 200

]
for all visual

views with the exception of Harris hue ranges, which were drawn from
[
50, 100

]
.

We used random search [30] to select reasonable values for the number of
hidden neurons for each view3. Figure 3 plots AP values for different parameter
configurations of an orthogonal autoencoder, demonstrating the relative robust-
ness of the method with respect to the hyperparameters. The best configuration
found was: 29 nodes of hidden layer for the shared view, 672 for the textual view,
and

[
99, 148, 149, 143, 74, 51, 113, 121, 96, 164, 113, 91, 148, 68, 56

]
for the visual

views.
3 Because of pages limit, we can not provide more details.
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5 Conclusions

In this paper, we modify the basic autoencoder for multi-view learning to enable
private latent spaces to be absolutely orthogonal to each other while simulta-
neously encouraging the shared latent space to be orthogonal to private latent
spaces as well. Inheriting from the denoising autoencoder, our model is able to
learn robust features, i.e., features that are strongly resistant to noise. We also
extend back-propagation algorithm elegantly to train the model, which means
our model is exempt from extra complex optimization tricks.
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