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Irish Dependency Treebanking and Parsing

Teresa Lynn

Abstract

Despite enjoying the status of an official EU language, Irish is considered a mi-

nority language. As with most minority languages, it is a ‘low-density’ language,

which means it lacks important linguistic and Natural Language Processing (NLP)

resources. Relative to better-resourced languages such as English or French, for ex-

ample, little research has been carried out on computational analysis or processing

of Irish.

Parsing is the method of analysing the linguistic structure of text, and it is

an invaluable processing step that is required for many different types of language

technology applications. As a verb-initial language, Irish has several features that

are uncharacteristic of many languages previously studied in parsing research. Our

work broadens the application of NLP methods to less-studied language structures

and provides a basis on which future work in Irish NLP is possible.

We report on the development of a dependency treebank that serves as training

data for the first full Irish dependency parser. We discuss the linguistic structures

of Irish, and the motivation behind the design of our annotation scheme. Our

work also examines various methods of employing semi-automated approaches to

treebank development. We overcome the relatively small pool of linguistic and

technological resources available for the Irish language with these approaches, and

show that even in early stages of development, parsing results for Irish are promising.

What counts as a sufficient number of trees for training a parser varies according to

languages. Through empirical methods, we explore the impact our treebank’s size

and content has on parsing accuracy for Irish. We also discuss our work in cross-

lingual studies through converting our treebank to a universal annotation scheme.

xvii



Finally we extend our Irish NLP work to the unstructured user-generated text of

Irish tweets. We report on the creation of a POS-tagged corpus of Irish tweets and

the training of statistical pos-tagging models. We show how existing resources can

be leveraged for this domain-adapted resource development.
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Chapter 1

Introduction

The role of technology in our daily lives is evolving at an enormous speed. The way

in which we access knowledge and information has taken a dramatic shift towards

digital media in the last fifteen years. Most people now opt to inform themselves,

not only through print newspapers, magazines or books, but also through alternative

digital resources such as the Internet, accessing news sites, social media, and blogs

for example, often favouring digital over print. Today, most people have access to

these new media either through home or work computers, tablets or smart phone

technology. Schools world-wide are engaging with technology as a means of providing

educational content, while slowly setting aside the traditional books and paper-based

approach to learning. The content of all of these media, of course, is communicated

through human language.

Language technology is the meeting of information technology and human lan-

guage. For a language to have a presence on these digital platforms, language content

(text) needs to be both computationally accessible and processable. A recent EU

report on the status of language technology for European languages (Judge et al.,

2012) compares this digital revolution to Gutenberg’s invention of the printing press.

At that time, printing made written content more widely available, facilitating com-

munication, standardisation of written forms of major languages, and teaching and

translation across languages. However, the repercussions of this meant that minor-
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ity languages that thrived mostly on oral tradition did not have literature printed

to the same degree as major languages. They slowly became restricted in their use,

particularly in contexts where a major language was a dominant alternative, thus

ultimately leading to their decline.

With this analogy, it is easy to understand the concerns that minority languages

have in this new information technology age with regards to the impact that tech-

nology may have on their survival. This concern is real in the case of Irish as a

minority language, where all speakers of Irish in Ireland also speak English. This

means that if users find that digital content or language technology tools are not

accessible in Irish, they can easily default to using English resources instead. In

schools, if language learning for other better-resourced languages such as French

and German, for example, is more attractive and fun through the use of technology,

then Irish could become a less appealing subject, and deemed out-of-date. Com-

pared to other EU languages, Irish is regarded as a low-resourced language in terms

of language technology (Judge et al., 2012). If the Irish language is not sufficiently

digitally accessible, this digital revolution could contribute to a further decline in

its use, thus threatening its survival.

In this thesis, we report on our contribution to addressing this lack of language

technology resources by developing (i) a dependency treebank, (ii) a deep syntactic

parsing model for Irish, (iii) a gold-standard POS-tagged corpus of Irish tweets and

(iv) a domain-adapted part-of-speech tagging model for Irish tweets.

Our treebank is a resource that provides linguistic information on the Irish lan-

guage in a digitally accessible format. This treebank will be valuable not only for

linguistic research, but also for the development of Natural Language Processing

(NLP) tools. The treebank has already proved to be invaluable for training the

first Irish statistical dependency parser. This parser enables automatic extraction

of syntactic (grammatical) information from previously unseen Irish text, contribut-

ing to potential future development of other NLP tools such as hybrid machine

translation, grammatical error detection, question answering, text summarisation,
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sentiment analysis, information retrieval and information extraction systems.

As part of a Fulbright1 research visit to St. Louis University, I worked with

Professor Kevin Scannell on the development of a POS-tagged corpus of Irish tweets

and statistical part-of-speech tagging models for Irish Twitter text. We also see this

as a significant contribution to Irish language research in the context of social media.

In the past few years, an increased online presence of Irish speakers has enabled new

ways in which to communicate through Irish. The variation of Irish that is used

on Twitter is representative of an evolving language, and will prove interesting to

socio-linguistic studies of Irish language use today. This POS tagger is valuable for

a digital analysis of this new use of Irish.

Research and development of NLP resources for Irish is not only valuable from

a language conservation perspective, but it also contributes to work in the area of

less-resourced languages (LRLs). It helps us to understand a language better, and

by evaluating new NLP techniques the outcomes may be beneficial to work on other

minority languages or texts of new domains.

This chapter presents an overview of the considerations required in the develop-

ment of these new resources. In Section 1.1, we explain the current status of the

Irish language in relation to language technology. Through this, we highlight the

need for new resources such as our treebank and parser. From there, in Section 1.2,

we outline the work involved in developing a treebank for Irish, reflecting the diffi-

culties encountered when dealing with a low-resourced language. In Section 1.3, we

focus on the development of our parsing models for Irish and introduce the various

ways in which we carried out parsing experiments using the Irish treebank. We also

highlight the steps we took to address the impact a lack of resources had on the per-

formance of the parser. In Section 1.4 we discuss the expansion of our work to social

media NLP, specifically a part-of-speech analysis of Irish Tweets. In Section 1.5, we

outline our research questions, followed by an outline of the structure of the thesis

in Section 1.6 and a list of our publications in Section 1.7.

1Fulbright Enterprise Ireland Award 2014-2015.
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1.1 Irish Language Technology

Many of the world’s languages are referred to as low density languages. In the field

of Natural Language Processing (NLP), ‘low-density’ refers to a lack of resources,

usually digital, for a language. Basic language text resources make invaluable con-

tributions to NLP research and provide the basis of the development of advanced

NLP tools. Such resources include, among others:

• electronic dictionaries: often known as lexicons. These lexicons can contain

semantic information, translations, synonyms, hypernyms, part-of-speech in-

formation and morphological information.

• bilingual corpora: aligned translations of text. Such resources are valuable for

statistical machine translation.

• part-of-speech tagged corpora: text annotated with data which provides infor-

mation on the part of speech of a word. This is particularly invaluable when

confronted with ambiguous terms in a language. For example, in English, the

word ‘walk’ may be a noun or a verb, and in Irish the word glac may be a

noun (‘handful’) or a verb (‘accept’).

• treebanks: corpora that have been annotated with syntactic information.

Parsing provides grammatical information regarding the structure of text,

which is often crucial for successful computational analysis of a language.

• semantically tagged text: text which has been annotated with information

that indicates the semantic category to which it belongs. For example, nouns

may be animate or inanimate, countable or mass, common nouns or proper

nouns, and so on.

To date, little research has been carried out on the Irish language with regards to

computational analysis or processing, resulting in a lack of vital linguistic resources.

From the list of basic resources above, only the first three items were available be-

fore the completion of our treebank. There are a number of electronic dictionaries
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and term bases available online, including focloir.ie, potafocal.com, tearma.ie and

teanglann.ie.2 Some of these resources are also available through smart phone ap-

plications. With regards to bilingual corpora, most of the parallel data that is freely

available is legislative (e.g. gaois.ie, EU Joint Research Council3). A web-crawled

parallel corpus is available for queries only (not for full download), and this text is

more general domain.4 Finally, a 3,000 sentence gold-standard POS-tagged corpus

was made available by Uı́ Dhonnchadha (2009). There is no semantically annotated

corpus available for Irish.

Figure 1.1: Text Analysis – state of language technology support for 30 EU languages
(Judge et al., 2012)

Figures 1.1 and 1.2 from Judge et al. (2012)’s report show how Irish is positioned

in relation to other European languages with regards to language technology. It is

clear that Irish is significantly under-resourced when it comes to language technology.

Since the publication of the report, a survey of Welsh language technology was also

2Fiontar, DCU is responsible for the development of the terminology database tearma.ie. They
have also developed cultural online databases such as duchais.ie, ainm.ie and logainm.ie.

3The JRC provides a number of corpora at https://ec.europa.eu/jrc/
4Available to query at http://borel.slu.edu/corpas/index.html
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Figure 1.2: Speech and Text resources – state of language technology support for
30 EU languages (Judge et al., 2012)

made available (Evas, 2013). Welsh, another Celtic minority language, is just as

under-resourced and falls into the same category as Irish (weak/ no support) in

both instances.

In light of the status of Irish language technology, the significance of the research

and development involved in this project is:

- Development of linguistic resources as a platform for future work in Irish NLP

- Contribution to methods for constructing linguistic resources for low-density

languages

- Contribution to research in dependency parsing for verb-initial languages

1.2 Dependency Treebanking

A major part of our work in this thesis is the development of a dependency tree-

bank. A treebank is a large collection of texts (a corpus) that has been parsed at
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the sentence level. In other words, its sentences have been annotated with infor-

mation regarding its syntactic structure. Treebanks are invaluable resources for the

development of NLP applications. They provide a rich representation of linguistic

phenomena of a language and are a solid platform for linguistic analysis. Tradition-

ally treebanks have played an important role in the discipline of corpus linguistics.

More recently however, successful implementation of machine learning approaches to

NLP have resulted in exploitation of parsed corpora for the development of parsers.

To put their value into context, the Penn Treebank (Marcus et al., 1993) is one of

the most influential pieces of work in NLP, with more than 5,000 citations to date.

Traditionally treebanks were created using Phrase Structure Grammars (PSG),

often known as Context Free Grammars (CFG), that identified phrases in text at

a sentence level to produce phrase structure trees or constituents. In more recent

years however, there has been much interest in the application of ‘dependency’

grammars to the development of treebanks: Arabic Prague Dependency Treebank

(Hajič and Zemánek, 2004), Czech Prague Dependency Treebank (Hajič, 1998),

Turkish Dependency Treebank (Oflazer et al., 2003), Slovene Dependency Treebank

(Dzeroski et al., 2006), Finnish (Haverinen et al., 2010), Greek (Prokopidis et al.,

2005) and Danish Dependency Treebank (Kromann, 2003) for example.

Dependency grammars use links to define the relationship between words. The

relationship exists only between two words and is identified by labelling one word

as the head and the other as its dependent. The link between both words is referred

to as the dependency relation. Dependency grammars vary depending on the re-

lationships that are defined within the language. In this project, we have defined

and implemented Lexical Functional Grammar (LFG) inspired dependencies for the

Irish language upon which the treebank was built. As a verb initial language, with

a Verb-Subject-Object word order, Irish diverges greatly from the structure of most

languages of current research in the domain of treebank and parser development.

Our work involved an extensive syntactic analysis of the Irish language, along with

the design of a dependency annotation scheme suited to Irish syntax.
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In the context of treebanking for other languages, we also report on work we

carried out in a Universal Dependencies project, in which treebanks for several

languages (including Irish) were mapped to a universal annotation scheme for the

purposes of cross-lingual studies.

1.3 Dependency Parsing

Parsing is the process of analysing text in order to identify its grammatical struc-

ture. Language parsing has changed greatly over recent years, profiting from the

robustness of statistical methods. Traditionally, parsing was achieved by linguists

who defined grammar rules and implemented them computationally through what

is termed a rule-based parser. While some rule-based systems provide high-quality

output, they are both time and language resource intensive. Current research focuses

on the use of statistical models in the development of parsers. Statistical parsing

models are developed using training data. This data consists of large collections

of previously parsed text for the language in question, i.e. a treebank. Statistical

parsers use this previously parsed text to assign probabilities to parse candidates of

a sentence. The most likely parse is then identified.

In recent years, some progress has been made in the collection and development of

syntactic linguistic resources for Irish. A part-of-speech (POS) tagger was developed

by Uı́ Dhonnchadha (2009) and used to create a gold-standard POS-tagged corpus,

which proved to be a fundamental resource for our treebank. Uı́ Dhonnchadha also

reports on some initial attempts at parsing, and while the design of this constraint

grammar partial parser was useful as a starting point for our own linguistic analysis,

the output of this shallow parser was not sufficient to either (i) build a treebank or

(ii) to allow for extraction of deep syntactic information for other NLP tools, such

as hybrid machine translation or grammatical error detection systems, for example.

Therefore, the need for the development of a full, deep parser for Irish was clear.

This thesis reports on the training and testing of the first statistical depen-
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dency parsing models for Irish. We used the treebank highlighted in Section 1.2 as

our training and test data. We have developed parsing models specifically for de-

pendency parsing, which identify relationships between words such as ‘subject of’,

‘modifier of’, and so on.

There are several frameworks available within which dependency parsers can be

trained. These parsing platforms are data driven and rely on large collections of

training data in the form of dependency treebanks. Frameworks such as MaltParser

(Nivre et al., 2006), which we use in most of our experiments reported in this thesis,

combine parsing algorithms, machine learning algorithms and feature models to

induce dependency parsers. Parsing algorithms are used to build dependency graphs

from text. Feature models combine features (such as parts-of speech, dependency

relations) from the input string with features of the treebank to assist in parse

decisions. The data-driven nature of these parsers means that they are language

independent. With sufficient resources, parsers can therefore be developed for any

language.

In our work, we explored various approaches to parsing with the Irish Depen-

dency Treebank (IDT). We showed how parsing models built in the early days of

the treebank’s development could help bootstrap further development of the corpus

by semi-automating the annotation process with Passive and Active Learning. If

the parser can be improved, ultimately it would result in a smaller annotation ef-

fort within a bootstrapping (semi-automated) annotation environment. This leads

us to consider improving the parser’s accuracy by leveraging existing un-annotated

resources through means of semi-supervised parsing. In addition, we show how we

explored the possibility of cross-lingual transfer parsing through mapping the tree-

bank to a universal annotation scheme. We take all of these approaches as methods

for overcoming the limited resources of a minority language. Yet, we show that the

semi-supervised and cross-lingual transfer parsing approaches do not prove to be

promising solutions for bootstrapping the Irish parser. In particular, we note from

a cross-lingual perspective, that, similar to previous studies McDonald et al. (2013),
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transfer parsing results are relatively low. We see that, as Irish is so typographically

different from the languages for which there are large treebanks, it is an unlikely

solution to our parser development. A clear conclusion we can draw from these un-

remarkable bootstrapping parsing results, is that it is difficult to replace the efforts

of a human annotator in the context of treebank development.

1.4 Expanding Irish NLP to Social Media

To date, all of the linguistic resources and NLP tools developed for Irish have been

directed at processing standard and grammatical Irish text. However, in recent

years there has been a notable increase in the Irish language content available online.

Much of the content made available on social media such as Facebook and Twitter

is user-generated, i.e. not edited or reviewed for grammatical accuracy. Previous

POS tagging and parsing studies on user-generated unstructured English text (e.g.

Foster et al. (2011)) has shown how this language variety affects the quality of

standard NLP tools. For the same reasons, existing NLP tools are not equipped to

deal with processing this variation of Irish language. Rule-based systems are tied

to strict grammatical maxims and statistically-driven tools can only successfully

process language similar to that seen in training data, which until now has been

well-structured Irish text. We extend our contribution of Irish NLP resources to

this social media domain by building a gold-standard POS-tagged corpus of Irish

tweets. With this corpus, we successfully train statistical POS taggers, achieving

state-of-the art results and show how they outperform a rule-based tagger that

has been designed for grammatical text. Through this we demonstrate why domain

adaptation is necessary for these kinds of tools when processing noisy user-generated

Irish text.
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1.5 Research Questions

The primary contribution of this thesis is the Irish Dependency Treebank. The

work involved in the construction of such a resource related to many aspects of de-

velopment. Firstly, it included extensive exploration of theoretical linguistic issues

in order to establish a suitable syntactic analysis. From there further research was

involved in deciding on the most suitable formalism to draw on, and how this for-

malism should be adapted for Irish. It was also important to choose an appropriate

set of dependency relations for our annotation scheme, ensuring that the set was

comprehensive enough to cover all linguistic constructions we had encountered in

our Irish data. The manual annotation effort required also played a significant part

in this project, particularly in the early stages where the annotation guide was being

developed concurrently as new linguistic phenomena were encountered.

However, in addition to developing this resource, we also seek to answer the

following research questions:

• What is an appropriate linguistic analysis of Irish for a dependency treebank,

drawing on and synthesising traditional descriptive analyses and theoretical

work?

• Can an approach such as Active Learning, that has been suggested to be

applicable to bootstrapping the development of treebanks, prove to be useful

when deployed in the actual construction of a treebank?

• Given the existence of proposed techniques for development of parsers for low-

resource language or improving performance of such a parser – cross-lingual

transfer parsing and the use of unlabelled data – can these help when combined

with a small gold standard treebank used for training?

• In what way can we leverage existing Irish NLP tools for processing Irish

tweets?
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1.6 Thesis Structure

This thesis comprises eight chapters including the current introductory chapter.

Chapter 2 provides a summary of the status of the Irish language and an overview

of its distinctive linguistic features. We also provide an overview of dependency

syntax, which is the grammatical analysis we used in the creation of our treebank,

along with an explanation of dependency treebank data formats. In Chapter 3,

we summarise the processes involved in developing the treebank. With regards to

our choice of syntactic representation, we discuss why we chose dependency syn-

tax over constituency syntax. We also discuss our choice of labelling scheme, in

addition to the existing resources upon which we built the treebank. This chapter

also reports our inter-annotator agreement study. In Chapter 4, we introduce the

treebank’s annotation scheme, and detail our choice of syntactic analysis for certain

linguistic phenomenon that are specific to the Irish language. In Chapter 5, we

present our work on mapping the Irish Dependency Treebank annotation scheme to

a universal annotation scheme for the purposes of cross-lingual studies. All of our

parsing experiments are presented in Chapter 6. The experiments include estab-

lishing baseline scores, post IAA-study experiments, Active Learning experiments,

semi-supervised parsing experiments and cross-lingual transfer parsing experiments.

Finally, in Chapter 7, we report on how we extend our development of NLP resources

to the social media domain. We present a gold standard POS-tagged Irish Twitter

corpus and report on building statistical POS tagger models. This work also gives

an overview of the differences involved with processing user-generated Irish text

when compared with standard grammatical Irish text, and the impact this has on

the development of NLP tools.

The Annotation Guidelines for the Irish Dependency Treebank are provided in

Appendix A and the Annotation Guidelines for Irish Twitter Part-of-Speech Tagging

are provided in Appendix B. Finally, some statistics on the content of the IDT are

presented in Appendix C.
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1.7 Publications

During the course of the treebank and parser development, much of our work was

published at NLP workshops and conferences. We list them in chronological order

here:

• Lynn et al. (2012a) describes the methodology behind building a treebank and

the steps we took to leverage existing resources. We also report our baseline

parsing scores.

Lynn, T., Çetinoğlu, Ö., Foster, J., Dhonnchadha, E. U., Dras, M., and van

Genabith, J. (2012a). Irish treebanking and parsing: A preliminary evaluation.

In Proceedings of the Eight International Conference on Language Resources

and Evaluation (LREC’12), pages 1939–1946, Istanbul, Turkey.

• Lynn et al. (2012b) reports our Inter-annotator agreement study and how it

was used to improve our labelling scheme. As the treebank had grown in size at

this stage, we reported on our efforts to use Active Learning as a bootstrapping

mechanism.

Lynn, T., Foster, J., Dras, M., and Dhonnchadha, E. U. (2012b). Active

learning and the Irish treebank. In Proceedings of the Australasian Language

Technology Workshop (ALTA), pages 23–32, Dunedin, New Zealand

• Lynn et al. (2013) reports our semi-supervised experiments and the various

ways we tried to improve parsing accuracy with unlabelled data.

Lynn, T., Foster, J., and Dras, M. (2013). Working with a small dataset –

semi-supervised dependency parsing for Irish. In Proceedings of the Fourth

Workshop on Statistical Parsing of Morphologically-Rich Languages, pages

1–11, Seattle, Washington, USA.

• Lynn et al. (2014) reports our cross-lingual transfer parsing and universal

treebank studies.
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Lynn, T., Foster, J., Dras, M., and Tounsi, L. (2014). Cross-lingual transfer

parsing for low-resourced languages: An Irish case study. In Proceedings of the

First Celtic Language Technology Workshop, pages 41–49, Dublin, Ireland.

• Nivre et al. (2015) and Agić et al. (2015) report respectively on the first and

second release of the Universal Dependency project. The Irish Dependency

Treebank is mapped to this UD scheme, and this Irish data and documentation

is included in these releases.

Nivre, J., Bosco, C., Choi, J., de Marneffe, M.-C., Dozat, T., Farkas, R., Foster,

J., Ginter, F., Goldberg, Y., Hajič, J., Kanerva, J., Laippala, V., Lenci, A.,

Lynn, T., Manning, C., McDonald, R., Missilä, A., Montemagni, S., Petrov,

S., Pyysalo, S., Silveira, N., Simi, M., Smith, A., Tsarfaty, R., Vincze, V., and

Zeman, D. (2015). Universal Dependencies 1.0.

Agić, Ž., Aranzabe, M. J., Atutxa, A., Bosco, C., Choi, J., de Marneffe, M.-

C., Dozat, T., Farkas, R., Foster, J., Ginter, F., Goenaga, I., Gojenola, K.,

Goldberg, Y., Hajič, J., Johannsen, A. T., Kanerva, J., Kuokkala, J., Laippala,

V., Lenci, A., Lindén, K., Ljubešić, N., Lynn, T., Manning, C., Mart́ınez, H.

A., McDonald, R., Missilä, A., Montemagni, S., Nivre, J., Nurmi, H., Osenova,

P., Petrov, S., Piitulainen, J., Plank, B., Prokopidis, P., Pyysalo, S., Seeker,

W., Seraji, M., Silveira, N., Simi, M., Simov, K., Smith, A., Tsarfaty, R.,

Vincze, V., and Zeman, D. (2015). Universal dependencies 1.1.

• Lynn et al. (2015) reports on our domain-adaptation approach to building a

POS-tagged corpus of Irish tweets and training POS-tagging models for use

with unstructured, user-generated Irish text.

Lynn, T., Scannell, K., and Maguire, E. (2015). Minority Language Twitter:

Part-of- Speech Tagging and Analysis of Irish Tweets. In Proceedings of the

1st Workshop on Noisy User-generated Text (W-NUT 2015), Beijing, China.
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Chapter 2

Background

Our work deals with the development of resources for a low-resourced, minority lan-

guage. In Section 2.1, we give an overview of the status of the Irish language and

explain how, as a national language, it came to be a minority and low-resourced

language. We also provide an overview of some linguistic features of Irish in Sec-

tion 2.2. Firstly, we describe some of the intricacies of Irish syntax and how there

is still much disagreement regarding Irish structures in discussions of theoretical

syntax. We highlight these issues as factors that have consequently impacted our

linguistic analysis of the language, thus influencing the design of our treebank’s an-

notation scheme. We also provide an overview of Irish morphology and describe the

various inflectional processes that occur.

As we will see in Chapter 3, our treebank is based on dependency syntax anal-

yses. In order to fully explain dependency structures, in Section 2.3, we provide

an overview of dependency treebanks and dependency syntax. We show how a de-

pendency syntax analysis is represented firstly as dependency graphs and secondly

in machine readable formats that are acceptable training and evaluation input for

data-driven parsers.
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2.1 The Irish Language

The history of the Irish language is covered in some depth in sources such as Mac

Giolla Chŕıost (2013) and Doyle (2015). Here we give an overview leading up to the

status of the language today.

Irish is one of the oldest written forms of language in Europe. A Celtic language,

it evolved from Old Irish (roughly 600-900 AD) to Middle Irish (900AD - 1200AD) to

Early Modern Irish (1200–1600) to our present form of Modern Irish. There are three

distinct Modern Irish dialects across Ireland - Ulster, Connacht and Munster. In the

1950’s and 1960’s an Official Standard (An Caighdeán Oifigiúil) was introduced to

standardise spelling (diverging from the old written script) and vocabulary in order

to make Irish more accessible through the education system to all.

Historically, Irish has experienced centuries of both decline and revival. Much

decline was seen during the English colonialism era as Ireland was slowly becoming

more Anglicised. In the 14th century, under Anglo-Norman Rule, the English monar-

chy forbade the Anglo-Normans from speaking Irish, which saw more widespread

use and influence of the English language. However, by the start of the 16th century,

the Anglo-Normans began to speak Irish and the percentage of Irish speakers rose

again, with the language even adopting some English vocabulary. In the 17th cen-

tury, during the time of the plantations (when Irish land was taken from native Irish

and given to English and Scottish planters), the English language influence began

to spread once more. Another sharp decline occurred in the early and mid 19th

century, which was brought about by several factors. The secondary school system

began to be modelled on the British education system with the English language at

the fore. National schools did not even have Irish on the syllabus. Many of these

schools forbade students from speaking Irish. More significantly, Irish people needed

to learn English to be equipped to deal with legal matters, as English had become

the administrative language in Ireland. The Catholic Church began to use English

instead of Irish, and the Great Hunger resulted in both the death and emigration
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of many of the country’s Irish speakers. By this stage, Irish had become mostly a

spoken language in rural regions. In light of this, by the end of the 19th century, a

movement known as the Gaelic Revival took strides towards reversing this decline,

particularly in terms of the written language and literature. In particular, it saw the

foundation of the Gaelic League (Conradh na Gaeilge) as a promotor of the Irish

language, which is still in existence today. Following the establishment of Ireland

as a Free State in the 1920’s, Irish was re-introduced as a compulsory subject at

state-run schools.

These days, Irish, a minority EU language, is the first official and national lan-

guage of the Republic of Ireland. English is the second official language. Yet, in the

2011 census, only 41% of the population are reported as Irish speakers. However,

the figures for those who actually speak and use Irish on a daily basis as a first

language are even lower. Despite Irish being a core subject in the Irish primary and

secondary education curricula, following graduation, the majority of Irish people do

not continue to speak Irish in their daily lives.

The use of Irish in daily activities as a first language is mostly restricted to the

Gaeltacht areas, which are predominantly in the West of Ireland. There are three

categories of Gaeltacht areas as defined by the percentage of daily speakers, the en-

vironment for use (family, community, schools, linguistic networks) and age-cohorts

of Irish speakers (Giollagáin et al., 2007). These Gaeltacht areas are protected by

the State, with the government Department for Arts, Heritage and the Gaeltacht

(DAHG) taking responsibility for ensuring that sufficient services and provisions are

provided in order to allow people to use Irish as their first language, and to ensure

that Irish continues as their primary medium of communication. In recent years,

concerns have grown for the continued survival of these Gaeltacht areas as reports

and studies show that younger generations in these communities are using English

more frequently as their medium of communication outside of family life (Giollagáin

et al., 2007).

Outside of the main Gaeltacht areas, frequent use of Irish is restricted to small
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linguistic networks in urban areas, and also to those students studying Irish at

school. Thus, Irish is listed as a UNESCO endangered language and an increased

effort has been made by the Irish State to ensure its survival. There are four Irish

language radio stations (Raidió na Gaeltachta, Raidió na Life, Raidió Ŕı-Rá and

Raidió Fáilte) and a dedicated Irish language TV channel (TG4) to cater for those

who use Irish as their first language, and also to help promote the use of Irish

language for those who are keen to continue using it as a second language. A number

of printed Irish language publications such as Foinse and Nós also contribute to Irish

language media. There are also gaelscoileanna schools nationwide through which all

subjects are taught in Irish.

In recent years, there has been a resurgence of Irish language use outside of

Gaeltacht areas, particularly among a younger generation of speakers, and online.

The internet has become a new haven for languages resources such as Irish language

blogs, e-zines, news articles and forums. In particular, social media platforms such

as Facebook and Twitter have allowed Irish-speaking networks to grow, connecting

speakers from both across the country and across the world. The Indigenous Tweets

project reports that there have been over one million Irish tweets since Twitter

began.1 These tweets have been sent by over 8,000 tweeters worldwide, including

countries such as the U.S., Canada, Australia, Brazil, Spain, Norway and Finland.

In fact, there is also a growing interest in the use of Irish outside of Ireland with the

formation of overseas linguistic groups. DAHG provides funding to these overseas

organisations and directly assists funding of the teaching of Irish language at U.S.

universities through the Fulbright Commission of Ireland.

In light of reports in a recent EU white paper on the status of Irish language

technology (Judge et al., 2012), there has been an increased awareness of the need

for technology in efforts to ensure the survival of the language. The DAHG have

recognised the role that Machine Translation can play in meeting the State require-

ment that official documents need to be provided in both English and Irish (Official

1http://indigenoustweets.com/ga/ (accessed June 2015)
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Languages Act 2003). The ABAIR project has seen the development of a speech

synthesiser which can assist language learners through CALL applications.2 The

development of web-based termbases, electronic dictionaries, grammar checkers, a

part-of-speech tagged corpus and morphological analyser have also contributed to

this initiative. However, relatively speaking and at an EU level, Irish is regarded as

a low-resourced language with much more work and investment needed the area of

speech and language technology. It is worth noting that while Irish is a minority

language, compared to many other languages in the world, it has a relatively larger

speaking population which would support opportunities to build and use language

technology resources.3

2.2 An Overview of Irish linguistics

The Irish language is a Celtic language of the Indo-European language family. There

are six Celtic languages: Irish, Scots Gaelic, Manx, Welsh, Cornish and Breton. In

linguistic terms, Irish, Scots Gaelic and Manx are most closely related. In fact, Scots

Gaelic originated through migration from Ireland to Scotland before the 5th century

AD. Cornish and Manx are spoken only by small communities of language revivalists.

Irish shares distinctive features with other Celtic languages such as Verb-Subject-

Object (VSO) word order and rich morphology (Stenson, 1981). Both of these

distinct linguistic features strongly influenced our treebank and parser development.

The development of our treebank and parser, as linguistic NLP resources for

Irish, relied heavily on existing work in theoretical linguistics (where available) and

previously developed NLP resources. Much of the groundwork for the development

of the treebank involved an analysis of the syntax of Irish. In terms of literature

on this topic, very early discussions of Irish linguistic studies appeared during the

Gaelic Revival (e.g. Craig (1897)), but the most concise description of Irish grammar

was not published until the 1960’s – originally in Irish (Christian-Brothers, 1960)

2Accessible at www.abair.tcd.ie
3http://www.ethnologue.com/cloud/gle (accessed June 2015)
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and later in English (Christian-Brothers, 1962; The Christian Brothers, 1988). Since

then there have been several syntax and grammar books published. Some examples

that this thesis in particular draws on are McCloskey (1979), Stenson (1981), The

Christian Brothers (1988) and Ó Siadhail (1989), articles such as Ahlqvist (1972),

McCloskey (1983), and Carnie (2005), along with paper publications (e.g. Sulger

(2009b) and Asudeh (2002)) and Sulger (2009a)’s Masters thesis. Of these resources,

we found that The Christian Brothers (1988) and Stenson (1981) provided the most

comprehensive description of Irish. All other materials focused on analyses or dis-

cussions of only specific linguistic features of the language.4 We found however,

that within the limited scope of previous work in this field, there is still significant

disagreement as to how the structure of Irish should be analysed.

The following provides an overview of the type of syntactic structures and mor-

phology present in the Irish language. It is not a comprehensive summary as the

rules governing both syntax and morphological changes are too extensive and at

times too complex to document here. Instead, our summary aims to outline (i)

some of the aspects (and issues) of Irish syntax that affected the development of

our treebank in Section 2.2.1 and (ii) the many inflectional processes in Irish that

impacted the development of our parser in Section 2.2.2.

2.2.1 Irish Syntax

Comparative studies have been made across the Celtic languages, and there exists

much disagreement in theoretical syntax as to the nature of these VSO languages.

Here we summarise some of the distinctive features of Irish as a Celtic language.

These features commonly occur in standard Irish use and therefore require discussion

in the context of treebank development. As we have noted in Section 2.2, Irish

theoretical syntax is relatively under-researched, yet this summary shows that even

within the limited work carried out in this area thus far, there still remain many

4While Ó Siadhail (1989)’s coverage of the language is quite broad, it focusses mainly on the
dialectal variations of Irish.
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unresolved disagreements as we show here.

VSO clause structure Both main clauses and subordinate clauses follow a VSO

structure in Irish. There are only a couple of exceptional circumstances under which

an element can appear between the verb and the subject (see Example 1) and while

various elements may occur between the subject and object, such as prepositional

phrases and adverbs (see Example 2), the verb-subject-object order is strict (Mc-

Closkey, 1983, pp. 10-11).

(1) Tá ar ndóigh daoine a chreideann...

Are of-course people who believe...

‘There are of course people who believe...’

(2) Thug sé dom inné é

Gave he to-me yesterday it

‘He gave it to me yesterday’

VSO languages pose problems for theoretical grammar frameworks that assume

a VP (verb phrase) constituent across all languages. VPs typically contain a verb

followed by the object NP. However, in the case of Irish, the subject NP always

directly follows the verb. Arising from this, much of the discussion and disagreement

in Irish syntax literature revolves around the structure of an Irish sentence – whether

it has a flat structure such as that in Figure 2.1 as argued by Stenson (1981, p.41)

and employed in Lexical Functional Grammar (Bresnan, 2001, p.399), for example,

or derived from an underlying SVO structure such as that in Figure 2.2, as argued by

Bobaljik and Carnie (1996), for example. Even within the pro-SVO camp and those

influenced by Chomskyan transformational grammar, there is further disagreement

as to the transformational processes involved to realise the VSO surface structure.

Particles There are a number of different particles in Irish including verb particles,

adverbial particles, numerical particles, quantifier particles, complementisers and

relative particles, among others. The a particle that occurs in Example 3 is regarded
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Figure 2.1: Flat VSO Constituent Structure

S

NP1 VP
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Figure 2.2: Hierarchical SVO Constituent Structure

as a relativiser by Stenson (1981, p.32). However it is contested by McCloskey

(1979, pg.11) that it is in fact a complementiser as it has the same phonetic and

morphological realisations on a following verb as the complementiser go. Sells (1984)

argues further that this is a preverbal particle marking resumptive pronouns.

(3) an fear a thug an litir duit

the man REL gave the letter to-you

‘the man who gave the letter to you’

Copula There are two verbs ‘to be’ in Irish – the copula is and the substantive

verb ‘b́ı’. Stenson (1981, p.92) and others consider the copula to be a verb form,

although it does not inflect for mood, gender and number in the same way other

verbs do. On the other hand, Ahlqvist (1972, p.271) argues that the copula is a

particle that gives a verbal nature to its predicate, and Carnie (1997) claims it to be

a complementizer particle which equates two noun phrases, without labelling either

element as a subject or predicate.

Non-finite phrases There is no infinitive form in Irish (The Christian Brothers,

1988, p.128). Instead, a verbal noun is used to denote non-finite phrases (e.g. léamh/

a léamh ‘to read’). Verbal nouns in Irish are said to clearly originate from verbs,

and are used in cases similar to the English gerund, yet they exhibit the same

morphological inflection as nouns (Stenson, 1981, p.29). When an infinitive phrase

expresses an object, that object precedes the verbal noun and is accompanied by
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the particle a (see Example 4).

(4) leabhar a léamh

book INF read

‘to read a book’

The Christian Brothers (1988, p.128) refers to this a as a preposition and Stenson

(1981, p.32) as a particle. The disagreement over the labelling of this element aside,

there is much debate on the positioning of the object to the left of the verbal noun in

non-finite clauses, and how it came to be there (e.g. Chung and McCloskey (1987)

vs Bobaljik and Carnie (1996)).

Progressive Aspectual Phrases There is no present participle in Irish (The

Christian Brothers, 1988, p.128). Instead, ag + verbal noun construction is used to

indicate progressive aspectuals (e.g. ag léamh ‘reading’). However, there is disagree-

ment as to what ag really is. It resembles the preposition ag ‘at’ and is regarded as

that by Stenson (1981, p.139), recognising the verbal noun as a prepositional phrase

object. Yet, McCloskey (1983) rejects this in favour of a ‘progressive particle’ anal-

ysis.

In terms of developing the treebank, we – like Uı́ Dhonnchadha (2009) – have

tended to adopt the syntactic analysis of Stenson in general. We explain this in more

detail in Section 4, but in summary, Stenson’s flat structure analysis allows us to

make a minimum of theoretical assumptions as to underlying structure; this philos-

ophy aligns with the framework we draw on for our analysis, discussed in Section 3.

Our treebank annotation focuses mainly on the functional roles of words in the Irish

clause, such as subject or object, rather than the elements of constituents. Thus,

we are more concerned with identifying relationships between words and ensuring

that we are consistent in whatever labelling we choose to apply.
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2.2.2 Irish Morphology

Inflection in Irish mainly occurs through suffixation, but initial mutation through

lenition and eclipsis is also common (The Christian Brothers, 1988). Lenition is a

phonological change that softens or weakens the articulation of a consonant. The

eclipsis process renders voiced segments as nasalised and voiceless segments as being

voiced (Stenson, 1981, p.18). A prominent feature of Irish (also of Scottish Gaelic

and Manx), which influences inflection, is the existence of two sets of consonants,

referred to as ‘broad’ and ‘slender’ consonants (Ó Siadhail, 1989, p.9). Consonants

can be slenderised by accompanying the consonant with a slender vowel, either e

or i. Broadening occurs through the use of broad vowels; a, o or u. In general,

there needs to be vowel harmony (slender or broad) between stem endings and the

initial vowel in a suffix. See Example 5 for the effect of this process on two forms

of the verb buail. The verbal noun ending for buail is -adh. The stem is therefore

broadened to bual to ensure vowel harmony. In contrast, the impersonal form has a

slender suffix -eadh, which is in harmony with the slender form of the stem.

(5) buail ‘hit’ → ag bualadh na liathróide ‘hitting the ball’ (Verbal Noun)

buail ‘hit’ → buaileadh an liathróid ‘the ball was hit’ (Impersonal Form)

A process known as syncopation also occurs when words with more than one

syllable have a vowel-initial suffix added. See Example 6 where the verbs imir and

labhair drop the vowel(s) in the second syllable before adding a suffix.

(6) imir ‘to play’ → imŕım ‘I play’

labhair ‘to speak’ → labhráım ‘I speak’

Verbs Verbs inflect for number and person, as well as mood and tense. Verbs

can incorporate their subject, inflecting for person and number through suffixation.

Such forms are referred to as synthetic verb forms. Most verbs tend to incorporate a

subject when it is first person singular or plural. These synthetic forms are generally

restricted to the Present Tense, Imperfect Tense, Conditional Mood and Imperative
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Mood. See Example 7. In addition, verb tense is often indicated through various

combinations of initial mutation, syncopation and suffixation.

(7) scŕıobh ‘write’

scŕıobhaim ‘I write’

scŕıobhfaimid ‘we will write’

However, second person singular and plural subjects are incorporated in some

verb tenses and moods as show in Example 8.

(8) nigh ‘wash’

niteá ‘you used to wash’

ńıǵı! ‘(you pl.) wash!’

Tense is also marked by lenition on some verb forms, as per Example 9:

(9) dún ‘close’

dhún mé ‘I closed’

dhúnfainn ‘I would close’

Lenition occurs after the negative particle ńı, as per Example 10:

(10) tugaim ‘I give’

ńı thugaim ‘I do not give’

tabharfaidh mé ‘I will give’

ńı thabharfaidh mé ‘I will not give’

Eclipsis (initial mutation) occurs following clitics such as interrogative particles

(an, nach); complementisers (go, nach); and relativisers (a, nach) (Stenson, 1981,

pp. 21-26). Following on from the usage of the verb tabhair in Example 10, we can

see the effects of mutation in Example 11.

(11) an dtugann sé? ‘does he give?’

nach dtugann sé ‘that he does not give’.

go dtabharfadh sé ‘that he would give’
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Nouns While Old Irish employed several grammatical cases, Modern Irish uses

only three: Nominative, Genitive and Vocative. The nominative form is sometimes

regarded as the ‘common form’ as it is now also used for accusative and dative

forms. Nouns in Irish are divided into five classes, or declensions, depending on the

manner in which the genitive case is formed. In addition, there are two grammatical

genders in Irish - masculine and feminine. Case, declension and gender are expressed

through noun inflection. For example, páipéar ‘paper’ is a masculine noun in the first

declension. Both lenition and slenderisation are used to form the genitive singular

form: pháipéir. Other examples of this kind of inflection are given in Example 12.

(12) an dochtúir ‘the doctor’

cóta an dochtúra ‘the doctor’s coat’

an fheoil ‘the meat’

boladh an feola ‘the smell of the meat’

an coińın ‘the rabbit’

ainm an choińın ‘the rabbit’s name’

an siopa ‘the shop’

cúl an tsiopa ‘the back of the shop’

Máire ‘Mary’

a Mháire! ‘Mary!’ (Vocative)

In addition, possessive determiners cause noun inflection through lenition, eclip-

sis and prefixation. See Example 13.

(13) teach ‘house’

mo theach ‘my house’

ár dteach ‘our house’

ainm ‘name’

a hainm ‘her name’

a n-ainm ‘their name’
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Adjectives In general, adjectives follow nouns and agree in number, gender and

case. Depending on the noun they modify, adjectives can also inflect. The Christian

Brothers (1988, p.63) note eight main declensions of adjectives. They can decline

for genitive singular masculine, genitive singular feminine and nominative plural as

per Example 14.

(14) bacach ‘lame’

bacaigh (Gen.Sg.Masc)

bacáı (Gen.Sg.Fem)

bacacha (Nom.PL).

Comparative adjectives are also formed through inflection as shown in Exam-

ple 15.

(15) láidir ‘strong’, ńıos láidre ‘stronger’

déanach ‘late’, is déanáı ‘latest’.

Prepositions Irish has simple prepositions (e.g. ar ‘on’) and compound prepo-

sitions (e.g. in aghaidh ‘against’). Most of the simple prepositions can inflect for

for a pronominal object that indicates person and number (known as prepositional

pronouns or pronominal prepositions), thus including a nominal element. Compare

le and leis in Example 16:

(16) bh́ı sé ag labhairt le fear ‘he was speaking with a man’

bh́ı sé ag labhairt leis ‘he was speaking with him’

These forms are used quite frequently, not only with regular prepositional attach-

ment where pronominal prepositions operate as arguments of verbs or modifiers of

nouns and verbs, but also in idiomatic use where they express emotions and states.

See Example 17.
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(17) tá brón orm ‘I am sorry’

(lit. ‘is sorrow on-me’)

tá súil agam ‘I hope’

(lit. ‘is expectation with-me’)

Irish has been described as a noun-centered language (Greene, 1966), and nouns

are often used to convey the meaning that verbs would convey. Pronominal prepo-

sitions are often used in these types of structures, as shown in Example 18.

(18) bhain mé geit aisti ‘I frightened her’

(lit. extracted I shock from her)

bhain mé mo chóta d́ıom ‘I took off my coat’

(lit. extracted I my coat from me)

bhain mé úsáid as ‘I used it’

(lit. extracted I use from it)

bhain mé triail astu ‘I tried them’

(lit. extracted I attempt from them)

Emphatics and diminutives An emphatic suffix -sa/-se (both broad and slender

form) can attach to nouns or pronouns. It can also be attached to any verb that

has been inflected for person and number, and also to pronominal prepositions. See

Example 19.

(19) mo thuairim ‘my opinion’ → mo thuairimse ‘my opinion’

tú ‘you’(sg) → tusa ‘you’

cloisim ‘I hear’ → cloisimse ‘I hear’

liom ‘with me’ → liomsa ‘with me’
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In addition, the diminutive suffix -́ın can attach to all nouns to form a derived

diminutive form. The rules of slenderisation apply here also as shown in Example 20.

(20) buachaill ‘boy’ → buachailĺın ‘little boy’

tamall ‘while’ → tamailĺın ‘short while’

The inflectional processes in Irish we describe here give rise to data sparsity in

our treebank, which in turn affects the quality of the parser that is built on that

treebank. This is a phenomenon that has been shown to occur for many highly

inflected languages (Bohnet et al., 2013). In other words, due to the fact that there

can be many forms of one word, if a specific form does not appear in the treebank

(which is training data for the parser), then the parser is less likely to know how to

process it. We take steps to overcome this through the inclusion of the lemma form

(base form) of each word when training the parser. This is described in more detail

in Section 6.

2.3 Dependency Treebanks

A treebank is a corpus of text that has been annotated with syntactic information

describing the grammatical structure of each sentence. Primarily there are two kinds

of approaches to syntactic analysis – constituency analysis, in which a sentence is

divided up into hierarchical phrases or constituents, and dependency analysis, which

is based on extracting sets of labelled relations between pairs of words in a sentence.

As we will see in Chapter 3, the Irish Dependency Treebank’s syntactic annotations

are based on a dependency syntax annotation scheme.5 Thus, in this section, we

explain dependency syntax and show how this type of structural analysis can be

represented in a treebank. We only attempt to give an overview here; for more

detail we refer the reader to Kubler et al. (2009).

5We motivate this choice of representation in more detail in Section 3.1.1.
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2.3.1 An Overview of Dependency Syntax

Dependency structure grammars grew from a theory of structural syntax which

focused on connections and grammatical relations between words (Tesnière, 1959).

The syntactic structure of a sentence is described through defining a set of binary

relations between words. These binary relations are described as dependencies in

which one word (subordinate) is a dependent of another (governor). Current work in

this area refers to the pair as a head-modifier dependency relationship. Dependencies

are regarded as syntactic representations that focus on the relationship between

words in a sentence with regards to the functional role the words play. Dependency

structures are often represented as dependency graphs as per the example given in

Figure 2.3.

det subj root det obj

The girl bought the book

Figure 2.3: A typed dependency graph

We follow Kubler et al. (2009)’s definition of dependency graphs and dependency

trees, and outline the main properties here:

Sentences : S = w0w1.....wn

S denotes a sentence as a sequence of tokens (words). w0 is an artificial ROOT

word.

Nodes : V ⊆ {w0, w1, .....wn}

V is a set of the nodes (tokens) in the sentence for use as vertices in the depen-

dency graph to be defined.

Relations : R = {r1, ..., rm} is a set of possible dependency relation types that

can hold between two words in a sentence. r ∈ R where r is a relation type (or

arc label).
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In the case of typed dependencies, the relationship is marked by a function la-

bel, or relation type that identifies the grammatical role of the dependent in re-

lation to the head. For example, in the graph representation given in Figure 2.3,

there are four head-modifier relationships: det(girl,the), subj(bought,girl),

det(book,the), obj(bought,book). In other words, the is a determiner of girl,

girl is the subject of bought, the second the is a determiner of book and book is the

object of bought.

Arcs : A ⊆ V ×R× V :

A is a set of arcs through which nodes (V ) are connected, labelled with a relation

from R. An arc (wi, r, wj) ∈ A represents a dependency relation from head wi to

dependent wj, labelled with the relation type r. The direction of the arcs is usually

from the head to the dependent. Although, some representations choose the opposite

direction.

Arc Restriction : If (wi, r, wj) ∈ A then (wi, r′, wj) /∈ A, where wi, wj ∈ V ,

r, r′ ∈ R, and r 6= r′.

There can only be one dependency relation arc defined between two nodes.

Graphs : A dependency graph G = (V,A)

A dependency graph is a representation of a sentence, where each word in the

sentence is a node (V ), and directed edges, or arcs (A) link the nodes as head-

modifier dependency relations.

Trees : A dependency tree is a well formed dependency graph that originates out

of node w0 and has a spanning node set V = VS, which is the set that contains all

the words of a sentence.

Dependency trees have an artificial ROOT word w0 which is connected to the

root node in the sentence (any one of the nodes in V). Note that the root node is

labelled as root in some treebanks, and labelled as top in the IDT.
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• The spanning property of a dependency tree requires each node to have some

relevance to the dependency analysis of the entire sentence.

• A dependency tree G = (V,A) satisfies the single head property, which states

for all wi, wj ∈ V, if (wi, r, wj) ∈ A then there does not exist (wi′, r′, wj) ∈ A

Dependency graphs are an instance of directed acyclic graphs (DAGs) as there is

no way to follow from one token, through a sequence of edges, to loop back to that

original token. DAGs can allow a word to have more than one head. However, this

is not the case with dependency trees, as each word may have multiple dependents,

but only one head.

The Irish Dependency Treebank contains dependency trees like the example given

in Figure 2.4.

top det subj det obj

Cheannaigh an caiĺın an leabhar
Bought the girl the book

Figure 2.4: Dependency tree representation of Cheannaigh an caiĺın an leabhar ‘the
girl bought the book’

2.3.2 Projectivity

A dependency tree can be projective (which means that no arcs should cross) or non-

projective (with crossing arcs). Non-projectivity is shown to affect many languages

(Buchhloz and Marsi, 2006) and is required for capturing some languages, partic-

ularly those of freer word order. However, non-projectivity can cause problems for

some parsing algorithms. Some systems such as MaltParser take a pre-processing

step to use graph transformation techniques to produce non-projective structures be-

fore parsing (Nivre and Nilsson, 2005). Others (e.g. MSTParser (McDonald et al.,

2005)) can easily handle non-projective trees.
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In Irish, most sentences produce projective trees, yet non-projective structures

can occur. For example, non-projectivity can arise due to the relative freedom of

the positioning of oblique prepositional phrases. See Figure 2.5 for example. The

oblique argument acu ‘at-them’ is placed within the noun phrase suim sa Ghaeilge

‘interest in Irish’.

relparticle relmod subj obl padjunct obj

daoine a bhfuil suim acu sa Ghaeilge
people REL is interest at-them in-the Irish

‘people who have an interest in Irish’

Figure 2.5: Example of non-projective tree for an Irish sentence

2.3.3 Dependency Tree Data Formats

Parsing systems such as MaltParser (Nivre et al., 2006) and MSTParser (McDonald

et al., 2005) are language-independent systems that allow users to build parsing

models using their own choice of treebank. In order to train and test a parsing

system such as MaltParser, for example, the dependency tree structure needs to be

encoded in an easily-read format. The information available to the parser normally

contains: each token, its index in the sentence, its lemma, its part-of-speech tag,

(optional morphological data), the index of the head (where it attaches) and the

description of that attachment (dependency label). A statistical data-driven parser

can use this data as features when learning patterns in the training data, which we

discuss in more detail in Section 6.1.1.

There is a range of different formats used for various parsers, including: XML

as shown in Example 21, a space separated format where a sentence spans 3-4 lines

of meta-data like the MSTParser input in Example 22, or a tab-delimited format

such as the CoNLL-X format where each token in a sentence is on a new line,

each line containing part-of-speech information, dependency label and attachment

information, see Example 23.
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(21) <sentence id=“2” user=“malt” date=“”>

<word id=“1” form=“Cheannaigh” postag=”VERB” head=“0” deprel=“root”/ >

<word id=“2” form=“an” postag=“ART” head=“3” deprel=“det”/ >

<word id=“3” form=“caiĺın” postag=“NOUN” head=“1” deprel=“subj”/ >

<word id=“4” form=“an” postag=“ART” head=“5” deprel=“det”/ >

<word id=“5” form=“leabhar” postag=“NOUN” head=“1” deprel=“obj”/ >

</sentence>

(22) Cheannaigh an cailı́n an leabhar

V ART NOUN ART NOUN

root det subject det object

0 3 1 5 1

(23) 1 Cheannaigh Ceannaigh Verb VI _ 0 root _ _

2 an an Art Art _ 3 det _ _

3 cailı́n cailı́n Noun Noun _ 1 subj _ _

4 an an Art Art _ 5 det _ _

5 leabhar leabhar Noun Noun _ 1 obj _ _

The CoNLL-X format was introduced for a multilingual dependency parsing

Shared Task in the 2006 Conference on Natural Language Learning. This standard

format was implemented by all users in establishing a benchmark for evaluating

their parsers across multiple languages. Most statistical dependency parsers now

accept the CoNLL-X format as input, and also allow for easy conversion from their

default input format to this more widely used format.

The parse format of Example 23 can be interpreted as follows: Each word (token)

is represented on one line.6 The token Cheannaigh ‘bought’ is a Verb and is the root

of the sentence. The value of the head of the root is always 0. The second token is

the determiner an. Its head is the noun caiĺın, which is token #3. The relationship

6Each sentence in a text is separated by a blank line.
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between these two tokens is det (determiner). The third token, caiĺın, is the subject

(subj) modifier of the first token (#1), and so on.

The dependency label names used in these examples are taken from the de-

pendency label tagset for the Irish Dependency Treebank and is discussed in more

detail in Section 4. Label tagsets vary across labelling schemes and treebanks, but

are usually intuitive descriptions of the type of relationship between a head and its

modifier. The IDT is based on the CoNLL format, as per Example 23.

2.4 Summary and Conclusion

In this chapter, we have provided an overview of both the Irish language and de-

pendency treebanks – two subjects that are central to this thesis.

In the Irish language overview, we explained the status of Irish, an official and

national language, and how it came to be a minority language in Ireland, secondary

to English. We also showed that its minority status has led to a lack of research in

Irish syntax, along with unresolved theoretical issues in the literature. Our analysis

of these linguistic features of the language played an important role in our treebank’s

development. We also provide an overview of the morphological complexity of the

Irish language, a feature that impacts data sparsity in our treebank.

In the dependency treebank overview, we have explained dependency syntax and

how a sentence analysed with a dependency grammar can be represented through

dependency graphs. As this thesis also deals with the practical implementation of

dependency syntax, we also highlighted some of the various data formats of depen-

dency trees that can be processed by data-driven parsers.

In the next chapter, we introduce the Irish Dependency Treebank and the ap-

proach we took to its development.
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Chapter 3

Irish Dependency Treebank

Treebanks provide a rich representation of linguistic phenomena of a language and

are a solid platform for linguistic analysis. In corpus linguistics, linguists use tree-

banks to test linguistic theories and study syntactic structures. Treebanks are also

invaluable resources for the development of NLP applications, specifically data-

driven statistical parsers. These parsers learn patterns of syntactic structure through

machine learning processes, as we will see later in Chapter 6.

In this chapter, we report on the development of the first treebank for Irish. We

refer to the treebank as the Irish Dependency Treebank (IDT). The current status of

the treebank is at 1,018 dependency trees1 and 23,684 tokens. The average sentence

length is 23 tokens.

In Section 3.1, we begin by reporting on the varieties of treebanks currently

available, and the various factors that influence their design and contribute to their

fundamental differences. These factors include syntactic representations, labelling

schemes, and the types of resources used. We then step through how each of these

main factors influenced the development of the IDT.

As human annotators were involved with the development of this treebank, in

Section 3.2, we also report on two inter-annotator agreement studies, along with

workshops that took place between those studies to discuss and finalise our linguistic

1Since the final parsing experiments, two sentences with only one token have been removed as
they are not trees.
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analysis of Irish. We show how this conference-in-progress approach to treebank

development helped to improve our annotation guide and labelling scheme.2

3.1 Building the Irish Dependency Treebank —

the starting point

Treebanks exist for many languages (e.g. German TIGER Treebank (Brants et al.,

2002), Finnish (Haverinen et al., 2010), French (Abeillé et al., 2003)). Some lan-

guages have multiple treebanks that are based on varying annotation representa-

tions, linguistic formalisms and content. For example, the Penn-II Treebank (Mar-

cus et al., 1994) contains (among others) a collection of articles from the Wall

Street Journal (WSJ) that has been annotated according to a constituency gram-

mar scheme. The same corpus has been converted to various other annotation

representations including an LFG-inspired dependency grammar (Parc 700 Depen-

dency Treebank (King et al., 2003)) which is based on a subsection of section 23

of the WSJ, and Combinatory Categorial Grammar (CCG Bank (Hockenmaier and

Steedman, 2007)) based on the entire Penn Treebank. In addition, the LinGO Red-

woods treebank, which is parsed according to the Head-driven Phrase Structure

Grammar (HPSG) framework (Oepen et al., 2002), is a collection of text from vary-

ing domains and sources such as Wikipedia, e-commerce, the tourist domain and

a semantically annotated subset of the Brown Corpus (Miller et al., 1993). More

recently, there has been a notable increase in research on less formal online text,

motivating the development of a corpus for web-based text only (The English Web

Treebank).3 This corpus has been annotated with constituency structures and has

also been converted to a dependency structure representation (Silveira et al., 2014).

All of these treebanks vary according to different considerations that are taken

2Later, in Section 6.3, we also show how these updates to the labelling scheme and treebank
also resulted in an increase in parsing accuracy.

3Linguistic Data Consortium release LDC2012T13, https://catalog.ldc.upenn.edu/

LDC2012T13
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during development, including:

• Type of Syntactic Representation

There are a number of syntactic representations or grammar formalisms to

choose from when designing a treebank, which are based on varying linguistic

theories and formalisms. For example, a phrase structure grammar represen-

tation hierarchically denotes constituents and phrases within sentences, while

a dependency grammar labels connections between words within a sentence

according to their functional roles.

• Labelling Scheme

Labelling schemes define how linguistic structures are represented and labelled

in a treebank. They are often closely linked to the chosen syntactic representa-

tion or chosen formalism. They are also influenced greatly by specific linguistic

phenomena in the language in question.

• Resources Used

There are various ways of assisting treebank development by leveraging from

existing NLP resources such as POS taggers, morphological analysers and

existing corpora.

The following is a summary of the way in which these factors shaped the devel-

opment of the Irish Dependency Treebank.

3.1.1 Choice of syntactic representation

Many of the earlier treebanks contain phrase structure constituent trees. In con-

stituency structure representations, nodes can be either terminals (lexical items) or

non-terminals (syntactic categories) as part of a hierarchical structure that identifies

phrases or constituents. The constituent tree in Figure 3.1 is an example of parsed

text from the Wall Street Journal section of the Penn-II Treebank (Marcus et al.,
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1994). The sentence “Others have tried to spruce up frequent-flier programs” has

been fully parsed to not only indicate that the sentence (S) consists of an noun

phrase (NP) and a verb phrase (VP), but also to show the subconstituents which

make up these constituents.

While modern dependency grammars date back to the late 1950’s and were even

adopted in the early days of computational linguistics (Hays, 1964), constituency

grammars, however, continued to dominate the field of linguistics and parsing for

a significant period of time. Mel’čuk (1988) proposed a number of reasons for this,

in particular the fact that during that time, work on modern syntax and thus con-

stituency grammars was led by English speaking linguists (e.g. Noam Chomsky)

and that English was their main source of research data. Word order is central to

constituency structures and is congruous to the strict word order of English. He also

argued that there was a lack of interest in semantics, which constituency grammar

looks to almost as an afterthought, generating semantic structures from syntactic

structures.

This constituency analysis contrasts with dependency graphs, where each node

is a terminal, representing a word in the sentence. Figure 3.2 shows how a depen-

dency graph represents dependency relations between words, as per the Stanford

dependency scheme (de Marneffe and Manning, 2008). For example, others is the

subject of tried, and spruce is the head of an open complement which is dependent

on the matrix clause.

Dependency grammars have become more popular in the last twenty years and

dependency treebanks have been developed for various languages including Czech

(Hajič, 1998; Böhmová et al., 2001), Arabic (Hajič and Zemánek, 2004), Danish

(Kromann, 2003) and Turkish (Oflazer et al., 2003), to name a few.

We have chosen to build a dependency rather than constituency treebank for

Irish. We outline our reasons for this here:
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S

NP

NNS

Others

VP

VBP

have VP

VBN

tried

S

VP

TO

to

VP

VB

spruce

PRT

RP

up

NP

JJ

frequent-flier

NNS

programs

Figure 3.1: Constituency representation of parsed text

nsubj aux top infmod xcomp prt amod dobj

Others have tried to spruce up frequent-flier programs

Figure 3.2: Stanford dependency representation of parsed text

Better handling of freer word order The increase in popularity of dependency

grammars follows from the same arguments that linguists like Tesnière (1959) and

Mel’čuk (1988) originally proposed, and were later reinforced in the early days of

dependency parsing by Covington (1990). That is, that dependency grammars are

less anglo-centric. They are language independent and especially more suited to

languages with a freer word order. Dependency nodes represent each word in a

sentence. These nodes are terminals and do not require the abstract representations

such as NPs (noun phrases) or InflPs (inflection phrases) that make up additional

non-terminal nodes required by constituency structures.
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Node simplicty While Irish does not have a free word order, its under-researched

VSO structure is more suited to a dependency analysis than a constituency analysis.

As we have previously discussed in Section 2.2.1, an examination of the existing lit-

erature in Irish theoretical syntax (including, but not limited to McCloskey (1979);

Stenson (1981) and Carnie (2005)), shows a lack of sufficient agreement on the

syntactic representation of some fundamental linguistic phenomena. Their syntac-

tic analyses differ even at a basic level, such as for example, the disagreement on

whether Celtic languages have a flat VSO structure or an underlying SVO struc-

ture. In fact, among those who advocate an underlying SVO structure, McCloskey

(1983), Doherty (1992) and Bobaljik and Carnie (1996), for example, disagree as to

what type of movement or raising is involved to realise the VSO surface structure.

Discussions like these on topics such as deep structure or movement (represented

by traces), for example, would have been highly relevant for a constituency-based

treebank constructed on Chomskyan principles. The question of the existence of a

VP constituent would also strongly impact a constituency analysis. It is more feasi-

ble therefore, in our treebank development, to identify the functional relationships

within sentences (dependencies) than to try to address all the unsolved complexities

of Irish syntax, which would lie outside the scope of our work. As a dependency

grammar is regarded as less restrictive than a phrase structure grammar, it is thus

more conducive to parsing a language such as Irish with a such a divergent (VSO)

word order.

In Section 2.3.2, we noted, for example, how it is possible in Irish to insert a

prepositional phrase into a noun phrase, even though it is attached at a higher level.

In constituency grammars, these type of instances are regarded as discontinuous

constituents, and they pose difficulties for phrase structure parsing. In contrast,

some dependency parsers, such as McDonald et al. (2005), for example, can easily

handle these structures.
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Clean mapping to semantic predicate-argument structure In addition, by

using dependency grammars, it is easier to extract semantic information and details

of functional roles within a grammatical structure. We are able to answer questions

such as ‘WHO did WHAT to WHOM?’. Parsers based on these representations play

an important role in the development of applications such as Question-Answering

systems (Shen, 2007; Verberne et al., 2008), Machine Translation (Och et al., 2004;

Quirk et al., 2005; Xu et al., 2009; Cai et al., 2014), Quality Estimation for Machine

Translation (Amigó et al., 2009; Kaljahi et al., 2013), Grammatical Error Detection

(Tetreault et al., 2010), Educational Applications (Higgins et al., 2014), Discourse

Analysis (Fisher and Roark, 2007), Text Summarisation (Bhaskar and Bandyopad-

hyay, 2010; Kikuchi et al., 2014), Information Retrieval (Carmel et al., 2014) and

Sentiment Analysis systems (Johansson and Moschitti, 2010; Bakliwal et al., 2013).

We therefore see the decision of building a dependency treebank for Irish as pro-

viding the option of making a more direct use of syntactic dependencies in future

Irish NLP research. This is also aligned with the current momentum in the research

community towards dependency parsing NLP application.

While this approach requires fewer theoretical assumptions about previously un-

seen structures, we were still left with a significantly challenging task, as we outline

later in Section 4.

3.1.2 Choice of dependency labelling scheme

Dependency labelling schemes vary widely across treebanks. Nivre (2015) proposes

that this large variation can be attributed to different theoretical preferences among

treebank developers, or most particularly, as a result of descriptive grammatical

traditions that have been established over time for specific languages. While the

traditions can hold similarity across languages, there are often subtle differences in

terminology and notation. In essence, there is no standard approach to designing a

dependency labelling scheme for any one language.

We have based our dependency labelling scheme on that of Çetinoğlu et al.
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(2010). This scheme was inspired by the functional relations defined within Lexical

Functional Grammar (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001),

a theory that incorporates c(onstituent) and f(unctional) structures. We provide an

example Irish sentence in Example 24. Figure 3.3 shows a c-structure representa-

tion of this. The sentence is broken into constituents in a hierarchical structure.

Figure 3.4, on the other hand, shows an LFG f-structure of the same sentence that

focuses on the grammatical functions within the sentence structure. This repre-

sentation shows that the predicate (in this case the main verb) has two arguments

– f1 and f2. These arguments co-reference the subject (SUBJ) and oblique (OBL)

arguments, whose internal structures in turn describe their features and arguments.

(24) Chuir mé isteach ar an phost sin

Put me in on the job DEM4

‘I applied for that job’

S

V

Chuir

NP

N

mé

Part

isteach

PP

P

ar

NP

Art

an

N

phost

Part

sin

Figure 3.3: C-structure representation of Chuir mé isteach ar an phost sin ‘I applied
for that job’. (Bresnan, 2001)

Çetinoğlu et al. (2010) build upon an LFG f-structure Annotation Algorithm

(AA) (Cahill et al., 2004, 2008) to create LFG-inspired dependencies. The AA es-

sentially converts the output of a constituency parser (c-structures) into f-structures.

For the purpose of comparative parsing experiments, Çetinoğlu et al. (2010) extend

this work by creating an LFG dependency parsing pipeline. The pipeline takes the

AA output (f-structures) and converts them into dependency trees in order to train

a dependency parser. This conversion is not straightforward, however as there are
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PRED ‘cur-isteach〈f1, f2〉’
LOC +

TENSE PAST

SUBJ f1

PRED ‘PRO’

NUM SG

PERS 1



OBLAR f2


CASE OBLAR

OBJ

PRED ‘post’

DEF +

DEIXIS DISTANT





Figure 3.4: LFG F-structure representation of Chuir mé isteach ar an phost sin ‘I
applied for that job’ (adapted from Bresnan (2001))

fundamental differences between the nature of f-structures, which are represented

by Directed Acyclic Graphs (DAGs) and bilexical labelled dependency trees.

These differences meant that the conversion involved multiple changes to the

representation: (i) As we saw in Section 2.3.1, it is a requirement of dependency trees

that each token is labelled. LFG f-structures can represent some words (e.g. verb

particles) as features of predicates, and these needed to be extracted and represented

at token level. (ii) The output of the AA can result in multiple heads for non-local

dependencies (e.g. relative clauses). As dependency trees do not allow multiple-

head dependencies, these are removed before being converted to trees. (iii) Similarly,

dependency trees only allow a single root, whereas f-structures may have multiple

roots. Pre-processing steps are also taken to address this.

The trees are created using a conversion dependency tagset of 25 labels. The

tagset is based on functional labels from the LFG f-structures, along with newly

introduced labels required for tokens that are not overtly represented in the abstract

f-structures (e.g. possmarker: possessive marker ’s). The conversion tagset is

presented in Table 3.1. The labels marked with asterisks are dependencies that

are not part of basic LFG theory but have been introduced for the generation of

dependency trees.

LFG is relatively language-independent due to the abstract nature of the f-

44



adjunct adjunct poss possessive
app apposition *possmarker possessive marker ’s
comp complement *prepositionhead MWE’s in LFG
coord coordination item *punctuation punctuation
*dep dependency (dummy) quant quantifier
det determiner relmod relative modifier
focus focus subj subject
obj object *toinfinitive to infinitive
obj2 2nd object (obj-th) *top root of dependency tree
obl oblique object topic topic
*obl2 2nd oblique object topicrel relative topic
obl-ag oblique agent xcomp open complement
*particlehead head of particle

Table 3.1: LFG-inspired conversion tagset (Çetinoğlu et al., 2010). Asterisks indi-
cate newly introduced dependencies that are not part of LFG theory.

structure component, which is the main motivation behind the multilingual LFG

ParGram project (Butt et al., 2002). Thus, although the LFG-inspired dependency

scheme was designed to describe English sentences, its roots in LFG theory make

it a good starting point for developing resources for a language such as Irish with

syntactic structures that are significantly different to English. We extend the LFG

conversion tagset to create our own tagset of 47 labels. We discuss our Irish tagset

in more detail in Section 4.

As discussed earlier in Section 2.2, there is relatively little research conducted on

Irish syntax when compared to other better-resourced languages. However, a limited

range of Irish linguistic phenomena has been covered to date in LFG research that are

relevant to the design of our annotation scheme. For example, Asudeh (2002) focuses

on an analysis of Irish preverbal particles and adjunction, Attia (2008) reports on

an analysis of copula constructions taking Irish as an example and Sulger (2009b)

carried out an analysis of Irish copula and cleft constructions. These previous studies

also serve as valuable starting points for the design of our annotation scheme.

Annotation schemes can vary greatly not only in the dependency labelling (e.g.

infmod vs toinfinitive) but also in their structural analysis. Compare Figures 3.2

(Stanford) and Figure 3.5 (LFG-inspired). Note that the verbs which are regarded

as the root of the sentence differ across the two formalisms. The Stanford analysis
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regards the verb tried as the head of two dependents – have and spruce. LFG

theory however, regards have as the head of (governor of) its dependent tried,

which subsequently governs spruce.

subj top xcomp toinfinitive xcomp particlehead adjunct obj

Others have tried to spruce up frequent-flier programs

Figure 3.5: LFG-inspired dependency representation of parsed text

Other key linguistic phenomena, such as co-ordination and punctuation are

treated differently across various formalisms. For example, by comparing Figure 3.6

and Figure 3.7, we can see the different ways in which coordination is handled across

these two formalisms. Figure 3.6 shows a representation of Stanford coordination

dependencies. This type of coordination is referred to as right-adjunction, where

the first coordinate, the cat, is the head of the coordination and the rest of the

phrase, and the dog, is adjoined to the right. This follows the argument that

left/right branching conjunctions are often asymmetrical, with the dependencies

between words on left-branching structures being shorter than right-branching.

In contrast, Figure 3.7 shows how LFG labels the coordinating conjunction and

as the head, with the coordinates the cat and the dog as its dependents. This

approach is often more favoured for retaining scope information.

det nsubj cc det conj aux top prt

The cat and the dog have run away

Figure 3.6: Stanford dependency representation of parsed text
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det coord subj det coord top xcomp prt

The cat and the dog have run away

Figure 3.7: LFG-inspired dependency representation of parsed text

3.1.3 Developing upon existing NLP tools

When undertaking the development of a new NLP resource, particularly in the case

of minority languages, it is important to build upon existing resources when possible

and to leverage findings of previous studies.

In recent years, some progress has been made in the collection and development of

linguistic resources for Irish. A 30 million word corpus of Modern Irish text (NCII)5

was developed in 2004 for Foras na Gaeilge.6 In addition, corpus annotation tools,

namely a morphological analyser (Uı́ Dhonnchadha et al., 2003), a part-of-speech

(POS) tagger (Uı́ Dhonnchadha and van Genabith, 2006) and a shallow parser (Uı́

Dhonnchadha and van Genabith, 2010) have been developed. A 3,000-sentence

gold standard POS-annotated corpus was produced as a by-product of this work.

These sentences were randomly selected from the NCII corpus and consist of text

from books, newspapers, websites and other media, forming a solid representation

of Modern Irish language data. We use this POS-tagged corpus as a basis for our

treebank. The tags are based on the PAROLE Morphosyntactic Tagset (ITÉ, 2002).

Uı́ Dhonnchadha (2009) also made available a small corpus of 225 chunked Irish

sentences. These sentences represented a test suite for a shallow parser (Uı́ Dhon-

nchadha and van Genabith, 2010) which is based on Constraint Grammar Depen-

dency Mapping Rules (Karlsson, 1995) and implemented using Xerox Finite State

Tools.7 The dependency analysis for this parser was based on Constraint Gram-

mar (CG), developed by Karlsson (1995). We present an example Irish sentence

in Example 25. Figure 3.8 shows how CG rules annotate tokens of this sentence

5New Corpus for Ireland – Irish. See http://corpas.focloir.ie
6A government body in Ireland responsible for the promotion of the Irish language –

http://www.forasnagaeilge.ie
7See http://xrce.xerox.com/ for more details on XFST
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with grammatical functions such as @SUBJ (meaning the token is the subject) and

dependency relations such as @>V (meaning the token is dependent on the verb to

the right). Figure 3.9 shows the same chunked output without morphological tags.

Finite State regular expressions are then applied (using Xerox XFST) to the anno-

tated text to mark linguistic chunks. Chunks are groups of words that represent

phrases, and are labelled as NP (noun phrase), V (verb), PP (prepositional phrase),

for example. Dependency relation tags identify links between tokens within chunks,

not between chunks.

(25) D’ fhan siad ansin le fiche bliain

PAST stay they there with twenty years

‘They stayed there for twenty years’

[S

[V D’ do+Part+Vb+@>V fhan fan+Verb+VI+PastInd+Len+@FMV]

[NP siad siad+Pron+Pers+3P+Sg+Masc+Sbj+@SUBJ NP]

[AD ansin ansin+Adv+Loc+@ADVL]

[PP le le+Prep+Simp+@PP_ADVL [NP fiche fiche+Num+Card+@>N

bliain bliain+Noun+Fem+Com+Sg+@P< NP] PP]

. .+Punct+Fin+<<< S]

Figure 3.8: Example of chunked output (with morphological tags) for D’fhan siad
ansin le fiche bliain ‘They stayed there for twenty years’

[S

[V D’ @>V fhan]

[NP siad]

[AD ansin]

[PP le [NP fiche @>N bliain @P< ]]

. < S]

Figure 3.9: Example of chunked output for D’fhan siad ansin le fiche bliain ‘They
stayed there for twenty years’

The shallow nature of this chunking parser means that the dependency analy-

sis does not extend to cover coordination, prepositional attachment, long-distance

dependencies or clausal attachment. However, these 225 invented sentences cover
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the major syntactic phenomena of Irish and provided a valuable starting point for

this treebank development. Many of our attachment rules within phrases are closely

aligned with this particular grammar.

Our first step involved reviewing the dependency analysis for the shallow parser

and adapting it to fit our chosen dependency scheme, as discussed in Section 3.1.2.

We modified and extended the parses in this small chunked corpus to produce deep,

full syntactic parses. Figure 3.8 is example output from the shallow parser for D’fhan

siad ansin le fiche bliain ‘They stayed there for twenty years’. The sentence is parsed

into 4 chunks; V (Verb), NP (Noun Phrase), AD (Adverb) and PP (Prepositional

Phrase). This output also indicates the kind of data available to us in the POS-

tagged corpus that we use in our treebank. For example, the token D’ is tagged

with surface form (D’ ), lemma (do), coarse-grained POS-tag (Part – particle) and

fine-grained POS-tag (Vb – verbal).

Using the chunked corpus as a starting point highlighted the type of linguis-

tic analysis required for defining a new dependency annotation scheme. It also

prompted discussions around the type of formalism our scheme should be based on,

as discussed in more detail in Section 3.1.2. We then added these fully parsed sen-

tences to the 3,000 gold standard POS-tagged corpus and subsequently randomised

the data so that the relatively simple 225 sentences were dispersed throughout the

corpus8.

vparticle subj advadjunct padjunct quant pobj

D’ fhan siad ansin le fiche bliain
PAST stayed they there with twenty years

‘They stayed there for twenty years’

Figure 3.10: The fully parsed sentence of Figure 3.8

Figure 3.10 presents our extended parse analysis for the same sentence as Fig-

8The hand-crafted nature of the 225 sentences rendered them more simple structures than
naturally occurring sentences in the corpus. This random dispersion prevented a chunk of the
treebank being biased towards short, easy to parse sentences.
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ure 3.8, showing in particular adverbial and prepositional attachment to the verb.

A deeper syntactical analysis such as this provides a more informative linguistic

description of Irish text. Consider, for example, the attachment of prepositional

phrases. A shallow parse output does not identify the phrase that is being modified

by the prepositional phrase. For example, an ambiguous sentence will have differing

prepositional attachment – (i) to the verb as in Figure 3.11 or (ii) to the object of

a prepositional phrase as in Figure 3.12.

pobj padjunct pobj adjadjunct padjunct pobj

ag obair le seirbh́ıśı poibĺı sa Ghaeltacht
at working with services public in-the Gaeltacht
‘working [in the Gaeltacht] [with public services]’

Figure 3.11: Prepositional phrase ambiguity, where the head of the preposition sa
is obair.

pobj padjunct pobj adjadjunct padjunct pobj

ag obair le seirbh́ıśı poibĺı sa Ghaeltacht
at working with services public in-the Gaeltacht
‘working with [public services in the Gaeltacht]’

Figure 3.12: Prepositional phrase ambiguity, where the head of the preposition sa
is seirbh́ıśı.

Figure 3.13 demonstrates how this type of ambiguity cannot be resolved with a

shallow parser. We can see that there is no connection between the aspectual phrase

ag obair and either of the prepositional phrases.

3.2 Inter-annotator Agreement

When working on a manual annotation or classification task, it is important to report

inter-annotator agreement (IAA). This is a calculation of the normalised proportion
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[PP-ASP ag [NP obair @P<]]

[PP le [NP seirbhı́sı́ poiblı́ @P< ]]

[PP sa [NP Ghaeltacht @P< ]]

Figure 3.13: Example of chunked output for ag obair le seirbh́ıśı poibĺı ‘working with
public services in the Gaeltacht’

of times annotators agree in their choice of labelling, which reveals the consistency of

annotators. It is argued that this measurement can indicate usefulness or reliability

of the data, and as we show below, identify gaps in a labelling scheme’s annotation

guide.

Carletta (1996)’s report on agreement assessment among NLP classificatory tasks

found that simple calculations of agreement cited by researchers at that time were

uninterpretable and misleading, as they did not account for the level of agreement

expected by chance. The suggested solution was to adopt reliability measures from

other fields, such as content analysis and medicine, that report an agreement mea-

surement that corrected for chance. The Kappa coefficient of agreement, which

normalises for chance, is now widely regarded as a standard for calculating IAA for

corpus annotation tasks (Di Eugenio and Glass, 2004; Artstein and Poesio, 2008).

This method of measurement has been adopted for assessing inter-annotator agree-

ment in tasks such as discourse annotation (Poesio, 2004), word-sense annotation

(Bruce and Wiebe, 1998) and POS annotation (Mieskes and Strube, 2006), for ex-

ample.

At the time of our inter-annotator study, we observed that while agreement

scores were reported in some of the dependency treebank literature, there did not

appear to be a standard approach to measuring IAA for dependency parse anno-

tation. Reports vary from “Labeled Attachment Kappa”9 at a chunk level (Gupta

et al., 2010), to multiple Kappa results (e.g. Uria et al. (2009)) and double-blind ex-

periments (Voutilainen and Purtonen, 2011). In addition, Bhat and Sharma (2012)

report a Kappa score for annotators of an Urdu dependency treebank. More re-

9Note: the authors do not state how this labeled attachment Kappa is calculated.
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cently, Ragheb and Dickinson (2013) report IAA on the annotation of an English

learner treebank, marked up with multiple layers of annotation: morphosyntactic,

morphological, syntactic dependencies and subcategorisation information. They use

MASI (Measuring Agreement on Set-valued Items (Passonneau et al., 2006)) as a

metric to report on sets of unlabelled attachment agreement, labelled attachment

agreement and label only agreement. They note that Kappa is not used in their

calculations as the number of classes from which annotators need to choose is so

large that chance agreement is unlikely. Since our study, Skjærholt (2014) has in-

troduced a new metric that calculates agreement between dependency labels and

attachments.

Below, we discuss the calculation of inter-annotator agreement on the Irish De-

pendency Treebank using labelled attachment scores, unlabelled attachment scores

and the Kappa coefficient. We describe how subsequent workshops, where disagree-

ments were analysed and discussed, lead to improvements of the annotation scheme

and guidelines. We also report a second (improved) IAA score based on these up-

dates.10

3.2.1 IAA and the Irish Dependency Treebank

Our two annotators are computational linguists with an advanced fluency of Irish

and understanding of Irish syntax.11 We calculated an inter-annotator agreement

(IAA) measure on 50 sentences12 of the Irish Dependency Treebank to assess consis-

tency between both of our annotators (IAA-1). This task differs somewhat to other

annotation tasks in that the agreement of the (head, label) pair of a dependency

annotation cannot be measured in the same way as the agreement of single-value

tags (e.g. POS-tags, discourse units, word-senses).

10This supports the findings of Hahn et al. (2012), who showed that iterative rounds of annotation
and refinement of guidelines can be a successful approach to achieving accurate annotation of a
corpus of named entity types.

11The primary annotator is the author, and the second annotator is Dr. Jennifer Foster, PhD
supervisor at Dublin City University.

12After having manually annotated 300 sentences in our randomised corpus, we chose the next
sequential 50 sentences for this study.
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For that reason, we divided the assessment into two measurements:

(i) calculation of accuracy on (head, label) pair values through LAS/ UAS scores,

taking the primary annotator’s set as gold-standard data. LAS or Labelled Attach-

ment Score is the percentage of words for which the two annotators have assigned

the same head and label. UAS or Unlabelled Attachment Score is the percentage of

words for which the two annotators have assigned the same head.

(ii) a kappa measurement of agreement on dependency tags (label values). There

are two ways of calculating kappa – by assigning equal (Siegel and Castellan, 1988)

or separate (Cohen, 1960) probability distributions among annotators. We report

on Cohen’s kappa coefficient measurement here for agreement between dependency

label types. Our calculations do not take punctuation into account.

The Kappa statistic is defined as:

κ =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of observed agreement among annotators, and

P (E) is the proportion of expected agreement. By correcting for P (E), this mea-

surement accounts for the fact that the annotators are expected to agree a propor-

tion of times just by chance. Di Eugenio and Glass (2004) present the calculation

of Cohen’s P (E) as:

P (E) =
∑

j
pj,1 × pj,2

where pj,a is the overall proportion of items assigned to a label j by annotator a.

3.2.2 IAA Analysis and Treebank Update

The results of our two IAA studies are presented in Table 3.2. The Kappa score

for IAA-1 is 0.7902 (where P (A) = 0.8036 and P (E) = 0.0640), and the score for

IAA-2 is 0.8463 (where P (A) = 0.8550 and P (E) = 0.0569). We use Landis and

Koch (1977)’s metric shown in Table 3.3 for interpretation of our Kappa results.
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Kappa (labels) LAS UAS

IAA-1 0.7902 74.37% 85.16%

IAA-2 0.8463 79.17% 87.75%

Table 3.2: Inter-annotator Agreement results.

Kappa value Strength of Agreement
< 0.00 None
0.00 – 0.20 Slight
0.21 – 0.40 Fair
0.41 – 0.60 Moderate
0.61 – 0.80 Substantial
0.81 – 1.00 Almost Perfect

Table 3.3: Landis and Koch’s interpretation of Cohens’s Kappa

We can see that our agreement scores increase from Substantial (0.79) in IAA-1

to Almost Perfect (0.85) in IAA-2. Here we discuss the relationship between the

two inter-annotator agreement studies.

We held three workshops with our two annotators and one other fluent Irish

speaker/linguist to analyse the results of IAA-1. We took both annotators’ files

from IAA-1 to assess the types of disagreements that were involved. The analy-

sis highlighted many gaps in the annotation guide along with the requirement for

additional labels or new analyses.

Following the analysis of the disagreements between annotators, we updated our

annotation scheme and the annotation guide to address these issues. The updates

are discussed in more detail in Section 4.

With our updated scheme, we then carried out a second IAA assessment (IAA-2)

on a second set of 50 sentences from our randomised corpus. The results are shown

in the second row of Table 3.2. A notable improvement in IAA-2 results, with

Kappa increasing from 0.79 to 0.85, demonstrates that the post-IAA-1 analysis,

the resulting workshop discussions and the subsequent updates to the annotation

scheme and guidelines were highly beneficial steps towards improving the quality of

the treebank.
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3.2.3 Sources of annotator disagreements

The analysis of IAA results provided information valuable for the improvement of

the annotation scheme. This analysis involved the comparison of both annotators’

files of 50 sentences to see where they disagreed and the types of disagreements

involved. Close examination of the disagreements allowed us to categorise them

as: (i) Interpretation disagreements (ii) Errors (iii) Gaps in annotation guide (iv)

Outstanding issues with the dependency scheme. These are discussed below.

3.2.3.1 Interpretation disagreements

The treebank data was extracted from the NCII which contains many examples of

Irish legislative text. Some of these sentences are over 200 tokens in length and use

obscure terminology or syntactic structures. Both annotators encountered difficul-

ties in (i) interpreting these sentences and (ii) analysing their structures. Sources of

disagreement included long distance dependencies and coordinated structures. The

example provided in Example 26 is legal text from the official Irish translation of

text from an EU Legal document:

(26) Má dhéantar iarratas nó doiciméad eile nós imeachta a seoladh chuig an gCúirt

Chéadchéime a thaisceadh de dhearmad

‘Where an application or other procedural document addressed to the Court

of First Instance is lodged by mistake’.

Annotator 1 interpreted the verb seoladh ‘address’ as being in the infinitive

form, and part of a complex autonomous verb construction, attached to the matrix

verb dhéantar. Annotator 2 correctly annotated a seoladh as a relative modifier

of iarratas nó doiciméad ‘application or document’, and a thaisceadh ‘to lodge’ as

contributing to the autonomous verb construction. The confusion arose from the

similar structure of infinitive verbs (a seoladh) and relative autonomous forms (a

thaisceadh): ‘a’ + verbal noun, along with the unusual legalese use of an autonomous

form déan ‘to do’ with an infinitive verb, resulting in a long distance dependency.
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Similarly, autonomous relative forms caused confusion for the interpretation of

the sentence in Example 27:

(27) Iriseoir agus craoltóir ı́ Seosaimh́ın Nı́ Bheaglaoich a tógadh i mBaile na bPoc,

Contae Chiarráı.

A1: ‘Seosaimh́ın Nı́ Bheaglaoich, who grew up in Ballynabuk, Co. Kerry, is a

journalist and broadcaster’

A2: Seosaimh́ın Nı́ Bheaglaoich, is a journalist and broadcaster who grew up

in Ballynabuk, Co. Kerry’

Annotator 1 interpreted this sentence as ‘Seosaimh́ın Nı́ Bheaglaoich, who grew

up in Ballynabuk, Co. Kerry, is a journalist and broadcaster’. Annotator 2 inter-

preted it as ‘Seosaimh́ın Nı́ Bheaglaoich, is a journalist and broadcaster who grew

up in Ballynabuk, Co. Kerry’. The contrasting interpretations resulted in different

head attachments for the relative modifier tógadh ‘grew up’.

3.2.3.2 Errors

Human error played a relatively small role as both annotators carried out careful

reviews of their annotations. Nevertheless, some discrepancies were due to an anno-

tator applying the wrong label even though they had been aware of the correct one

in previous annotations.

3.2.3.3 Gaps in the annotation guide

Gaps relate to a lack of sufficient examples in the annotation guide or lack of coverage

for certain structures. For example, our analysis of IAA-1 confusions revealed that

differences between the labels padjunct (prepositional modifier) and obl (oblique)

had not been described clearly enough. The annotation guide was updated accord-

ingly.
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3.2.3.4 Outstanding issues in the dependency scheme

We also noted during the workshops that there were still some issues we had yet

to fully resolve. Other outstanding issues involved linguistic phenomena that had

not arisen in the data during earlier annotations and thus required discussion at

this stage. The final decisions surrounding these analyses are presented in detail in

Section 4.

3.3 Summary and Conclusion

In this chapter, we have described the steps involved with the development of the

Irish Dependency Treebank. We started by providing a brief overview of the various

types of treebanks available. We noted the various factors that influence the devel-

opment of each of these treebanks and how these factors also influenced decisions

related to the development of the IDT.

Firstly, we discussed two main syntactic representations, constituency and de-

pendency trees. We explained the background of dependency syntax and how it

has become a more popular approach to linguistic analysis and NLP in the past

two decades. We reported the reasons that motivated us to choose to use a depen-

dency syntax analysis in the IDT. We showed how the language-independent nature

of a syntactic dependency analysis lends itself to our work on the Irish language,

especially in light of the lack of consensus over constituency analyses of Irish in

theoretical syntax.

We also explained our choice of labelling scheme, one that is heavily influenced by

Çetinoğlu et al. (2010)’s LFG-inspired labelling scheme for English. The f-structure

component of LFG, like dependency grammars, abstracts from phrase structures

and focuses more on functional roles. We therefore easily adapted this scheme to

our dependency analysis of Irish. We showed how the structure of our dependency

analysis is influenced by LFG in the cases of coordination and clausal heads.

Like most NLP resources, a treebank relies heavily on the availability of other
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NLP and language resources. We showed how existing resources such as a wide-

domain corpus of Irish, a morphological analyser, a POS tagger, a POS-tagged

corpus and shallow chunker proved to be an invaluable basis on which we could

carry out our own research and build our treebank and parser.

Finally, we reported on two inter-annotator (IAA) studies carried out to assess

the agreement level between our two treebank annotators. We showed how the

metrics for reporting IAA results for dependency parsing vary in the literature. Our

results are reported through LAS, UAS and Cohen (1960)’s kappa score, showing an

increase in agreement from 0.79 (Substantial) to 0.85 (Almost Perfect) between

the first and second study. We explained this increase through updates we made

to the treebank and our annotation guide following a series of workshops where

both annotators and one other linguist analysed the disagreements found in the

first study. Our work showed that the benefits of conducting IAA studies not only

includes assessment of accuracy and objectivity of the annotators, but also a medium

by which a labelling scheme can be assessed. We conclude that this is a valuable

stage in treebank development.

More information on the contents of the treebank, (including label and tag statis-

tics, projectivity etc.), are presented in Appendix C.

In the next chapter we will discuss the specific linguistic considerations that were

required to develop an Irish dependency treebank. We will show how many of these

decisions, which were outcomes of the IAA study described here, have influenced

the design of our labelling scheme.
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Chapter 4

Defining the IDT Annotation

scheme

In the previous chapter, we noted that a dependency structure analysis is applied

to the Irish Dependency Treebank (IDT). We also discussed how our dependency

annotation scheme is based on the LFG-inspired labelling scheme of Çetinoğlu et al.

(2010) (refer to Section 3.1.2). One of our main challenges involves deciding on

an appropriate linguistic analysis of Irish for a treebank, a question that has not

been previously explored. In order to design our annotation scheme, we drew on

existing analyses of Irish syntax (as outlined in Section 2.2.1) and examined the

ways in which these analyses applied to our chosen formalism. Through synthesising

both theoretical work and computational representations of syntactical structures,

we have designed a broad-coverage syntactic analysis and labelling scheme that (i)

covers at least all linguistic phenomenon that we have encountered thus far in the

treebank data, and (ii) covers a number of syntactic characteristics in the Irish

language that grammar writers have noted as unusual or problematic.

This chapter presents some aspects of the Irish Dependency Annotation Scheme

in detail. Firstly, in Section 4.1, we present our labelling scheme. Secondly, in

Section 4.2 we explain in detail the linguistic and annotation analysis that required

specific consideration for Irish while designing the annotation scheme and adapting
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it from that of Çetinoğlu et al. (2010). We also adopt some labels (e.g. csubj and

pobj) from the Stanford Typed Dependencies Scheme (de Marneffe and Manning,

2008). For the complete IDT annotation scheme, see Appendix A.

It should be noted here that there is an overlap between syntax, semantics and

morphology as criterion for deciding on the labelled relations in our tagset. This is

partly a result of the annotation schemes which influence our scheme. It also arises

from the varying types of extractable information we want to identify, and expect

will be most valuable for understanding, processing and interpreting Irish text.

4.1 Irish Dependency Labelling Scheme

The final labelling scheme for the IDT has 47 labels and is presented in Table 4.1.

Our scheme contains a hierarchical structure with 7 parent labels and 17 sub-labels.

The hierarchical structure provides an option for mapping to a less fine-grained

scheme if required. Only the pred label is not used in the standard version of the

treebank, but is an optional label to which its sub-labels can be mapped.

4.2 Language-specific choices

The following is a summary of the language-specific decisions we made regarding

the annotation scheme that were driven by linguistic nuances of the Irish language.

We highlight the motivation behind these analyses within our annotation scheme.

Some of these choices were made during three workshops that took place as part

of an inter-annotator agreement study, as discussed in Section 3.2. The following

points should be noted regarding the discussion below:

• Compound prepositions are tokenised as single tokens: (e.g. in aghaidh ‘against’,

os cionn ‘above’). All other words are tokenised on white space. This means

that contractions such as d’ith ‘ate’ are split (e.g. d’ ith).
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dependency label function
top root
addr addressee
adjunct adjunct

adjadjunct adjectival modifier
advadjunct adverbial modifier
nadjunct nominal modifier
padjunct prepositional modifier
subadjunct subordinate conjunction
advadjunct q adverbial adjunct (question)

app noun in apposition
aug augment pronoun
comp closed complement
coord coordinate
dem demonstrative pronoun
det determiner

det2 post or pre-determiner
for foreign (non-Irish) word
obj object

pobj object of preposition
vnobj object of verbal noun
obj q object (question)

obl oblique object
obl2 second oblique object
obl ag oblique agent

particle particle
relparticle relative particle
cleftparticle cleft particle
advparticle adverbial particle
nparticle noun particle
vparticle verb particle
particlehead particle head
qparticle quantifier particle
vocparticle vocative particle

poss possessive pronoun
pred predicate

ppred prepositional predicate
npred nominal predicate
adjpred adjectival predicate
advpred adverbial predicate

punctuation internal and final punctuation
quant quantifier
relmod relative modifier
subj subject

csubj clausal subject
subj q subject (question)

toinfinitive infinitive verb marker
xcomp open complement

Table 4.1: The Irish Dependency Treebank labels: sublabels are indicated in bold,
indented below the parent label.

• All of the examples we provide here as illustrations are taken or adapted from

the IDT.
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• The label top is used to indicate the root of a sentence. If the example provided

is only a fragment or a phrase, no label is used.

4.2.1 Labelling of predicates

In the early stages of designing the annotation scheme, we labelled all predicates of

both the copula is and the substantive verb b́ı as xcomp. The predicate complement

function is referred to as xcomp (open complement) in LFG (Bresnan, 2001, p. 267).

The complement type can be X = V(erb), N(oun), A(dverb) or P(reposition). Both

Dalrymple et al. (2004) and Sulger (2009b) discuss the use of xcomp in copular

constructions in particular. For example, they note how xcomp can be used in an

LFG f-structure for the French sentence elle est petite ‘she is small’.

However, in Irish, open complement verbs (non-finite clauses and progressive

verb phrases) are also labelled as xcomp in our scheme.1 In order to differentiate

these different kinds of functions, we adopted a new pred (predicate) label hierarchy

of npred (nominal), ppred (prepositional), adjpred (adjectival) and advpred (ad-

verbial). While a more fine-grained labelling scheme can result in more data sparsity,

it also results in a more precise description of Irish syntax. The hierarchical struc-

ture allows for mapping back to a more coarse-grained tag if necessary. Figure 4.1

gives an example of a predicate in a copular construction: An leatsa an teach? can

be literally translated as ‘Is it yours the house?’. Possession can be denoted through

idiomatic phrases such as this, using prepositional phrases or inflected prepositions

such as leat ‘with you’. In this example, leatsa contains the emphatic suffix -sa.

Figure 4.2 gives an example of a predicate with a substantive verb, where déanta

‘made’ is a verbal adjective or ‘past particle’.

4.2.2 Irish copula

A copula is a word which links a subject and a predicate. In some languages the

copula is regarded as a verb (copular verb), even though it might not always present

1LFG uses the grammatical function xcomp to represent non-finite complements (Carnie, 2007).
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top ppred det subj punctuation

An leatsa an teach ?
COP with-you-EMPH the house ?

‘Is the house yours?’

Figure 4.1: Copula construction with prepositional predicate.

top subj adjpred advadjunct

Tá tréan-iarracht déanta anseo
Be-PRES big-effort made here

‘A big effort has been made here’

Figure 4.2: Substantive verb construction with adjectival predicate.

the same behaviour as regular verbs. In English, the copula is the verb ‘to be’. In

Irish, however, there is a distinction between the substantive verb b́ı ‘to be’, which

inflects for tense, mood and person as per all Irish verbs, and the copula is, which

only has two tensed forms – present/future and past/conditional.

Bı́, as a verb, uses separate particles in negative and interrogative constructions

with all tense and mood forms. Some examples are given in Example 28 (where the

particles are bolded).

(28) tá tú ‘you are’

ńıl tú ‘you are not’

an bhfuil tú ‘are you?’

bh́ı tú ‘you were’

ńı raibh tú ‘you were not’

nach raibh tú ‘were you not?’

beidh tú ‘you will be’
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an mbeidh tú ‘will you be?’

nach mbeidh tú? ‘will you not be?’

bheifeá ‘you would be’

an mbeifeá ‘would you be?’

nach mbeifeá? ‘would you not be?’

The copula is uses its own forms in these constructions as is shown in Example 29.

The main forms are: is (positive – present/ future), ńı (negative – present/ future),

ba (positive – conditional/ past), ńıor (negative – conditional/ past), an (interrog-

ative/ positive – present/ future), ar (interrogative/ positive – conditional/past),

nach (interrogative/ negative – present/ future), nár (interrogative/ negative – con-

ditional/past).

(29) is maith leat ‘you like’

ńı maith leat ‘you don’t like’

ba mhaith leat ‘you would like’

ńıor mhaith leat ‘you would not like’

an maith leat? ‘do you like?’

ar mhaith leat? ‘would you like?’

nach mhaith leat? ‘do you not like?’

nár mhaith leat? ‘would you not like?’

Irish copula constructions present interesting questions when being defined by

dependency relations. The order of elements is in general: copula, predicate (new

or focussed information), and subject (The Christian Brothers, 1988, p.123). The

equative (identification) copula example in Figure 4.3 translates to English as ‘You

are the teacher’. However non-intuitive to an English speaker, following The Chris-

tian Brothers (1988) we identify tusa ‘you’ as the predicate and múinteoir ‘teacher’

as the subject. The Christian Brothers (1988, p.124) explain this role-labelling by
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the fact that it answers the question ‘Who is the teacher?’. The answer in Irish

reads literally as ‘The teacher is you’.

In addition, it is worth considering that the interrogative form of this sentence

is An tusa an múinteoir? ‘Are you the teacher’ (lit. ‘Is the teacher you?’). It is

not possible to swap the elements in this instance to *An an múinteoir thú?. It is

only possible to swap the elements in a predicative construction with ‘you’ as the

subject, if the predicate ‘teacher’ is indefinite (new information): An múinteoir thú?

‘Are you a teacher?’.

It may be worth noting here that in some analyses (e.g. Carnie (1997)), the

Irish copula in this construction is regarded as a complementizer particle which

links two noun phrases, but not labelling either element as a subject or predicate,

and therefore not identifying either as a focussed or unfocussed dependent. We do

not consider this unlabelled analysis, since, according to the dependency scheme we

have adopted, all relations must be labelled, and we also want to differentiate the

roles of each of the noun phrases.

Our analysis defines the copula as the head of the construction, with the subject

and predicate as its dependents.

top npred det subj

Is tusa an múinteoir
COP you-EMPH the teacher

‘You are the teacher’

Figure 4.3: Dependency tree for Irish copula equative construction.

We follow this copula-predicate-subject analysis as per Uı́ Dhonnchadha (2009),

which applies to other constructions that we list here and describe in detail below:

• classificatory constructions: Is lá deas é ‘It is a nice day’

• ownership constructions: Is liomsa é ‘It is mine’
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• fronting constructions: Is ise a chonaic sé ‘It is she whom he saw’

(see Section 4.2.4)

• identification constructions: Is iad na buaiteoiŕı ‘They are the winners’

• idiomatic use: Is maith liom tae ‘I like tea’

Classificatory constructions The Christian Brothers (1988) note that classifi-

cation sentences are used to tell us what a person or thing is. The predicate is

always indefinite. See Figure 4.4 for example.

top npred adjadjunct subj

Is lá deas é
COP day nice it

‘It is a nice day’

Figure 4.4: Dependency tree for classificatory constructions.

Ownership constructions Ownership can be denoted through the use of both

the substantive verb b́ı and the copula. In copula ownership constructions, the

preposition le is used, and can incorporate an inflected object pronoun. See Fig-

ure 4.5 for an example of use with the inflected preposition liomsa.2

top ppred subj

Is liomsa é
COP with-me it

‘It is mine’

Figure 4.5: Dependency tree for ownership constructions.

Identification constructions In identification sentences, the subject cannot be

indefinite and the predicate is always a definite noun or pronoun (The Christian

2See Section 4.2.8 for more detail on these prepositions.
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Brothers, 1988). It is important to note the presence of an agreement pronoun

in the case of identification sentences, where the copula precedes a definite NP.

Stenson (1981, p.96) refers to this pronoun as a ‘subpredicate’ and Doherty (1997)

refers to it as an ‘augment pronoun’ – a term which we adopt here. The augment

pronoun agrees in both number and gender with the NP. We make the dependency

attachment between the two, with the pronoun modifying the NP, using the label

aug, as shown in Figure 4.6.

top aug det npred dem det subj punctuation

An iad na daoine siúd na buaiteoiŕı ?
COP they the people those the winners ?

‘Are those people the winners?’

Figure 4.6: Dependency tree for identification constructions with an augment pro-
noun.

Idiomatic constructions The copula can also be used in idiomatic constructions

to express feelings or desires (Mac Congáil, 2002). See Figure 4.7 for example.

top adjpred obl subj

Is maith liom tae
COP good with-me tea

‘I like tea’

Figure 4.7: Dependency tree for an Irish copula predicate with oblique argument.

These constructions follow the order of copula – predicate – subject, where the

predicate head is normally an adjective or noun with a prepositional dependent.

We attach this prepositional phrase (often in the form of prepositional pronoun)

to the predicate as an obl argument. Note that this differs somewhat from Sulger
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(2009b)’s LFG analysis which regards this attachment as adjunct. We however, do

not regard the preposition as an optional modifier in these idiomatic clauses.

4.2.3 Copular subject complements

In copular constructions, the grammatical subject may take the form of a finite verb

clause. We initially labelled the head of the clause (the verb) as a subject (subj),

in alignment with the analysis discussed in Section 4.2.2. However, we now choose

instead to highlight the clausal nature of these finite verb subjects with a more

specific label, i.e. subject complement (csubj3 – a subtype of subj). See Figure 4.8

for example.

top adjpred vparticle csubj subj

Is dócha go bhfillfidh siad
Be likely COMP return-FUT they

‘It is likely that they will return’

Figure 4.8: Dependency structure with subject complement labelling.

4.2.4 Cleft constructions – cleftparticle

Clefting or fronting is a commonly used structure in the Irish language. Elements

are fronted to predicate position to create emphasis or focus. Irish clefts differ from

English clefts in that there is more freedom with regards to the type of sentence

element that can be fronted (Stenson, 1981, p.99). In Irish, the structure is as

follows: Copula, followed by the fronted element (Predicate), followed by the rest of

the sentence (Relative Clause). The predicate can take the form of a noun phrase

(headed by pronoun, noun, verbal noun), or adjectival, prepositional or adverbial

phrases. For example:

3This label is also used in the English Stanford Dependency Scheme (de Marneffe and Manning,
2008).

68



• Adverbial Fronting:

Is laistigh de bhliain a déanfar é: ‘It’s within a year that it will be done’

• Pronoun Fronting:

Is ise a chonaic siad inné: ‘It is she whom they saw yesterday’

Stenson (1981, p.111) describes the cleft construction as being similar to copular

identity structures with the order of elements as Copula, Predicate, Subject. This is

the basis for the cleft analysis provided by Sulger (2009b) in the Irish LFG literature.

We follow this analysis but with a slight difference in the way we handle the a.

According to Stenson, the a is a relative particle which forms part of the relative

clause. However, there is no surface head noun in the relative clause – it is missing

an NP. Stenson refers to these structures as having an ‘understood’ nominal head

such as an rud ‘the thing’ or an té ‘the person/the one’, e.g. Is ise [an té] a

chonaic siad inné. When the nominal head is present, it becomes a copular identity

construction: She is the one who they saw yesterday. In the absence of a head noun

and because we do not want to introduce empty elements in the dependency tree, we

label the verb as the head of the clause. To distinguish the a in these cleft sentences

from those that occur in relative clauses with surface head nouns, we introduce a

new dependency label cleftparticle and we attach a to the verb chonaic using

this relation. This is shown in Figures 4.9 and 4.10.

top npred cleftparticle subj subj advadjunct

Is ise a chonaic siad inné
COP she REL saw they yesterday

‘It is she whom they saw yesterday’

Figure 4.9: Dependency structure for cleft construction (nominal fronting).

69



top ppred pobj cleftparticle subj subj obj

Is sa pháirc a chonaic mé é
COP In-the park REL saw I him

‘It is in the park that I saw him’

Figure 4.10: Dependency structure for cleft construction (prepositional fronting).

4.2.5 Copula drop

It is possible to drop the copula from most sentences when it is not “marked by

features of tense or mood, negation or interrogation” (Stenson, 1981, p.94) or when

there is an idiomatic predicate (Stenson, 1981, p.125). Despite deletion, the copula

is understood. As the copula is normally the head of a clause in our analysis, we

propose that the predicate can raise to head position when the copula is dropped.

See Figure 4.11 for an example of how the drop is analysed.

top cleftparticle subj subj advadjunct

Ise a chonaic mé inné
she REL saw I yesterday
‘(It is) she whom I saw yesterday’

Figure 4.11: Dependency structure for cleft construction with copula drop.

4.2.6 Copula – Complementiser form

If a copula is the head of a complement phrase, by merging with the complementiser

go it adopts a complementiser form (Stenson, 1981, p.93): gur in the present-future

form (gurb before vowels) and gur(bh) in the past-conditional form. As the verb is

the governor of a complementiser in general, the contracted form is attached to the

matrix clause as comp.
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top comp npred dem det quant subj

Thiocfadh gurbh é seo an chéad chéim
come-COND COMP-COP it this the first step

‘It would come to be that this was the first step’

Figure 4.12: Dependency structure for copula complementiser form.

4.2.7 Copular subordinator

In some cases, the copula head of a subordinate clause can combine with a subor-

dinate conjunction (e.g. má ‘if’), resulting in one contracted word form (e.g. más).

In these cases, we use the label subadjunct, treating the unit as an inflected form

of the conjunction. The would-be dependents of the copula thus become dependents

of the copular subordinator. For example, see the attachments of npred (nominal

predicate) and xcomp (open complement) in Figure 4.13.

subadjunct npred obl obj toinfinitive xcomp punctuation top subj ...

Más féidir leis é a aistriú , beidh sé ...
If ability with-him it to translate , be-FUT it ...

‘If he can translate it, it will be...’

Figure 4.13: Dependency structure for copular-subordinator.

4.2.8 Prepositional attachment

While prepositional phrase attachment has already been extensively studied in other

languages, Irish possesses some unusual prepositional behaviour that requires some

discussion here.
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Irish has simple prepositions (e.g. le ‘with’, ar ‘on’, ag ‘at’), and compound

prepositions (e.g. in aghaidh ‘against’, os cionn ‘above’). Most of the simple prepo-

sitions can inflect for person and number to indicate a personal pronoun, thus includ-

ing a nominal element (prepositional pronouns/ pronominal prepositions). When

comparing leat ‘with you’ (Figure 4.14) and leis an bhfear ‘with the man’ (Fig-

ure 4.15) it is clear that such inflection creates data sparsity within the treebank.

top obl

Dar leat
Seems with-you
‘According to you’

Figure 4.14: Attachment of prepositional pronoun

The PAROLE prepositional pronoun part-of-speech coarse and fine-grained tags

are Pron (pronoun) Prep (preposition). We choose to see the relationship between

prepositional pronouns and their heads (normally a verb) as a prepositional at-

tachment as opposed to a nominal attachment. Therefore we use either padjunct

(prepositional adjunct – when the attachment is optional) or obl (oblique – when

the attachment is not optional and the prepositional pronoun is closely tied to the

verb).

top obl det pobj

Dar leis an bhfear
Seems with the man

‘According to the man’

Figure 4.15: Attachment of oblique preposition.

Prepositional phrases are also used in idiomatic expressions for denoting psycho-

logical states and ownership (Stenson, 1981, pp 57,98). These usually follow the

pattern of Tá NP ag/ar NP. ‘NP is at/on NP’. For example Tá bron orm ‘I am

sorry’ (lit. sorrow is on me) and Tá peann agam ‘I have a pen’ (lit. A pen is at me).

See Figure 4.16 for this analysis. See also Section 4.3 for other examples of copular

idiomatic use with prepositions.
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top nsubj obl

Bh́ı leisce orthu
Be-PAST laziness on-them

‘They were lazy’

Figure 4.16: Attachment of idiomatic oblique preposition.

Progressive aspectual phrases represent another interesting preposition function.

As presented by Uı́ Dhonnchadha (2009), these types of phrases, such as Tá sé ag

iascaireacht ‘He is fishing’ are constructed using the substantive verb Tá ‘is’ as an

auxiliary, along with a non-finite complement (a prepositional phrase consisting of

a preposition ag ‘at’ and a verbal noun iascaireacht ‘fishing’). The verbal nature of

these types of prepositional phrases means that they cannot be labelled as adjuncts,

which is often the case for prepositional attachment. Instead, we regard them as

predicates. As discussed in Section 4.2.1, non-verbal predicates such as prepositional

phrases can be labelled as open complements (xcomp) in LFG. While examples

of prepositional phrase predicates can be found in English (e.g. ‘She kept out of

the argument’), they are used in limited circumstances. In contrast, periphrastic

constructions like this involving prepositional phrase predicates occur frequently in

Irish. See in Figure 4.17 for progressive aspectual dependency representation.

top subj xcomp pobj

Tá sé ag iascaireacht
Is he at fishing

‘He is fishing’

Figure 4.17: Dependency tree for Irish progressive aspectual phrase.

4.2.9 Prepositions and complement phrases

Verbal noun complements are negated by the preposition gan. In these cases where

infinitive phrases follow a preposition, we attach the verbal noun (infinitive verb) to

the preposition. There were two options available to us for labelling this attachment.
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Either (i) as per all other infinitive phrase cases, attach as xcomp, or (ii) treat the

infinite verb as an object of the preposition pobj. Given its verbal noun part of

speech, we choose pobj as is shown in Figure 4.18.

obj nadjunct toinfinitive pobj obl pobj

gan iad féin a bheith ar fáil
without them self to be on available

‘Without them being available’

Figure 4.18: Dependency structure for attachment of complement phrases to prepo-
sitions.

4.2.10 Gerund object attachment

The attachment of objects of verbal nouns in progressive aspectual phrases also re-

quired consideration. Take the sentence Bh́ı sé ag lorg tacáıochta ‘He was seeking

support’ for example. Two attachment options appeared possible at first: (i) at-

taching the object tacáıochta to the preposition ag or (ii) attaching it to the verbal

noun lorg. Given that the object noun is in the genitive case, we choose to regard

them as modifiers of the verbal noun and attach them accordingly. Thus, Bh́ı sé

ag lorg tacáıochta could be interpreted literally as ‘He was at support-seeking’. We

label the relation as vnobj. See Figure 4.19 for a progressive phrase example.

top subj xcomp pobj vnobj

Bh́ı sé ag lorg tacáıochta
Be-PAST he at seeking support

‘He was seeking support’

Figure 4.19: Dependency structure for gerund object attachment.
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4.2.11 Gerund adverb attachment

We also considered two options for adverbial attachment to verbal nouns in progres-

sive aspectual phrases. Take the phrase ag teacht ar ais ‘coming back’ for example.

Two attachment options appeared possible: (i) attaching the adverbial ar ais to

the preposition ag or (ii) to the verbal noun teacht. Consideration was given to the

fact that verbal nouns can also play a nominal role, i.e. teacht ar ais can occur

independently of ag as a subject or object. See Examples 30 and 31.

(30) Bh́ı [teacht ar ais] ar intinn aici

Was [coming back] on mind at-her

‘She had returning in mind’

(31) Bh́ı a lán deacrachtáı ag baint leis an [teacht ar ais]

Was PART many difficulties at relating with the [coming back]

‘There were a lot of difficulties associated with the return’

For this reason, we make the attachment between the verbal noun and the adverb.

See Figure 4.20 for example.

top subj xcomp pobj advadjunct

Bh́ı śı ag teacht ar ais
Be-PAST she at coming back

‘She was returning’

Figure 4.20: Dependency structure for gerund adverb attachment.

4.2.12 Complement phrase attachment to verbal nouns.

In keeping with other attachments to verbal nouns in progressive aspectual phrases,

we choose to attach the head of a dependent complement phrase to the verbal noun

instead of ag. Figure 4.21 shows how an infinitive complement phrase a mbealach

a dhéanamh ‘to make their way’ is attached to the verbal noun of a progressive

aspectual phrase (iarraidh).
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top subj xcomp pobj poss obj toinfinitive xcomp

Bh́ı siad ag iarraidh a mbealach a dhéanamh
Be-PAST they at trying their way to make

‘They were trying to make their way’

Figure 4.21: Dependency structure for complement phrase attachment to verbal
nouns

4.2.13 Objects of infinitive phrases

We regard the infinitive verb form (verbal noun) as the head of an infinitival phrase.

An object of the infinitive verb is labelled obj, but note that there are structural

differences when compared to English; the object precedes the verb: a mbealach a

dhéanamh ‘to make their way’ (lit. ‘their way to make’). Figure 4.21 also shows

this.

4.2.14 Objects of autonomous verbs

Irish does not have an equivalent to the English passive construction (The Christian

Brothers (1988, p.120) and Stenson (1981, p.145)). Stenson identifies autonomous

verbs and stative passives (see Section 4.2.15) as constructions that are used instead.

While only transitive verbs can be used in the English passive voice, all Irish verbs

(apart from the copula) have an autonomous form. Additionally, English passives

can specify agents (e.g. ‘the door was closed by him’), yet Irish autonomous verbs

cannot express agents (e.g. *dúnadh an doras aige).

The subject is not specified (overt) in these impersonal verb forms, but under-

stood. It is argued that the third person subject is marked as an inflection in the

autonomous form (Stenson, 1981, p.147). For example scaoileadh iad translates

roughly as ‘they were released’, but literally translates as ‘somebody released them’.

The accusative case is marked in Irish pronouns, and in this example iad ‘them’

(the accusative pronoun form of siad ‘they’) confirms an object role. The object
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therefore does not assume subject position as is the case in English passives, and

thus we use the obj label. See Figure 4.22 for example.

vparticle top obj subadjunct comp obj

Nı́ thugtar ı́ocáıochtáı mura n-iarrtar iad
NEG give-AUTO-PAST payments if-not request-AUTO-PAST them

‘Payments were not given if not requested’

Figure 4.22: Dependency structure for autonomous verbs

4.2.15 Oblique agents of stative passives

Stative passive constructions consist of a substantive verb b́ı and a verbal adjective.

Unlike autonomous verbs, these constructions may specify an external agent, that

is, the person or thing that caused the action or state. We introduce a fine-grained

oblique label (obl ag) to mark the agent of the verbal adjective. The agent is

essentially a prepositional phrase using the preposition ag ‘at’ or its various forms

inflected for person and number. For example, in Figure 4.23, we can see that an

leanbh ‘the child’ is the agent, and is the object of the preposition ag ‘at’.

det relmod adjpred obl ag det pobj

an méid atá ithe ag an leanbh
the amount REL-be-PRES eaten at the child

‘The amount the child has eaten’

Figure 4.23: Dependency structure for internal comma and quotation marks

4.2.16 Relative particle

Asudeh (2002) provides an overview of some of the disagreements in Irish syntax

literature regarding the role of the relative particle a. McCloskey (1979, p.12) regards
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it as a complementiser, putting it into the same category as go, and its variants nach,

nár, gur as referred to in Section 4.2.6. Sells (1984) argues that this is a preverbal

particle marking resumptive pronouns, and Stenson (1981, p.34) and The Christian

Brothers (1988, pp. 143–146) refer to them as relativisers. We view their role as

relativisers (indirect and relative particles) but do not mark the resumptive pronoun

role in our analysis, i.e. we do not label them according to the functional role of

the noun to which they refer (e.g. subject, object).4 Instead we mark them as

relparticle indicating their particle features, yet differentiating them from other

preverbal particles such as interrogative particles (e.g. an) and negative particles

(e.g. ńı).

This analysis extends to both the direct and indirect particle a and their negative

variants nach, nár (see Figure 4.24), along with relatives that occur after preposi-

tions (e.g. inar, as a – see Figure 4.25). When relative particles are merged with a

verb form (e.g. atá), the relmod label is used.

Note that this relative particle labelling does not apply to particles in wh-

questions such as Cad a d’ith sé ‘What did he eat?’ (see Section 4.2.21 for further

explanation).

quant dem relparticle relmod subj obj obl

ón chéad lá sin ar leag mé súil ort
from first day DEM on-which lay I eye on-you

‘From the first day I laid eyes on you’

Figure 4.24: Dependency structure for indirect relative particles

4This differs from the Universal Dependencies analysis we follow in Section 5.2.2.2
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det relparticle relmod subj det quant obj nadjunct padjunct quant pobj

an rás inar rith sé na 400 m deiridh i 55 soic
the race REL ran he the 400 m last in 55 seconds

‘The race in which he ran the last 400m in 55 seconds’

Figure 4.25: Dependency structure for relative particles following prepositions

4.2.17 English chunks

If an English word occurs alone within Irish text, and it has been correctly pos-

tagged as a syntactic component of the sentence (i.e. not tagged as Foreign), then

the dependency label used for the attachment of this word reflects its syntactic role

within the sentence.

However, for a string of two or more English words, the first word of the string

is parsed as though it is an Irish word, and the remaining English words attach to

it using the label for. See Figure 4.26. Note that there are relatively few cases of

English in the IDT, and they are mainly cases of quotations or untranslated titles.

top det nadjunct subj punct. obj for for punct. obl

Thug an Tiarna Longueville ‘ that general Jail-Deliverer ’ air
Give-PAST the Lord Longueville ‘ that general Jail-Deliverer ’ on-him

‘Lord Longueville called him ‘that general Jail-Deliverer’ ’

Figure 4.26: Dependency structure English chunks
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4.2.18 Internal punctuation

Punctuation can vary across annotation schemes. In general, final punctuation is

usually a dependent of the root of the sentence. However, internal punctuation

rules can vary. For example, some dependency analyses, such as the conversion5 of

the TIGER treebank (Brants et al., 2002) to dependency structures attaches each

punctuation token to the token to the left. Others, such as the Universal Dependency

scheme (Nivre et al., 2015) determines punctuation attachment according to its type

(e.g. separating coordinated units, preceding or following subordinated units, or

paired punctuation).

Our analysis of internal punctuation is as follows:

• Internal commas, colons (:), semi-colons (;) and forward slashes (/) are at-

tached to the head of the immediately following phrase (Figure 4.27).

• Quotation marks of direct speech are attached to the prompting verb (e.g.

arsa/ dúirt ‘said’) (Figure 4.27). All other quotation marks are treated as

paired punctuation.

• Paired punctuation (parenthesis): the head of the phrase within parentheses

is the head of both the opening and closing brackets (Figure 4.28).

• Coordinator: Sometimes, punctuation (e.g. commas, forward slashes) are used

as coordinators. These are discussed in more detail in Section 4.2.20.

4.2.19 Multiple coordination

As discussed in Section 3.1.2, we follow an LFG-inspired analysis of coordination,

the coordinating conjunction is the head, and the dependents are the coordinate

phrases. Problems arise when there are multiple coordinates and it is not clear how

to combine them. This multiple use of ‘and’ in a single sentence is more common

5Tiger2Dep conversion tool, available at: http://www.ims.uni-stuttgart.de/forschung/

ressourcen/werkzeuge/Tiger2Dep.en.html
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punctuation comp subj ppred pobj punctuation punctuation top subj

‘ Beidh mé ar ais ’ , arsa Arnie
‘ Be-FUT me at back ’ , said Arnie

‘I’ll be back, said Arnie’

Figure 4.27: Dependency structure for internal comma and quotation marks

adjadjunct det nadjunct punctuation nadjunct nadjunct punctuation

Áras Nua-Ealáıne na hÉireann ( Baile Átha-Cliath )
Building Modern Art the Ireland ( City Dublin )

‘The Irish Museum of Modern Art (Dublin City)’

Figure 4.28: Dependency structure for parenthesis

and acceptable in Irish than in English. In cases of clustered coordination that are

unequal in number, we treat the second group as a cluster – see Figure 4.29.

coord subj nadjunct obl top coord subj obj coord coord subj obj

Tháinig beirfean oilc orm agus lean mé é agus bhuail mé é
Come-PAST boiling anger on-me and follow I him and hit I him

‘A boiling anger came over me and I followed him and I hit him’

Figure 4.29: Dependency structure for clustered coordination

4.2.20 Punctuation as a coordinator

It is common in Irish to use a comma instead of a coordinating conjunction. In these

cases, we are faced with the question of how to analyse these types of coordination
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as the coordinator is usually labelled with the role of its coordinates. We allow

punctuation (including ‘/’ as ‘or’) to be treated as a coordinating conjunction. See

Figure 4.30 for example.

subadjunct vparticle comp subj coord adjadjunct coord

fad is a bh́ı duine óg , lúfar
long and PRT be-PAST person young , athletic

‘As long as a person was young and athletic’

Figure 4.30: Dependency structure for coordinate punctuation

4.2.21 Wh-questions

Notwithstanding the observation that WH-questions are syntactically similar to cleft

sentences (Stenson, 1981, p.107), we choose to treat them differently so that their

predicate-argument structure is obvious and easily recoverable. Instead of regard-

ing the WH-word as the head (just as the copula is the head in a cleft sentence),

we instead regard the verb as the sentential head and mark the WH-element as a

dependent of that verb, labelled as subj q, obj q or advadjunct q. An example

of obj q is in Figure 4.31. Also note that the rest of the structure is similar to a

relative clause. However, we label the a particle as vparticle to differentiate them

from relative particles in regular relative clauses.

obj q vparticle top det subj obl

Cad a déarfaidh an fear liom
WH-Q REL say-FUT the man with-me

‘What will the man say to me?’

Figure 4.31: Dependency structure for question construction

When there is no verb present, however, WH-elements such as cad, for example,

should be treated as an interrogative copula. See Figure 4.32 for example.
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top npred subj

Cad é sin
Cop it that

‘What is that?’

Figure 4.32: Dependency structure for question construction without a verb

4.3 Summary and Conclusion

In this chapter we have presented the final label tagset for the Irish Dependency

Annotation Scheme. We show how, while the tagset is fine-grained and contains

47 labels, it is also possible to map it, if required, to a more coarse-grained set (21

labels) as a result of the hierarchical nature of some of our label types.

We have also highlighted and discussed in detail many of the linguistic phenom-

ena in the Irish language which required significant consideration when designing

the annotation scheme. We have also discussed the various studies in the literature

that have helped with the analyses of many of these linguistic features.

In the next chapter, we discuss how we map this annotation scheme to two

universal annotation schemes (developed subsequently to this work) for purposes of

cross-lingual studies.
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Chapter 5

Universal Dependencies

The hypothesis of a Universal Grammar (UG) (Chomsky, 1986) is an ongoing topic

of controversy in the field of linguistics. The underlying belief of UG is that humans

are born with an innate ability to understand the structure of languages and that

grammar rules are hard-wired into the brain. A recent discussion by Dabrowska

(2015) presents an overview of the UG linguistic approach and highlights arguments

from both sides.

Those arguments put forward in favour of UG include the fact that all languages

share fundamental similarities, often referred to as linguistic universals (Chomsky,

1965). In addition, children produce sentences that they have never heard before

(the poverty of stimulus argument (Chomsky, 1980)), children worldwide acquire

language at similar stages and in the same order, and constructions are understood

by children to be ungrammatical even though rules governing this are not explicitly

expressed.

However, it is also argued that while a Universal Grammar identifies a list of

linguistic universals, they do not need to be used by all languages, and that newly

discovered language properties are merely added to the list (Evans and Levinson,

2009). In addition, it can be noted that the worldwide age brackets in which language

is primarily acquired (e.g. 9-15 months for referential words) are significantly wide

in terms of child development and that some language constructions are acquired

84



at varying stages depending on the language in question (Berman, 1985). Also,

studies show that requests from adults for clarification are interpreted by children as

negative feedback on ungrammatical structures (e.g. Chouinard and Clark (2003)).

The UG approach contradicts some traditional beliefs of language acquisition

that are linked to behaviourism theories (e.g. Skinner (1957)), which views a learning

environment of linguistic input from parents, relatives, etc., combined with responses

and reinforcement as the fundamental factors influencing language learning.

It is possible to see the benefits for a universal grammar approach, without

necessarily subscribing to a full alignment with the theory, however. From a cross-

lingual syntactic study perspective, the notion of a universal grammar is appealing.

Take research in the area of treebanking, for example. As we discussed in Chapter 3,

dependency treebanks exist for many languages (e.g. Turkish (Oflazer et al., 2003),

Czech (Hajič, 1998), Danish (Kromann, 2003), Slovene (Džeroski et al., 2006) and

Finnish (Haverinen et al., 2010)). However, these schemes vary significantly and are

independently tailored and developed according to the language in question. The

labelling notations and linguistic analyses are specific to that language, and often

influenced by linguistic theories that the developers subscribe to. Thus, cross-lingual

research is often hampered by variations that exist across the annotation schemes

of treebanks. Comparison of treebanks is more effective if a universal grammar is

used to overcome these variations.

More specifically from a parsing point of view, if the labelled training data for

both languages is based on different annotation schemes, parser output in one lan-

guage cannot be easily compared to another. It is also impossible to accurately

compare the difficulty between parsing different languages for a number of reasons.

Parsing results can be influenced by annotation scheme discrepancies such as the

number of labels in a scheme that a parser has to choose from, or varying linguistic

analyses across languages, for example. McDonald et al. (2011) demonstrated these

difficulties through a cross-lingual parsing study. Cross-lingual transfer parsing in-

volves training a parser on one language, and parsing data of another language.
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Their work describes two types of cross-lingual parsing: (i) direct transfer parsing

in which a delexicalised version of the source language treebank is used to train a

parsing model, which is then used to parse the target language, and (ii) a more

complicated projected transfer approach in which the direct transfer approach is

used to seed a parsing model which is then trained to obey source-target constraints

learned from a parallel corpus.

These experiments evaluated the use of delexicalised parsers (using non-lexical

features only) trained on a number of source languages and tested on a set of target

languages. Both direct transfer and projected transfer (using parallel treebanks)

parsing experiments were carried out. The results revealed that languages that were

typologically similar were not necessarily the best source-target pairs, sometimes

due to variations between their language-specific annotation schemes.

There has been a movement towards identifying linguistic universals in an at-

tempt to facilitate cross-lingual studies. Petrov et al. (2012) designed what is referred

to as the Google Universal POS-tagset, which identifies 12 main part-of-speech tags,

aimed at covering the most frequent categories that exist in any language. By map-

ping 25 different language datasets to their universal set, they were able to accurately

compare POS-tagger performance across languages.

In parsing, McDonald et al. (2013) built upon this work to develop a set of

Universal Dependency Treebanks, which were based on their design of a universal

standard for annotating treebanks. They defined a set of 41 dependency labels and

a universal annotation scheme which they use to convert 10 language treebanks

for the purpose of a cross-lingual parsing study. They reported improved results

on cross-lingual direct transfer parsing using their uniformly annotated treebanks.

While their results confirm that parsers trained on data from languages in the same

language group (e.g. Romance and Germanic) show the most accurate results, they

also show that training data taken across language-groups also produces promis-

ing results, confirming that some language features are certainly common across

language groups.
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More recently however, a new Universal Dependency project (Nivre et al., 2015;

Agić et al., 2015) released data for 10 treebanks that have been converted according

to a new universal scheme. This new annotation scheme is based on (universal)

Stanford dependencies (de Marneffe et al., 2006; de Marneffe and Manning, 2008;

de Marneffe et al., 2014), Google universal part-of-speech tags (Petrov et al., 2012),

and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).

For the purposes of cross-lingual studies, and to compare Irish linguistic and NLP

resources to that of other languages, we mapped the Irish Dependency Treebank

(IDT) to both universal schemes described above. For the rest of this thesis we

will refer to the universal dependency scheme of McDonald et al. (2013) as UD13,

and to the project of Nivre et al. (2015) as UD15. Due to the fact that Irish is

officially part of the UD15 project, and it now supersedes UD13, we provide more

detail in the discussion of this conversion. This chapter explains our mapping from

the IDT to both of these schemes. The associated experiments are presented later

in Section 6.7.

5.1 A Universal Dependency Scheme for the Irish

Dependency Treebank

In this section, we describe how we created a “universal” version of the Irish Depen-

dency Treebank. We do this by first mapping the Irish POS tagset to the Google

Universal POS tags, and then mapping the original dependency scheme to McDon-

ald et al. (2013)’s universal dependency scheme (UD13).

5.1.1 Mapping the Irish POS tagset to the Universal POS

tagset

The Google Universal POS tagset (Petrov et al., 2012) was designed to facilitate

unsupervised and cross-lingual part-of-speech tagging and parsing research, by sim-
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plifying POS tagsets and unifying them across languages. The Irish Dependency

Treebank was built upon a POS-tagged corpus developed by Uı́ Dhonnchadha and

van Genabith (2006), and is based on the PAROLE Morphosyntactic Tagset (ITÉ,

2002). The treebank’s tagset contains both coarse- and fine-grained POS tags which

we map to the Universal POS tags (e.g. Prop Noun → NOUN). Table 5.1 shows

the mappings.

Part-of-speech (POS) mappings
Univ. Irish Univ. Irish

NOUN
Noun Noun, Pron Ref,
Subst Subst, Verbal Noun,
Prop Noun

ADP

Prep Deg, Prep Det,
Prep Pron, Prep Simp,
Prep Poss, Prep CmpdNoGen,
Prep Cmpd, Prep Art,
Pron Prep

PRON
Pron Pers, Pron Idf, Pron Q,
Pron Dem

ADV
Adv Temp, Adv Loc,
Adv Dir, Adv Q, Adv Its,
Adv Gn

VERB

Cop Cop, Verb PastInd,
Verb PresInd, Verb PresImp,
Verb VI, Verb VT,
Verb VTI, Verb PastImp,
Verb Cond, Verb FutInd,
Verb VD, Verb Imper

PRT

Part Vb, Part Sup, Part Inf,
Part Pat, Part Voc, Part Ad,
Part Deg, Part Comp,
Part Rel, Part Num, Part Cp

DET Art Art, Det Det NUM Num Num

ADJ
Prop Adj, Verbal Adj,
Adj Adj

X

Item Item, Abr Abr,
CM CM, CU CU, CC CC,
Unknown Unknown,
Guess Abr, Itj Itj, Foreign Foreign

CONJ Conj Coord, Conj Subord . . . ... ... ? ? ! ! : : ? . Punct Punct

Table 5.1: Mapping of Irish Coarse and Fine-grained POS pairs (coarse fine) to
Universal POS tagset.

Most of the POS mappings made from the Irish POS tagset to the universal

tagset are intuitive. However, some decisions require explanation.

Cop → VERB As we have discussed in Section 4.2.2, there are two verbs ‘to

be’ in Irish: the substantive verb b́ı and the copula is. For that reason, the Irish

POS tagset differentiates the copula by using the POS tag Cop. In the literature
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on Irish syntax, there is some discussion over its syntactic role, whether it is a verb

or a linking particle (Carnie, 1997). The role normally played is that of a linking

element between a subject and a predicate. However, our syntactic analysis of the

copula is in line with that of Stenson (1981), regarding it as a verb. In addition,

because the copula is often labelled in the Irish annotation scheme as the syntactic

head of the matrix clause, we have chosen VERB as the most suitable mapping for

this part of speech.

Pron Prep → ADP Pron Prep is the Irish POS tag for pronominal prepositions,

which are also referred to as prepositional pronouns (see Section 4.2.8). Characteris-

tic of Celtic languages, they are prepositions inflected with their pronominal objects

– compare, for example, le mo chara ‘with my friend’ with leis ‘with him’. While

the Irish POS labelling scheme labels them as pronouns in the first instance (i.e.

their coarse grained tag), our dependency labelling scheme treats the relationship

between them and their syntactic heads as obl (obliques) or padjunct (preposi-

tional adjuncts). Therefore, we map them to ADP (adpositions).

It should be noted that when a fine-grained POS tagset is mapped to a coarse-

grained POS tagset, information is often lost. This would generally be the case for

most (if not all) languages mapped to this Universal POS tagset. Some fine-grained

POS tags carry more important information than others, and when they are sub-

sumed by coarse-grained tags, the meaning and relationship between tokens and

structure is often lost. The following are some examples of this type of loss:

(i) Cop → VERB: the linguistic structure of copula constructions differ signifi-

cantly from regular verbal constructions. By mapping all copula forms to ‘Verb’

this distinction is not easily recoverable and is also likely to generate noise for ver-

bal patterns within the training data.

(ii) Prop Noun → NOUN: our treebank does not mark semantic properties of tokens.
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Proper nouns often have different semantic properties (e.g. person/ organisation)

than regular common nouns. By subsuming proper nouns by a tag that also covers

common nouns, the inherent semantic restrictions associated with certain verbal use

are lost.

(iii) Verbal Adj → ADJ: as discussed in Section 4.2.15, Irish passive constructions

are expressed as stative passives using verbal adjectives. When the verbal adjective

POS tag is subsumed by the general adjective tag, information regarding the ‘pas-

sive’ nature of these constructions is lost. This is further compounded by the loss

of the obl ag (oblique agent) dependency label, as shown in Table 5.2.

(iv) Verbal Noun → NOUN: As discussed in Section 2.2.1, the Irish language uses a

verbal noun to denote an infinitive verb form and progressive aspectual phrases. By

mapping verbal nouns to the general noun POS tag, this verbal nature is lost.

5.1.2 Mapping the Irish Dependency Scheme to the Uni-

versal Dependency Scheme (UD13)

The departure point for the design of the Universal Dependency (UD13) Treebanks

(McDonald et al., 2013) was the Stanford typed dependency scheme (de Marneffe

and Manning, 2008), which was adapted based on a cross-lingual analysis of six

languages: English, French, German, Korean, Spanish and Swedish. As a result

of this study, universal dependency treebanks were developed initially for these six

languages, followed by subsequent development of UD treebanks for five languages

(Brazilian Portuguese, Finnish1, Indonesian, Italian and Japanese).2 Approaches to

development of these treebanks varied. Existing English and Swedish treebanks were

automatically mapped to the new universal scheme. The rest of the treebanks were

developed manually to ensure consistency in annotation. The study also reports

some structural changes (e.g. Swedish treebank coordination structures).3

1The Finnish data was not available at the time of our experiments.
2Version 2 data sets downloaded from https://code.google.com/p/uni-dep-tb/
3There are two versions of the annotation scheme: the standard version (where copulas and ad-

positions are syntactic heads), and the content-head version which treats content words as syntactic
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There are 41 dependency relation labels to choose from in the universal annota-

tion scheme.4 McDonald et al. (2013) use all labels in the annotation of the German

and English treebanks. The remaining languages use varying subsets of the label

set. In our study we map the Irish dependency annotation scheme to 30 of the

universal labels. The mappings are given in Table 5.2.

UD13 Dependency Label Mappings
Universal Irish Universal Irish Label
root top csubj csubj
acomp adjpred, advpred, ppred dep for
adpcomp comp det det, det2, dem
adpmod padjunct, obl, obl2, obl ag dobj obj, vnobj, obj q
adpobj pobj mark subadjunct
advcl comp nmod addr, nadjunct

advmod
adjunct, advadjunct, quant,
advadjunct q

nsubj subj, subj q

amod adjadjunct num quant
appos app p punctuation
attr npred parataxis comp
aux toinfinitive poss poss

cc NEW prt

particle, vparticle, nparticle,
advparticle, vocparticle,
particlehead, cleftparticle,
qparticle, aug

ccomp comp rcmod relmod
compmod nadjunct rel relparticle
conj coord xcomp xcomp

Table 5.2: Mapping of Irish Dependency Annotation Scheme to UD13 Annotation
Scheme

As with the POS mapping discussed in Section 5.1.1, mapping the Irish depen-

dency scheme to the universal scheme was relatively straightforward, due in part,

perhaps, to a similar level of granularity suggested by the similar label set sizes (Irish

47; standard universal 41). That said, there were significant considerations made in

the mapping process, which involved some structural change in the treebank and the

introduction of more specific analyses in the labelling scheme. These are discussed

below.

heads. We are using the standard version.
4The vmod label is used only in the content-head version.
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5.1.2.1 Structural Differences

The following structural changes were made manually before the dependency labels

were mapped to the universal scheme.

coordination The most significant structural change made to the Irish treebank

was an adjustment to the analysis of coordination. The original Irish Dependency

Treebank subscribes to the LFG coordination analysis, where the coordinating con-

junction (e.g. agus ‘and’) is the head, with the coordinates as its dependents,

labelled coord (see Figure 5.1 and refer to Section 3.1.2 for further discussion). The

Universal Dependency Annotation scheme, on the other hand, uses right-adjunction,

where the first coordinate is the head of the coordination, and the rest of the phrase

is adjoined to the right, labelling coordinating conjunctions as cc and the following

coordinates as conj (Figure 5.2).

coord det subj advpred top coord det subj advpred obl det pobj

Bh́ı an lá an-te agus bh́ı gach duine stiúgtha leis an tart
Be-PAST the day very-hot and be-PAST every person parched with the thirst

‘The day was very hot and everyone was parched with the thirst’

Figure 5.1: LFG-style coordination of original Irish Dependency Treebank.

top det subj advpred cc conj det subj advpred obl det pobj

Bh́ı an lá an-te agus bh́ı gach duine stiúgtha leis an tart
Be-PAST the day very-hot and be-PAST every person parched with the thirst

‘The day was very hot and everyone was parched with the thirst’

Figure 5.2: Stanford-style coordination changes to original Irish Dependency Tree-
bank.

subordinate clauses In the Irish Dependency Treebank, the link between a ma-

trix clause and its subordinate clause is similar to that of LFG: the subordinating
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conjunction (e.g. mar ‘because’, nuair ‘when’) is a subadjunct dependent of the

matrix verb, and the head of the subordinate clause is a comp dependent of the

subordinating conjunction (Figure 5.3). In contrast, the universal scheme is in line

with the Stanford analysis of subordinate clauses, where the head of the clause is

dependent on the matrix verb, and the subordinating conjunction is a dependent of

the clause head (Figure 5.4).

top subj xcomp obl subadjunct comp subj ppred pobj num

Caithfidh tú brath orthu nuair atá tú i Roinn 1
Have-to-FUT you rely on-them when REL-be you in Division 1
‘You have to rely on them when you are in Division 1’

Figure 5.3: LFG-style subordinate clause analysis (with IDT labels)

top subj xcomp obl subadjunct comp subj ppred pobj num

Caithfidh tú brath orthu nuair atá tú i Roinn 1
Have-to-FUT you rely on-them when REL-be you in Division 1
‘You have to rely on them when you are in Division 1’

Figure 5.4: Stanford-style subordinate clause analysis (with IDT labels)

5.1.2.2 Differences between dependency types

We found that the original Irish scheme makes distinctions that the universal scheme

does not – this finer-grained information takes the form of the following Irish-specific

dependency types: advpred, ppred, subj q, obj q, advadjunct q, obl, obl2. In

producing the universal version of the treebank, these Irish-specific dependency

types are mapped to less informative universal ones (see Table 5.2). Conversely,

we found that the universal scheme makes distinctions that the Irish scheme does
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not. Some of these dependency types are not needed for Irish. For example, there

is no indirect object iobj in Irish, nor is there a passive construction that would

require the labels nsubjpass, csubjpass or auxpass. Also, in the Irish Dependency

Treebank, the copula is usually the root (top) or the head of a subordinate clause

(e.g. comp) which renders the universal type cop redundant. Others that are not

used are adp, expl, infmod, mwe, neg, partmod. However, we did identify some de-

pendency relationships in the universal scheme that we introduce to the UD13 Irish

Dependency Treebank (adpcomp, adposition, advcl, num, parataxis). These

are explained below.

comp → adpcomp, advcl, parataxis, ccomp The following new mappings

were previously subsumed by the IDT label comp (complement clause). The mapping

for comp has thus been split between adpcomp, advcl, parataxis and ccomp.

• adpcomp is a clausal complement of an adposition. An example from the

English data is ‘some understanding of what the company’s long-term horizon

should begin to look like’, where ‘begin’, as the head of the clause, is a

dependent of the preposition ‘of’. An example of how we use this label in

Irish is in Figure 5.5.

top dobj xcomp adpmod det adpobj adpmod adpmod adpcomp nsubj

Éileofar orthu taisteal chuig an Ionad de réir mar is gá
Demand-AUTO on-them travel to the Centre according as COP need
‘They will have to travel to the Centre when it is necessary

Figure 5.5: UD13 adpcomp complement clause

• advcl is used to identify adverbial clause modifiers. In the English data,

they are often introduced by subordinating conjunctions such as ‘when’, ‘be-

cause’, ‘although’, ‘after’, ‘however’, etc. An example is ‘However, because the

guaranteed circulation base is being lowered, ad rates will be higher’. Here,
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‘lowered’ is an advcl dependent of ‘will’. Equivalent subordinating conjunc-

tions in Irish are mar ‘because’, nuair ‘when’, cé ‘although’, for example. An

example of Irish usage is given in Figure 5.6.

top nsubj amod acomp adpobj mark prt advcl nsubj compmod acomp

Tá truailliú mór san áit mar nach bhfuil córas séarchais ann
Be pollution much in-the area because not be system sewerage there

‘There is a lot of pollution in the area because there is no sewerage system’

Figure 5.6: UD13 advcl adverbial clause modifier

• parataxis labels clausal structures that are separated from the previous clause

with punctuation such as – ... : () ; and so on. See Figure 5.7 for example.

top nsubj xcomp adpobj adpmod p parataxis ccomp acomp adpobj

Tá siad ag éiŕı leo – meastar gur in Éirinn ....
Be they at succeeding with-them – think-AUTO COP in Ireland ....
‘They are succeeding - it is believed that in Ireland...’

Figure 5.7: UD13 parataxis clauses

• ccomp covers all other types of clausal complements. For example, in English,

‘Mr. Amos says the Show-Crier team will probably do two live interviews

a day’. The head of the complement clause here is ‘do’, which is a comp

dependent of the matrix verb ‘says’. An Irish example is given in Figure 5.8.

quant → num, advmod The IDT Scheme uses one dependency label (quant)

to cover all types of numerals and quantifiers. We now use two labels from the
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top nsubj prt ccomp nsubj det dobj det prt advmod

Dúirt siad nach bhfeiceann siad an cineál seo chomh minic
Said they that-not see they the type this very often
‘They said that they do not see this type of thing very often’

Figure 5.8: UD13 ccomp clausal complements

universal scheme to differentiate between quantifiers such as mórán ‘many’ (advmod)

and numerals such as fiche ‘twenty’ (num).

nadjunct → nmod, compmod The IDT label nadjunct accounts for all nom-

inal modifiers. However, in order to map to the universal scheme, we discriminate

two kinds: (i) nouns that modify clauses are mapped to nmod (e.g. bliain ó shin

‘a year ago’) and (ii) nouns that modify nouns (usually genitive case in Irish) are

mapped to compmod (e.g. plean margáıochta ‘marketing plan’).

As with the POS tag mapping, information is also lost through the dependency

label mapping process. This is because some UD labels are too general to describe

fully the nature of the dependency relation between tokens. This is clear from the

numerous ‘many-to-one’ mappings shown in Table 5.2. Some of the lost information

is explained in more detail here:

(i) (adjpred, advpred, ppred) → comp; npred → attr: all of these predicate

arguments are used in a similar pattern. By separating the nominal predicate map-

ping to a separate label, the common behaviour and linguistic patterns across all

predicates are lost.

(ii) obl ag → adpmod: by subsuming the oblique agent label under a general mod-

ifier label, the ‘passive’ function of these oblique modifiers and the nature of the

structures they describe are lost.

(iii) prt: the universal ‘particle’ label subsumes all of the fine-grained Irish parti-

cles (apart from relative particles). Particles are a significant feature of the Irish
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language, carrying out many functions, and their distinction can help semantic dis-

ambiguation of some forms (e.g. a can be a vocative, quantifier, cleft and time

particle).

It is worth noting, however, that in the more recent Universal Dependency

Scheme (see Section 5.2.2), it is possible to account for the loss of information

in these (and other mappings) through the use of language-specific sub-labels.

5.2 A new Universal Dependency Scheme (UD15)

The following is a summary of the conversion and mapping of the IDT to a new

universal scheme, as part of the Universal Dependency Project (Nivre et al., 2015;

Agić et al., 2015).

This scheme aims to give greater consideration to the varying linguistic differ-

ences across languages, and provides the option of defining language-specific label

sub-types where necessary. In October 2014, guidelines for this new scheme were

released to allow for mappings and conversions of existing treebanks. Ten converted

treebanks were released in January 2015. The languages included in this release

were Czech, English, Finnish, French, German, Hungarian, Irish, Italian, Spanish

and Swedish.

Below we report on the work we carried out on the Irish dataset for this release

in converting the IDT to an updated universal POS tagset and a new universal

annotation scheme (UD15).

5.2.1 New Universal POS tagset

There are 17 tags in the UD15 Universal POS tagset. We provide a mapping from

the Irish PAROLE tagset to the UD15 tagset in Table 5.3. Tags that were not in the

Google tagset are bolded, and tag name changes (compared to the Google tagset)

are marked with †. We discuss the changes below.

The UD15 Universal POS tagset has 17 POS-tags (compared to 12 tags in the
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Part-of-speech (POS) mappings
New
Univ.

Irish
New
Univ.

Irish

NOUN
Noun Noun, Pron Ref,
Subst Subst, Verbal Noun,

ADP

Prep Deg, Prep Det,
Prep Pron, Prep Simp,
Prep Poss, Prep CmpdNoGen,
Prep Cmpd, Prep Art,
Pron Prep

PROPN Prop Noun ADV
Adv Temp, Adv Loc,
Adv Dir, Adv Q, Adv Its,
Adv Gn

PRON
Pron Pers, Pron Idf, Pron Q,
Pron Dem

PART†

Part Vb, Part Sup, Part Inf,
Part Pat, Part Voc, Part Ad,
Part Deg, Part Comp,
Part Rel, Part Num, Part Cp,

VERB

Cop Cop, Verb PastInd,
Verb PresInd, Verb PresImp,
Verb VI, Verb VT,
Verb VTI, Verb PastImp,
Verb Cond, Verb FutInd,
Verb VD, Verb Imper

NUM Num Num

DET Art Art, Det Det X

Item Item, Abr Abr,
CM CM, CU CU, CC CC,
Unknown Unknown,
Guess Abr, Foreign Foreign

ADJ
Prop Adj, Verbal Adj,
Adj Adj

PUNCT† . . ... ... ? ? ! ! : : ? .
Punct Punct

CONJ Conj Coord INTJ Itj Itj
SCONJ Conj Subord SYM (Abr)

Table 5.3: Mapping of Irish Coarse and Fine-grained POS pairs (coarse fine) to 2015
Universal Dependency POS tagset.

Google Universal POS tagset). However, we only map to 16 of these tags as there are

no auxiliary verbs in Irish to require the inclusion of AUX. Some naming differences

between the universal tagsets include PRT (Google) → PART (UD15) as a particle

tag, and . (Google) → PUNCT (UD15) as a punctuation tag. The following is a

summary of new POS tags introduced in the UD15 set:5

PROPN: proper nouns Proper nouns were subsumed by the NOUN tag in the Google

POS tagset. A proper noun is a noun that is the name of an individual, place, object

5POS descriptions given here are adaptations of the UD annotation guidelines. http:

//universaldependencies.github.io/docs/u/pos/all.html
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or organisation. In Irish, proper nouns always have initial capitalisation. Days of

the week and months of the year, while capitalised, are marked as common nouns.

Personal names are treated as a sequence of proper nouns. Examples of proper

nouns include:

• Lá ‘le Pádraig ‘St. Patrick’s Day’

• Eoraip ‘Europe’

INTJ: interjections Interjections were subsumed by the catch-all X tag in the

Google POS tagset. An interjection is a word that is used most often as an excla-

mation or part of an exclamation.

• Och ‘but’/ ‘aw’

• á ‘aw’

• Ó ‘Oh’

SCONJ: subordinating conjunctions This new tagset differentiates coordinating

conjunctions CONJ and subordinating conjunctions SCONJ, rather than using one tag

(CONJ) for both. In Irish, some subordinate conjunctions, such as nuair ‘when’ in

Example 32 normally precede a subordinate clause marker (a). Subordinate con-

junctions link clauses by making one of them a constituent of the other. There is

also a special case of using agus ‘and’ (normally POS-tagged as CONJ) as a subordi-

nate conjunction, where the subordinate clause is missing a surface verb ‘to be’ (see

Example 33).

(32) Tháinig śı ar ais nuair a chuala śı an nuacht

Came she back when PART heard she the news

‘She came back when she heard the news’
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(33) Seo pictúir a tógadh dhó agus é briste

This picture REL taken-AUTO to-it and it broken

‘Here’s a picture taken of it broken’

SYM: symbols A symbol is a word-like entity that differs from ordinary words

by form, function, or both. Due to the domain type of our treebank data, there

is currently only one example of a token tagged as SYM: post@clubsult.com (email

address). This is tagged as Abr (abbreviation) according to the PAROLE tagset,

however it does not hold that all Abr instances should be mapped to SYM. These

cases need to be identified on an individual basis. According to the UD guidelines,

other examples would include:

• $, %, §, c©,

• +,−,×,÷,=, <,>,

• ,, post@clubsult.com

5.2.2 2015 Universal Dependency Scheme

As we have shown in Table 5.3 (through the use of bolding), there were minimal

differences between the UD13 and UD15 Universal POS tagsets. This resulted in a

relatively easy mapping from the Irish PAROLE tagset to the new UD15 Universal

POS tagset.

However, there are significant differences between the UD13 and the UD15 an-

notation schemes. Thus, the IDT to UD15 treebank conversion required exten-

sive additional work on dependency relation renaming, mapping and new structural

changes. Here, we focus on a mapping from the Irish Dependency scheme to the

UD15 dependency labels. We provide a mapping in Table 5.4 and describe the

changes below.
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UD15 Dependency Label Mappings
2015

Universal
Irish

2015
Universal

Irish

root top foreign for
acl:relcl relmod list quant
advcl comp † mark subadjunct, toinfinitive

advmod
adjunct †, advadjunct,
advadjunct q, quant † mark:prt

advparticle, cleftparticle,
particle, qparticle, vparticle

amod adjadjunct name ± nparticle, nadjunct †
appos app neg vparticle
case ± padjunct, obl ag nmod aug, pobj †±
case:voc vocparticle nmod:poss poss
cc ± – nmod:prep± obl, obl2

ccomp comp † nmod:tmod
advadjunct, padjunct †,
pobj †, relparticle †

compound nadjunct nsubj relparticle †, subj, subj q
compound:prt particlehead nummod quant
conj ± coord parataxis comp †
cop ± NEW punct punctuation
csubj:cop csubj vocative addr
det det, det2, dem xcomp xcomp

discourse adjunct † xcomp:pred
adjpred, advpred, npred,
ppred ±

dobj obj, vnobj, obj q

Table 5.4: Mapping of Irish Dependency Annotation Scheme to UD15 Annotation
Scheme. † marks one-to-many mappings, and ± marks structural changes

5.2.2.1 UD labels not used in the Irish UD Treebank

The following is a list of labels in the UD15 annotation scheme that do not apply

to the Irish language.

• aux: This label is used for non-main verbs in a clause, i.e. auxiliary verbs.

Examples in English are ‘has opened’, ‘will be’, ‘should say’. There are no

equivalent auxiliary verbs in Irish.6

• auxpass, nsubjpass, csubjpass: These labels are used in passive construc-

tions, respectively as: passive auxiliary verbs, passive nominal subjects and

clausal passive subjects. There is no passive form in Irish.7

6Stenson (1981, p.86) notes that modal verbs such as caithfidh inflect as per regular verbs and
are considered the main verb.

7See Section 4.2.14 for further discussion.
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• iobj: In English, an example is ‘Mary gave John the book’. There are no

indirect objects in Irish, and constructions like these must follow the normal

ditransitive verb structure using a preposition, as per Example 34.

(34) Thug Máire an leabhar do Sheán

Gave Mary the book to John

‘Mary gave the book to John’

There are also some labels that are not used in our treebank, due to lack of

instances observed in the data. The reason for this may be related to the well-

structured, grammatically correct nature of the text in our corpus (newswire, legal

documents, literature).

• reparandum: This label is used to indicate disfluencies in text. The Irish data

does not contain any disfluencies.

• goeswith: This label links to parts of a word that has been split, due to poor

editing. There are no instances of this in the Irish data.

• dep: This catch-all label is used for unknown relations. We do not require this

in the Irish data.

In addition, there are some Universal labels that we have not included in the

first release version of this treebank, but which we expect will be included in future

releases.

• expl: There is no existential ‘there’ in Irish. However, we have not yet fully

researched uses of other types of expletives in our data.

• mwe: Multiword expressions are not marked in the IDT. There is not sufficient

linguistic literature on this topic for Irish on which we could base a complete

analysis of idioms or multiword units in the treebank. This analysis therefore

remains as a possible future enhancement to the treebanks when such resources

are available.
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• remnant: This label is used for remnants in ellipsis, where a predicate or verb

is dropped (e.g. ‘Marie went to Paris and Miriam [] to Prague’). Instances of

remnants in Irish are not easily identified. Further study is required to identify

cases, if any, including a possible analysis of crossing dependencies.

• dislocated: This label is used for fronted or postposed elements that are not

core grammatical elements of a sentence. Example, ‘he must not eat it, the

playdough’. We have not yet identified such cases in the Irish data.

5.2.2.2 Manual label updates

Some of the treebank conversion was automated with straightforward mappings.

However, there were a number of labels that needed to be manually mapped be-

cause they were one-to-many label mappings. These instances are marked with † in

Table 5.4.

relative particles In the IDT, the relative particle a was attached to a relative

modifier verb with the label relparticle. In the UD15 scheme, this particle is

labelled with the syntactic role it plays in the relative clause – a type of annotation

that cannot be automated in the absence additional data on the semantic properties

of the element the relativised refers to. The a can therefore fulfil the role of nsubj,

dobj, nmod or nmod:tmod. For example an rud deireanach a chonaic sé ‘the last

thing that he saw’ is shown in Figure 5.9. In this case a refers to rud ‘thing’, and

therefore is labelled as a dobj of chonaic ‘saw’. See Figure 5.10 for an example of

nominal relativiser.

quant → nummod, list, advmod Similar to the UD13 mapping, numerals and

quantifiers are given more fine-grained descriptions in UD15 than the single IDT

quant label. In addition, list numbering is now represented by its own label list.

comp → advcl, ccomp, parataxis The tokens labelled in the IDT with the

closed complement label comp have been divided among three new labels. Note
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det amod dobj acl:relcl subj

an rud deireanach a chonaic sé
the thing last REL saw he

‘the last thing he saw’

Figure 5.9: UD15 dobj relative particle analysis

det nmod acl:relcl dobj

an áit inar rugadh iad
the place in-which born-AUTO them

‘The place where they were born’

Figure 5.10: UD15 nmod relative particle analysis

that unlike UD13, there is no adpcomp label in this scheme. The UD15 labels

are: advcl adverbial clause (normally connected with a subordinator such as nuair

‘when’, má ‘if’ etc); ccomp complement clauses that are normally introduced by

the complementiser go, nach, gur, or quoting direct speech; parataxis labels two

phrases or sentences set side-by-side without explicit linking through coordination

or subordination, for example. Sometimes punctuation such as colons or semicolons

connects the pairs. Sa tseanam, bh́ı an cál an-ghann; b’fheidir nach mbeadh i ngach

baile ach aon gharráı amháin. ‘In olden times, kale was very scarce; maybe there

would only be one garden in every town’.

nadjunct → compound, name The compound label is used for nominal mod-

ifiers. In Irish this could take the form of compounding (one noun modifying an-

other) such as deireadh seachtaine ‘weekend’ (Example 35), or ownership teach Mhi-

cil ‘Michael’s house’ (Example 36). Compounding can occur with a string of nouns

as per the example in Figure 5.11.
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(35) deireadh seachtaine

end week

‘weekend’

(36) teach Mhichil

house Michael

‘Michael’s house’

root nsubj advmod nummod dobj compound compound

Chaill śı beagnach ocht mbliana riaráist́ı pinsin
Lost she almost eight years arrears pension
‘She lost almost eight years of pension arrears’

Figure 5.11: UD15 compounding analysis

The new label name is explained below in more detail in Section 5.2.2.3.

5.2.2.3 Structural Changes

Other labels required a manual annotation because they related to structural changes

required in the treebank. Along with the structural changes required for coordina-

tion and subordination during the UD13 conversion, as described in Section 5.1.2.1,

additional structural changes were required in the UD15 scheme mapping. These

changes are described below:

cop In the IDT, the copula is treated similarly to a verb, and can function as

the root of a sentence, or as the head of a dependency clause. However, the UD15

scheme analyses copula constructions differently. Instead, the predicate is regarded

as the head of the phrase, and the copula is its dependent, as indicated by the cop

label. This also applies to copula use in fronting or cleft structures. See Figure 5.12

and Figure 5.13 for comparison.8

8The labels have also been mapped between examples, but the structural change is of interest
here.
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top adjpred vparticle comp subj obl

Nı́or cheart go mbeadh eagla orainn
COP right that be-COND fear on-us

‘We should not be afraid’

Figure 5.12: IDT copula analysis

cop root mark:prt ccomp nsubj nmod:prep

Nı́or cheart go mbeadh eagla orainn
COP right that be-COND fear on-us

‘We should not be afraid’

Figure 5.13: UD15 copula analysis

name The UD relation name is used with compounding proper nouns, typically

for names of people, places, organisations and so on. In Irish, this not only includes

surnames, but also surname particles such as Mac, Mc, Ó, de, Uı́ and Nı́. In the

Irish Dependency Treebank, we identify the surname as the head noun, and its

dependents can either be first names (nadjunct) or nominal particles (nparticle).

See Figures 5.14 for example. However in the UD15 analysis, all words in the name

phrase modify the first one as name. See Figure 5.15 for comparison.

vparticle nadjunct nparticle subj

a deir Michael D. Higgins
[] says Michael D. Higgins

‘says Michael D. Higgins’

Figure 5.14: IDT name analysis

nmod, case, xcomp:pred The head of a prepositional phrase has changed from

the preposition to the head noun of the object noun phrase. This affects the Irish

treebank in a number of ways:
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mark:prt nsubj name name

a deir Michael D. Higgins
[] says Michael D. Higgins

‘says Michael D. Higgins’

Figure 5.15: UD15 name analysis

In the UD15 analysis, the head of regular preposition phrases (object of the

preposition) is attached to the verb as nmod (formerly pobj in IDT). The preposi-

tion is a dependent of the object, and this relation is labelled as case. Compare

Figures 5.16 and 5.17 to observe the difference in analyses.

top det subj obl pobj adjadjunct

Tháinig an maoiniú ó fhoinśı difriúla
Come-PAST the financing from sources different
‘The financing came from different sources

Figure 5.16: IDT prepositional phrase analysis

root det nsubj case nmod amod

Tháinig an maoiniú ó fhoinśı difriúla
Come-PAST the financing from sources different
‘The financing came from different sources

Figure 5.17: UD15 prepositional phrase analysis

Progressive aspectual phrases are constructed with the preposition ag followed by

a verbal noun. The IDT regards ag as the head of the prepositional phrase, and thus

the xcomp relation is identified between the matrix verb and the preposition. In the

UD15 scheme however, the verbal noun is regarded as the head of the prepositional

phrase. Compare Figures 5.18 and 5.19.
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top subj xcomp pobj

Tá śı ag rith
Be-PRES she at running

‘She is running

Figure 5.18: IDT progressive aspectual phrase analysis

root nsubj case xcomp

Tá śı ag rith
Be-PRES she at running

‘She is running

Figure 5.19: UD15 progressive aspectual phrase analysis

Prepositional predicates are labelled as ppred in the Irish Dependency Tree-

bank. In keeping with the other PP analyses, the preposition is the head of the

prepositional phrase. The label ppred maps to xcomp:pred in the UD15 scheme.9

In addition, the object of the preposition is now regarded as the head of the phrase.

See Figures 5.20 and 5.21 for comparison of prepositional predicate analyses.

top subj ppred pobj padjunct det pobj

Bh́ı śı mar Leas-Uachtarán ar an ghrúpa
Be-PAST she as Vice-President on the group

‘She was Vice-President of the group

Figure 5.20: IDT prepositional predicate analysis

5.2.2.4 Irish-specific relations

One advantage of the UD15 scheme is that it provides scope to include language-

specific subtype labels. The label name format is universal:extension, which ensures

that the core UD15 relation is identified, making it possible to revert to this coarse

9The label xcomp:pred is an Irish-specific label, these language specific labels are discussed in
Section 5.2.2.4.
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root nsubj case xcomp:pred case det nmod

Bh́ı śı mar Leas-Uachtarán ar an ghrúpa
Be-PAST she as Vice-President on the group

‘She was Vice-President of the group

Figure 5.21: UD15 prepositional predicate analysis

label for cross-lingual analysis. During the conversion of the IDT, we defined some

labels required to represent Irish syntax more concisely. These labels are discussed

below.

acl:relcl This label is used for relative clause modifiers. This subtype label is more

specific than its supertype counterpart acl, which covers examples in English such

as ‘This case to follow’ and ‘He entered the room sad’. These types of constructions

have not been observed in the Irish data. This subtype label acl:relcl is used in

cases where the head of the relative clause is a predicate (usually a verb), and is

dependent on a noun in a preceding clause. It is also used in the English, Finnish

and Swedish schemes. An example of this subtype used in the converted IDT is in

Figure 5.22.

mark:prt root det nsubj nsubj acl:relcl det dobj

D’ fhan an fear a bhuaigh an crannchur
PAST stay the man REL win-PAST the raffle

‘The man who won the raffle stayed

Figure 5.22: UD15 relative clause analysis

case:voc The vocative particle a is a case marker in Irish and precedes an ad-

dressee. From observing how the UD15 scheme recognises prepositions as case mark-

ers through the case label, we chose to retain the case information for vocatives

also. For example, Slán a chara ‘Goodbye, friend’.
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root nmod:prep case:voc vocative

Slán leat a chara
Safe with-you VOC friend

‘Goodbye, friend’

Figure 5.23: UD15 vocative particle analysis

csubj:cop The supertype label csubj indicates a clausal subject (a clause that

acts as the subject of another). In English ‘[what she said] makes sense’. However,

Finnish uses an additional specific subtype label csubj:cop to indicate clausal sub-

jects that act as a subject of a copular clause. We observed in our data that clausal

subjects in Irish are only ever subjects of copula clauses. For this reason we use only

the subtype label csubj:cop for clausal subjects. See Figure 5.24 for an example of

use.

cop root mark:prt csubj:cop det nsubj nmod:prep

Is dócha go raibh an ceart aici
COP likely that be-PAST the right at-her

‘It is likely that she was correct

Figure 5.24: UD15 copular clausal subject analysis

mark:prt The UD15 scheme does not use the UD13 prt label to which we pre-

viously mapped Irish particles. Therefore we introduce the new subtype label

mark:prt for: adverbial particles, cleft particles, quantifier particles, comparative/

superlative particles, verb particles and days of the week particles.10

nmod:poss In Irish, possession is denoted by possessive pronouns (mo, do, a, ár,

bhur). English, Finnish and Swedish, use the subtype label nmod:poss to indicate

possession, and we also adopt it for Irish. An example is given in Figure 5.25.

10The infinitive marker, previously subsumed by the UD13 prt, is now mapped to the supertype
mark as per other languages such as English and French.

110



root nsubj dobj case nmod:poss nmod

Chur mé ceist ar mo mhúinteoir
Put-PAST I question on my teacher

‘I asked my teacher a question’

Figure 5.25: UD15 possessive analysis

nmod:prep 16 of the most common Irish simple prepositions can be inflected to

mark pronominal objects (see Section 5.1.1 for a more detailed description). These

are referred to as pronominal prepositions or prepositional pronouns, and were most

frequently marked as obl or obl2 in the IDT. In the UD15 scheme, where the object

is the head of a preposition phrase, we regard these as playing nominal roles instead

of prepositional roles (yet their POS-tag remains ADP). We introduce the language-

specific label nmod:prep so as not to lose information regarding the presence of

the preposition within this synthetic form. An example is given in Figure 5.26.

Note that in some cases, prepositional pronouns behave like nominal modifiers of

noun phrases. E.g. an bheirt acu ‘the two of them’. These cases take the label

compound.

root nsubj dobj compound nmod:prep

Tugann sé neart eolais dúinn
Give-PRES he plenty information to-us

‘He gives us plenty of information’

Figure 5.26: UD15 prepositional pronoun analysis

nmod:tmod Temporal modifiers specifying time, in nominal form, are labelled as

nmod. English also uses this subtype label. An example is given in Figure 5.27.
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nsubj acl:relcl det nummod nmod:tmod case nmod

daoine a mhair na milliúin bliain ó shin
people who live-PAST the million years since then

‘people who lived a million years ago’

Figure 5.27: UD15 temporal modifier analysis

xcomp:pred The IDT uses the following fine-grained labels for predicates: npred

(nominal), adjpred (adjectival), advpred (adverbial) and ppred (prepositional).

These were typically used in copular constructions and are now no longer relevant

in the UD15 where the predicate heads the copular phrase. However, adjective,

adverbial and prepositional predicates can also be arguments of the substantive

verb b́ı. In LFG, the xcomp (open complement) label is used to represent predicates.

Therefore, we extend the open complement label to include the subtype xcomp:pred.

See Figure 5.28 for an example of an adjectival predicate.

root nsubj xcomp:pred mark:prt ccomp nsubj xcomp:pred

Bh́ı sé dochreidte go raibh sé beo
Be-PAST it unbelievable COMP be-PAST he alive

‘It was unbelievable that he was alive’

Figure 5.28: UD15 adjectival predicate analysis

5.3 Summary and Conclusion

In this chapter, we have discussed the role of a universal grammar in recent NLP

research and the importance of a universal annotation scheme when attempting to

compare and cross-evaluate different treebanks and parsers. We have described the
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mapping of the Irish Dependency annotation scheme to two universal annotation

schemes – namely UD13 (McDonald et al., 2013) and UD15 (Nivre et al., 2015;

Agić et al., 2015). We have described in detail the mapping and conversion process,

including structural changes, for the release of the Irish UD15 treebank as part of

the Universal Dependencies project.11 We have also discussed linguistic analyses

and motivation for choice of language-specific label types for Irish.

In the next chapter we discuss using both the Irish Dependency Treebank and

the Irish Universal Dependency Treebank as training data for parsing. We report

on various parsing experiments for both mono-lingual and cross-lingual studies.

11The Irish UD treebank is available to download from The Universal Dependency project repos-
itory: v1.0 https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1464 and v1.1
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/LRT-1478
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Chapter 6

Parsing with the Irish Dependency

Treebank

Syntactic parsing is a process by which grammatical structures are identified and

assigned to sentences within a text. Typically, parsing is an automated process and

plays a significant role in the development of NLP tools. Treebanks are not only

valuable for linguistic research and corpus analysis, but they also provide training

data on which statistical parsing models can be built. In this chapter, we show how

the Irish Dependency Treebank is used as training data for building the first full

Irish dependency parser.

Statistical data-driven parsers learn how to syntactically analyse sentences from

a set of examples. This data set, in the form of a treebank, is referred to as training

data. What counts as a sufficient number of trees for training an Irish statistical

dependency parser remains an open question. However, what is clear is that the

parser needs to have encountered a linguistic phenomenon in training in order to

learn how to accurately analyse it. Creating a treebank is a resource-intensive

process which requires extensive linguistic research in order to design an appropriate

labelling scheme, as well as considerable manual annotation (parsing). In general,

manual annotation is desired to ensure high quality treebank data. Yet, as is often

encountered when working with language, the task of manually annotating text can
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become repetitive, involving frequent encounters with similar linguistic structures.

In this chapter, we provide an overview of dependency parsing in Section 6.1

and report a baseline parsing score for our Irish dependency parsing experiments in

Section 6.2. These baseline scores increased following our inter-annotator study, as

we show in Section 6.3. Some research has been carried out on experimenting with

automating, or at least, semi-automating the process of treebank annotation and

improving parser accuracy. In general, this previous work has been experimental

and simulated, but not actually tried out in the context of building resources for a

low-resourced language. We extend on these approaches to address the actual prob-

lem of building a treebank in the early stages of its development. In Section 6.4, we

therefore discuss how, by examining the accuracy of our parsing models, we boot-

strap the development of our treebank through Active Learning methods. From

an annotation perspective, if a parser can be used to pre-parse data for manual

correction, then a high accuracy parser would result in a smaller annotation (cor-

rection) effort. For that reason, in Section 6.5, Section 6.6 and Section 6.7, we show

how we explore bootstrapping parser development for a low-resourced language by

leveraging existing minimal resources and those of other better-resourced languages.

We conclude however, that despite our various attempts at semi-automating

the development of our parser (which, in effect, could help the effort of treebank

development), we find that human input cannot easily be replaced by technology in

these type of tasks. In essence, we show that there is no reasonable substitute for

the manual work required in building a treebank.

6.1 An Overview of Dependency Parsing

Studies in dependency grammars have become more popular in the last two decades,

and towards the end of the 1990’s there was a shift towards dependency parsing.

From a computational perspective, this shift has been attributed to an increased

efficiency in learning and parsing through dependency parsing. One of the main
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factors contributing to this is the smaller search space required when dealing with

less complex bilexical labelled dependency structures, when compared to processing

or predicting constituency structures that have additional hierarchical non-terminal

nodes to consider (Nivre and Scholz, 2004; McDonald et al., 2005).

The earliest computational implementation of dependency grammars was by

Covington (1990, 1994). Not long afterwards, Finite State approaches (e.g. Karlsson

(1995)) gave rise to rule-based transducers being developed to parse text based on

dependency relations.1 This era also saw new approaches to parsing such as the

extraction from corpora of argument structures such as verbal subcategorisation

classes, in order to improve statistical constituency parsing (e.g. Briscoe and Carroll

(1997)). Ideally, statistical dependency parsers need data on which to both evaluate

and train a system. In these early days, resources were few. Despite seminal work on

the earliest development of a number of probabilistic models for dependency parsing

(Eisner, 1996a,b), evaluation took place on the constituency-parsed Penn Treebank.

In addition, the SUSANNE corpus (Sampson, 1993), a constituency-parsed corpus

that also labels functional roles, proved to be a valuable resource that was used for

the evaluation of the Minipar parser (Lin, 2003), a parser which enabled extraction

of dependency relationships from its parsed output. Extracting dependencies from

phrase structures was also the approach taken by Bouma et al. (2000) to develop

a dependency treebank for Dutch. However, despite the trend of converting from

constituents to dependencies to create data resources, during this time, development

also began of pure dependency resources, such as the Prague Dependency Treebank

for Czech (Hajič, 1998).

In more recent advancements in statistical data-driven parsing, an increase in the

availability of resources (dependency treebanks are now available for a large num-

ber of languages) has resulted in the development of dependency parsing platforms

such as MSTParser (McDonald et al., 2005), MaltParser (Nivre et al., 2006) and

1Section 3 shows how Karlsson (1995)’s Constraint Grammar was used to develop a shallow/
partial parser for Irish.
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Mate Parser (Bohnet, 2010), to name a few. Probabilistic (statistical data-driven)

dependency parsers predict dependency trees after having learned patterns within

the training data (treebank), which help to assess the probability of two words be-

ing part of a head-modifier relationship (see Section 6.1.1 for more detail on how

parsers work). Converting dependency resources such as the Prague Dependency

Treebank to constituent trees in order to train and test probabilistic parsers (e.g.

Collins et al. (1999)) was no longer necessary following the development of these

dependency parsing platforms.

From a parsing efficiency perspective, dependency syntax lends itself to much

more efficient parsing algorithms than constituency parsing. This is as a result of

dependency parsers only needing to process and predict labels for the tokens in the

sentence. Constituency parsers need to consider both tokens (terminals) and phrasal

categories (non-terminals) during processing time. We now provide an overview of

how data-driven dependency parsers process their input data and predict parse trees

through statistical methods.

6.1.1 How do Transition-Based Dependency Parsers work?

In the last decade, data-driven dependency parsing has come to fore, with two main

approaches dominating – graph-based and transition-based. Graph-based depen-

dency parsing involves the construction of a parse tree by predicting the Maximum

Spanning Tree (MST) in the digraph for the input sentence (McDonald et al., 2005).

In this digraph, each word corresponds to a vertex, and these vertices are all con-

nected by directed edges (arcs). Based on frequency counts in the training data

(treebank), each arc in the graph is assigned a score at the learning or training

stage. Making a common assumption of arc factorisation, the score of the graph is

the sum of all the arc scores (weights). The challenge of the parser is to find the

highest-scoring tree, that is, a subgraph including all vertices and only the mini-

mum number of arcs to be connected (see Section 2.3.1) – the MST, when choosing

from amongst the proposed candidates. MSTParser (McDonald et al., 2005) is a
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graph-based parser. Mate Parser (Bohnet, 2010) also has a graph-based component.

On the other hand, in classic transition-based dependency parsing, the training

phase consists of learning the correct parser action to take, given the input string

and the parse history, and the parsing phase consists of the greedy application of

parser actions as dictated by the learned model. These actions are based on that

of a shift-reduce parser, which involves progressing through the input string and

moving tokens onto a stack from a buffer (shift) or removing them once they have

been fully processed (reduce). Depending on the type of algorithm used, there are

other actions involved, which we describe in more detail in Figure 6.1. MaltParser

(Nivre et al., 2006) is an example of a transition-based parser and we describe how

it works here in more detail than a graph-based parser as it is the main parser we

used in most of our parsing experiments in Section 6.

In transition-based parsing, the parser moves from left to right through a sen-

tence, making decisions as to which words will make up dependency pairs with the

help of a classifier. The transition-based parsing algorithms use a buffer containing

the sentence tokens in linear order, a stack onto which each token is pushed as part

of the processing step and an arc list that contains the proposed head-modifier rela-

tions (Nivre, 2003; Nivre and Nilsson, 2005; Kubler et al., 2009). In this approach,

the parser looks to see what is on the top of the stack and appearing next in the

buffer. Due to the fact that it does not look beyond the next item in the buffer

nor does it undo any decisions it has already made, it is referred to as a greedy

algorithm. Jurafsky and Manning (2012) identify the four main contributors (listed

below) that help to calculate the probabilities of a dependency pair. In the training

stage, the parser uses a classifier when looking at features in order to a predict pars-

ing action, given a particular configuration. These features also help it to decide

what dependency label to apply to the relation pair.

• Lexical information (based on data previously observed in a treebank) can

tell the parser if two words are likely to be a dependency pair (e.g. ‘small

child’).

118



Initialise:
σ = [ROOT], β = w1, ..., wn, A = φ
repeat

Choose one of the transition operations 1-4
until β = φ

Transitions
1. Left-Arcr σ| wi, wj|β, A → σ, wj|β, A ∪ {r(wj, wi)}
precondition: r′ (wk, wi) 6∈ A, wi 6= ROOT
2. Right-Arcr σ| wi, wj|β, A → σ| wi| wj, β, A ∪ {r(wi, wj)}
3. Reduce σ| wi, β, A → σ, β, A
precondition: r′ (wk, wi) ∈ A
4. Shift σ, wi |β, A → σ| wi, β, A

Figure 6.1: The arc-eager shift-reduce algorithm. σ represents the stack, β is the
buffer and A is the set of dependencies.

• The distance between two words can also indicate the probability that these

two words will be connected. Dependency distance tends to be short, although

long-distance dependencies do exist. For example, determiners and their nouns

are usually in close proximity. In Irish, the subject and verb are usually close

in proximity, whereas inserted elements such as adverbs or subject modifiers

can increase the distance between a verb and its object.

• Intervening words: the parser can use the words occurring between the two

words likely to attach to determine whether the attachment is possible. For

example, punctuation and verbs are unlikely to occur between dependencies.

• The valency of a word is the number of arguments it is likely to have. De-

pending on its part of speech (e.g. noun, verb), the valency of words can

differ, and vary as to whether the arguments will be to the left or right. For

example, the verb tabhair ‘give’ has a valency of 3: subject, object and an

oblique argument.

The arc-eager algorithm is outlined in Figure 6.1.2 At each transition step, the

parser consults the classifier to determine a word’s dependencies.

2Taken and adapted from Jurafsky and Manning (2012).
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The Start configurations are such that σ indicates the stack, onto which tokens

will be pushed as they are encountered, for which the notation is σ|wi for a token wi.

At initialisation there is just one element on the stack, that is the ROOT. β represents

a buffer with the list of tokens from the input (the sentence) as word1, word2, and

so on. A represents a set of dependency arcs r(wi, wj), where r is a dependency

label. At initialisation, A is empty (φ). There are four possible operations as the

parser iterates through each word on the buffer: Left-Arc, Right-Arc, Reduce,

Shift. The precondition of Left-Arc is that the token on the top of the stack cannot

already be a dependent of another word (thus preventing multiple heads), and it

cannot be the root of the sentence. The precondition of the Reduce operation is

that a token can only be removed from the stack if it has been made a dependent

of another word. The process is finished when the buffer is empty.

Let us take the Irish sentence in Example 37 and parse it with the arc-eager

algorithm.

(37) Cheannaigh an caiĺın an leabhar

Bought the girl the book

‘The girl bought the book’

The Start configurations are:

σ = [ROOT]; β = Cheannaigh, an, caiĺın, an, leabhar; A = φ

1. Cheannaigh, a verb, is likely to be the root of the sentence, therefore apply

a Right-Arcroot operation, which takes the word on the top of the stack

(ROOT ) and makes it the head of the next word in the buffer Cheannaigh.

Add to A:

A = {root(ROOT, Cheannaigh)}

Part of Right-Arc operation is to push Cheannaigh onto the stack:

σ = [ROOT | Cheannaigh]; β = an, caiĺın, an, leabhar;

2. Shift an onto the stack (an unlikely dependent of Cheannaigh)

σ = [ROOT, Cheannaigh | an]; β = caiĺın, an, leabhar
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3. The next word in the buffer (caiĺın) is likely to be the head of an – apply the

Left-Arcdet operation, which takes the word on the top of the stack (an) and

makes it the dependent of the next word in the buffer caiĺın. Add to A:

A = {root(ROOT, Cheannaigh), det(caiĺın, an)}

4. Reduce – Take an off the stack (it is already a dependent)

σ = [ROOT | Cheannaigh]; β = caiĺın, an, leabhar

5. Apply the Right-Arcsubj operation. caiĺın is a good candidate as a subject

dependent of Cheannaigh. Add to A.

A = {root(ROOT, Cheannaigh), det(caiĺın, an), subj(Cheannaigh, caiĺın)}

We add caiĺın to the stack (σ| wi| wj):

σ = [ROOT, Cheannaigh | caiĺın]; β = an, leabhar

6. Reduce: As caiĺın does not have any right dependents, and it is already

identified as a dependent of another token, it can be taken off the stack:

σ = [ROOT | Cheannaigh]; β = an, leabhar

7. Shift an onto the stack (an is not likely to be the dependent of Cheannaigh)

σ = [ROOT, Cheannaigh | an]; β = leabhar

8. The next word in the buffer (leabhar) is likely to be the head of an – apply

the Left-Arcdet operation and add to A:

A = {root(ROOT, Cheannaigh), det(caiĺın, an), subj(Cheannaigh, caiĺın), det(leabhar,

an))}

9. Reduce – Take an off the stack (it is already a dependent)

σ = [ROOT | Cheannaigh]; β = leabhar

10. Apply the Right-Arcobj operation. leabhar is a good candidate as an object

dependent of Cheannaigh. Add to A.

A = {root(ROOT, Cheannaigh), det(caiĺın, an), subj(Cheannaigh, caiĺın), det(leabhar,

an), obj(Cheannaigh, leabhar)}

We add leabhar to the stack (σ| wi| wj)

σ = [ROOT, Cheannaigh | leabhar]; β = φ
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11. Finish – as the buffer is empty.

It is clear in this example that we are assuming that all the decisions made by the

classifier are correct. Of course, the classifier is not always reliable and the parser

cannot get all choices correct each time. Yet, we can see how the various features it

uses assists it in making the correct decisions. For example, we can see in the steps

above that at one stage Cheannaigh is on the top of the stack, and an is the next

token on the buffer. We note that an is unlikely to be a dependent of Cheannaigh

at this stage. Yet, if we were parsing the (present tense) interrogative form of the

sentence (An gceannáıonn an caiĺın an leabhar? ‘Does the girl buy the book?’), the

first word An1 is a present tense interrogative particle, and should in fact be attached

to the verb gceannáıonn as a dependent. How then, would the classifier know the

difference between what is possible for An1 and an2 (of an caiĺın)? In this case,

the length of the proposed dependency arc for both cases is equal, so that feature

will not bear any weighting. The part-of-speech tags will differ however. The POS

for An1 is Part (particle) and the POS for an2 is Art (Article). In addition, An1,

in sequence occurs to the left of the verb, requiring a Left-Arc operation, therefore

is more likely to be a dependent than an2 which occurs to the right of the verb

(requiring a Right-Arc operation).

6.1.2 Evaluation Metrics

Parsers are evaluated by comparing the parsed output of test data to a gold standard

version of the test data. In dependency parsing, by comparing the trees, it is possible

to calculate the accuracy of each parse. The score is based on the number of correct

dependencies, i.e. the percentage of dependency relations that the parser got right:

accuracy =
# correct dependencies

total # dependencies

In general, the accuracy of a dependency parser is reported with two scores

(i) Unlabelled Attachment Score (UAS) is the accuracy of the parser’s prediction of
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attachments (assigned head) only, and (ii) Labelled Attachment Score (LAS) reports

the accuracy based on predictions of both the correct attachments and correctly

assigned dependency labels to each head-modifier relation.

6.2 Establishing a Baseline Parsing Score

In the early stages of the treebank’s development, the sentences in our corpus were

manually annotated. As our corpus sentences had been randomised, we sequentially

chose blocks of sentences to annotate. Once we reached the first 300 fully-annotated

and reviewed (gold standard) trees, we were able to train a statistical model and

establish a parsing baseline score against which all future parsing models could be

compared. We trained MaltParser (Nivre et al., 2006) on our 300 gold trees and

tested for accuracy using 10-fold cross-validation.3

We apply the stacklazy and LIBLINEAR learner algorithms. The stacklazy

algorithm differs slightly to the algorithm described in Section 6.1.1, in that the

arcs are created between the top two nodes on the stack instead of between the top

nodes of both the stack and the next node on the buffer. The stacklazy algorithm

can directly handle non-projective structures that result in crossing dependencies,

which is important for our parsing experiments as our analyses show that the Irish

data contains some non-projective structures.4 The liblinear algorithm has been

proven to reduce processing time, compared to other classifiers such as LibSVM

(Cassel, 2009).

We test a variety of feature models which make use of various combinations

of the following information extracted from the 3,000-sentence POS-tagged corpus:

surface form, lemma, fine-grained and coarse-grained POS tags (see Section 3.1.3).

Section 6.1.1 also discusses the use of features in inducing parsing models. The

3As a held out test set would be too small of a representation of the linguistic variances in Irish,
k-fold cross validation is a more favoured approach to testing models on small data sets. The entire
data set is split into k number of sets, with each set iterated over as a test set, using the remaining
data as training set. The scores are then averaged across all sets. (Jurafsky and Martin, 2000, pp.
154-155).

4See Section 2.3.2 for a discussion of projectivity.
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Model LAS UAS
Form+POS: 60.6 70.3
Lemma+POS: 61.3 70.8
Form+Lemma+POS: 61.5 70.8
Form+CPOS: 62.1 72.5
Form+Lemma+CPOS: 62.9 72.6
Form+CPOS+POS: 63.0 72.9
Lemma+CPOS+POS: 63.1 72.4
Lemma+CPOS: 63.3 72.7
Form+Lemma+CPOS+POS: 63.3 73.1

Table 6.1: Preliminary parsing results with MaltParser. LAS is Labelled Attachment
Score – the proportion of labels and attachments the parser correctly predicts. UAS
is Unlabelled Attachment Score – the proportion of attachments the parser correctly
predicts.

results are shown in Table 6.1.

The small size of our seed set meant that the differences between the various

models were not statistically significant.5 Nevertheless, we chose the best-performing

model as our baseline model in the bootstrapping process with a UAS score of 73.1%

and LAS score of 63.3%. This model uses information from the word form, lemma

and both POS tags, and these are the features we use in all our MaltParser parsing

experiments discussed in this chapter.

To put these baseline scores into perspective, the CoNLL 2007 Shared Task on

Dependency Parsing (Nivre et al., 2007) categorises the parsing LAS results for ten

languages as follows: low scores (76.31-76.94), medium (79.19-80.21) and high (84.4-

89.61). The size of the training data sets for these languages vary widely (as shown

in Table 6.2), but the general trend is that the larger training sets gained the higher

parsing scores. Most of these dependency treebanks have pure dependency annota-

tions or both dependency and constituency annotations, others were converted from

constituency trees (as indicated with †).
5We used Dan Bikel’s Randomized Parsing Evaluation Comparator, (http://www.cis.upenn.

edu/~dbikel/software.html#comparator, downloaded 28 March 2011), to calculate statistical
significance between the output of the parsing models. We use this same tool for all statistical
significant testing reported in this thesis, and base significance on the p-value of 0.05.
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Training Data Ar Ba Ca † Ch † Cz En † Gr Hu † It Tu
# Tokens (k) 112 51 431 337 432 447 65 132 71 65
# Trees (k) 2.9 3.2 15 57 25.4 18.6 2.7 6.0 3.1 5.6
Best LAS 76.5 76.9 88.7 84.7 80.2 89.6 76.3 80.3 84.4 79.8
Best UAS 86.1 82.8 93.4 88.9 86.3 90.6 84.1 83.6 87.9 86.2

Table 6.2: CoNLL 2007 Shared Task on Dependency Parsing: Treebank sizes and
best LAS/UAS results, rounded to one decimal point. (Note: † denotes treebanks
converted from constituency trees to dependency format.)
Ar:Arabic, Ba:Basque, Ca:Catalan, Ch:Chinese, Cz:Czech, En:English, Gr:Greek,
Hu:Hungarian, It:Italian, Tu:Turkish.

Model LAS-1 UAS-1 LAS-2 UAS-2

Form+POS: 60.6 70.3 64.4 74.2
Lemma+POS: 61.3 70.8 64.6 74.3
Form+Lemma+POS: 61.5 70.8 64.6 74.5
Form+CPOS: 62.1 72.5 65.0 76.1
Form+Lemma+CPOS: 62.9 72.6 66.1 76.2
Form+CPOS+POS: 63.0 72.9 66.0 76.0
Lemma+CPOS+POS: 63.1 72.4 66.0 76.2
Lemma+CPOS: 63.3 72.7 65.1 75.7
Form+Lemma+CPOS+POS: 63.3 73.1 66.5 76.3

Table 6.3: Preliminary MaltParser experiments with the Irish Dependency Tree-
bank: pre-IAA results (as per Table 6.1) and post-IAA results.

6.3 Improvements over Baseline following IAA Study

In Section 3.2, we reported on our inter-annotator agreement study. We discussed

how subsequent workshops, where the annotators and a third linguistic expert anal-

ysed the disagreements found in this study, highlighted improvements required for

the annotation guide and scheme. Following the changes we made to the labelling

scheme as a result of the our first IAA study, we re-ran the same parsing experiments

on the newly updated seed set of 300 sentences. We used 10-fold cross-validation on

the same feature sets (various combinations of form, lemma, fine-grained POS and

coarse-grained POS). The parser’s accuracy scores increased to 66.5% (LAS) and

76.3% (UAS). The improved results, as shown in the final two columns of Table 6.3,

reflect the value of undertaking an analysis of IAA-1 results, with a subsequent im-

provement to the labelling scheme and annotation guide. The improvements also

are a direct result of identifying the sources of annotator disagreements outlined in
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Section 3.2.3 and updating the treebank accordingly.

6.4 Bootstrapping Treebank Development –

Active Learning

Total # Gold Trees Tree batch size Source
300 300 Manual annotation

Table 6.4: Treebank Status

Human input is fundamental in treebank development for the purpose of ensuring

accuracy and quality. However, there are steps that have been proposed to semi-

automate the annotation task so as to reduce the manual effort and time required.

One bootstrapping approach involves training a parser to pre-parse the trees, allowing

the annotator to correct the parser’s output instead of annotating from scratch.

The newly parsed data is added to the training data and the cycle continues until

all data is parsed. We refer to this as a basic bootstrapping method as it differs

considerably to the various other bootstrapping approaches that we will discuss in

later sections. Note that the term bootstrapping can sometimes imply that there is

no manual annotation effort involved. We clarify here that our basic bootstrapping

method involves a manual correction stage to ensure that gold trees are added to

the treebank on each iteration.

In order to therefore speed up our treebank development process, we applied the

following bootstrapping approach to annotating the subsequent 150 sentences in our

corpus (similar to that of Judge et al. (2006) and more recently, Seraji et al. (2012)):

1. Manually annotate a seed set of n sentences.

2. Train a baseline parsing model on the seed set.

3. Parse m sentences with the baseline model and manually correct the output.

4. Add the m automatically parsed and manually corrected trees to the training

set and train a new model.
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5. Parse another m sentences with the new model and manually correct the

output.

6. Repeat steps 4 and 5 until all sentences have been parsed and used as training

data.

This kind of iterative approach to parsing a corpus allowed us to take advantage

of the presence of repetition in the data. The parser learns more at each iteration as

a result of exposure to repetitive syntactic structures. Despite starting from such a

small training set, frequent structures, such as determiner or adjective attachment to

nouns, are easily learned. Thus, with this type of approach, the parser is expected

to correctly annotate the frequently encountered and learned structures, leaving

the annotator with the manual correction of only the infrequent, previously unseen

or difficult parses each time. Through the addition of newly parsed data to the

training material at each iteration, the learning process becomes quicker. Using this

approach, we increased the treebank size to 450 trees.6

However, one can argue that it may be futile to continue to add examples of

structures already learned – those which the parser already finds easy to parse – and

instead, it would be a more productive use of resources and time to annotate more

difficult constructions. An enhancement to this standard bootstrapping approach

is Active Learning, which is a form of selective sampling whereby only ‘informative’

sentences are chosen to be annotated and added to the parser’s training data on each

iteration. Sentences are regarded as informative if their inclusion in the training data

is expected to fill gaps in the parser’s knowledge.

In Section 6.4.1, we discuss previous work on active learning in NLP. In Sec-

tion 6.4.2, we explain how our active learning experiments were carried out and we

discuss those results in Section 6.4.3. We then provide a discussion of our findings

in Section 6.4.4, followed by a summary of experiments using unlabelled data in

Section 6.4.5. Finally, we provide some conclusions on active learning for treebank

development in Section 6.4.6.

6100 of these trees were used in the IAA study.
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6.4.1 Related Work

Active learning is a general technique applicable to many tasks involving machine

learning. Two broad approaches are Query By Uncertainty (QBU) (Cohn et al.,

1994), where examples about which the learner is least confident are selected for

manual annotation; and Query By Committee (QBC) (Seung et al., 1992), where

disagreement among a committee of learners is the criterion for selecting examples

for annotation. Active learning has been used in a number of areas of NLP such as

information extraction (Scheffer et al., 2001), text categorisation (Lewis and Gale,

1994; Hoi et al., 2006) and word sense disambiguation (Chen et al., 2006). Olsson

(2009) provides a survey of various approaches to active learning in NLP.

For our own work, and from a parsing point of view, the following studies are the

most relevant application of active learning. Thompson et al. (1999) apply active

learning sampling methods to semantic parsing. Hwa et al. (2003) use selective sam-

pling for co-training to reduce the annotation effort and time required to annotate

labelled training data for syntactic constituency parsing. Reichart and Rappoport

(2007) use sample selection methods to assess parse quality. More closely in line with

our own studies, Osborne and Baldridge (2004) use active learning in HPSG (Head-

driven Phrase-Structure Grammar) parsing. The goal of their work was to improve

parse selection for HPSG: for all the analyses licensed by the HPSG English Resource

Grammar (Baldwin et al., 2004) for a particular sentence, the task is to choose the

best one using a log-linear model with features derived from the HPSG structure.

The supervised framework requires sentences annotated with parses, which is where

active learning can play a role. Osborne and Baldridge (2004) apply both QBU

with an ensemble of models, and QBC, and show that this decreases annotation

cost, measured both in number of sentences to achieve a particular level of parse

selection accuracy, and in a measure of sentence complexity, with respect to random

selection.

In corpus development, Hughes et al. (2005) use active learning to assist them

in selecting the most useful sentences for annotation in their development of a wide-
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coverage corpus of CCG (Combinatory Category Grammar) derivations. Similarly,

Atserias et al. (2010) took an active learning approach to developing a dependency

treebank of questions. Since our own study, Ghayoomi and Kuhn (2013) have ex-

plored (through simulation) various active learning approaches for the future ex-

pansion of a Persian HPSG treebank. Their aim is similar to our work on Irish, as

Persian is also a low-resourced language.

In addition, most active learning work in NLP has used variants of QBU and

QBC where instances with the most uncertainty or disagreement (respectively) are

selected for annotation. Some work by Sokolovska (2011) in the context of phoneti-

sation and named entity recognition has suggested that a distribution over degrees

of uncertainty or disagreement may work better: the idea is that examples on which

the learners are more certain or in greater agreement might be more straightfor-

wardly added to the training set. We also consider this approach in the context of

treebank construction, so that examples selected by active learning for annotation

are a mix of easier and more complex.

6.4.2 Active Learning Experiments

Total # Gold Trees Tree batch Source
300 Manual annotation

450 150
Automated & manual correction
(incl. IAA trees)

Table 6.5: Treebank Status

We carried out experiments to assess the extent to which active learning can play

a role in treebank and parser development. We assessed whether such an approach

could be considered useful by comparing a QBC active learning bootstrapping ap-

proach to a passive one in which sentences are chosen at random for manual revision.

The following describes the steps involved in setting up this experiment.

Our treebank/parser bootstrapping algorithm is given in Algorithm 1. In an

initialisation step, a parsing model is trained on a seed set of gold standard trees. In

129



Algorithm 1 Our bootstrapping algorithm
A is a parser.
M i

A is a model of A at step i.
P i
A is a set of X trees produced using M i

A.
U is a set of sentences.
U i is a subset of U at step i.
L is the manually labelled seed training set.
Li
A is labelled training data for A at step i.

Initialise:
L0
A ← L.

M0
A ← Train(A,L0

A)
for i = 1→ N do
U i ← Add set of unlabelled sentences from U
P i
A ← Parse(U i , M i

A)
P ′iA ← Select a subset of Y parsed trees from P i

A

P ′iAgold ← Hand-correct P ′iA
Li+1
A ← Li

A + P ′iAgold

M i+1
A ← Train(A,Li+1

A )
end for

each iterative step, a new batch of unseen sentences is retrieved, the parsing model

is used to parse these sentences, a subset of these automatically parsed sentences

is selected (in a manner described below), the parse trees for the sentences in this

subset are manually corrected, the corrected trees are added to the training set

and a new parsing model is trained. This process is repeated, ideally until parsing

accuracy converges.

We experiment with two versions of this bootstrapping algorithm. In the passive

learning variant, the Y trees that are added to the training data on each iteration

are chosen at random from the batch of X unseen sentences. In the active learning

variant, we select these trees based on a notion of how informative they are, i.e.

how much the parser might be improved if it knew how to parse them correctly.

We approximate informativeness based on QBC, specifically, disagreement between

a committee of two parsers – the less accurate we suspect a parse to be, the more

likely its correction is to be informative. Thus, we rank the set of X trees (P i
A)

based on their disagreement with a second reference parser. The top Y trees (P ′iA)

from this ordered set are manually revised and added to the training set for the next

iteration.

This assessment of disagreement between two trees is based on the number of de-
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pendency relations they disagree on, which is similar to the idea of the F-complement

used by Ngai and Yarowsky (2000) in their work on the comparison of rule-based

and data-driven approaches to noun phrase chunking. Disagreement between two

trees, t1 and t2 is defined as 1− LAS(t1, t2).

We use MaltParser as the only parser in the passive learning setup and the main

parser in the active learning setup. We use another dependency parser Mate (Bohnet,

2010) as our second parser in the active learning setup. Since we have 450 gold trees

by this stage of development, we split them into a seed training set of 150 trees,

a development set of 150 and a test set of 150. We run the two versions of the

algorithm for four iterations, and on each iteration 50 (Y) parse trees were hand-

corrected from a set of 200 (X).7 This means that the final training set size for both

setups is 350 trees (150 + (4*50)). However, the 4*50 training trees added to the

seed training set of 150 are not the same for both setups. The set of 200 unseen

sentences in each iteration is the same but, crucially, the subsets of 50 chosen for

manual correction and added to the training set on each iteration are different —

in the active learning setup, QBC is used to choose the subset and in the passive

learning setup, the subset is chosen at random. The primary annotator carried out

all the manual correction. At the final iteration, the treebank size is 650 trees.

6.4.3 Results

The results of our bootstrapping experiments are shown in Figures 6.2 and 6.3.

Figure 6.2 graphs the labelled attachment accuracy for both the passive and active

setups over the four training iterations. Figure 6.3 depicts the unlabelled attachment

accuracy. The highest scoring models occur on the third iteration, achieving UAS

78.49% and LAS 68.81%. All results are on our development set.

7The next 4 sequential blocks of 200 sentences were chosen from our randomised corpus for this
experiment.
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Figure 6.2: Passive versus Active Learning results on development set: Labelled
Attachment Accuracy. The x-axis represents the number of training iterations
and the y-axis the labelled attachment score.

Figure 6.3: Passive versus Active Learning results on development set: Unlabelled
Attachment Accuracy. The x-axis represents the number of training iterations
and the y-axis the unlabelled attachment score.

6.4.4 Analysis

On the whole, the results in Figures 6.2 and 6.3 confirm that adding training data to

our baseline model is useful and that the active learning results are superior to the

passive learning results (particularly for unlabelled attachment accuracy). However,

the drop in labelled attachment accuracy from the penultimate to the final iteration

in the active learning setup is curious. We measured the sentence length of both the

passive and active learning training sentences and found that we find one sentence in

the active learning set contained 308 tokens, a feature which clearly contributed in a

drop in parsing accuracy, due to an increased number of long distance dependencies

that would require processing.
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Since the training sentences were manually corrected before adding them to the

training sets, this meant that we could measure how much correction was involved

by measuring the level of disagreement between the automatic parses and their

gold-standard corrected versions. This represents an approximation of annotation

difficulty.

Compare the following examples to see how the automatically generated parse

(Figures 6.4) can differ from the hand-corrected parse (Figure 6.5). The hand-

corrected parse is considered the gold-standard parse. As we are calculating LAS

(labelled attachment score) we are counting how many times the parser correctly

predicts both the labels and attachment values in one sentence.

top vparticle ppred obj obl obj punctuation

Cad a thug śı do Mháire ?
What REL gave she to Mary ?

‘What did she give to Mary?’

Figure 6.4: Automatically generated annotation

obj q vparticle top subj obl pobj punctuation

Cad a thug śı do Mháire ?
What REL gave she to Mary ?

‘What did she give to Mary?’

Figure 6.5: Hand-corrected (gold) annotation

From comparison, we can see that the parser incorrectly predicted three labels

– (i) top instead of obj q, (ii) ppred instead of top and (iii) obj instead of pobj –

and three attachments – (i) the head of Cad should be thug, (ii) the head of thug

should be the ROOT and (iii) the head of ? should be thug. This means that the

parser only predicted both the correct label and attachment values for two tokens
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It. 1 It.2 It.3 It.4

Correction Effort

Passive 23.8 30.2 27.0 23.8
Active 36.7 37.6 32.4 32.8

Average Sentence Length

Passive 18.6 28.6 23.9 24.5
Active 18.8 25.5 24.8 35.9

Table 6.6: Differences between active and passive training sentences. Correction
effort is the level of disagreement between the automatic parse and its correction
(1-LAS).

in the sentence. As there are seven tokens in the sentence in total, the correction

effort is 0.72, and calculated as:

1− LAS = 1− #correctTokens

#tokenCount
= 1− 2

7
= 0.72

The results for the correction effort involved in manually correcting all of the

active learning and passive learning sentences at each iteration are shown in Ta-

ble 6.6. We can see that the correction effort figures confirm that the active learning

sentences required more correction than the passive learning sentences. This demon-

strates that the QBC metric is successful in predicting whether a sentence is hard to

parse but it also calls into doubt the benefits of active learning over passive learn-

ing, especially when resources are limited. Do the modest gains in parsing accuracy

warrant the extra annotation effort involved?

We should note here that Baldridge and Palmer (2009)’s active learning study for

POS tagging involved a time-based evaluation. We did not have similar technology

available to us to carry out this type of evaluation, but the primary annotator’s

experience of this annotation task was that it took longer to correct the batch of

active learning selected trees when compared to correcting the batch of passive

learning selected trees.

The average sentence lengths of the active learning and passive learning sentences

at each iteration are also shown in Table 6.6. We can see that there is no notable

difference in average sentence length between the active and passive learning sets
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(apart from the final iteration).8 We can also see that an increase in average sentence

length does not necessarily correlate with an increase in annotation effort.

It is interesting that the biggest difference in sentence length is in iteration 4

where there is also a drop in active learning performance on the development set

when adding them to the parser. If we examine the 50 trees that are corrected, we

find one that contains 308 tokens. If this was omitted from the training data, la-

belled attachment accuracy rises from 67.92% to 69.13% and unlabelled attachment

accuracy rises from 78.20% to 78.49%. It is risky to conclude too much from just

one example but this appears to suggest that if sentences above a certain length are

selected by the QBC measure, they should not be revised and added to the training

set since the correction process is more likely to be lengthy and error-prone.

The test set showed similar trends to the development set. The baseline model

obtains a LAS of 63.4%, the final passive model a LAS of 67.2% and the final

active model a LAS of 68.0%, (increasing to 68.1% when the 308-token sentence is

removed from the training set). Metric gain of one parser over another does not

always represent a statistically significant gain. We calculate statistical significance

values in order to assess whether the difference between the two parsers is really

a reflection of improved models or just random. The difference between the active

and passive learning results in this case is not statistically significant.

6.4.5 Making Use of Unlabelled Data

One criticism of the active learning approach to parser/treebank bootstrapping is

that it can result in a set of trees which is an unrepresentative sample of the language

since it is skewed in favour of the type of sentences chosen by the active learning

informative measure.9 One possible way to mitigate this is to add automatically

(unchecked) labelled data in addition to hand-corrected data. Taking the third

8The notable increase in average sentence length of the active learning set in iteration 4 is due
to one sentence which contains 308 tokens.

9See a discussion on this concern by Hal Daumé at http://nlpers.blogspot.ie/2011/10/

active-learning-far-from-solved.html.
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active learning iteration with a training set of 300 sentences as our starting point,

we added automatic parses from the remaining sentences in the unlabelled set for

that iteration. The unlabelled set is ordered by disagreement with the reference

parser and so we incrementally added from the bottom of this set until we reached

the subset of 50 trees which were manually corrected, i.e. we prioritised those parses

that show the highest agreement with the reference parser first because we assumed

these to be more accurate. The results, shown in Figure 6.6, demonstrate that the

addition of the automatic parses makes little difference to the parsing accuracy. This

is not necessarily a negative result since it demonstrates that the training sentence

bias (concerns of which were highlighted above) can be adjusted without additional

annotation effort and without adversely affecting parsing accuracy (at least with

this limited training set size).

Figure 6.6: Adding Automatically Parsed Data to the Training set: the x-axis shows
the number of automatically parsed trees that are added to the training set and the
y-axis shows the unlabelled and labelled attachment accuracy on the development
set.

6.4.6 Active Learning Conclusion

While previous studies showed positive benefits from applying active-learning meth-

ods to parsing, this differs from the task of constructing a resource that is intended

to be reused in a number of ways such as a treebank. Other studies related to re-

source development observed potential trade-offs that arise from applying selective

sampling. First, as Baldridge and Osborne (2004) show, when “creating labelled
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training material (specifically, for them, for HPSG parse selection) and later reusing

it with other models, gains from active learning may be negligible or even negative”:

the simulation of active learning on an existing treebank under a particular model,

with the goal of improving parser accuracy, may not correspond to a useful approach

to constructing a treebank. Second, in the actual task of constructing a resource —

interlinearized glossed text — Baldridge and Palmer (2009) show that the useful-

ness of particular example selection techniques in active learning varies with factors

such as annotation expertise. They also note the importance of measures that are

sensitive to the cost of annotation: the sentences that active learning methods select

are often difficult to annotate as well, and may result in no effective savings in time

or other measures.

In keeping with previous findings and suggestions, we have shown that we can

reach a certain level of parsing accuracy with a smaller training set using active

learning, but that the advantage over passive learning is relatively modest and may

not be enough to warrant the extra annotation effort involved. While it is inter-

esting to see how passive and active approaches differ in effectiveness of treebank

development, the active approach cannot be the sole basis of our treebank’s devel-

opment. Active learning looks at only adding informative sentences to the treebank.

Our resources for developing this treebank are currently limited to a 3,000 sentence

POS-tagged corpus and it is expected that all of these sentences will eventually be

part of the IDT.

6.5 Bootstrapping Parser Development –

Semi-supervised Learning

As we have seen, developing a data-driven statistical parser relies on the availability

of a parsed corpus for the language in question. Once our treebank reached over

137



Total # Gold Trees Tree batch size Source
300 Manual annotation

150
Automated & manual correction
(incl. IAA trees)

200 Active Learning experiments
803 153 Automated & manual correction

Table 6.7: Treebank Status

800 gold trees in size,10 and after considering how labour- and time-intensive the

annotation process is, we opted to evaluate other approaches to bootstrapping the

parser.11 The active learning approach we described earlier is regarded as a super-

vised learning approach. That is, the trees that are parsed are manually checked

and corrected before being added to the training data. In this section we report

on the evaluation of various semi-supervised approaches to bootstrapping an Irish

statistical parser with a set of unlabelled sentences. This way we could ascertain

how accurate parsing output could be at that stage of treebank development without

solely relying on the limited gold-labelled data. Our previous preliminary attempts

at adding unchecked labelled data to the training set, as we outlined in Section 6.4.5,

show that while a small data set of this kind does not increase parsing accuracy, nei-

ther does it have a considerable negative impact. We therefore try semi-supervised

approaches with much larger data sets here to see how they can help improve parser

performance. We carried out a number of different semi-supervised bootstrapping

experiments using self-training, co-training and sample-selection-based co-training:

• Self training involves adding a parser’s output to its training data, without

manual correction.

• Co-training involves adding the parsed output of one parser to another parser’s

training data, without manual correction.

10An additional 153 trees were added through the basic bootstrapping annotation/correction
method.

11Note that the treebank does not grow in size through these semi-supervised experiments, as
we are only interested in adding manually reviewed trees to the IDT.
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• Sample-selection-based co-training involves adding to a parser’s training data

in a co-training manner, but only those trees meeting an accuracy threshold.

Our studies differ from previous similar experiments as our data was taken from

a work-in-progress treebank. Thus, aside from the small treebank (803 trees) which

was used for training the initial seed model and for testing, there was no additional

gold-labelled data available to us at that stage to directly compare supervised and

semi-supervised approaches using training sets of comparable sizes. This type of

comparison could be interesting at a later date when the treebank grows in size.

Nevertheless, these experiments represent the first of their kind for the Irish lan-

guage.

In Section 6.5.1, we discuss how we apply a self-training approach to bootstrap-

ping the parser. Section 6.5.2 explains how we use two parsers to apply a co-training

approach to bootstrapping. In Section 6.5.3, we complement the co-training ap-

proach by using sample-selection methods to choose the parse trees that are added

to the training data. Finally, in Section 6.6, we show how we explore the incorpo-

ration of morphological features in our parsing model in an attempt to overcome

data-sparsity.

6.5.1 Self-Training

6.5.1.1 Related Work

Self-training, the process of training a system on its own output, has a long and

chequered history in parsing. Early experiments by Charniak (1997) concluded that

self-training is ineffective because mistakes made by the parser are magnified rather

than smoothed during the self-training process. The self-training experiments of

Steedman et al. (2003) also yielded disappointing results. Reichart and Rappaport

(2007) found, on the other hand, that self-training could be effective if the seed

training set was very small. McClosky et al. (2006) also report positive results from

self-training, but the self-training protocol that they use cannot be considered to
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be pure self-training as the first-stage Charniak parser (Charniak, 2000) is retrained

on the output of the two-stage parser (Charniak and Johnson, 2005). They later

show that the extra information brought by the discriminative reranking phase is

a factor in the success of their procedure (McClosky et al., 2008). Sagae (2010)

reports positive self-training results even without the reranking phase in a domain

adaptation scenario, as do Huang and Harper (2009) who employ self-training with

a PCFG-LA parser.

6.5.1.2 Experimental Setup

We carried out our experiments using a small seed set of manually parsed trees

and a larger, yet still relatively small, set of unlabelled sentences. In our study, we

employed Malt (Nivre et al., 2006), a transition-based dependency parsing system,

and Mate (Bohnet, 2010), a graph-based parser – and compared results for both.

The labelled data available to us at this stage of treebank development is 803 gold

standard trees (following our basic bootstrapping and active learning annotations).

This small treebank includes the 150-tree development set and 150-tree test set

used in the active learning experiments discussed in Section 6.4. We use the same

development and test sets for this study. As for the remaining 503 trees, we remove

any trees that have more than 200 tokens. The motivation for this is two-fold: (i)

we had difficulties training Mate parser with long sentences due to memory resource

issues, and (ii) in keeping with the findings of the active learning experiments, the

large trees were sentences from legislative text that were difficult to analyse for

automatic parsers and human annotators. This leaves us with 500 gold-standard

trees as our seed training data set.

For our unlabelled data, we take the next 1945 sentences from the gold standard

3,000-sentence POS-tagged corpus referred to in Section 3.1.3. When we remove sen-

tences with more than 200 tokens, we are left with 1938 sentences in our unlabelled

set.

The main algorithm for self-training is given in Algorithm 2. We carry out two
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separate experiments using this algorithm. In the first experiment we use Malt. In

the second experiment, we substitute Mate for Malt.12

The steps are as follows: Initialisation involves training the parser on a labelled

seed set of 500 gold standard trees (L0
A), resulting in a baseline parsing model: M i

A.

We divide the set of gold POS-tagged sentences (U) into 6 sets, each containing

323 sentences U i. For each of the six iterations in this experiment (i = 1 . . . 6), we

parse U i. Each time, the set of newly parsed sentences (PA) is added to the training

set Li
A to make a larger training set of Li+1

A . A new parsing model (M i+1
A ) is then

induced by training with the new training set.

Algorithm 2 Self-training algorithm
A is a parser.
M i

A is a model of A at step i.
P i
A is a set of trees produced using M i

A.
U is a set of sentences.
U i is a subset of U at step i.
L is the manually labelled seed training set.
Li
A is labelled training data for A at step i.

Initialise:
L0
A ← L.

M0
A ← Train(A,L0

A)
for i = 1→ N do
U i ← Add set of unlabelled sentences from U
P i
A ← Parse(U i , M i

A)
Li+1
A ← Li

A + P i
A

M i+1
A ← Train(A,Li+1

A )
end for

6.5.1.3 Results

The results of our self-training experiments are presented in Figure 6.7. The

best Malt model was trained on 2115 trees, at the 5th iteration (70.2% LAS). UAS

scores did not increase over the baseline (79.1%). The improvement in LAS over

the baseline is not statistically significant. The best Mate model was trained on

1792 trees, at the 4th iteration (71.2% LAS, 79.2% UAS). The improvement over

the baseline is not statistically significant.

12Versions used: Maltparser v1.7 (stacklazy parsing algorithm); Mate tools v3.3 (graph-based
parser).
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Figure 6.7: Self-Training Results on the Development Set

6.5.2 Co-Training

6.5.2.1 Related Work

Co-training involves training a system on the output of a different system. Co-

training has found more success in parsing than self-training, and it is not difficult

to see why this might be the case as it can be viewed as a method for combining

the benefits of individual parsing systems. Steedman et al. (2003) directly com-

pare co-training and self-training of constituency parsers and find that co-training

outperforms self-training. Sagae and Tsujii (2007) successfully employ co-training

in the domain adaption track of the CoNLL 2007 shared task on dependency pars-

ing. Their methods involved (i) using two out-of-domain trained models to parse

domain-specific unlabelled data, (ii) using sample selection to identify output that

was identical for both models (iii) adding these (unchecked) parsed trees to the

original out-of-domain labelled training set.

6.5.2.2 Experimental Setup

In this and all subsequent experiments, we use both the same training data and

unlabelled data that we refer to in Section 6.5.1.2.

Our co-training algorithm is given in Algorithm 3 and it is the same as the

algorithm provided by Steedman et al. (2003). Again, our experiments are carried

out using Malt and Mate. This time, the experiments are run concurrently as each

parser is bootstrapped from the other parser’s output.
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The steps are as follows: Initialisation involves training both parsers on a labelled

seed set of 500 gold standard trees (L0
A and L0

B), resulting in two separate baseline

parsing models: M i
A (Malt) and M i

B (Mate). We divide the set of gold POS-tagged

sentences (U) into 6 sets, each containing 323 sentences U i. For each of the six

iterations in this experiment (i = 1 . . . 6), we used Malt and Mate to parse U i. This

time, the set of newly parsed sentences P i
B (Mate output) is added to the training

set Li
A to make a larger training set of Li+1

A (Malt training set). Conversely, the set

of newly parsed sentences P i
A (Malt output) is added to the training set Li

B to make

a larger training set of Li+1
B (Mate training set). Two new parsing models (M i+1

A

and M i+1
B ) are then induced by training Malt and Mate respectively with their new

training sets.

Algorithm 3 Co-training algorithm
A and B are two different parsers.
M i

A and M i
B are models of A and B at step i.

P i
A and P i

B are a sets of trees produced using M i
A and M i

B .
U is a set of sentences.
U i is a subset of U at step i.
L is the manually labelled seed training set.
Li
A and Li

B are labelled training data for A and B at step i.
Initialise:
L0
A ← L0

B ← L.
M0

A ← Train(A,L0
A)

M0
B ← Train(B,L0

B)
for i = 1→ N do
U i ← Add set of unlabelled sentences from U
P i
A ← Parse(U i , M i

A)
P i
B ← Parse(U i , M i

B)
Li+1
A ← Li

A + P i
B

Li+1
B ← Li

B + P i
A

M i+1
A ← Train(A,Li+1

A )
M i+1

B ← Train(B,Li+1
B )

end for

6.5.2.3 Results

The results of our co-training experiment are presented in Figure 6.8. The best

Malt model was trained on 2438 trees, at the final iteration (71.0% LAS and 79.8%

UAS). The improvement in UAS over the baseline is statistically significant. Mate’s

best model was trained on 823 trees on the second iteration (71.4% LAS and 79.9%
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Figure 6.8: Co-Training Results on the Development Set

UAS). The improvement over the baseline is not statistically significant.

6.5.3 Sample-Selection-Based Co-Training

6.5.3.1 Related Work

Sample selection involves choosing training items for use in a particular task based

on some criteria which approximates their accuracy in the absence of a label or

reference. In the context of parsing, Rehbein (2011) chooses additional sentences to

add to the parser’s training set based on their similarity to the existing training set

– the idea here is that sentences that are similar to training data are likely to have

been parsed properly and so are “safe” to add to the training set. In their parser

co-training experiments, Steedman et al. (2003) sample training items based on the

confidence of the individual parsers (as approximated by parse probability).

In active learning research (see Section 6.4), the Query By Committee selection

method (Seung et al., 1992) is used to choose items for annotation – if a committee

of two or more systems disagrees on an item, this is evidence that the item needs

to be prioritised for manual correction. Steedman et al. (2003) discuss a sample

selection approach based on differences between parsers – if parser A and parser B

disagree on an analysis, parser A can be improved by being retrained on parser B’s

analysis, and vice versa. In contrast, Ravi et al. (2008) show that parser agreement

is a strong indicator of parse quality, and in parser domain adaptation, Sagae and

Tsujii (2007) and Le Roux et al. (2012) use agreement between parsers to choose
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which automatically parsed target domain items to add to the training set.

Sample selection can be used with both self-training and co-training. We restrict

our attention to co-training since our previous experiments have demonstrated that

it has more potential than self-training. In the following set of experiments, we ex-

plored the role of both parser agreement and parser disagreement in sample selection

in co-training.

6.5.3.2 Agreement-Based Co-Training

Experimental Setup The main algorithm for agreement-based co-training is

given in Algorithm 4. Again, Malt and Mate are used. However, this algorithm

differs from the co-training algorithm in Figure 3 in that rather than adding the

full set of 323 newly parsed trees (P i
A and P i

B) to the training set at each iteration,

selected subsets of these trees (P i
A′ and P i

B′) are added instead. To define these

subsets, we identify the trees that have 85% or higher agreement between the two

parser output sets.13 As a result, the number of trees in the subsets differ at each

iteration. For iteration 1, 89 trees reach the agreement threshold; iteration 2, 93

trees; iteration 3, 117 trees; iteration 4, 122 trees; iteration 5, 131 trees; iteration 6,

114 trees. The number of trees in the training sets is much smaller compared with

those in the experiments of Section 6.5.2.

Figure 6.9: Agreement-based Co-Training Results on the Development Set

13We chose 85% as our cut-off as it was more relaxed than 100% agreement, yet seemed a
respectable threshold for quality trees when we regarded the proportion of the agreement between
trees in the development set.

145



Algorithm 4 Sample selection Co-training algorithm
A and B are two different parsers.
M i

A and M i
B are models of A and B at step i.

P i
A and P i

B are a sets of trees produced using M i
A and M i

B .
U is a set of sentences.
U i is a subset of U at step i.
L is the manually labelled seed training set.
Li
A and Li

B are labelled training data for A and B at step i.
Initialise:
L0
A ← L0

B ← L.
M0

A ← Train(A,L0
A)

M0
B ← Train(B,L0

B)
for i = 1→ N do
U i ← Add set of unlabelled sentences from U
P i
A ← Parse(U i , M i

A)
P i
B ← Parse(U i , M i

B)
P i
A′ ← a subset of X trees from P i

A

P i
B ′ ← a subset of X trees from P i

B

Li+1
A ← Li

A + P i
B ′

Li+1
B ← Li

B + P i
A′

M i+1
A ← Train(A,Li+1

A )
M i+1

B ← Train(B,Li+1
B )

end for

Results The results for agreement-based co-training are presented in Figure 6.9.

Malt’s best model was trained on 1166 trees at the final iteration (71.0% LAS and

79.8% UAS). Mate’s best model was trained on 1052 trees at the 5th iteration

(71.5% LAS and 79.7% UAS). Neither result represents a statistically significant

improvement over the baseline.

6.5.3.3 Disagreement-based Co-Training

Experimental Setup This experiment uses the same sample selection algorithm

we used for agreement-based co-training (Figure 4). For this experiment, however,

the way in which the subsets of trees (P i
A′ and P i

B′) are selected differs. This time

we choose the trees that have 70% or higher disagreement between the two parser

output sets. Again, the number of trees in the subsets differ at each iteration. For

iteration 1, 91 trees reach the disagreement threshold; iteration 2, 93 trees; iteration

3, 73 trees; iteration 4, 74 trees; iteration 5, 68 trees; iteration 6, 71 trees.

Results The results for our disagreement-based co-training experiment are shown

in Figure 6.10. The best Malt model was trained with 831 trees at the 4th iteration
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Figure 6.10: Disagreement-based Co-Training Results on the Development Set

(70.8% LAS and 79.8% UAS). Mate’s best models were trained on (i) 684 trees on

the 2nd iteration (71.0% LAS) and (ii) 899 trees on the 5th iteration (79.4% UAS).

Neither improvement over the baseline is statistically significant.

6.5.3.4 Non-Iterative Agreement-based Co-Training

In this section, we explore what happens when we add the additional training data

at once rather than over several iterations. Rather than testing this idea with all

our previous setups, we choose sample-selection-based co-training where agreement

between parsers is the criterion for selecting additional training data.

Experimental Setup Again, we also follow the algorithm for agreement-based

co-training as presented in Figure 4. However, two different approaches are taken

this time, involving only one iteration in each. For the first experiment (ACT1a),

the subsets of trees (P i
A′ and P i

B′) that are added to the training data are chosen

based on an agreement threshold of 85% between parsers, and are taken from the

full set of unlabelled data (where U i = U), comprising 1938 trees. In this instance,

the subset consisted of 603 trees, making a final training set of 1103 trees.

For the second experiment (ACT1b), only trees meeting a parser agreement

threshold of 100% are added to the training data. 253 trees (P i
A′ and P i

B′) out of

1938 trees (U i = U) meet this threshold. The final training set consisted of 753

trees.
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Results ACT1a proved to be the most accurate parsing model for Mate overall.

The addition of 603 trees that met the agreement threshold of 85% increased the LAS

and UAS scores over the baseline by 1.0% and 1.3% to 71.8 and 80.4 respectively.

This improvement is statistically significant. Malt showed a LAS improvement of

0.93% and a UAS improvement of 0.42% (71.0% LAS and 79.6% UAS). The LAS

improvement over the baseline is statistically significant.

The increases for ACT1b, where 100% agreement trees are added, are less pro-

nounced and are not statistically significant. Results showed a 0.5% LAS and 0.2%

UAS increase over the baseline with Malt, based on the 100% agreement threshold

(adding 235 trees). Mate performs at 0.5% above the LAS baseline and 0.1% above

the UAS baseline.

6.5.4 Analysis

We performed an error analysis for the Malt and Mate baseline, self-trained and

co-trained models on the development set. We observed the following trends:

• All Malt and Mate parsing models confuse the subj and obj labels. A few

possible reasons for this stand out: (i) It is difficult for the parser to discrim-

inate between analytic verb forms and synthetic verb forms. For example, in

the phrase phósfainn thusa ‘I would marry you’, phósfainn is a synthetic form

of the verb pós ‘marry’ that has been inflected with the incorporated pronoun

‘I’. Not recognising this, the parser decided that it is an intransitive verb, tak-

ing thusa, the emphatic form of the pronoun tú ‘you’, as its subject instead of

object. (ii) Possibly due to a VSO word order, when the parser is dealing with

relative clauses, it can be difficult to ascertain whether the following noun is

the subject or object.

(38) an caiĺın a chonaic mé inné

the girl REL saw me/I yesterday

‘the girl who saw me/ whom I saw yesterday’
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Example 38 shows an ambiguous relative clause.14 (iii) There is no passive

verb form in Irish. The autonomous form is most closely linked with passive

use and is used when the agent is not known or mentioned. A ‘hidden’ or

understood subject is incorporated into the verbform. Casadh eochair i nglas

‘a key was turned in a lock’ (lit. somebody turned a key in a lock). In this

sentence, eochair ‘key’ is the object.

• For both parsers, there is some confusion between the labelling of obl and

padjunct, both of which mark the attachment between verbs and prepositions.

Overall, Malt’s confusion decreases over the 6 iterations of self-training, but

Mate begins to incorrectly choose padjunct over obl instead. Mixed results

are obtained using the various variants of co-training.

• Mate handles coordination better than Malt.15 It is not surprising then that

co-training Malt using Mate parses improves Malt’s coordination handling

whereas the opposite is the case when co-training Mate on Malt parses, demon-

strating that co-training can both eliminate and introduce errors.

• Other examples of how Mate helps Malt during co-training is in the distinction

between top and comp relations, between vparticle and relparticle, and

in the analysis of xcomps.

• Distinguishing between relative and cleft particles is a frequent error for Mate,

and therefore Malt also begins to make this kind of error when co-trained using

Mate. Mate improves using sample-selection-based co-training with Malt.

• The sample-selection-based co-training variants show broadly similar trends

to the basic co-training.

6.5.5 Test Set Results

The best performing parsing model for Malt on the development set is in the final

iteration of the basic co-training approach in Section 6.5.2. The best performing

14Naturally ambiguous Irish sentences like this require context for disambiguation.
15Nivre and McDonald (2007) make a similar observation when they compare the errors made

by graph and transition based dependency parsers.
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Parsing Models LAS UAS

Development Set

Malt Baseline: 70.0 79.1
Malt Best (co-train) : 71.0 80.2

Mate Baseline: 70.8 79.1
Mate Best (85% threshold ACT1a): 71.8 80.4

Test Set

Malt Baseline: 70.2 79.5
Malt Best (co-train) : 70.8 79.8

Mate Baseline: 71.9 80.1
Mate Best (85% threshold ACT1a): 73.1 81.5

Table 6.8: Results for best performing models

parsing model for Mate on the development set is the non-iterative 85% threshold

agreement-based co-training approach described in Section 6.5.3.4. The test set

results for these optimal development set configurations are also shown in Table 6.8.

The baseline model for Malt obtains a LAS of 70.2%, the final co-training iteration

a LAS of 70.8%. This increase is not statistically significant. The baseline model

for Mate obtains a LAS of 71.9%, and the non-iterative 85% agreement-based co-

trained model obtains a LAS of 73.1%. This increase is statistically significant, with

a p-value of 0.029.

6.5.6 Semi-supervised Learning Conclusion

In this chapter, we have a set of experiments where our aim was to improve depen-

dency parsing performance for Irish, based on a small treebank seed training set size

of 500 trees. In these experiments, we tried to overcome the limited treebank size

by increasing the parsers’ training sets using automatically parsed sentences. While

we did manage to achieve statistically significant improvements in some settings, it

is clear from the results that the gains in parser accuracy through semi-supervised

bootstrapping methods were fairly modest. Yet, in the absence of more gold labelled

data, it is difficult to know now whether we would achieve similar or improved re-

sults by adding the same amount of gold training data. This type of analysis will

be interesting at a later date when the unlabelled trees used in these experiments
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are eventually annotated and corrected manually.

In line with similar experiments carried out on English (Steedman et al., 2003),

we found that co-training is more effective than self-training. Co-training Malt on

the output of Mate proved to be the most effective method for improving Malt’s per-

formance on the limited data available for Irish. Yet, the improvement is relatively

small (0.6% over the baseline for LAS, 0.3% for UAS) for the best co-trained model.

The best Mate results were achieved through a non-iterative agreement-based co-

training approach, in which Mate is trained on trees produced by Malt which exhibit

a minimum agreement of 85% with Mate (LAS increase of 1.2% and UAS of 1.4%).

6.6 Parsing with Morphological Features

Small data sets can lack sufficient examples of some linguistic phenomena in a tree-

bank leading to data sparsity. In addition, the morphologically rich nature of the

Irish language also confounds data sparsity in the treebank. Lexical data sparsity

arises in treebanks of morphologically rich languages, where inflection reduces the

likelihood of a word form variant being seen by the parser in training. As discussed

in Section 2.2.2, the Irish language is highly inflected with both inflectional and

derivational morphology. This results in our data containing a number of possible

inflected forms for a given root form, making it more difficult for a parser to recog-

nise and learn frequent patterns. For example, the verb tabhair ‘give’ is inflected

to create the following verb forms in the current treebank (803 trees): thug, dtug-

tar, thugtar, tugtar, tugadh, dtugadh, thabharfadh, dtabharfadh, thugann, thugaid́ıs,

dtabharfaidh.

With this in mind, and following on from the discussion in Section 6.5.4, we

carry out further parsing experiments in an attempt to make better use of mor-

phological information during parsing. We addressed this in two ways: by reducing

certain words to their lemmas and by including morphological information in the

optional FEATS (features) field. The reasoning behind reducing certain word forms
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to lemmas is to further reduce the differences between inflected forms of the same

word, and the reasoning behind including morphological information is to make

more explicit the similarity between two different word forms inflected in the same

way. All experiments are carried out with MaltParser and our seed training set of

500 gold trees. We focus on two phenomena: prepositional pronouns or pronominal

prepositions and verbs with incorporated subjects (see Section 2.2.2).

In the first experiment, we included extra morphological information for pronom-

inal prepositions. We ran three parsing experiments: (i) replacing the value of the

surface form (FORM) of pronominal prepositions with their lemma form (LEMMA),

for example agam→ag, (ii) including morphological information for pronominal

prepositions in the FEATS column. For example, in the case of agam ‘at me’, we in-

clude Per=1P|Num=Sg, (iii) we combine both approaches of reverting to lemma form

and also including the morphological features. The results are given in Table 6.9.

In the second experiment, we included morphological features for verbs with

incorporated subjects: imperative verb forms, synthetic verb forms and autonomous

verb forms such as those outlined in Section 6.5.4. For each instance of these verb

types, we included incorpSubj=true in the FEATS column. The results are also

given in Table 6.9.

6.6.1 Results and Conclusion

The aim of these experiments was to mitigate some of the data sparsity issues in

the Irish treebank by exploiting morphological characteristics of the language, thus

reducing word forms to lemmas and introducing morphological features in certain

cases. These changes, however, did not bring about an increase in parsing accuracy.

The experiments on the pronominal prepositions show a drop in parsing accuracy

while the experiments carried out using verb morphological information showed no

change in parsing accuracy. Although the total number of correct attachments are

the same, the parser output is different. In the case of inflected prepositions, it is

possible we did not see any improvement because we did not focus on a linguistic
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phenomenon which is critical for parsing. More experimentation is necessary to

establish the exact morphological characteristics of Irish that have the largest impact

on parsing.

Parsing Models (Malt) LAS UAS

Baseline: 70.0 79.1

Lemma (Pron Prep): 69.7 78.9
Lemma + Pron Prep Morph Features: 69.6 78.9
Form + Pron Prep Morph Features: 69.8 79.1

Verb Morph Features: 70.0 79.1

Table 6.9: Results with morphological features on the development set

6.7 Cross-lingual Transfer Parsing

Total # Gold Trees Tree batch size Source
300 Manual annotation

150
Automated & manual correction
(incl. IAA trees)

200 Active Learning experiments
153 Automated & manual correction

1020 217 Automated & manual correction

Table 6.10: Treebank Status

As previously discussed, annotating additional trees to increase the parser’s train-

ing set is a labour-intensive task. The small size of the treebank affects the accuracy

of any statistical parsing models learned from this treebank. Therefore, we inves-

tigate whether training data from other languages could be successfully utilised to

improve Irish parsing. Leveraging data from other languages in this way is known

as cross-lingual transfer parsing.

Cross-lingual transfer parsing involves training a parser on one language, and

parsing data of another language. McDonald et al. (2011) describe two types of

cross-lingual parsing, direct transfer parsing in which a delexicalised version of the

source language treebank is used to train a parsing model which is then used to parse

the target language, and a more sophisticated projected transfer approach in which
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the direct transfer approach is used to seed a parsing model which is then trained

to obey source-target constraints learned from a parallel corpus. These experiments

revealed that languages that were typologically similar were not necessarily the best

source-target pairs, sometimes due to variations between their language-specific an-

notation schemes. In more recent work, however, McDonald et al. (2013) reported

improved results on cross-lingual direct transfer parsing using the UD13 univer-

sal annotation scheme, to which six chosen treebanks are mapped for uniformity

purposes.16 Underlying the experiments with this new annotation scheme is the

universal part-of-speech (POS) tagset designed by Petrov et al. (2012). While their

results confirm that parsers trained on data from languages in the same language

group (e.g. Romance and Germanic) show the most accurate results, they also show

that training data taken across language groups also produces promising results. In

this section, we present our experiments with direct transfer cross-lingual parsing,

using Irish as the target language.

Since the Irish language belongs to the Celtic branch of the Indo-European lan-

guage family, the natural first step in cross-lingual parsing for Irish would be to look

to those languages of the Celtic language group, i.e. Welsh, Scots Gaelic, Manx,

Breton and Cornish, as a source of training data. However, these languages are just

as, if not further, under-resourced. Thus, we explore the possibility of leveraging

from the languages of the UD13 universal dependency treebanks (McDonald et al.,

2013) that are discussed in Section 5.

In Section 6.7.1, we describe the datasets used in our experiments and explain

the experimental design. In Section 6.7.2, we present the results, which we then

discuss in Section 6.7.3.

6.7.1 Data and Experimental Setup

Firstly, we present the datasets used in our experiments and explain how they are

used. Irish is the target language for all our parsing experiments.

16See Section 5 for more detail on UD13.
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Universal Irish Dependency Treebank UD13 is the universal version of the

Irish Dependency Treebank (now containing 1020 gold-standard trees),17 which

have been mapped to Petrov et al. (2012)’s Universal POS tagset and McDonald

et al. (2013)’s Universal Dependency Annotation Scheme (see Section 5). In or-

der to establish a monolingual baseline against which to compare our cross-lingual

results, we performed a five-fold cross-validation by dividing the full data set into

five non-overlapping training/test sets. We also tested our cross-lingual models on

a delexicalised version of this treebank, in which we replaced all tokens and lemmas

(language-specific data) with XX, and fine- and coarse-grained POS tags with the

universal POS tags.

Transfer source training data For our direct transfer cross-lingual parsing ex-

periments, we used 10 of the UD13 standard version harmonised training data sets18

made available by McDonald et al. (2013): Brazilian Portuguese (PT-BR), English

(EN), French (FR), German (DE), Indonesian (ID), Italian (IT), Japanese (JA),

Korean (KO), Spanish (ES) and Swedish (SV). For the purposes of uniformity, we

selected the first 4447 trees from each treebank – to match the number of trees in the

smallest data set (Swedish). We delexicalised all treebanks and used the universal

POS tags as both the coarse- and fine-grained values.19 We trained a parser on all

10 source data sets outlined and use each induced parsing model to parse and test

on a delexicalised version of the Universal Irish Dependency Treebank.

Largest transfer source training data – Universal English Dependency

Treebank English has the largest source training data set (sections 2-21 of the

Wall Street Journal data in the Penn Treebank Marcus et al. (1993) contains 39,832

trees). As with the smaller transfer datasets, we delexicalised this dataset and use

the universal POS tag values only. We experimented with this larger training set in

17An additional 217 trees were added through the basic bootstrapping annotation/correction
method.

18Version 2 data sets downloaded from https://code.google.com/p/uni-dep-tb/
19Note that the downloaded treebanks had some fine-grained POS tags that were not used across

all languages: e.g. VERBVPRT (Spanish), CD (English).
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order to establish whether more training data helps in a cross-lingual setting.

Parser and Evaluation Metrics We used MaltParser (a transition-based depen-

dency parsing system) for all of our experiments. In each case we report Labelled

Attachment Score (LAS) and Unlabelled Attachment Score (UAS).20

6.7.2 Results

All cross-lingual results are presented in Table 6.11. Note that when we trained

and tested on Irish (our monolingual baseline), we achieved an average accuracy

of 78.54% (UAS) and 71.59% (LAS) over the five cross-validation runs. The cross-

lingual results were substantially lower than this baseline. The LAS results range

from 0.84% (JA) to 43.88% (ID) and the UAS from 16.74% (JA) to 61.69% (ID).

Experiment Baseline
Training GA
UAS 78.54%
LAS 71.59%

Experiment SingleT
Training EN FR DE ID IT JA KO PT-BR ES SV
UAS 51.72 56.84 49.21 61.69 50.98 16.74 18.02 57.31 57.00 49.95
LAS 35.03 37.91 33.04 43.88 37.98 0.84 9.35 42.13 41.94 34.02

Experiment MultiT LargestT
Training All EN
UAS 57.69 51.59
LAS 41.38 33.97

Table 6.11: Multi-lingual transfer parsing results

A closer look at the single-source transfer parsing evaluation results (SingleT )

shows that some language sources are particularly strong for parsing accuracy of

certain labels. For example, ROOT (for Indonesian), adpobj (for French) and amod

(for Spanish). In response to these varied results, we explored the possibility of

combining the strengths of all the source languages (multi-source direct transfer

(MultiT ) – also implemented by McDonald et al. (2011)). A parser is trained on

a concatenation of all the delexicalised source data described in Section 7.4.1 and

tested on the full delexicalised Universal Irish Dependency Treebank. Combining

20All scores are micro-averaged meaning that they are calculated using weighting, which is based
on the number of tokens in a sentence, instead of just calculating the scores at a sentence level.
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all source data produced parsing results of 57.69% (UAS) and 41.38% (LAS), which

is outperformed by the best individual source language model (Indonesian).

Parsing with the large English training set (LargestT ) yielded results of 51.59%

(UAS) and 33.97% (LAS) compared to a UAS/LAS of 51.72/35.05 for the smaller

English training set. We investigated more closely why the larger training set did

not improve performance by incrementally adding training sentences to the smaller

set – none of these increments reveal any higher scores, suggesting that English is

not a suitable source training language for Irish.

Although the best cross-lingual model failed to outperform the monolingual

model, we looked at combining the strengths of the Indonesian and Irish treebanks

instead. We performed 5-fold cross-validation on the combined Indonesian and Irish

data sets. The results, 73.6% (UAS) and 65.03% (LAS), did not improve over the

Irish model. We then analysed the extent of their complementarity by counting

the number of sentences where the Indonesian model outperformed the Irish model.

This happened in only 20 cases, suggesting that there is no benefit in using the

Indonesian data over the Irish data nor in combining them at the sentence-level.

6.7.3 Discussion

McDonald et al. (2013)’s single-source transfer parsing results show that languages

within the same language groups make good source-target pairs. They also show

reasonable accuracy of source-target pairing across language groups. For instance,

the baseline when parsing French is 81.44% (UAS) and 73.37% (LAS), while the

transfer results obtained using an English treebank are 70.14% (UAS) and 58.20%

(LAS). Our baseline parser for Irish yields results of 78.54% (UAS) and 71.59%

(LAS), while Indonesian-Irish transfer results are 61.69% (UAS) and 43.88% (LAS).

The lowest scoring source language is Japanese. This parsing model’s output

shows less than 3% accuracy when identifying the ROOT label. This suggests the

effect that the divergent word orders have on this type of cross-lingual parsing –

VSO (Irish) vs SOV (Japanese). Another factor that is likely to be playing a role is
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the length of the Japanese sentences. The average sentence length in the Japanese

training data is only 9 words, which means that this dataset is comparatively smaller

than the others. It is also worth noting that the UD13 Japanese treebank uses only

15 of the 41 universal labels (the universal Irish treebank uses 30 of these labels).

As our best performing model (Indonesian) is an Austronesian language, we

investigate why this language does better when compared to Indo-European lan-

guages. We compare the results obtained by the Indonesian parser with those of the

English parser (SingleT ). Firstly, we note that the Indonesian parser captures nomi-

nal modification much better than English, resulting in an increased precision-recall

score of 60/67 on compmod. This highlights that the similarities in noun-noun modi-

fication between Irish and Indonesian helps cross-lingual parsing. In both languages

the modifying noun directly follows the head noun, e.g. ‘the statue of the hero’

translates in Irish as dealbh an laoich (lit. statue the hero); in Indonesian as patung

palawan (lit. statue hero). Secondly, our analysis shows that the English parser

does not capture long-distance dependencies as well as the Indonesian parser. For

example, we have observed an increased difference in precision-recall of 44%-44%

on mark, 12%-17.88% on cc and 4%-23.17% on rcmod when training on Indonesian.

Similar differences have also been observed when we compare with the French and

English (LargestT ) parsers.

6.7.4 Cross-lingual Transfer Parsing Conclusion

In this study, we had hoped that we would be able to identify a way to bootstrap the

development of the Irish Dependency Parser through the use of delexicalised tree-

banks of other languages that were annotated with the UD13 Annotation Scheme.

Uniformity as a result of the UD13 Annotation scheme and the delexicalised nature

of the treebanks allows for a more conclusive comparison and sharing of resources

across languages. While the current treebank data might capture certain linguistic

phenomena well, we expected that some cross-linguistic regularities could be taken

advantage of through cross-lingual transfer parsing.
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While none of the cross-lingual parsing models outperformed our baseline mono-

lingual model, our analysis of our best performing parsing model (Indonesian) and

our Irish parsing model output revealed similar linguistic traits that explained their

compatibility. We could also see that while some of the other language source data

contributed to accurately predicting certain labels, overall, their disparities with

Irish in general resulted in much lower scores.

Our relatively low cross-lingual parsing results suggest that this is not a suitable

bootstrapping approach to our parser development. Yet, our study has provided an

interesting insight into the difficulties of parsing Irish, both from the perspective of

limited training data and in comparison to the linguistic features of other languages.

6.8 Summary

We started this chapter with an overview of dependency parsing and a description

of how dependency parsers work. We gave an overview of the history of dependency

parsing and discuss the shift from traditional constituency parsing over time through

the development of resources. We then stepped through the parsing process of an

example Irish sentence to fully illustrate how transition-based dependency parsing

works.

We then moved on to discuss the link between the Irish Dependency Treebank

and statistically-driven parsers. When training a parser with a treebank for a new

language, it is difficult to accurately guess how large that treebank should be to

induce a sufficiently accuracy parsing model. There are many factors that can affect

parser accuracy, ranging from data set size, to morphological features resulting in

further data sparsity, to the type of parsing systems used for a particular language.

In this chapter, we explored the effects these factors have on Irish parsing through-

out the course of the treebank development. In addition, we also explored various

semi-automated approaches to bootstrapping the parser’s development, through (i)

bootstrapping the treebank’s development with a parser (ii) leveraging the Irish
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Stage
Treebank

size
Training
size

Test type/size LAS UAS

Baseline 300 270 Cross-val. (10-fold) 63.3 73.1
Baseline (post IAA) 300 270 Cross-val.(10-fold) 66.5 76.3
Passive Learning 650 350 Dev set (150) 68.4 77.7
Active Learning 650 350 Dev set (150) 68.8 78.5
Co-training 803 1103† Dev set (150) 71.8 80.4
Cross-lingual (UD – ga) 1020 816 Cross-val. (5-fold) 71.6 78.5
Final Treebank 1020 816 Cross-val. (5-fold) 71.4 80.1

Table 6.12: Summary of treebank parsing results throughout development. (Note:
† indicates unchecked trees.)

parser’s own uncorrected output as training data and (iii) leveraging treebanks of

other languages as training data. Table 6.12 highlights the parsing trends accruing

to the treebank’s development stages.

We began by establishing a baseline score of UAS 73.1% and LAS 63.3% on

a small seed set of 300 manually labelled trees. Our baseline increased to UAS

76.3% and LAS 66.5% following an improvement of our labelling scheme, annotation

guide and treebank annotation. These updates were made following our IAA study

discussed in Section 3.2.

From there we experimented with various bootstrapping approaches in order to

speed up the annotation process and reduce the manual effort required. Firstly, we

showed how we increased the treebank from 300 to 450 trees by following a basic

bootstrapping algorithm which allows a parser, trained on the seed set to pre-parse

the next set of trees for manual correction.

We then expanded on this approach through active learning where sample-

selection allowed us to choose the most informative trees for correction, thus in-

creasing the accuracy of the treebank more quickly. With this method, our tree-

bank increased in size from 450 to 650 trees. Further parsing experiments show an

increase in accuracy to UAS 78.49% and LAS 68.81%. Yet, we concluded that the

extra effort involved in this approach outweighed the parser accuracy gains.

Following from these supervised learning approaches, we then discussed some

semi-supervised learning approaches where we attempted to improve the parsers
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performance by incrementing the gold training data with automatically generated

parse trees that are not corrected. At this stage, we had increased the gold stan-

dard treebank to 803 trees through the basic bootstrapping annotation/correction

method. The highest parsing accuracy we achieved through adding uncorrected

trees was UAS 80.4% and LAS 71.8%.

We also showed how we attempted to address the data sparsity issues that arise

from the morphologically rich nature of Irish. While no improvements were gained

from these experiments, we note that we would like to explore the role of morphology

in Irish parsing through future versions of the treebank.

We described how we used treebanks from other languages to bootstrap our

parser’s training data, which is now at 1020 trees (again, through further basic boot-

strapping). We showed how a uniform Universal Dependency annotation scheme

(McDonald et al., 2013) made it possible to perform multiple cross-lingual transfer

parsing experiments in an attempt to improve our parser results through leverag-

ing the treebank data of other languages. Despite the availability of extra training

data from other treebanks, none of the cross-lingual models outperformed our Irish

parser’s current accuracy of UAS 78.54% and LAS 71.59%.

Finally, experiments carried out on the final version of the 1020-tree Irish De-

pendency Treebank (using 5-fold cross-validation) show scores of UAS 71.4% and

LAS 80.1%.

A clear conclusion we can make from the results of all of our attempts to semi-

automate or bootstrap the Irish parser, is that using a solid gold-annotated treebank

as training data is a fundamental requirement in achieving decent parsing accuracy.

We have therefore shown that human annotation effort cannot be easily replaced by

technology for this type of task.

In the next chapter, we move from processing standard, well-structured Irish text

to user-generated text found on Twitter, and explain the ways in which this different

variation of text influences NLP development; but to do this, we must return to the

task of POS tagging, as other work (Gimpel et al., 2011) suggests that POS taggers
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cannot be straightforwardly applied to such text.

162



Chapter 7

Irish Twitter POS-tagging

The Irish language is listed by UNESCO as an endangered language. By law, Irish

is a compulsory subject in primary and secondary schools but the majority of school

leavers outside the Gaeltacht areas (Irish speaking regions) will not continue to use it

once they have graduated. However, everyday use outside of academic environments

has seen a recent resurgence on social media platforms such as Facebook and Twitter.

This evolution of a new generation of Irish language online users shows promising

signs in terms of the future direction of the language.

We have thus been inspired to develop new language resources tailored to as-

sisting research on the growth of the Irish language in social media. The linguistic

variations that have developed in the language through social media use, without

the constraints of academic assessment, are of particular interest not only to NLP

research groups but also to sociolinguists.

The language style variation used on social media platforms, such as Twitter

for example, is often referred to as noisy user-generated text. Tweets can contain

typographical errors and ungrammatical structures that pose challenges for process-

ing tools that have been designed for and tailored to high quality, well-edited text

such as that found in newswire, literature and official documents. Previous studies,

Foster et al. (2011) and Petrov and McDonald (2012) for example, have explored

the effect that the style of language used in user-generated content has on the per-
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formance of standard NLP tools. Other studies by Gimpel et al. (2011), Owoputi

et al. (2013), Avontuur et al. (2012), Rehbein (2013) and Derczynski et al. (2013)

(POS-tagging), Ritter et al. (2011) (named entity recognition), Kong et al. (2014)

and Seddah et al. (2012) (parsing) have shown that NLP tools and resources need

to be adapted to cater for the linguistic differences present in such text.

When considering data-driven NLP tasks, a lack of resources can also produce

additional challenges. Therefore our study on Irish (a low-resourced language) in

this context proves interesting on many levels. Through our analysis, we examine the

impact of noisy user-generated text on the existing resources for the language. We

find that the linguistic variation in Irish Twitter data differs greatly from standard

written Irish, which has a negative result on the performance of existing NLP tools.

From a lesser-resourced language point of view, we explore options for leveraging

from existing resources to produce a new domain-adapted POS-tagger for processing

Irish Twitter data. Our steps involve:

• defining a new POS tagset for Irish tweets

• providing a mapping from the PAROLE Irish POS-tagset to this new one

• manually annotating a corpus of 1537 Irish tweets

• training three statistical taggers on our data and reporting results

Our work is inspired by Gimpel et al. (2011) and Owoputi et al. (2013)’s earlier

work on English tweet POS tagging. Our study is similar to Gimpel et al. (2011)

in that they designed a Twitter-specific POS tagset, pre-tagged 1, 827 tweets with

an out-of-domain tagger (the WSJ-trained Stanford POS tagger (Toutanova et al.,

2003)), manually corrected by 17 annotators over two months, and trained POS

tagging models on this data. They, however, designed and built a tagging system

tailored to English tweets that included features of frequently capitalised English to-

kens, distributional similarity obtained from a large set of unlabelled English tweets

and English phonetic normalisation. These are all resources we do not have for Irish.
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Owoputi et al. (2013) extended their work by improving the tagging system with

unsupervised clustering methods, using 56 million English tweets (an approach also

taken by Rehbein (2013) for POS tagging German tweets). Again, this is an option

not available to our Irish study due to the limited number of Irish tweets. They also

had a number of various test sets available to evaluate their work. Our testing was

limited to a subset of our single Twitter data set.

On the other hand, our work differs from theirs in a couple of ways. We do not

build a tagging system, instead we re-train existing versions of the Stanford Tagger

(Toutanova et al., 2003) and Owoputi et al. (2013)’s Tweet NLP ARK Tagger with

our Irish Twitter data. The other ways in which our work differs is mainly due to

linguistic characterisations in Irish tweets. Our work extends to evaluating Morfette

(Chrupa la et al., 2008), a tagger that uses lemma information as features in its tag

predictions. In contrast to English, Irish is a highly inflected language. Inflection

can cause data sparsity in a data set and thus impact tagging accuracy. Another

issue for Irish tweet processing is code-switching, a phenomenon that did not impact

the experiments on English tweet processing. In addition, the tweet tokeniser used

for English tweets (and which we used for Irish tweets) is tailored to the English

language, which meant our data required an additional post-processing step before

annotation. Our annotation was carried out over three months, by two annotators.

This chapter is structured as follows: Section 7.1 gives a summary of Twitter

and issues specific to the Irish Twitter data. Section 7.2 discusses the new part-of-

speech tagged corpus of Irish tweets. In Section 7.3 we describe our inter-annotator

agreement study and the observations we note from annotator disagreements. In

Section 7.4, we report our tagging accuracy results on three state-of-the-art statis-

tical taggers.
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7.1 Irish Tweets

Twitter is a micro-blogging platform which allows users (tweeters) to create a social

network through sharing or commenting on items of social interest such as ideas,

opinions, events and news. Tweeters can post short messages called tweets, of up to

140 characters in length, that can typically be seen by the general public, includ-

ing the user’s followers. Tweets can be classified by topic by using hashtags (e.g.

#categoryname) and linked to other tweeters through the use of at-mentions (e.g.

@username).

The first tweets in Irish appeared not long after the launch of Twitter in 2006,

and there have been more than a million tweets in Irish since then, by over 8000

tweeters worldwide.1

The social nature of tweets can result in the use of informal text, unstructured

or ungrammatical phrases, and a variety of typographical errors. The 140 character

limit can also lead to truncated ungrammatical sentences, innovative spellings, and

word play, such as those discussed by Eisenstein (2013) for English. From our

analysis, this phenomenon appears to extend also to Irish tweets.

In Figure 7.1, we provide an example of an Irish tweet that contains some of

these NLP challenges:

Freezing i dTra Li,Ciarrai chun cinn le cuilin.
Freezing i dTrá Ĺı, tá Ciarráı chun cinn le cúiĺın.
‘Freezing in Tralee, Kerry (is) ahead by a point.’

Figure 7.1: Example of noisy Irish tweet

Diacritics Irish, in its standard orthography, marks long vowels with diacritics

(á,é,́ı,ó,ú). Our analysis of Irish tweets revealed that these diacritics are often re-

placed with non-accented vowels (cúiĺın => cuilin). There are a number of word

pairs that are differentiated only by the presence or absence of these diacritics (for

example, cead ‘permission’ : céad ‘hundred’). There are many possible reasons for

1http://indigenoustweets.com/ga/ (accessed June 2015)

166



omitting diacritics, including shortening the time required to tweet (the example

tweet in Figure 7.1 is from a spectator at a Gaelic Football match), a lack of knowl-

edge on how to find diacritics on a device’s keyboard, carelessness, or uncertainty

about the correct spelling.

Code-switching Alternating between English and Irish is common in our dataset.

This is unsurprising as virtually all Irish speakers are fluent English speakers, and

many use English as their first language in their daily lives. In the example given,

there is no obvious reason why “Freezing” was used in place of various suitable

Irish words (e.g. Préachta), other than perhaps seeking a more dramatic effect.

Sometimes, however, English is understandably used when there is no suitable Irish

term in wide use, for example ‘hoodie’ or ‘rodeo-clown’. Aside from occurring at an

intra-sentential level, code-switching at an inter-sentential level is also common in

Irish: an t-am seo an t7ain seo chugainn bei 2 ag partyáil le muintir Ráth Daingin!

Hope youre not too scared #upthevillage. In total, of the 1537 tweets in our gold-

standard corpus, 326 (21.2%) contain at least one English word with the tag G.2

Verb drop We can see in this example that the verb tá ‘is’ has been dropped.

This is a common phenomenon in user-generated content for many languages. The

verb is usually understood and can be interpreted through the context of the tweet.

Spacing Spacing after punctuation is often overlooked (i) in an attempt to shorten

messages or (ii) through carelessness. In certain instances, this can cause problems

when tokenizing tweets; Li,Ciarrai => Li, Ciarrai.

Phonetic spelling Linguistic innovations often result from tweeters trying to fit

their message into the 140 character limit. Our dataset contains some interesting

examples of this phenomenon occurring in Irish. For example t7ain is a shortened

version of tseachtain ‘week’. Here the word seacht ‘seven’ is shortened to its numeral

2The tag G is used for foreign words, abbreviations, items and unknowns, as shown in Table 7.1
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form and the initial mutation t remains attached. Other examples are gowil (go

bhfuil), beidir (b’fhéidir), v (bh́ı).

Abbreviations Irish user-generated text has its own set of frequently used phrase

abbreviations – referred to sometimes as text-speak. Forms such as mgl:maith go

leor, ‘fair enough’ and grma:go raibh maith agat ‘thank you’ have been widely

adopted by the Irish language community.

The linguistic variation of Irish that is used in social media is relatively unex-

plored, at least not in any scientific manner. We expect therefore that the part-of-

speech tagged corpus and taggers that we have developed for Irish language tweets

will contribute to further research in this area.

7.2 Building a corpus of annotated Irish tweets

Unlike rule-based systems, statistical data-driven POS-taggers require annotated

data on which they can be trained. Therefore, we build a gold-standard corpus of

1537 Irish tweets annotated with a newly defined Twitter POS tagset. The following

describes this development process.

7.2.1 New Irish Twitter POS tagset

As discussed in Chapter 5, the rule-based Irish POS-tagger (Uı́ Dhonnchadha and

van Genabith, 2006) for standard Irish text is based on the PAROLE Morphosyn-

tactic Tagset (ITÉ, 2002). We used this as the basis for our Irish Twitter POS

tagset. We were also inspired by the English-tweet POS tagset defined by Gimpel

et al. (2011), and have aimed to stay closely aligned to it in order to facilitate any

future work on cross-lingual studies.

We started by selecting a random sample of 500 Irish tweets to carry out an

initial analysis and define our tagset. We choose to keep our tagset at a comparable
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level of granularity to the English tagset for comparison purposes to Gimpel et al.

(2011) and Owoputi et al. (2013)’s results. While our tagset is also closely aligned

with the English-tweet POS tagset, we introduce the following tags that the English

set does not use:

• VN: Verbal Noun As we discussed earlier in Section 2.2.1, while Irish verbal

nouns have clear verbal origins, they inflect morphologically as nouns. Verbal

nouns have a distinct role from common or proper nouns. Firstly, verbal

nouns are used to denote non-finite phrases. Sometimes this is indicated by a

preceding infinitive marker a (Example 39), and sometimes not (Example 40).

These cases need to be differentiated from regular nouns.

(39) an locht a chur orthu

the blame INF put on-them

‘to put the blame on them’

(40) beidh ort teacht ar ais

will-be on-you come back

‘you will have to come back’

Also, progressive aspectual phrases in Irish are denoted by the preposition ag

followed by a verbal noun, as shown in Example 41.

(41) bh́ı @aodhanodea ag labhairt

was @aodhanodea at speaking

‘@aodhanodea was speaking’

We therefore choose to differentiate between N and VN to avoid losing this

verbal information in what would otherwise be a regular prepositional phrase.

• #MWE: Multiword hashtag These are hashtags containing strings of words

used to categorise a text (e.g. #WinterIsComing). We retain information on

the multi-word nature of these hashtags in order to facilitate future syntactic
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analysis efforts. Multiword tagging will also assist future work on named

entity recognition. For example #LáNollag is a hashtag containing two nouns

Lá ‘Day’, Nollaig ‘Christmas’ (i.e. Christmas Day).

We also adapt the T particle from the English tagset to suit Irish linguistic

features.

• T: Particle We extend the T tag to not only cover verb particles, but all

other Irish particles: relative particles, surname particles, infinitive particles,

numeric particles, comparative particles, the vocative particle, and adverbial

particles.

We do not use the following tags from the English set: S, Z, L, M, X, Y, as the

linguistic cases they apply to do not occur in either standard or non-standard Irish.

• S: nominal + possessive (e.g. someone’s)

• Z: proper noun + possessive (e.g. America’s)

• L: nominal + verbal (he’s)

• M: proper noun + verbal (Mark’ll)

• X: existential there, predeterminers

• Y: X + verbal (there’s)

The final set of 21 POS-tags is presented in Table 7.1.

Most of the tags in the tagset are intuitive to an Irish language speaker, based on

a knowledge of Irish grammar. However, some tags require specific explanation in the

guidelines. Hashtags and at-mentions can be a syntactic part of a sentence or phrase

within a tweet. When this is the case, we apply the relevant syntactic POS tag. For

example, BeidhV méO arP chlárN @SplancNewstalk∧ anochtR agP labhairtV N leisP

@AnRonanEile∧ faoiP #neknominationN ‘I will be on @SplancNewstalk tonight

speaking to @AnRonanEile about #neknomination’.3 Otherwise if they are not

3
∧ is the tag used for proper nouns.
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Tag Description (PAROLE
TAGS)

N common noun
(Noun, Pron Ref, Subst)

∧ proper noun
(Prop Noun)

O pronoun (Pron Pers, Pron Idf,
Pron Q, Pron Dem)

VN verbal noun (Verbal Noun)
V verb (Cop, Verb†)
A adjective (Adj, Verbal Adj,

Prop Adj)
R adverb (Adv†)
D determiner (Art, Det)
P preposition, prep. pronoun

(Prep†, Pron Prep)
T particle (Part†)
, punctuation (Punct)
& conjunction (Conj Coord,

Conj Subord)
$ numeral, quantifier (Num)
! interjection (Itj)
G foreign words, abbreviations,

item
(Foreign, Abr, Item, Unknown)

~ discourse marker
# hashtag
#MWE multi-word hashtag
@ at-mention
E emoticon
U URL/email address/XML

(Web)

Table 7.1: Mapping of Irish Twitter tagset to PAROLE tagset. († indicates the
entire fine-grained set for that coarse tag is relevant.)

part of the syntactic structure of the tweet (typically appended or prepended to the

main tweet text), they are tagged as @ and # (or #MWE). In our gold standard corpus,

554 out of 693 hashtags (79.9%), and 1604 out of 1946 at-mentions (82.4%) are of

this non-syntactic type.

With some Twitter clients, if a tweet exceeds the 140 character limit, the tweet is

truncated and an ellipsis is used to indicate that some text is missing. We leave this
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appended to the final (usually partial) token (which was often a URL). We marked

these cases as G. For example http://t.co/2nvQsxaIa7. . . .

Some strings of proper nouns contain other POS elements, such as determiners

and common nouns. Despite being a proper noun phrase syntactically, we tag each

token as per its POS. For example, Cú∧ naD mBaskerville∧ ‘The Hound of the

Baskervilles’.

7.2.2 Tweet pre-processing pipeline

We took a random sample of 1550 Irish tweets from the approximately 950,000 Irish

tweets that had been sent between Twitter’s launch in 2006 and September 2014,

and processed them as follows:

(1) We tokenised the set with Owoputi et al. (2013)’s version of twokenise,4

which works well on web content features such as emoticons and URLs.

(2) Using a list of multiword units from Uı́ Dhonnchadha (2009)’s rule-based

Xerox FST tokeniser,5 we rejoined multiword tokens that had been split by the

language-independent tokenizer (e.g. the compound preposition go dt́ı).

(3) Using regular expressions, we then split tokens with the contractions b’ (ba),

d’ (do), m’ (mo) prefixes. For example b’fhéidir ‘maybe’; d’ith ‘ate’; m’aigne ‘my

mind’.

(4) We took a bootstrapping approach by pre-tagging and lemmatising the data

with the rule-based Irish POS-tagger first, and then automatically mapped the tags

to our new Twitter-specific tagset.

(5) In cases where the rule-based tagger failed to produce a unique tag, we used a

simple bigram tag model (trained on the gold-standard POS-tagged corpus from Uı́

Dhonnchadha (2009) – see Section 7.4.1) to choose the most likely tag from among

those output by the rule-based tagger.

4Available to download from http://www.ark.cs.cmu.edu/TweetNLP/#pos
5Available to download from https://github.com/stesh/apertium-gle/tree/master/dev/

irishfst
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(6) Finally, we manually corrected both the tags and lemmas to create a gold-

standard corpus.

7.2.3 Annotation

The annotation task was shared between two annotators.6 Correction of the first

500 tweets formed a basis for assessing both the intuitiveness of our tagset and the

usability of our annotation guide. Several discussions and revisions were involved

at this stage before finalising the tagset. The next 1000 tweets were annotated in

accordance with the guidelines, while using the first 500 as a reference. At this stage,

we removed a small number of tweets that contained 100% English text (errors in

the language identifier). All other tweets containing non-Irish text represented valid

instances of code-switching.

The annotators were also asked to verify and correct the lemma form if an

incorrect form was suggested by the morphological analyser. All other tokeniser

issues, often involving Irish contractions, were also addressed at this stage. For

example Tá’n − > Tá an.

7.3 Inter-Annotator Agreement

As we previously showed in Section 3.2, Inter-Annotator agreement (IAA) studies

are carried out during annotation tasks to assess consistency, levels of bias, and

reliability of the annotated data. We carry out a similar study here on our POS

tagging task. For our study, we chose 50 random Irish tweets, which both annotators

tagged from scratch. This differed from the rest of the annotation process, which was

semi-automated.7 However, elimination of possible bias towards the pre-annotation

output allowed for a more disciplined assessment of agreement level between the

6The author was the primary annotator and Eimear Maguire, a recent computer science/ lin-
guistics graduate was the second annotator.

7This also differed from the parsing IAA study in which the annotators corrected pre-parsed
text.
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annotators. We achieved an agreement rate of 90% and a κ score (Cohen, 1960) of

0.89.

Smaller tagsets make an annotation task easier due to the constraint on choices

available to the annotator, and is certainly one reason for our high IAA score. This

result also suggests that the tagging guidelines were clear and easy to understand.

A closer comparison analysis of the IAA data explains some disagreements. The

inconsistency of conflicts suggests that the disagreements arose from human error.

Some examples are given below.

Noun vs Proper Noun The word Gaeilge ‘Irish’ was tagged on occasion as N

(common noun) instead of ∧ (proper noun). This also applied to some proper noun

strings such as Áras an Uachtaráin (the official name of the President of Ireland’s

residence).

Syntactic at-mentions A small number of at-mentions that were syntactically

part of a tweet (e.g. mar chuid de @SnaGaeilge ‘as a part of @SnaGaeilge’) were

incorrectly tagged as regular at-mentions (@).

Retweet colons One annotator marked ‘:’ as punctuation at random stages

rather than using the discourse marker tag ~.

7.4 Experiments

7.4.1 Data

We took the finalised set of Irish POS-tagged tweets and divided them into a test set

(148 tweets), development set (147 tweets) and training set (1242 tweets). Variations

of this data are used in our experiments where we normalise certain tokens (described

further in Section 7.4.2.)

We also automatically converted Uı́ Dhonnchadha (2009)’s 3198 sentence (74,705

token) gold-standard POS-tagged corpus using our mapping scheme. This text is
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from the New Corpus for Ireland – Irish (NCII)8, which is a collection of text from

books, newswire, government documents and websites. The text is well-structured,

well-edited, and grammatical, and of course lacks Twitter-specific features like hash-

tags, at-mentions, and emoticons, thus differing greatly from our Twitter data. The

average sentence length in this corpus is 27 tokens, diverging significantly from the

average tweet length of 17.2 tokens. Despite this, and despite the fact the con-

verted tags were not reviewed for accuracy, we were still interested in exploring the

extent to which this additional training data could improve the accuracy of our

best-performing model. We refer to this set as NCII 3198.

7.4.2 Part-of-Speech Taggers

We trained and evaluated three state-of-the-art POS-taggers with our data. All

three taggers are open-source tools.

Morfette As Irish is an inflected language, inclusion of the lemma as a training

feature is desirable in an effort to overcome data sparsity. Therefore we trained

Morfette (Chrupa la et al., 2008), a lemmatization tool that also predicts POS tags

and uses the lemma as a training feature. We report on experiments both with

and without optional dictionary (Dict) information. We used the dictionary from

Scannell (2003), which contains 350, 418 surface forms, lemmas and coarse-grained

POS tags. Our baseline Morfette data (BaseMorf) contains the token, lemma and

POS-tag. The lemmas of URLs and non-syntactic hashtags have been normalised

as < URL > and < # >, respectively.

We then evaluated the tagger with (non-syntactic) < # >, < @ > and < URL >

normalisation of both token form and lemma (NormMorf). Both experiments are re-

run with the inclusion of our dictionary (BaseMorf+Dict,NormMorf+Dict).

8New Corpus for Ireland - Irish. See http://corpas.focloir.ie
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ARK We also trained the CMU Twitter POS-tagger (Owoputi et al., 2013), which

in addition to providing pre-trained models, allows for re-training with new lan-

guages. The current release does not allow for the inclusion of the lemma as a

feature in training, however. Instead, for comparison purposes, we report on two

separate experiments, one using the surface tokens as features, and the other using

only the lemmas as features (ArkForm, ArkLemma). We also tested versions of our

data with normalised at-mentions, hashtags and URLs, as above.

Stanford tagger We re-trained the Stanford tagger (Toutanova et al., 2003) with

our Irish data. This tagger is not typically used for tagging tweets, but we report

these experiments here for comparison with Gimpel et al. (2011)’s Stanford results

with English tweets. We experimented by training models using both the surface

form only (BestStanForm) and the lemma only (BestStanLemma). The best per-

forming model was based on the feature set left3words, suffix(4), prefix(3),

wordshapes(-3,3), biwords(-1,1), using the owlqn2 search option.9

Baseline Finally, to establish a baseline (Baseline), and more specifically to eval-

uate the importance of domain-adaptation in this context, we evaluated a slightly-

enhanced version of the rule-based Irish tagger on the Twitter dataset. When the

rule-based tagger produced more than one possible tag for a given token, we applied

a bigram tag model to choose the most likely tag, as we did in creating the first

draft of the gold-standard corpus. In addition, we automatically assigned the tag U

to all URLs, # to all hashtags, and @ to all at-mentions.

7.4.3 Results

The results for all taggers and variations of data-setup are presented in Ta-

ble 7.2. Firstly, our best performing single model (ArkLemma#URL@) on the test set

achieves a score of 91.46%, which is 8 points above our rule-based baseline score of

9All other default settings were used.
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Training Data Dev Test
Baseline

Rule-Based Tagger 85.07 83.51
Morfette

BaseMorf 86.77 88.67
NormMorf 87.94 88.74
BaseMorf+Dict 87.50 89.27
NormMorf+Dict 88.47 90.22

ARK
BaseArkForm 88.39 89.92
ArkForm#@ 89.36 90.94
ArkForm#URL@ 89.32 91.02
BaseArkLemma#URL 90.74 91.62
ArkLemma#URL@ 91.46 91.89

Stanford
BestStanForm 82.36 84.08
BestStanLemma 87.34 88.36

Bootstrapping Best Model
ArkLemma#URL@+NCII 92.60 93.02

Table 7.2: Results of evaluation of POS-taggers on new Irish Twitter corpus

83.51%. This confirms that tailoring training data for statistically-driven tools is a

key element in processing noisy user-generated content, even in the case of minority

languages. It is worth noting that the best-performing model learns from the lemma

information instead of the surface form. In particular, it is the case that all results

based on lemma inclusion are better than corresponding results that exclude the

lemma information. This clearly demonstrates the effect that the inflectional nature

of Irish has on data sparsity. The Twitter-specific tokens such as URLs, hashtags

and at-mentions have been normalised which demonstrates the impact the relative

uniqueness of these tokens has on the learner.

All of our results are comparable with state-of-the-art results produced by Gim-

pel et al. (2011) and Owoputi et al. (2013). This is interesting, given that in contrast

to their work, we have not optimised our system with unsupervised word clusters

due to the lack of sufficient Irish tweet data. Nor have we included a tag dictionary,

distribution similarity or phonetic normalisation – also due to a lack of resources.

We carried out a closer textual comparison of Owoputi et al. (2013)’s English
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tweet dataset (daily547) and our new Irish tweet dataset. After running each

dataset through a language-specific spell-checker, we could see that the list of highly

ranked OOV (out of vocabulary) tokens in English are forms of text-speak, such as

lol ‘laugh out loud’, lmao ‘laugh my ass off’ and ur ‘your’, for example. Whereas

the most common OOVs in Irish are English words such as ‘to’, ‘on’, ‘for’, ‘me’, and

words misspelled without diacritics. This observation shows the differences between

textual challenges of processing these two languages. It may also suggest that Irish

Twitter text may follow a more standard orthography than English Twitter text,

and will make for an interesting future cross-lingual study of Twitter data.

Finally, we explored the possibility of leveraging from existing POS-tagged data

by adding NCII 3198 to our best performing model ArkLemma#URL@. We also dupli-

cated the tweet training set to bring the weighting for both domains into balance.

This brings our training set size to 5682 (117, 273 tokens). However, we find that a

significant increase in the training set size only results in just over a 1 point increase

in POS-tagging accuracy. At a glance, we can see some obvious errors the combined

model makes. For example, there is confusion when tagging the word an. This word

functions as both a determiner and an interrogative verb particle. The lack of direct

questions in the NCII corpus results in a bias towards the D (determiner) tag. In

addition, many internal capitalised words (e.g. the beginning of a second part of a

tweet) are mislabelled as proper nouns. This is a result of the differing structure of

the two data sets – each tweet may contain one or more phrases or sentences, while

the NCII is split into single sentences.

7.5 Summary and Conclusion

We have expanded our NLP research of the Irish language to include processing of

Irish social media text. In this chapter, we have reported how we developed the first

dataset of gold-standard POS-tagged Irish language tweets and produced training

models for a selection of POS-taggers. We show how, with these resources, we have
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been able to carry out some preliminary linguistic analysis of the language variation

used in Twitter Irish.

We have also shown how we have leveraged existing work to build these resources

for a low-resourced language, to achieve state-of-the-art results. In addition, we

confirm through empirical methods that the NLP challenges arising from noisy user-

generated text can also apply to a minority language.

Our data and models are available to download from https://github.com/

tlynn747/IrishTwitterPOS. The annotation guide is presented in Appendix B.
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Chapter 8

Conclusion

In this chapter, we summarise the contributions our work has made to NLP research

for the Irish language, namely the development of the first syntactic treebank, the

first statistical parsing models, a POS-tagged corpus of Irish tweets and the first

statistical POS tagging models for Irish Twitter text. We also revisit the research

questions we proposed in Chapter 1 and provide answers to them. Finally, we discuss

the various possibilities for further research that have arisen through our work.

8.1 Summary and Contributions

In this digital age, there is a demand for language processing tools that will make

digital content and text-based technology available to linguistic groups in their own

language. If not available, there is a real risk that these users will opt to use

another language that facilitates these technical options instead. Minority and low-

resourced languages are at risk in the context of this increased shift towards online or

computer-based language use. In particular, the Irish language is at risk, due to the

fact that all Irish speakers in Ireland are fluent English speakers. As English is an

easy second option for technology users, this can result in less engagement with Irish,

particularly among young people. The current status of Irish in NLP, as discussed

in Chapter 1, and the language’s minority status, as discussed in Chapter 2, reflect
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the need for more resources if we want to computationally process and interpret

Irish language text.

Our research has taken a step towards addressing this need by providing basic

text resources and processing tools upon which further NLP research will be possible.

We summarise our contribution here:

• The dependency treebank we have developed for Irish (IDT), and discussed in

Chapter 3, is a text resource that will not only provide a basis for a linguistic

analysis of Irish, but is also a digitally readable corpus from which linguistic

information can be automatically extracted and serve as input to a range of

NLP applications.1

• Two additional elements of this treebank are the Dependency Labelling Scheme

outlined in Chapter 4 and the Annotation Guidelines for the Irish Dependency

Treebank in Appendix A, which together provide a detailed linguistic analysis

and description of Irish. This is a valuable addition to the limited collection

of Irish syntax reference resources we highlighted in Chapter 2. They are

both necessary resources for continued development of the treebank by other

annotators.

• In Chapter 5 we report on the mapping of the IDT to two different universal

dependency (UD) annotation schemes. The Irish UD treebank based on the

2013 scheme allowed us to carry out cross-lingual parsing experiments (also

Chapter 6) in order to examine how treebanks from other languages could be

leveraged for our own work. The Irish UD treebank based on the 2015 scheme

has seen Irish become part of The Universal Dependencies project which seeks

to develop an annotation scheme that is cross-linguistically uniform and will

aid further research in multi-lingual parser development. Our involvement in

this project has helped tie the Irish language closely to the international effort

for developing resources, and these links should prove beneficial in the future.

1This treebank is available to download under an open source licence from: https://github.

com/tlynn747/IrishDependencyTreebank

181



• The statistical parsing models we have trained with the IDT achieve an ac-

curacy of UAS 78.54% and LAS 71.59%, as per our reports in Chapter 6. In

comparison to better-resourced languages, the scores reflect the need for ad-

ditional treebank data on which we can train the systems. Yet based trends

shown in Table 6.12, it is not possible to predict how many additional trees

would result in state-of-the art parsing accuracy.

• In terms of building a treebank for a low-resourced language, we have shown

how Active Learning could be used to assist this development and help to

overcome resource limitations.

• Despite the acknowledged contribution of Active Learning to bootstrapping

the treebank’s development, we have also shown (and in partial answer to the

question raised by Hal Daumé),2 through various parsing experiments that

did not yield impressive results, the value of human annotation in treebank

development, and how this cannot be easily replaced by technological means.

• The 1537-tweet POS-tagged corpus we provide will be a useful resource for

both linguistic and socio-linguistic research on Irish language. This contri-

bution highlights the evolving use of the Irish language online and how the

style variation of Irish in social media differs considerably from standard well-

structured and grammatical Irish text. Our corpus may also be useful to those

studying code-switching and computational approaches to dealing with code-

switching. We provide an annotation guide for POS tagging of Irish tweets in

Appendix B.

• In the context of building statistical tagger models for Irish Twitter data,

we have shown how this variation of Irish cannot be easily processed using

standard NLP tools. However, we have also demonstrated how existing Irish

language resources can be leveraged to produce domain-adapted tools that are

2Refer to Section 6.4.5 and to the following blog post: http://nlpers.blogspot.ie/2011/

10/active-learning-far-from-solved.html
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tailored to user-generated content such as tweets.

8.2 Research Questions Answered

• What is an appropriate linguistic analysis of Irish for a dependency treebank,

drawing on and synthesising traditional descriptive analyses and theoretical

work?

We have designed a broad-coverage annotation scheme for the Irish language,

which is based on LFG-inspired dependencies and extended to contain analyses

and dependency labels that are specific to the Irish language. Based on the

broadly representative sentences contained in the treebank, we have shown

that this type of dependency analysis sufficiently addresses the main syntactic

structures that occur within the language, despite some unresolved syntactic

theoretical issues that are present in the literature.

• Can an approach such as Active Learning, that has been suggested to be ap-

plicable to bootstrapping the development of treebanks, prove to be useful when

deployed in the actual construction of a treebank?

If the purpose of a treebank’s development is to serve as training data for

a parser, then Active Learning is a worthwhile approach. We show how the

Query By Committee approach to Active Learning (AL) can ensure that the

trees added to the treebank for annotation will add to the linguistic richness

of the data at an early stage. In other words, it is possible to ensure that a

wide range of linguistic constructions are present in the data that sufficiently

represent the various nuances of a language even when the treebank is relatively

small in size. However, the purpose of the AL approach is to identify sentences

that prove informative or difficult to parse automatically. Through calculations

of correction effort, we show the extra degree of correction required by a human

annotator in the AL setup, when compared to the Passive Learning (PL) setup.
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The annotator also noted that the AL corrections took longer and required

more thought than the PL corrections. Based on the small size of seed data

we worked with in this study, it should be noted that the increase in the

parsing accuracy scores resulting from the new data did not justify the extra

annotation effort involved in this approach. In the context of Irish, considering

that there is a limit to the number of gold-standard POS-tagged sentences

available to us, all of these sentences are likely to ultimately end up in the

treebank. The AL approach would only serve to set the order in which all of

these trees would eventually be added.

• Given the existence of proposed techniques for development of parsers for low-

resource language or improving performance of such a parser – the use of un-

labelled data and cross-lingual transfer parsing – can these help when combined

with a small gold-standard treebank used for training?

Some of our semi-supervised built parsing models using unlabelled data achieved

a statistically significant increase in scores over the baseline. Yet these im-

provements were still fairly modest. At this stage, and because the treebank

is a work-in-progress, it is not yet possible to establish how the increase we

did achieve would compare to adding the same trees in gold-standard form.

In our cross-lingual transfer parsing study, none of the 10 languages involved

revealed to be a language that would prove suitable for bootstrapping the

Irish parser. While the use of Indonesian data as training data for parsing

Irish showed an increase of accuracy over all other languages in the set, the

results did not outperform our Irish baseline scores. However, this is not to

say that cross-lingual bootstrapping is not a method for Celtic languages in

general, as our analysis of the Indonesian parsing results revealed that similar

linguistic characteristics across source and target languages are valuable for

cross-lingual transfer parsing. In this context, we would expect that the Irish

Dependency Treebank data would be a useful additional training data set for
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other Celtic languages.

• In what way can we leverage existing Irish NLP tools for processing Irish

tweets?

We drew on previous studies for other languages to explore the adaption of

current resources to process user-generated text. While we did not adapt the

rule-based Irish POS tagger, we showed that it was easy to leverage it in

our creation of a gold-standard POS-tagged corpus of Irish tweets. The rule-

based tagger, while achieving an accuracy of just 83.51% on the final data set,

provided us with a pre-tagged corpus which only required manual correction,

rather than manual annotation from scratch. This allowed us to create a

corpus of 1537 tweets with just two annotators in a short amount of time.

8.3 Proposed Future Work

8.3.1 Further Treebank Development

In comparison to treebanks of better-resourced languages, the Irish treebank of 1018

trees is relatively small. This of course is due to lack of significant resources. Finan-

cial support and human annotators can prove difficult to source for low-resourced

languages. As we have seen, human annotation cannot be easily replaced by au-

tomated methods. Financial support for better-resourced languages is often driven

by the size of demand (e.g. the number of speakers/application users) and the op-

portunity for financial gain (e.g. benefits of machine translation global industries).

Finding speakers of a minority language who also have a suitable skill set for NLP

research is also a challenge.

Therefore, if future opportunities for treebank expansion arises, it is impor-

tant that more bootstrapping methods such as the following are explored. Recent

work by Mirroshandel and Nasr (2011) demonstrates how relevant substrings within

identified problematic sentences can be isolated for correction. This is similar to
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selective-sampling methods we use in Chapter 6, only it is at the substring level

instead of the sentence level. The theory behind this approach is that a parser will

often successfully parse easy structures, such as determiner-noun attachments, for

example, and only require correction or human input on more difficult substrings,

such as multiple coordination. Other work focuses on developing methods for auto-

matically detecting errors in dependency parses. For example, Dickinson (2010) and

Dickinson and Smith (2011) extract grammar rules from a gold-annotated corpus

and compare these to rules extracted from a corpus of predicted annotations. If the

rules from the predicted annotations do not fit well with the gold grammar, they

are flagged. In fact, the latter expanded approach (which also looks at the value

of a small gold grammar) is noted as being particularly beneficial to low-density

languages.

If there is an option to expand on our Active Learning experiments, our inter-

esting dip in results in our final experiment (due to sentence length) suggests that it

may be worth considering setting an upper limit on sentence length before present-

ing new trees for correction or perhaps, more generally, adding length constraints

to the Active Learning process.

Bootstrapping lesser-resourced languages through the use of parallel texts is also

possible. This involves exploiting tools of the more highly-resourced language of

the language pair (e.g. Hwa et al. (2005); Wróblewska and Frank (2009)). This

approach may be a possibility for our treebank development as there is a large

number of English-Irish parallel official documents available from both Irish and

European Parliament proceedings. However, given the difficulties that the length

of some legal text poses for Irish parsing, the use of a parallel corpus collected by

Scannell (2005) could prove a more valuable resource if we were to consider this

approach.
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8.3.2 Exploiting Morphological Features

Previous studies on parsing morphologically rich languages have shown that the

inclusion of morphological features can improve parsing accuracy (Bohnet et al.,

2013). The Irish Dependency Treebank does not currently contain morphological

features. In Section 6.6, our preliminary experiments using morphological features

did not yield interesting results. However, the morphological features included were

minimal and our MaltParser feature models were manually optimised.

One possible enhancement to the treebank in the future involves retrieving mor-

phological information from the 3,000 sentence gold-standard corpus (Uı́ Dhonn-

chadha, 2009) on which we based our treebank.3 In future experiments, it would be

interesting to experiment with augmenting parsing models with MaltOptimizer (Balles-

teros, 2012), an open-source tool that facilitates MaltParser optimisation.

8.3.3 Exploiting the Hierarchical Dependency Scheme

In terms of further parsing experiments with the treebanks, an additional avenue

of research would be to exploit the hierarchical nature of the dependency scheme

as outlined in Chapter 4. It would be interesting to see if a more coarse-grained

version of the tagset would lend itself to higher parsing accuracy. It would also be

interesting to see if this could help us to arrive at more flexible way of measuring

agreement or disagreement in sample selection, such as the experiments we report

on in Section 6.5.

8.3.4 Semi-supervised Parsing

Further to the semi-supervised experiments we describe in Section 6.5, a lack of gold

annotated data, on which we can compare our results to, makes it difficult to fully

assess the significance of this type of bootstrapping. This type of analysis would

be interesting at a later date when the unlabelled trees used in these experiments

3From a data management perspective, omitting this morphological information from the first
version of the treebank made the development task more manageable for a single developer.
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are eventually annotated and corrected manually, serving as a comparison gold data

set.

While the semi-supervised experiments did not produce promising results from

the perspective of parser accuracy improvement, there are many directions this

parsing research could take us in the future. Our gold POS-tagged unlabelled data

set contained 1938 trees annotated with gold POS tags. While the trends over the

stages of the experiments do not suggest that an increase in this unlabelled set size

would make much difference to the parsing scores, it may be worth considering taking

advantage of the fully unlabelled, untagged data in the New Corpus for Ireland –

Irish, which consists of 30 million words. We would also like to experiment with a

fully unsupervised parser using this dataset.

8.3.5 Cross Lingual Studies

In our studies in cross-lingual studies, we discovered that other languages that are

linguistically and typologically different to Irish did not prove useful from a boot-

strapping perspective. However, Irish, as a Celtic language, is unique with regards

to the groupings of the other languages involved in the study. We believe that a

cross-lingual approach such as this would be more beneficial if applied to languages

in the same language family as Irish. In comparison to other Celtic languages such

as Scottish Gaelic for example, Irish is in fact better resourced. It would be inter-

esting to see how the Irish Dependency Treebank could assist with future treebank

or parser development for Scottish Gaelic. In light of the recent development of a

statistical Scottish Gaelic ↔ Irish machine translation system4 (Scannell, 2014), a

Scottish Gaelic POS tagger (Lamb and Danso, 2014) and preliminary work on a

Scottish Gaelic dependency treebank (Batchelor, 2014), this type of bootstrapping

looks very promising.

4http://www.intergaelic.com/gd-ga/ (accessed June 2015)
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8.3.6 NLP for Social Media

Limited resources and time prevented exploration of some options for improving our

POS-tagging results. One of these options is to modify the CMU (English) Twitter

POS-tagger to allow for inclusion of lemma information as a feature. Another option,

when there is more unlabelled data available (i.e. more Irish tweets online), would

be to include Irish word cluster features in the training model.

We expect that this new data resource (the POS-tagged Twitter corpus) will

provide a solid basis for linguistic and sociolinguistic study of Irish on a social media

platform. This new domain of Irish language use can be analysed in an empirical

and scientific manner through corpus analysis by means of our data. This type of

research could contribute to future strategy planning for the language.

From a tool-development perspective, we expect our Twitter corpus and the

derived POS-tagging models could be used in a domain-adaptation approach to

parsing Irish tweets, similar to the work of Kong et al. (2014). This would involve

adapting our Irish statistical dependency parser for use with social media text. Our

corpus could provide the basis of a treebank for this work. It is expected that a

treebank of tweets could be easier to develop than the IDT, as each tweet is limited

to 140 characters. This means that there are likely to be fewer sub-clauses and long-

distance dependencies to analyse. It should also be considered, however, that the

ungrammatical structures present in some tweets may equally introduce additional

parsing difficulties and would lead to an interesting study.

Following our discovery of the extent that code-switching is present our Irish

Twitter data, we feel future studies on this phenomenon would be of interest to

research groups working on computational approaches to code-switching (e.g Solorio

et al. (2014)). In order to do that, we suggest updating the corpus with a separate tag

for English tokens (that is, a tag other than G, which is also used for abbreviations,

items and unknowns) before carrying out further experiments in this area.

Finally, as part of speech tags have proven to be useful for improving machine

translation (Hoang, 2007), it would be interesting to see how our work can assist in
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the automated translation of Irish tweets.

8.3.7 Universal Dependencies Project

The universal dependencies project (UD15) we refer to in Chapter 5 is an ongoing

project. In parallel to the IDT development, we also expect to expand the universal

version of our data. We hope to increase its size and also to include the morphological

features we discuss in Section 8.3.2. We also intend to review some of the UD labels

we did not employ in the first release (e.g. remnant – remnant in ellipsis, or expl –

expletives) and fully review the Irish data to see if they are in fact applicable.

8.4 Concluding Remarks

The major contribution to this thesis is the development of the first syntactic tree-

bank for Irish. We believe that, with this resource, we have put in place a foundation

for future treebank development and parser development. The treebank will also

provide a solid linguistic reference corpus for the Irish linguistic research community.

We have also shown, through our various attempts at bootstrapping the treebank’s

development, the importance of human annotation in this type of task and how it is

not easy to overcome the lack of these costly resources through the use of automated

methods.

We have also reported on the inclusion of Irish as a language in the Universal

Dependencies project. This project is an important milestone in multilingual pars-

ing, and from the Irish NLP research community perspective, it is significant that

Irish, a minority language, is playing a part in this.

We hope that our work will also benefit the wider community, by providing a

basis upon which tools that will assist Irish-speaking groups in their daily lives. Irish

schools are in much need of CALL (Computer Assisted Language Learning) systems.

For example, from a language learning perspective, the treebank provides syntactic

information in machine-readable and processable format that can assist with tasks
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such as error detection and grammar checking. POS tagging and morphological

analysis has already proven useful in some preliminary work in this area (Keogh

et al., 2004; Ward, 2014).

There has been a recent uptake of using parser output for improving information

retrieval tasks (e.g. Gillenwater et al. (2013)). Currently, there are no information

retrieval systems available that are tuned to searching for Irish content documents.

We hope that the treebank or parser can contribute to research in this area to some

extent.

In addition, we hope that the treebank data will be used to improve current

developments in Irish↔English Statistical Machine Translation (SMT). The author

has been instrumental in securing funding to develop an SMT system for an Irish

government department (DAHG), to assist with their in-house English↔Irish trans-

lation demands. The project has just moved from a pilot phase to a stage where a

hybrid approach, involving word-reordering, is being explored. The divergent word

order between the two languages can affect translation quality, and previous work

involving word-reordering on divergent languages (e.g. Xu et al. (2009)) has proven

successful in this respect.

Also, from a language shift perspective, our work on Irish tweets presents a

new perspective for both Irish NLP and sociolinguistic research. We see this as an

important step towards recognising an evolving language that now has a wider use

in terms of its increased online presence, and is being influenced by a new generation

of Irish speakers. We hope that our preliminary work in this area will open up future

efforts to cultivating the use of Irish in social media.

Finally, Figure 8.1 and Figure 8.2 give an overview of the type of future applica-

tions that are possible following the development of the Irish NLP resources in this

thesis.
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Figure 8.1: Applications of the treebanks developed in this thesis.

Figure 8.2: Applications of the Twitter POS-tagged corpus developed in this thesis.
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dency Treebank: Three-level annotation scenario. In Abeillé, A., editor, Tree-
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Hajič, J. and Zemánek, P. (2004). Prague Arabic Dependency Treebank: Develop-

ment in data and tools. In Proceedings of the NEMLAR International Conference

on Arabic Language Resources and Tools, pages 110–117, Cairo, Egypt.
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dency parsing using spanning tree algorithms. In Proceedings of Human Language

208



Technology Conference on Empirical Methods in Natural Language Processing,

pages 523–530, Vancouver, British Columbia, Canada.

McDonald, R., Petrov, S., and Hall, K. (2011). Multi-source transfer of delexicalized

dependency parsers. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing, EMNLP ’11, pages 62–72, Stroudsburg, PA, USA.
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Ó Siadhail, M. (1989). Modern Irish: Grammatical structure and dialectal variation.

Cambridge: Cambridge University Press.

210



Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A., Kumar,

S., Shen, L., Smith, D., Eng, K., Jain, V., Jin, Z., and Radev, D. (2004). A

Smorgasbord of Features for Statistical Machine Translation. In Proceedings of

the Human Language Technology Conference of the North American Chapter of

the Association for Computational Linguistics: HLT-NAACL 2004, pages 161–

168, Boston, MA, USA.

Oepen, S., Flickinger, D., Toutanova, K., and Manning, C. D. (2002). LinGO Red-

woods - a rich and dynamic treebank for HPSG. In Beyond PARSEVAL Work-

shop at the Third International Conference on Language Resources and Evaluation

(LREC 2002), pages 575–596, Las Palmas, Spain.

Oflazer, K., Say, B., Hakkani-Tür, D. Z., and Tür, G. (2003). Building a Turkish

treebank. In Abeille, A., editor, Building and Exploiting Syntactically-annotated

Corpora. Kluwer Academic Publishers.

Olsson, F. (2009). A literature survey of active machine learning in the context

of natural language processing. Technical report, Swedish Institute of Computer

Science.

Osborne, M. and Baldridge, J. (2004). Ensemble-based Active Learning for Parse

Selection. In HLT-NAACL 2004: Main Proceedings, pages 89–96, Boston, USA.

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., and Smith, N. A.

(2013). Improved part-of-speech tagging for online conversational text with word

clusters. In Proceedings of the 2013 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 380–390, Atlanta, Georgia.

Passonneau, R., Habash, N., and Rambow, O. (2006). Inter-annotator agreement on

a multilingual semantic annotation task. In Proceedings of the Fifth Conference

on Language Resources and Evaluation (LREC2006), pages 1951–1956, Genoa,

Italy.

211



Petrov, S., Das, D., and McDonald, R. (2012). A Universal Part-of-Speech Tagset.

In Proceedings of the Eight International Conference on Language Resources and

Evaluation (LREC’12), pages 2089–2096.

Petrov, S. and McDonald, R. (2012). Overview of the 2012 Shared Task on Parsing

the Web. In Notes of the First Workshop on Syntactic Analysis of Non-Canonical

Language (SANCL), Montreal Canada.

Poesio, M. (2004). Discourse annotation and semantic annotation in the GNOME

corpus. In Proceedings of the 2004 ACL Workshop on Discourse Annotation,

pages 72–79, Barcelona, Spain.

Prokopidis, P., Desipri, E., Koutsombogera, M., Papageorgiou, H., and Piperidis,

S. (2005). Theoretical and practical issues in the construction of a Greek depen-

dency treebank. In Proceedings of the 4th Workshop on Treebanks and Linguistic

Theories (TLT 2005), pages 149–160, Barcelona, Spain.

Quirk, C., Menezes, A., and Cherry, C. (2005). Dependency treelet translation:

Syntactically informed phrasal SMT. In Proceedings of the 43rd Annual Meeting

of the Association for Computational Linguistics (ACL’05), pages 271–279, Ann

Arbor, Michigan.

Ragheb, M. and Dickinson, M. (2013). Inter-annotator agreement for dependency

annotation of learner language. In Proceedings of the Eighth Workshop on Inno-

vative Use of NLP for Building Educational Applications, pages 169–179, Atlanta,

Georgia.

Ravi, S., Knight, K., and Soricut, R. (2008). Automatic prediction of parser ac-

curacy. In Proceedings of the 2008 Conference on Empirical Methods in Natural

Language Processing, pages 887–896, Honolulu, Hawaii.

Rehbein, I. (2011). Data point selection for self-training. In Proceedings of the Sec-

ond Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL

2011), Dublin, Ireland.

212



Rehbein, I. (2013). Fine-grained pos tagging of German tweets. In Gurevych, I.,

Biemann, C., and Zesch, T., editors, GSCL, volume 8105 of Lecture Notes in

Computer Science, pages 162–175. Springer.

Reichart, R. and Rappaport, A. (2007). Self-training for enhancement and domain

adaptation of statistical parsers trained on small datasets. In Proceedings of the

45th Annual Meeting of the Association of Computational Linguistics, pages 616–

623, Prague, Czech Republic.

Reichart, R. and Rappoport, A. (2007). An Ensemble Method for Selection of High

Quality Parses. In Proceedings of the 45th Annual Meeting of the Association of

Computational Linguistics, pages 408–415, Prague, Czech Republic.

Ritter, A., Clark, S., Mausam, and Etzioni, O. (2011). Named entity recognition

in tweets: An experimental study. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, EMNLP ’11, pages 1524–1534, Strouds-

burg, PA, USA.

Sagae, K. (2010). Self-training without Reranking for Parser Domain Adapation

and its Impact on Semantic Role Labeling. In Proceedings of the ACL Workshop

on Domain Adaptation for NLP, pages 37–44, Uppsala, Sweden.

Sagae, K. and Tsujii, J. (2007). Dependency parsing and domain adaptation with

LR models and parser ensembles. In Proceedings of the CoNLL shared task session

of EMNLP-CoNLL, pages 1044–1050, Prague, Czech Republic.

Sampson, G. (1993). The SUSANNE Corpus.

Scannell, K. (2005). Applications of parallel corpora to the development of mono-

lingual language technologies.

Scannell, K. (2014). Statistical models for text normalization and machine trans-

lation. In Proceedings of the First Celtic Language Technology Workshop, pages

33–40, Dublin, Ireland.

213



Scannell, K. P. (2003). Automatic thesaurus generation for minority languages: an

Irish example. Actes de la 10e conférence TALNa Batz-sur-Mer, 2:203–212.
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Proceedings of the 18th Nordic Conference of Computational Linguistics NODAL-

IDA 2011, pages 319–322, Riga, Latvia.

Ward, M. (2014). Using Irish NLP resources in primary school education. In Pro-

ceedings of the First Celtic Language Technology Workshop, pages 6–17, Dublin,

Ireland.
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Appendix A

Annotation Guidelines for the

Irish Dependency Treebank

In this appendix, we provide the set of annotation guidelines that were used to

manually annotate the Irish Dependency Treebank. Our tagset has 47 labels (see

Section 4 for the full list) to choose from. Some points to note when using this

manual are:

• The bilexical labelled dependency notation reads as follows:

deplabel(Head, Dependent)

• All examples are taken or adapted from the Irish dependency treebank.

• The guide is organised according to the possible dependents of each part of

speech.

• The top label, which denotes the root label, is only used in examples using

full sentences (not fragments or phrases).
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A.1 Verb Dependents

A.1.1 subj : subject – (Verb)

• Nominative subject of a verb

Example

Tá muintir Chorcáı an-mh́ıshasta : ‘Cork people are very unhappy’

subj(Tá, muintir)

top subj nadjunct adjpred

Tá muintir Chorcáı an-mh́ıshásta
‘Cork people are very unhappy’

Example

Cheannaigh sé leabhar : ‘He bought a book’

subj(Cheannaigh, sé)

top subj obj

Cheannaigh sé leabhar
‘He bought a book’

A.1.2 obj : object – (Verb)

• Direct object

Example

Thóg sé amach a uirliśı obráide : ‘He took out his surgical instruments’

obj(thóg, uirliśı)
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top subj advadjunct poss obj adjadjunct

Thóg sé amach a uirliśı obráide
‘He took out his surgical instruments ’

• Object of infinitive verb

Example

a mbealach a dhéanamh go lár na cathrach : ‘to make their way into the

city centre’

obj(dhéanamh, mbealach)

poss obj toinfinitive advadjunct padjunct pobj det nadjunct

a mbealach a dhéanamh isteach go lár na cathrach
‘to make their way into the city centre’

• Object of autonomous verb form

Note: In Irish there is an understood (hidden) subject in the ‘briathar saor’

form of a verb

Example

Crothnófar Pól : ‘Paul will be remembered’ (lit. someone will remember

Paul)

obj(Crothnófar, Pól)

Example

Creditear gur go maiĺıseach a tosáıodh an tine : ‘It is believed that the fire
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top obj

Crothnófar Pól
‘Paul will be remembered’

was started maliciously’

obj(tosáıodh, tine)

top comp advparticle advpred cleftparticle subj det obj

Creidtear gur go maiĺıseach a tosáıodh an tine
‘It is believed that the fire was started maliciously’

• Quantative object

Example

Tuigeann sé ńıos mó anois : ‘He understands more now’

obj(tuigeann, mó) 1

top subj particle obj

Tuigeann sé ńıos mó
‘He understands more’

A.1.3 obl/ obl2 : oblique nouns – (Verb)

Used for prepositions that are closely attached to a verb i.e. arguments/ comple-

ments as opposed to adjuncts. These include inflected prepositions.

1Where mó is not modifiying an object to mean ‘more of’. (It is an object in itself)
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• The verb selects for a transitive preposition

Example

Ceangláıonn an intinn eachtráı áirithe le háiteanna áirithe : ‘The mind ties

certain events with certain places’

obl(gceangláıonn, le)

top det subj obj adjadjunct obl pobj adjadjunct

Ceangláıonn an intinn eachtráı áirithe le háiteanna áirithe
‘The mind ties certain events with certain places’

Example

Úsáideadh d́ılseacht mar ghléas le leatrom a dhéanamh..: ‘loyalty was used as

a device to oppress..’

obl(Úsáideadh, mar)

top obj obl pobj

Úsáideadh d́ılseacht mar ghléas
‘Loyalty was used as a device’

• These prepositions contribute to the meaning of the verb, they are not optional

(arguments rather than modifiers) and take object complements.

Example

D’éirigh go hiontach leis an bhfear : ‘The man succeeded well’

obl(éirigh, leis) 2

2These objects can take the form of prepositional pronouns (e.g. D’éirigh go hiontach liom ‘I
succeeded well’)
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vparticle top advparticle advadjunct obl det pobj

D’ éirigh go hiontach leis an bhfear
‘ The man succeeded well’

• Prepositions that are used with the verb b́ı to describe a state of a person/

thing in an idiomatic manner.

Example

Bı́onn gais ghlasa ar an nGlúineach Bhán : ‘The Persicaria has green stalks’

(lit. Green stalks are [on the Persicaria])’.

obl(Bı́onn, ar)

top subj adjadjunct obl det pobj adjadjunct

Bı́onn gais ghlasa ar an nGlúineach Bhán
‘The Persicaria has green stalks’

Example

Bı́onn orthu praghsanna as cuimse a ı́oc : ‘They have to pay incredible prices’

obl(Bı́onn, orthu)

comp obl obj padjunct pobj toinfinitive xcomp

Bı́onn orthu praghsanna as cuimse a ı́oc
‘They have to pay incredible prices’

Example

Tá cáil ar an leabhar : ‘The book is famous’

obl(Tá, ar)
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top subj obl det pobj

Tá cáil ar an leabhar
‘The book is famous’

• Prepositions used with the verb b́ı ‘be’ to describe ownership of something.

Example

Tá súil agam : ‘I hope’ (lit. Hope is at me)

obl(tá, agam)

top subj obl

Tá súil agam
‘ I hope’

Example

Tá a fhios sin agat anois : ‘You know that now’

obl(tá, agat)

top poss subj dem obl advadjunct

Tá a fhios sin agat anois
‘ You know that now’

• Oblique prepositions can precede the verb in indirect relative clause construc-

tions

(lena = le (obl) + n + a (relparticle) )

Example

na scrúduithe le n-a mbaineann an aithris chúise sin: ‘the exams to which

such representation relates’

obl(mbaineann, le)

Note: When the preposition and relative particle are combined (e.g. lena),

the relparticle label is dropped in favour of obl.
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det obl relparticle relmod det subj nadjunct dem

na scrúduithe le n-a mbaineann an aithris chúise sin
‘the exams to which such representation relates ’

Example

a chur i bhfios don iarratasóir lena mbaineann.. : ‘to communicate to the

applicant to whom it concerns..’

toinfinitive obl pobj obl2 pobj obl relmod

a chur i bhfios don iarratasóir lena mbaineann
‘to communicate to the applicant concerned’

• When there are two oblique attachments to one verb, mark the second one as

obl2.

Example

a chur i gcomparáid le.. : ‘to compare with..’ (lit. ‘to put in comparison

with)

obl(chur, i), obl2(chur, le)

toinfinitive obl pobj obl2 pobj adjadjunct

a chur i gcomparáid le fostáı lánaimseartha
‘to compare with full-time employees’

Example

go raibh baint aige le Saor Éire : ‘that he had some association with Saor

Éire’

obl(raibh, aige), obl2(raibh, le)
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vparticle subj obl obl2 pobj nadjunct

go raibh baint aige le Saor Éire
‘that he was associated with Saor Éire’

Example

An raibh aithne aige ar a leithéid seo nó siúd? : ‘Did he know this one or

that one’

obl(raibh, aige), obl2(raibh, ar)

vparticle top subj obl obl2 poss pobj coord dem coord

An raibh aithne aige ar a leithéid seo nó siúd
‘Did he know this one or that one?’

• Prepositional pronouns. These prepositions are inflected for an oblique object

i.e. there is no overt pobj.

Example

a gcultacha Domhnaigh a chur orthu féin : ‘to put their Sunday clothes on

themselves’

obl(chur, orthu)

poss obj nadjunct toinfinitive obl nadjunct

a gcultacha Domhnaigh a chur orthu féin
‘to put their Sunday clothes on themselves’

A.1.4 particlehead – (Verb)

• A verb particle that is an adverb or a preposition.
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Note: These verb particles cannot inflect for person or gender or be followed

by a noun. These verbs are sometimes referred to as phrasal compound verbs.

Example

a gcuid teangacha a thabhairt suas : ‘to take up their languages’

particlehead(thabhairt, suas)

poss quant obj toinfinitive xcomp particlehead

a gcuid teangacha a thabhairt suas
‘to take up their languages’

Example

..i ndiaidh éiŕı as de thairbhe cúiseanna pearsanta : ‘..after resigning (lit.

rising out) for personal reasons’

particlehead(éiŕı, as)

xcomp particlehead padjunct pobj nadjunct

i ndiaidh éiŕı as de thairbhe cúiseanna pearsanta
‘after resigning for personal reasons’

A.1.5 padjunct : prepositional adjunct – (Verb)

These prepositions are optional modifiers and tell us more about where or when

something was done:

• Prepositions denoting time/ place

Example

go bhfuil dráıocht i gceist sa dráma seo : ‘that there is magic in this play’

padjunct(bhfuil, sa)
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vparticle subj ppred pobj padjunct pobj dem

go bhfuil dráıocht i gceist sa dráma seo
‘that there is magic in this play’

Example

An bhfeiceann tú aon eilimint́ı den śıscéal eile ann? : ‘Do you seen any other

elements of the fairytale in it?’

padjunct(bhfeiceann, ann)

vparticle top subj det obj dem padjunct pobj padjunct

An bhfeiceann tú aon eilimint́ı eile den śıscéal ann
‘Do you see any other elements of the fairytale in it?’

• Adverbial prepositional phrases

Example

Titeann an dorchadas de gheit : ‘Darkness falls with a jolt’

padjunct(titeann, de)

top det subj padjunct pobj

Titeann an dorchadas de gheit
‘Darkness falls suddenly (with a jolt)’
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Example

Bhuaigh siad an Chraobh gan mórán stró : ‘They won the Championship

without much difficulty’

padjunct(bhuaigh, gan)

top subj det obj padjunct quant pobj

Bhuaigh siad an Chraobh gan mórán stró
‘They won the Championship without much difficulty’

• Fronted prepositional phrases 3

Example

Sa tsean-am bh́ı an cál nó an cabáiste an-ghann : ‘In the old days, kale and

cabbage were very scarce’

padjunct(bh́ı, Sa)

padjunct pobj top det coord subj det coord adjpred

Sa tsean-am bh́ı an cál nó an cabáiste an-ghann
‘In the old days, kale and cabbage were very scarce’

• Prepositional phrase cluster4

Note that the second preposition is dependent on the first

Example

chun gluaiseacht ó áit go háit : ‘to move from place to place’

padjunct(gluaiseacht, ó), padjunct(ó, go)

3Note - the comma is not always present in Irish.
4Contrast with obl2 above
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pobj padjunct pobj padjunct pobj

chun gluaiseacht ó áit go háit
‘to move from place to place’

A.1.6 advadjunct : adverbial adjunct – (Verb)

These are adverbs of manner/time/place (optional modifiers) that attach to the

matrix verb.

• Adverbs of time

Example

Ansin thóg sé amach a uirliśı obráide : ‘Then he took out his surgical in-

struments’

advadjunct(thóg, Ansin)

advadjunct top subj advadjunct poss obj adjadjunct

Ansin thóg sé amach a uirliśı obráide
‘He took out his surgical instruments’

• Adverbs of manner

Example

: an rud deireanach a tharraing sé amach..: ‘the last thing he pulled out..’

advadjunct(tharraing, amach)

• Adverbs of place

Example

D’fhan sé ansin : ‘He stayed there’
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det adjadjunct relparticle relmod subj advadjunct

an rud deireanach a tharraing sé amach
‘the last thing he pulled out’

advadjunct(fhan, ansin)

vparticle top subj advadjunct

D’ fhan sé ansin
‘He stayed there’

• Nouns acting as adverbs

Example

..an tsĺı ar chaith na páirtithe leis an bpobal tráth an Reifrinn : ‘the way the

parties treated the public at the time of the Referendum’

advadjunct(chaith, tráth)

det relparticle relmod det subj obl det pobj advadjunct det nadjunct

an tsĺı ar chaith na páirtithe leis an bpobal tráth an Reifrinn
‘the way the parties treated the public at the time of the Referendum’

Example

Na focail seo a bh́ı ina bhfochaiśı trioblóideacha tráth : ‘These words which

were once troublesome’

advadjunct(bh́ı, tráth)

Example

Bh́ıomar tinn inné. : ‘We were sick yesterday’
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det top dem relparticle subj ppred pobj adjadjunct advadjunct

Na focail seo a bh́ı ina bhfochaiśı trioblóideacha tráth
‘These words which were once troublesome’

advadjunct(Bh́ıomar, inné)

top adjpred advadjunct

Bh́ıomar tinn inné
‘We were sick yesterday’

Example

Dhúisigh Paid́ı go luath : ‘Paid́ı woke early’

advadjunct( Dhúisigh, luath)

top subj advparticle advadjunct

Dhúisigh Paid́ı go luath
‘Paid́ı woke early’

Example

an radharc a bh́ı le feiceáil an mhaidin sin: ‘the sight to behold that morning’

advadjunct(thugainn, mhaidin)

A.1.7 subadjunct : subordinate adjunct– (Verb)

Subordinate Clauses
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det relparticle relmod xcomp pobj det advadjunct dem

an radharc a bh́ı le feiceáil an mhaidin sin
‘the sight to behold that morning’

• Subordinating conjunctions: because, since-clauses

Example

Dhúisigh Paid́ı go luath mar bh́ı gnó éigin le déanamh : ‘Paid́ı woke early

because there was some work to do’

subadjunct(Dhúisigh, mar), comp(mar, bh́ı)

top subj advparticle advadjunct subadjunct comp subj adjadjunct xcomp pobj

Dhúisigh Paid́ı go luath mar bh́ı gnó éigin le déanamh
‘Paid́ı woke early because there was some work to do’

Example

Bh́ı sé ag athrú a phoirt toisc go raibh brú á chur air : ‘He was changing his

tune since there was pressure on him’

subadjunct(Bh́ı, toisc), comp(toisc, raibh)

top subj xcomp pobj poss vnobj subadjunct vparticle xcomp subj xcomp pobj obl

Bh́ı sé ag athrú a phoirt toisc go raibh brú á chur air
‘He was changing his tune since there was pressure on him’

• Subordinating conjunctions: when-clauses
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Example

Bh́ı sé tugtha traochta nuair a bhain sé an baile amach: ‘He was exhausted

when (by the time) he reached home’

subadjunct(bh́ı, nuair) , comp(nuair, bhain)

top subj npred nadjunct subadjunct vparticle comp subj det obj advadjunct

Bh́ı sé tugtha traochta nuair a bhain sé an baile amach
‘He was exhausted by the time he reached home’

Example

Nuair a bhris an Cogadh Domhanda amach, liostáil sé ins na London Irish

Rifles : ‘When WWI broke out, he enlisted in the London Irish Rifles’

subadjunct(liostáil, Nuair), comp(Nuair, bhris)

subadjunct vparticle comp det subj advadjunct punctuation top subj obl det pobj

Nuair a bhris an cogadh amach , liostáil sé ins na Rifles
‘When the war broke out, he enlisted with the Rifles’

• Subordinating conjunctions: but-clauses

Note: If there are two subordinating conjunctions (e.g. But, when ..), the sub-

ordinate clause (comp) is attached to the one closest to it. Both are attached

to the matrix clause as subadjunct.

Example

Ach nuair a bh́ıodar ag dul ańıos casadh mairnéalach leo : ‘But when they
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were going down, they met sailors’

subadjunct(casadh, Ach), subadjunct(casadh, nuair), comp(nuair, bh́ıodar)

subadjunct subadjunct vparticle comp xcomp pobj advadjunct top obj obl

Ach nuair a bh́ıodar ag dul ańıos casadh mairnéalach leo
‘But when they were going down, they met sailors’

Example

Nı́ fios domsa, ach roimh thitim na hóıche bh́ıos caoch : ‘I don’t know how,

but before nightfall, I was blind-drunk’

subadjunct(Nı́, ach), comp(ach, bh́ıos)

top npred obl subj punctuation subadjunct padjunct pobj det nadjunct comp adjpred

Nı́ fios domsa conas , ach roimh thitim na hóıche bh́ıos caoch
‘I don’t know how, but before nightfall, I was blind-drunk’

• Subordinating conjunctions. if-clauses: má (present), dá (conditional)

Example

Dá mbeinn gearrtha amach ón gomhluadar is eol duit.. : ‘If I was cut off from

the company, you know...’

subadjunct(is, Dá), comp(Dá, mbeinn)

Example

Má bhreathnáıtear ar Ghaillimh i dtosach, tá Michael Crimmins ar ais sa gcúl

: ‘If we look at Galway first, Michael Crimmins is back in goals’
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subadjunct comp adjpred advadjunct obl pobj top npred obl

Dá mbeinn gearrtha amach ón gcomhluadar is eol duit...
‘If I was cut off from the company, you know...’

subadjunct(tá, má), comp(má, bhreathnáıtear) 5

subadjunct comp obl pobj punctuation top subj advadjunct ppred pobj

Má bhreathnáıtear ar Ghaillimh , tá Crimmins ar ais sa gcúl
‘If we look at Galway, Crimmins is back in goals’

• Subordinating conjunctions. unless-clauses:

Example

Nı́ thugtar ı́ocáıochtáı mura n-iarrtar iad ‘Payments won’t be given unless

they are requested’

subadjunct(thugtar, mura), comp(mura, n-iarrtar)

vparticle top obj subadjunct comp obj

Nı́ thugtar ı́ocáıochtáı mura n-iarrtar iad
‘Payments won’t be given unless they are requested’

• Subordinating conjunctions. so that, until-clauses:

5For treatment of Más - see Section A.1.10
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Example

Fágann siad scoilt ina ndiaidh chun go mbeidh siad ábalta a rá.... ‘They

leave rifts behind them so that they will be able to say....’

subadjunct(Fágann, chun go), comp(chun go, mbeidh)

top subj obj padjunct pobj subadjunct comp subj adjpred toinfinitive xcomp

Fágann siad scoilt ina ndiaidh chun go mbeidh siad ábalta a rá...
‘They leave rifts behind them so that they will be able to say...’

• Subordinating conjunctions. Semi-colons

Example

Fuaireamar é seo; féach an é cóta do mhic é? : ‘We found this; look is it your

son’s coat?’

subadjunct(Fuaireamar, ;) comp(;, féach)

top obj det subadjunct comp comp aug npred poss nadjunct subj punctuation

Fuaireamar é seo ; féach an é cóta do mhic é ?
‘We found this; look is it your son’s coat?’

A.1.8 adjunct – (Verb)

These are verbal adjuncts that do not come under these categories: advadjunct,

padjunct, or subadjunct.
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Note that we label mar ‘because’, nuair ‘when’ and ach ‘but’ as adjuncts if they

do not introduce a subordinate clause.

• Connectives

agus is normally a coordinate conjunction, but it can also introduce a new

sentence and is sometimes used alongside another subordinate conjunction,

such as nuair ‘when’ for example.

It is quite common and acceptable to start a sentence with ‘Agus’ in Irish.

Example

Agus nuair a mh́ınigh mé dó..., dúirt sé.. : ‘And when I explained to him..,

he said..’

adjunct(dúirt, Agus), subadjunct(dúirt, nuair), comp(nuair, mh́ınigh)

adjunct subadjunct vparticle comp subj obl punctuation top subj vparticle comp subj ppred

Agus nuair a mh́ınigh mé dó... , dúirt sé nach raibh sé ann
‘And when I explained to him.., he said it wasn’t there’

Example

Ach tháinig an codladh orm : ‘But I fell asleep’ (lit. But sleep came on me)

adjunct(tháinig, Ach)

adjunct top det subj obl

Ach tháinig an codladh orm
‘But I fell asleep’

• Interjection
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Example

‘Ó tá sé anseo sa chistin’ : ‘Oh it’s here in the kitchen’

adjunct(tá, Ó)

adjunct comp subj advpred padjunct pobj

Ó tá sé anseo sa chistin
‘Oh it’s here in the kitchen’

• Headings: the root of the heading (RH) is dependent on the root of the main

sentence, and all other parts of the heading are dependent on RH.

Example

TOGRA IONAID - Eolas a chur ar fáil ar fholúntais fostáıochta :

‘CENTRE PROPOSAL - To provide information on job vacancies’

adjunct(Eolas, TOGRA), nadjunct(TOGRA, IONAID)

adjunct nadjunct punctuation obj toinfinitive top obl pobj padjunct pobj nadjunct

TOGRA IONAID - Eolas a chur ar fáil ar fholúntais fostáıochta
‘CENTRE PROPOSAL - To provide information on job vacancies’

A.1.9 xcomp : open complement – (Verb)

A.1.9.1 xcomp : open complements

• infinitival phrases

– share a subject with the matrix verb, i.e. the subject is not present in

the infinitival phrase

– preceded in Irish with a or le
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Example

D’fhéadfáı dĺı a reachtáil ; ‘A law could be legislated (lit. someone could

legislate a law)’

xcomp(fheadfáı, reachtáil)

vparticle top obj toinfinitive xcomp

D’ fhéadfáı dĺı a reachtáil
‘A law could be legislated’

Example

Bı́onn cinn óga le haithint thar aon siorc eile : ‘Young ones are seen above

any other shark’

xcomp(haithint, le)

top subj adjadjunct xcomp pobj padjunct det pobj det2

Bı́onn cinn óga le haithint thar aon siorc eile
‘Young ones are seen above any other shark’

Example

go mbeadh dóthain le hithe : ‘that there would be enough to eat’

xcomp(mbeadh, le)

vparticle subj xcomp pobj

go mbeadh dóthain le hithe
‘that there would be enough to eat’

Example

Tá na folúntais seo a leanas le ĺıonadh : ‘The following vacancies are to be
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filled’

xcomp(tá, le)

top det subj dem relparticle relmod xcomp pobj

Tá na folúntais seo a leanas le ĺıonadh
‘The following vacancies are to be filled’

A.1.9.2 xcomp : progressives

• ‘ag’ progressive aspectual phrases

– denoted through the use of the substantive verb ‘b́ı’ followed by the prepo-

sition ‘ag’ and a verbal noun. No equivalent in English.

Example

Thosaigh sé [ag tabhairt na difŕıochta faoi deara] : ‘He started noticing the

differences’

xcomp(Thosaigh, ag)

subj subj xcomp pobj det vnobj obl pobj

Thosaigh sé ag tabhairt na difŕıochta faoi deara
‘He started noticing the differences’

Example

Bh́ı śı [ag freastal ar scoil] : ‘She was attending the Girl’s School’

xcomp(Bh́ı, ag)

• ‘ar’ progressive aspectual phrases
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top subj xcomp pobj obl pobj det nadjunct

Bh́ı śı ag freastal ar Scoil na gCaiĺıńı
‘She was attending the Girl’s School’

Example

Nı́or ghá ach sracfhéachaint ar an ealáın a bh́ı [ar siúl] : ‘You only have to

glance at the art that was in progress’

xcomp(bh́ı, ar)

top npred particle subj obl det pobj relparticle relmod xcomp pobj

Nı́or ghá ach sracfhéachaint ar an ealáın a bh́ı ar siúl
‘You only have to glance at the art that was in progress’

Example

Cheannaigh sé leabhar áit a bh́ı sé ar fáil : ‘He bought books anywhere they

were available’

xcomp(bh́ı, ar)

top subj obj nadjunct relparticle relmod subj xcomp pobj

Cheannaigh sé leabhar áit a bh́ı sé ar fáil
‘He bought books anywhere they were available’

• á progressive aspectual phrases

Example

an corn mór a bh́ıonn [á lorg] : ‘the big cup that every county seeks (lit. at

its seeking)’

xcomp(bh́ıonn, á)
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det adjadjunct relparticle relmod xcomp pobj obl ag det pobj

an corn mór a bh́ıonn á lorg ag achan chontae
‘the big cup that every county seeks’

A.1.10 comp : closed complement – (Verb)

Closed complement clauses are clauses that contain a subject. The head is usually

a verb. The link is usually between the matrix verb and the complement verb.

Complements introduced by a copula (gur, gurb etc.) are referred to as copular

complements.

• Clauses introduced by complementiser go/gur/nach/nár ‘that’, ‘that-not’

Example

D’fhógair preasoifig na hEaglaise Caitlićı [go raibh sé i ndiaidh éiŕı as] : ‘The

Catholic Church press office announced that he had retired’

comp(fhógair, raibh)

vparticle top subj det nadjunct adjadjunct vparticle comp subj ppred xcomp particlehead
D’ fhógair preasoifig na hEaglaise Caitlićı go raibh sé i ndiaidh éiŕı as

‘The Catholic Church’s press office announced that he had retired’

• Copular complements gurb, narbh.

– both gurb and narbh are contraction of complementiser and main clausal

copular verb

– gur + is (gurbh), nar + is (narbh)
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Example

measann go leor [gurb é an ṕıobaire is mó in Albain é] : ‘many believe that

he is the biggest piper in Scotland’

comp(measann, gurb)

top subj comp aug det npred particle adjadjunct padjunct pobj subj

Measann go leor gurb é an ṕıobaire is mó in Albain é
‘Many believe that he is the biggest piper in Scotland’

• Más → Má + Is

Example

Más aidiacht leathan ı́ déan caol ı́ : ‘If it is a broad adjective, make it slender’

comp(déan, Más)

subadjunct npred adjadjunct subj comp adjpred obj

Más aidiacht leathan ı́ déan caol ı́
‘If it is a broad adjective, make it slender’

A.1.11 pred : predicate – (Verb)

Non-verbal predicates are labelled pred. This label is further divided into categories

of npred, adjpred, ppred, advpred when used with the substantive verb b́ı.
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A.1.11.1 adjpred - Adjectival Predicate

• Describing states

– Adjectives used with the verb ‘to be’ (substantive verb b́ı) to describe a

state

Example

Tá muintir Chorcáı an-mh́ıshásta le Fianna Fáil : ‘Cork people are very

dissatisfied with Fianna Fáil’

adjpred(Tá, an-mh́ıshásta)

top subj nadjunct adjpred obl pobj

Tá muintir Chorcáı an-mh́ıshásta le Fianna Fáil
‘The people of Cork are very dissatisfied with Fianna Fáil’

• Verbal Adjectives

Example

Tá dul chun cinn iontach déanta ag foireann shinsir Chill Dara : ‘Great

progress has been made by Kildare Senior Team’

adjpred(tá, déanta)

top subj obl pobj adjadjunct adjpred obl ag pobj nadjunct nadjunct

Tá dul chun cinn iontach déanta ag foireann shinsir Chill Dara
‘Great progress has been made by Kildare Senior Team’
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A.1.11.2 ppred - Prepositional Predicate

PP predicates are more common in Irish than in English. For example, they are

used for describing a state, a profession, membership or denoting ownership. Note

that the preposition is not normally realised in the English translation.

Also note, square brackets mark where ppred denotes a predicate phrase and the

preposition heads that phrase.

• Prepositional predicates

Example

Bh́ı sé [ina bhall de Mhuintir Sh́ıomóin] ó 1976 go 1986 : ‘He was [6 a member

of the Simon Community] from 1976 to 1986’

ppred(Bh́ı, ina)

top subj ppred pobj padjunct pobj nadjunct padjunct pobj padjunct pobj

Bh́ı sé ina bhall de Mhuintir Sh́ıomóin ó 1976 go 1986
‘He was a member of the Simon Community from 1976 to 1986’

Example

Tá sé [i gceist] an scéal a leathadh : ‘It is planned to spread the story’

ppred(Tá, i)

Example

..bean a bh́ı [mar Leas-Uachtarán] ar ghrúpa: ‘..a woman who was [(as) Vice-

President of a group]’

ppred(bh́ı, mar)

6literally ‘in his membership’
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top subj ppred pobj det obj toinfinitive xcomp

Tá sé i gceist an scéal a leathadh
‘It is planned to spread the story’

relparticle relmod ppred pobj padjunct pobj

bean a bh́ı mar Leas-Uachtarán ar ghrúpa
‘a woman who was Vice-President of a group’

• Locative prepositions as predicates

– These structures are equivalent to English ‘existential there’ constructions

Example

Bh́ı scaifte maith sa tabhairne : ‘There was a good crowd in the pub’

ppred(Bh́ı, sa)

top subj adjadjunct ppred pobj dem

Bh́ı scaifte maith sa tábhairne seo
‘There was a good crowd in the pub’

Example

Tá taibhśı fear agus ban ann : ‘There are male and female ghosts (in it)’

ppred(Tá, ann)

A.1.11.3 advpred - Adverbial Predicate

• Adverbs in predicate position
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subj coord nadjunct coord ppred

Tá taibhśı fear agus ban ann
‘There are male and female ghosts’

Example

go bhfuilimid amach as sin: ‘that we are out of that’

advpred(bhfuilimid, amach)

vparticle comp advpred padjunct pobj

go bhfuilimid amach as sin
‘that we are out of that’

Example

Deir mo chairde go bhfuil Meryl Streep go hiontach sa scannán : ‘My friends

say that Meryl Streep is great in the movie’

advpred(bhfuil, hiontach)

top poss subj obl vparticle comp nadjunct subj advparticle advpred padjunct pobj
Deir mo chairde liom go bhfuil Meryl Streep go hiontach sa scannán

‘My friends say that Meryl Streep is great in the movie’

Example

Creidtear gur go maiĺıseach a tosáıodh an tine : ‘It’s believed that the fire

was started maliciously’

advpred(gur, maiĺıseach)
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top comp advparticle advpred cleftparticle subj det obj

Creidtear gur go maiĺıseach a tosáıodh an tine
‘It’s believed that the fire was started maliciously’

A.1.12 relparticle : relative particle – (Verb)

• a and ar relative particles

– a is a direct relative, ar is an indirect relative

– these particles precede, and are dependents of, relative modifier verbs

(relmod).

Example

..an rud deireanach a tharraing(relmod) sé amach : ‘..the last thing [that] he

pulled out’

relparticle(tharraing, a)

det adjadjunct relparticle relmod subj advadjunct

an rud deireanach a tharraing sé amach
‘the last thing he pulled out’

Example

an bean ar maráıodh a mac : ‘the woman whose son was killed’

relparticle(maráıodh, ar)

• dá - relative particle

– Similar in meaning to ‘that which is’
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det relparticle relmod poss obj

an bean ar maráıodh a mac
‘the woman whose son was killed’

Example

an tOrdú dá dtagráıtear thuas : ‘the Order that is referred to above’

relparticle(dtagráıtear, dá)

det subj relparticle relmod advadjunct

an tOrdú dá dtagráıtear thuas
‘the Order that is referred to above’

• ina, inar indirect relative particles

– meaning ‘in which’

Example

an rás leathcheannais inar rith sé na 400m deiridh i 55 soic : ‘the semi-finals

race in which he ran the last 400m in 55 seconds’

relparticle(rith, inar)

det nadjunct relparticle relmod subj det quant obj nadjunct padjunct quant pobj
an rás leathcheannais inar rith sé na 400 m deiridh i 55 soic

‘the semi-finals race in which he ran the last 400m in 55 seconds’

• nár, nach – negative relative particles

Example

seisear Aiŕı Stáit nach mbeadh postanna acu : ‘six Ministers of State that

250



wouldn’t have jobs’

relparticle(mbeadh, nach), relmod(seisear, mbeadh)

nadjunct nadjunct relparticle relmod subj obl

seisear Aiŕı Stáit nach mbeadh postanna acu
‘six Ministers of State who wouldn’t have jobs’

A.1.13 cleftparticle : cleft particle – (Verb)

• Cleft particles

– We use this label to differentiate from relparticle, which is used only when

the nominal head is present.

Example

Ba ar an phobal sin is mó a thit ualach na heisimirce : ‘It was mostly on that

community that the burden of emigration hit’

cleftparticle(thit, a)

top ppred det pobj dem particle adjadjunct cleftparticle subj subj det nadjunct

ba ar an phobal sin is mó a thit ualach na heisimirce
‘It was mostly on that community that the burden of emigration hit’

Example

Is i gceann de na páirceanna sin a chéadchonaic mé an gabhar : ‘It was in
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one of those fields that I first saw the goat’

cleftparticle(chéadchonaic, a)

top ppred padjunct det pobj dem cleftparticle subj subj det obj

Is i gceann de na páirceanna sin a chéadchonaic mé an gabhar
‘It was in one of those fields that I first saw the goat’

A.1.14 vparticle : verb particle – (Verb)

• Verb particles introducing complement clauses go/gur/nach/nár

– similar to ‘that’ complementiser in English.

Example

Is léir ón teideal go bhfuil dráıocht i gceist sa dráma seo : ‘It’s clear from the

title that there is magic in this play’

vparticle(bhfuil, go)

top adjpred vparticle csubj subj ppred pobj padjunct pobj dem

Is léir go bhfuil dráıocht i gceist sa dráma seo
‘It is clear that there is magic in this play’

Example

Tá a fhios agam gur imigh mo mháthair : ‘I know that my mother left’

vparticle(imigh, gur)
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top poss subj obl vparticle comp poss subj

Tá a fhios agam gur imigh mo mháthair
‘I know that my mother left’

• Tensed verb particles

Example

D’eirigh go hiontach leis : ‘He succeeded greatly’

vparticle(éirigh, d’)

vparticle top advparticle advadjunct obl

D’ éirigh go hiontach leis
‘He succeeded well’

Example

Nár thug śı an leabhar do Mháire? : ‘Did she not give the book to Maire?’

vparticle(thug, nár)

vparticle top subj det obj obl obj puctuation

Nár thug śı an leabhar do Mháire ?
‘Did she not give the book to Maire?’

• Negative verb particles

Example

Nı́ thugann aon duine aird dá laghad orthu : ‘Nobody has any respect for
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them’

vparticle(thugann, Nı́)

vparticle top det subj obj padjunct pobj obl

Nı́ thugann aon duine aird dá laghad orthu
‘Nobody has any respect for them’

Example

Nár labhair Seán? : ‘Didn’t John speak?’

vparticle top subj punctuation

Nár labhair Seán ?
‘Didn’t John speak?’

• Interrogative verb particles

Example

An motháıonn tú sábháilte? : ‘Do you feel safe?’

vparticle(motháıonn, An)

vparticle top subj adjpred punctuation

An motháıonn tú sábháilte ?
‘Do you feel safe?’

Example

Nach bhfuil carr an duine acu? : ‘Don’t they have a car each?’

vparticle(bhfuil, Nach)
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vparticle top subj det nadjunct obl

Nach bhfuil carr an duine acu
‘Don’t they have a car each?’

Example

Ar cheannaigh tú aon mhilseáin? : ‘Did you buy any sweets?’

vparticle(cheannaigh, Ar)

vparticle top subj det obj punctuation

Ar cheannaigh tú aon mhilseáin ?
‘Did you buy any sweets?’

• Direct speech particles

Example

Tá an méid sin suimiúil a d’inis tú dom, a dúirt sé : “‘What you have told

me is interesting”, [] he said.’

vparticle(dúirt, a)

punctuation comp det subj dem adjpred punctuation punctuation vparticle top subj

‘ Tá an méid sin suimiúil , ’ a dúirt sé
“‘What you have told me is interesting”, [] he said.”
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A.1.15 particle : verb particle — (Verb)

• ‘only’ particle – (ńıl ... ach)

Example

Nı́l dhá bharr a’m ach cnámha tinn : ‘I have only sick hands’ (‘lit. there is

not a result at-me but sick hands’)

particle(ńıl, ach)

top ppred pobj obl particle subj adjadjunct

Nı́l dhá bharr a’m ach cnámha tinn
‘I have only sick hands’

Example

Nı́ raibh inti ach cúpla focal á rá: ‘she didn’t have in her but a couple of

words to say’/ ‘she only had a couple of words to say’

particle(raibh, ach)

vparticle top ppred particle quant subj xcomp pobj

Nı́ raibh inti ach cúpla focal á rá
‘She only had a couple of words to say’

A.1.16 addr : addressee – (Verb)

• Vocatives

Addressees are a dialogue participant which is usually dependent on the main

verb. Sometimes a vocative particle ‘a’ is used. (There is no equivalent in
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English.)

Example

B’fhearr dúinn imeacht a Tom: ‘We should leave, Tom’

addr(B’, Tom), vocparticle(Tom, a)

top adjpred obl subj vocparticle addr

B’ fhearr dúinn imeacht a Tom
‘We should leave, Tom’

A.2 Noun Dependents

A.2.1 det : determiner – (Noun)

• Definite articles: an (singular), na (plural)

Example

an rud deireanach: ‘the last thing’

det(rud, an)

det adjadjunct

an rud deireanach
‘the last thing’

Example

Bh́ı gach duine spalptha leis an tart : ‘Everyone was parched with thirst’

det(duine, gach)
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det subj adjpred obl det pobj

Bh́ı gach duine spalptha leis an tart
‘Everyone was parched with thirst’

A.2.2 det2 : second determiner – (Noun)

There are instances where two determiners are required. Sometimes the combination

of both have just one interpreted meaning.

• Pre- and post-determiner combination

Example

an chéad cheannaire eile : ‘the next leader’

det(cheannaire, an), det2(cheannaire, eile)

det quant det2

an chéad cheannaire eile
‘the next leader’

• Two pre-determiner combination (used for emphasis purposes).

Example

Bh́ı gach uile mhac máthar ag bualadh bos : ‘(Each and) Every mother’s

son was clapping’

det(mhac, gach), det2(mhac, uile)

top det det2 subj nadjunct padjunct pobj vnobj

Bh́ı gach uile mhac máthar ag bualadh bos
‘Every single mother’s son was clapping’

• NOTE in cases where a preposition incorporates the determiner, there is no

need to label the following determiner as det2.
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Example

Sa chead teach eile : ‘In the next house’

det(teach, eile)

padjunct quant det

sa chéad teach eile
‘in the next house’

A.2.3 dem : demonstrative – (Noun)

These demonstratives are used with definite articles.

• Demonstratives – (seo, sin, úd, siúd)

Example

Na focail seo: ‘These words’

det(focail, Na), dem(focail, seo)

det dem

na focail seo
‘these words’

A.2.4 poss : possessive – (Noun)

• Possessive pronouns.

Example

Thóg sé amach a uirliśı: ‘He took out his tools’

poss(uirliśı, a)
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advadjunct top subj advadjunct poss obj adjadjunct

Ansin thóg sé amach a uirliśı obráide
‘He took out his surgical instruments’

A.2.5 quant: quantifer – (Noun)

• Numbers

Example

Bı́onn suas le céad cineál éagsúil aimsire ag meitéareolaithe : ‘Meteorologists

have up to one hundred different kinds of weather’.

quant(cineál, céad)

top advadjunct padjunct quant subj adjadjunct nadjunct obl pobj

Bı́onn suas le céad cineál éagsúil aimsire ag meitéareolaithe
‘Meteorologists have up to one hundred different kinds of weather’

• Numerals for counting people

Example

Tá cáil ar leith air féin agus a bheirt deartháir : ‘He and his two brothers

are famous’.

quant(deartháir, bheirt)

• Numbers - digits
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top subj padjunct pobj coord nadjunct obl coord poss quant obj

Tá cáil ar leith air féin agus ar a bheirt deartháir
‘He and his two brothers are famous’

Example

Nı́ mór 4 choip den ghearrscéal a sheoladh : ‘4 copies of the short-story have

to be sent’.

quant(choip, 4)

top adjpred quant obj padjunct pobj toinfinitive subj

Nı́ mór 4 chóip den ghearrscéal a sheoladh
‘4 copies of the short-story need to be sent’

• Non-numeric quantifiers:

Also cuid - ‘some of’, ‘part of’, ‘own’/ neart ‘plenty’

Example

a gcuid teangacha a thabhairt suss : ‘to take up their own languages’

quant(teangacha, cuid)

Example

Tugann sé neart eolais dúinn: ‘It gives us plenty of information’

quant(eolais, neart)
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poss quant obj toinfinitive xcomp particlehead

a gcuid teangacha a thabhairt suas
‘to take up their own languages’

top subj quant obj obl

Tugann sé neart eolais dúinn
‘It gives us plenty of information’

Example

Tá smut den dul thar fóir sa chuntas seo : ‘There’s a little bit of exaggeration

in this account’

quant(dul, smut)

top quant padjunct subj padjunct pobj ppred pobj dem

Tá smut den dul thar fóir sa chuntas seo
‘There’s a little bit of exaggeration in this account’

Example

Bhuaigh siad an Chraobh gan mórán stró : ‘They won the Cup without much

effort’

quant(stró, mórán)

top subj det obj padjunct quant pobj

Bhuaigh siad an Chraobh gan mórán stró
‘They won the Cup without much effort’
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Example

Faigh tuilleadh eolais faoin taisteal.. : ‘Get more information about the

travels..’

quant(eolais, tuilleadh)

top quant subj padjunct pobj

Faigh tuilleadh eolais faoin taisteal
‘Get more information about the travels..’

• Numbers - years

Example

4 choip den ghearrscéal a sheoladh roimh 1 Feabhra 1997 : ‘to send 4 copies

of the short-story before 1st February 1997’.

quant(Feabhra, 1997)

quant obj padjunct pobj toinfinitive padjunct quant pobj quant

4 chóip den ghearrscéal a sheoladh roimh 1 Feabhra 1997
‘to send 4 copies of the short-story before the 1st February 1997’

• Numbers – adverbial use

Example

Bhuail Éire iad dhá uair i gcluiche coimhlinteach : ‘Ireland met them twice in

competitive games’

quant(uair, dhá)

A.2.6 adjadjunct – (Noun)

• Adjectives
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top subj obj quant advadjunct padjunct pobj nadjunct

Bhuail Éire iad dhá uair i gcluiche coimhlinteach
‘Ireland met them twice in competitive games’

Adjectives normally appear after the noun in Irish.

Example

Ba é an rud deireanach : ‘It was the last thing’

adjadjunct(rud, deireanach)

det adjadjunct relparticle relmod subj advadjunct

an rud deireanach a tharraing sé amach
‘the last thing he pulled out’

• The same label (adjadjunct) is used for comparative/ superlative forms

Example

Measann go leor gurb é an ṕıobaire is mó in Albain é ; ‘Many believe that he

is the biggest piper in Scotland’

adjadjunct(ṕıobaire, mó)

top subj comp aug det npred particle adjadjunct padjunct pobj subj

Measann go leor gurb é an ṕıobaire is mó in Albain é
‘Many believe that he is the biggest piper in Scotland’
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A.2.7 nadjunct : nominal adjunct – (Noun)

• Noun compounds

In Irish the second noun is in the genitive case, and thus treated as a noun

modifying a noun.

Example

Tá muintir Chorcáı an-mh́ıshásta: ‘Cork people (people of Cork) are very

dissatisfied’

nadjunct(muintir, Chorcáı)

top subj nadjunct adjpred

Tá muintir Chorcáı an-mh́ıshásta
‘Cork people are very unhappy’

Example

Ba ar an phobal sin is mó a thit ualach na heisimirce : ‘ The burden of

emigration hit that community the most’

nadjunct(ualach, heisimirce)

top ppred det pobj dem particle adjadjunct cleftparticle subj subj det nadjunct

Ba ar an phobal sin is mó a thit ualach na heisimirce
‘It was mostly on that community that the burden of emigration hit’

• String of nouns modifying one noun
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Example

ag cosaint na n-oifiǵı poist tuaithe : ‘protecting the rural post offices’

(lit. the offices of the post of the country)

nadjunct(n-oifiǵı, poist), nadjunct(n-oifiǵı, tuaithe)

pobj det vnobj nadjunct nadjunct

ag cosaint na n-oifiǵı poist tuaithe
‘protecting the rural post offices’

• Reflexives

Example

Nı́ raibh na seandálaithe féin cinnte : ‘The archaeologists themselves were

not sure’

nadjunct(seandálaithe, féin)

vparticle top det subj nadjunct adjpred

Nı́ raibh na seandálaithe féin cinnte
‘The archaeologists themselves were not sure’

• Names/ Titles

Example

Faigh tuilleadh eolais faoin taisteal a rinne Naomh Pádraig : ‘Get more

information about the travels of St Patrick’

nadjunct(Pádraig, Naomh)

Example

Bh́ı Garret Fitzgerald ina chomhalta de rialtas an Heavy Gang : ‘Garret
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top quant subj padjunct pobj relparticle relmod nadjunct subj

Faigh tuilleadh eolais faoin taisteal a rinne Naomh Pádraig
‘Get more information about the travels of St Patrick’

Fitzgerald was a member of the Heavy Gang administration’

nadjunct(Fitzgerald, Garret)

top nadjunct subj ppred pobj padjunct pobj det adjadjunct nadjunct

Bh́ı Garret FitzGerald ina chomhalta de rialtas an Heavy Gang
‘Garret Fitzgerald was a member of the Heavy Gang administration’

• Lines of addresses.

Example

Gailearáı Náisiúnta na hÉireann (Bhaile Átha Cliath) : ‘The National Gallery

of Ireland (Dubin)’

nadjunct(Gailearáı, Bhaile)

adjadjunct det nadjunct punctuation nadjunct nadjunct punctuation

Gailearáı Náisiúnta na hÉireann ( Bhaile Átha Cliath )
‘The National Gallery of Ireland (Dubin)’

• Linking stanzas of poetry.

nadjunct can be used to link stanza clauses if they are noun phrases without

clear coordination.
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Example

an t-éan ag ceiliúradh ar an gcraobh – an bradán san abhainn ‘the bird cele-

brating on the branch, the salmon in the river’

adjunct(t-éan, bradán)

det xcomp pobj padjunct det pobj punctuation det nadjunct padjunct pobj

an t-éan ag ceiliúr ar an gcraobh – an bradán san abhainn
‘the bird celebrating on the branch, the salmon in the river’

A.2.8 particle – (Noun)

• Vocative particle ‘a’

– used when addressing someone.

Example

B’fhearr dúinn imeacht a Tom: ‘We should leave, Tom’

vocparticle(Tom, a)

top adjpred obl subj vocparticle addr

B’ fhearr dúinn imeacht a Tom
‘We should leave, Tom’
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A.2.9 nparticle – (Noun)

• Surnames particles - Mac, Ó, De, etc.

Example

John Mac Diarmada

nparticle(Diarmada, Mac)

nadjunct nparticle

John Mac Diarmada
‘John Mc Dermott’

A.2.10 padjunct : prepositional adjunct – (Noun)

• Prepositions attached to Nouns

Example

Is de bharr a chontúirt don neodracht mh́ıleata.. : ‘It’s as a result of its threat

to the military neutrality..’

padjunct(chontúirt, don)

top ppred poss pobj padjunct pobj adjadjunct..

Is de bharr a chontúirt don neodracht mh́ıleata..
‘It’s as a result of its threat to the military neutrality..’

• ‘mar’ meaning ‘as’.7

Example

Tá cáil ar leith air féin mar ph́ıobaire : ‘He is particularly known as a piper’

padjunct(cáil, mar)

7Note this creates crossing dependencies
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top subj padjunct pobj obl padjunct pobj

Tá cáil ar leith air mar ph́ıobaire
‘He is particularly known as a piper’

A.2.11 aug : augment pronoun – (Noun)

• Augment pronoun

Augment pronouns are typically used in copular constructions, always attached

to (augmenting) and agreeing in person and number with the following noun.

Example

gurb é an ṕıobaire is mó in Albain é : ‘that he was the biggest piper in

Scotland’

aug(ṕıobaire, é)

top subj comp aug det npred particle adjadjunct padjunct pobj subj

Measann go leor gurb é an ṕıobaire is mó in Albain é
‘Many believe that he is the biggest piper in Scotland’

Example

An ı́ Eiĺıs an bainisteoir? ; ‘Is the manager Eiĺıs?’

aug(Eiĺıs, ı́)

top aug npred det subj

An ı́ Eiĺıs an bainisteoir
‘Is the manager Eiĺıs?’
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A.2.12 relmod : relative modifier – (Noun)

A verb that modifies a noun (head of a relative phrase)

• Subject (direct) relative modifier

Example

Ar na rudáı a bh́ı ar ceant.. : ‘Amongst the things that were up for auction..’

relmod(rudáı, bh́ı)

det pobj relparticle relmod obl pobj

Ar na rudáı a bh́ı ar ceant
‘Amongst the things that were up for auction..’

• Object (direct) relative modifier

Example

..an rud deireanach a tharraing sé amach : ‘..the last thing he pulled out’

relmod(rud, tharraing)

det adjadjunct relparticle relmod subj advadjunct

an rud deireanach a tharraing sé amach
‘the last thing he pulled out’

• Indirect relative modifier

Example

an teach inar thug sé an chuid ba mhó dá óige : ‘The house in which he spent

most of his youth’

relmod(teach, thug)
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det relparticle relmod subj det obj xcomp adjpred padjunct pobj

an teach inar thug sé an chuid ba mhó dá óige
‘The house in which he spent most of his youth’

A.2.13 app : nouns in apposition – (Noun)

• Noun in apposition.

– – Linking of two noun phrases that relate to each other. They may or

may not be separated by commas.

Example

an tréadáı Eoin Mac Diarmada : ‘the pastor Eoin Mac Diarmada’

app(tréadáı, Diarmada)

det nadjunct nparticle app

an tréadáı Eoin Mac Diarmada
‘the pastor Eoin Mac Dermott’

• Referential pronouns

These are pronouns that do not modify a verb, but instead refer to a previous

noun.

Example

Fear gnó a bh́ı ann, agus é pósta : ‘He was a business man, and he married’

app(fear, é)
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nadjunct cleftparticle subj ppred subadjunct app adjpred

Fear gnó a bh́ı ann agus é pósta
‘He was a business man, and he married”

A.2.14 obl: oblique – (Noun)

• Prepositions and prepositional pronouns

– Prepositions that are closely linked to the noun (not the verb)

Example

go mbeadh an Ghaeilge ar comhchéim leis na teangacha eile: ‘that Irish would

be on the same level with other languages’

obl(comhchéim, leis)

vparticle comp det subj ppred pobj obl det pobj det2

go mbeadh an Ghaeilge ar comhchéim leis na teangacha eile
‘that Irish would be on the same level as other languages’

Example

ag saothrú gan sos dóibh siúd : ‘working without a break for themselves’

obl(sos, dóibh)

pobj padjunct pobj obl obj

ag saothrú gan sos dóibh siúd
‘working without a break for themselves’
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A.2.15 xcomp: open complement – (Noun)

• Nouns that play the role of subordinate conjunctions

Example

Bh́ı sé ag athrú a phoirt toisc go raibh brú á chur air : ‘He was changing his tune

since pressure was being put on him’

xcomp(toisc, raibh)

top subj xcomp pobj poss vnobj subadjunct vparticle xcomp subj xcomp pobj obl

Bh́ı sé ag athrú a phoirt toisc go raibh brú á chur air
‘He was changing his tune since there was pressure on him’

A.3 Preposition Dependents

A.3.1 pobj: object of a preposition (Preposition)

• Head noun (object) of a prepositional phrases

Example

Sa seanam : ‘In the olden days’

pobj(sa, seanam)

padjunct pobj

Sa seanam
‘In the olden days’

Example

dĺı a thabharfadh treoir don Taoiseach : ‘a law that would give guidance to

the Taoiseach”.

pobj(don, Taoiseach)
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obj relparticle relmod obj obl pobj

dĺı a thabharfadh treoir don Taoiseach
‘a law that would give guidance to the Taoiseach’

• Object in a progressive aspectual phrase

– Progressives are formed in Irish using the preposition ‘ag’ followed by a

verbal noun. The verbal noun is the object (pobj) of the preposition ag.

Example

Bh́ı mé ag caint leis : ‘I was talking to him’ (lit. (at) talking with him)

pobj(ag, caint)

top subj xcomp pobj obl

Bh́ı mé ag caint leis
‘I was talking to him’

• Infinitival phrases8

– The head of the infinitival phrase is an infinitive verb/verbal noun, which

attaches to the preposition of the matrix clause.

Example

daoine a bhfuil suim acu sa [Ghaeilge a chur chun cinn] : ‘ people who have

an interest in promoting Irish’

pobj(sa, chur) 9

8Note that this can cause crossing dependencies
9see section A.1.7 for details on how to use chun go
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relparticle relmod subj obl padjunct obj toinfinitive pobj obl pobj

daoine a bhfuil suim acu sa Ghaeilge a chur chun cinn
‘People who have an interest in promoting Irish’

A.3.2 nadjunct: noun modifying a preposition (Preposi-

tion)

• nominal modifier (preceding the preposition)

Example

cúpla nóiméad roimh teacht na traenach : ‘a couple of minutes before the

train’s arrival’

nadjunct(roimh, nóiméad)

adjadjunct nadjunct pobj det nadjunct

cúpla nóiméad roimh teacht na traenach
‘a couple of minutes before the train’s arrival’

A.3.3 padjunct (Preposition)

• Prepositional cluster

– A cluster of prepositions where the second preposition is attached to the

first.

Example

: ón gceobhrán go dt́ı tornádónna : ‘from fog to tornadoes’

padjunct(ón, go dt́ı)

Example

chun gluaiseacht ó áit go háit : ‘to move from place to place’

padjunct(ó, go)
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pobj padjunct pobj

ón gceobhrán go dt́ı tornádónna
‘from fog to tornadoes’

pobj padjunct pobj padjunct pobj

chun gluaiseacht ó áit go háit
‘to move from place to place’

A.4 Verbal Noun Dependents

A.4.1 vnobj : objects of verbal noun – (Verbal Noun)

• Objects of verbal nouns.

– These are objects of progressive verbs. They differ slightly from regular

verbal objects because they are in the genitive case and seem to modify

the verbal noun.

Example

ag cosaint na n-oifiǵı : ‘protecting the offices’ (lit. ‘at the protection of the

offices’)

vnobj(cosaint, n-oifiǵı)

pobj det vnobj nadjunct nadjunct

ag cosaint na n-oifiǵı poist tuaithe
‘protecting the rural post offices’
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A.4.2 advadjunct : adverbial adjunct – (Verbal Noun)

• Adverbs10

Example

chonacthas iad ag dul thart : ‘I saw them going by’

advadjunct(dul, thart)

top obj xcomp pobj advadjunct

Chonacthas iad ag dul thart
‘I saw them going by’

A.4.3 obl : oblique preposition – (Verbal Noun)

• Oblique

– More closely attached to the verbal noun than regular preposition attach-

ment

– Can appear like collocations (suing for, dumped on, filled with, building

on, set in)

Example

ag éisteacht le daoine áirithe : ‘listening to certain people’

obl(éisteacht, le)

pobj obl pobj adjadjunct

ag éisteacht le daoine áirithe
‘listening to certain people’

10While the POS for these types of adverbs can sometimes be ‘Adj’, they should still be labelled
as advadjunct.
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Example

Bh́ı mé ag caint leis : ‘I was speaking to him’

obl(caint, leis)

top subj xcomp pobj obl

Bh́ı mé ag caint leis
‘I was talking to him’

A.4.4 xcomp : open complement – (Verbal Noun)

• Progressive aspectuals

xcomp is used to denote progressive aspectual phrases, with the preposition ag

as the head.

Example

Sh́ılfeá ó bheith ag éisteacht le daoine áirithe.. : ‘You would think from (to

be) listening to certain people..’

xcomp(bheith, ag)

padjunct pobj xcomp pobj obl pobj adjadjunct

Sh́ılfeá ó bheith ag éisteacht le daoine áirithe..
‘You would think from listening to certain people..’

A.4.5 toinfinitive : infinitive marker – (Verbal Noun)

• Infinitive verb marker - a

– marks the verbal noun that immediately follows as infinitive.

Example

Bh́ı ag údaráis na scoile brú a chur ar na daltáı : ‘The school authorities had
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to put pressure on the students’

toinfinitive(chur, a)

obl pobj det nadjunct obj toinfinitive xcomp obl det pobj

Bh́ı ag údaráis na scoile brú a chur ar na daltáı
‘The school authorities had to put pressure on the students’

Example

daoine a bhfuil suim acu sa Ghaeilge a chur chun cinn: ‘people who have an

interest in promoting Irish’

toinfinitive(chur, a)

relparticle relmod subj obl padjunct obj toinfinitive pobj obl pobj

daoine a bhfuil suim acu sa Ghaeilge a chur chun cinn
‘People who have an interest in promoting Irish’

A.4.6 comp : closed complement – (Verbal Noun)

• complement phrases that have subjects

Example

ag fiafráı de Bhreandán an raibh aithne aige ar a leithéid seo nó siúd : ‘asking

Brendan if he knew this or that’

comp(fiafráı, raibh)
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pobj padjunct pobj vparticle comp subj obl obl2 poss pobj dem

ag fiafráı de Bhreandán an raibh aithne aige ar a leithéid seo
‘asking Brendan if he knew this or that’

A.5 Adjective Dependents

A.5.1 padjunct : prepositional adjunct – (Adjective)

• Dependents of adjectival predicates

Example

go raibh sé tuirseach de mhodh oibre an Pháirt́ı Náisiúnta: ‘that he was tired

of the National Party’s line of action’

padjunct(tuirseach, de)

top subj adjpred padjunct pobj nadjunct det nadjunct nadjunct

Bh́ı sé tuirseach de mhodh oibre an Pháirt́ı Náisiúnta
‘He was tired of the National Party’s line of action ’

Example

Is léir ón teideal go bhfuil dráıocht i gceist : ‘It’s clear from the title that

there is magic involved’

padjunct(léir, ón)

top adjpred padjunct pobj

Is léir ón teideal
‘It’s clear from the title’
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A.5.2 particle – (Adjective)

• Comparatives and superlatives

Particles used to indicate comparative ńıos or superlative is adjective forms.

Example

an ṕıobaire is mó in Albain : ‘the biggest piper in Scotland’

particle(mó, is)

top subj comp aug det npred particle adjadjunct padjunct pobj subj

Measann go leor gurb é an ṕıobaire is mó in Albain é
‘Many believe that he is the biggest piper in Scotland’

Example

Féadfaidh ńıos mó ná aon éileamh a bheith sa chuntas : ‘More than one

demand can be in the account’

particle(mó, ńıos)

top particle adjadjunct adjunct det subj adjadjunct toinfinitive xcomp ppred pobj

Féadfidh ńıos mó ná aon éileamh amháin a bheith sa chuntas
‘More than one demand can be in the account’

• Adverbial particle (no English equivalent)
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– Despite having a Adj POS, when used with the particle go, an adjective

takes the role of an adverb.

Example

D’eirigh go hiontach leis : ‘he succeeded greatly’

advparticle(hiontach, go)

vparticle top advparticle advadjunct obl

D’ éirigh go hiontach leis
‘He succeeded greatly’

A.5.3 advadjunct: adverbial intensifier – (Adjective)

• Adjective Intensifier

– Modifies an adjective to take on role of adverb.

Example

beidh siad ag seinm ann chomh maith : ‘They will be playing there as well’

advadjunct(maith, chomh)

subj xcomp pobj padjunct advadjunct adjadjunct

Beidh siad ag seinm ann chomh maith
‘They will be playing there as well’

Example

Nı́ raibh aon fhear chomh sonasach leis : ‘There was no man as happy as
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him’

advadjunct(sonasach, chomh)

vparticle top det subj adjadjunct advadjunct advpred obl

Nı́ raibh aon fhear beo chomh sonasach liom
‘There was no man as happy as him’

A.5.4 obl: obliques – (Adjective)

Example

Tá muintir Chorcáı an-mh́ıshásta le Fianna Fáil : ‘Cork people are unhappy with

Fianna Fáil’

obl(mh́ıshásta, le)

top subj nadjunct adjpred obl pobj

Tá muintir Chorcáı an-mh́ıshásta le Fianna Fáil
‘The people of Cork are very dissatisfied with Fianna Fáil’

Example

ag obair le réimse tionscadal a bheidh tairbheach ag an aos óg : ‘working with a

range of projects that will be beneficial for the youth’

obl(tairbheach, ag)

pobj padjunct obj nadjunct subj relmod adjpred obl det pobj adjadjunct

ag obair le réimse tionscadal a bheidh tairbheach ag an aos óg
‘working with a range of projects that will be beneficial for the youth’
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• equivalent to subject in English.

Example

B’fhearr leis go mbeadh dorchadas fionnuar ann: ‘He would prefer if there

was a cool darkness 11’

obl(fhearr, leis)

top adjpred obl vparticle csubj subj adjadjunct ppred

B’ fhearr leis go mbeadh dorchadas fionnuar ann
‘He would prefer if there was a cool darkness’

Example

Is dóigh liom go bhfillfidh siad ar Staid Semple : ‘I think that they will return

to Semple Stadium’ 12

obl(dóigh, liom)

top npred obl vparticle csubj subj obl pobj nadjunct

Is dóigh liom go bhfillfidh siad ar Staid Semple
‘I think that they will return to Semple Stadium’

A.6 Verbal Adjective Dependencies

A.6.1 obl ag : oblique agent – (Verbal Adjective)

• agent of stative passives.

11lit. ‘that there would be a cool darkness would be good with him’
12lit. ‘that they will return to Semple Stadium is likely to me’
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– These translate to passive structures in English.

Example

Tá dul chun cinn iontach déanta ag foireann shinsir Chill Dara: ‘Great

progress has been made by Kildare Senior Team

obl ag(déanta, ag)

top subj obl pobj adjadjunct adjpred obl ag pobj nadjunct nadjunct

Tá dul chun cinn iontach déanta ag foireann shinsir Chill Dara
‘Great progress has been made by Kildare Senior Team’

Example

Tá sé údaraithe ag an gComhairle : ‘It is authorised by the Council’

obl ag(údaraithe, ag)

top subj adjpred obl ag det pobj

Tá sé údaraithe ag an gComhairle
‘It is authorised by the Council’

A.6.2 obl : oblique argument – (Verbal Adjective)

• oblique prepositions or pronominal prepositions13

Example

na nósanna imeachta atá leagtha śıos iontu : ‘the types of activities that are

laid out in them’

obl(leagtha, iontu)

Example

a bheith lonnaithe sna Sé Contae : ‘to be based in the 6 Counties’

13Differs from obl ag. See Section A.6.1
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det nadjunct relmod adjpred particlehead obl

na nósanna imeachta atá leagtha śıos iontu
‘the types of activities that are laid out in them’

obl(lonnaithe, sna)

toinfinitive adjpred obl quant pobj

a bheith lonnaithe sna Sé Contae
‘to be based in the 6 Counties’

A.7 Adverb Dependents

A.7.1 nadjunct : nominal adjunct – (Adverb)

• Reflexives

Example

Bh́ı fhios agam cheana féin : ‘I knew already’

nadjunct(cheana, féin)

subj obl advadjunct nadjunct

Bh́ı fhios agam cheana féin
‘I knew already’

A.8 Subordinate Conjunction Dependencies

A.8.1 comp : closed complement – (Subordinate Conjunc-

tion)

• complement phrases
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– Normally subordinate conjunctions have complement phrases as depen-

dents. These are usually full sentences. See section A.1.7 for more

examples of the types of complement phrases that are dependents of sub-

ordinates.

Example

Dhúisigh Paid́ı go luath mar bh́ı gnó éigin le déanamh: ‘Paid́ı woke early

because there was some work to do’

comp(mar, bh́ı), subadjunct(Dhúisigh, mar)

top subj advparticle advadjunct subadjunct comp subj adjadjunct xcomp pobj

Dhúisigh Paid́ı go luath mar bh́ı gnó éigin le déanamh
‘Paid́ı woke early because there was some work to do’

A.9 Copula Dependents

The copula is used in many constructions - identity, classificatory, ownership, com-

parative and idiomatic. Usually the structure is COP PRED SUBJ.

A.9.1 subj : subject – (Copula)

• Noun phrase subject

Example

Ba Éireannaigh a sheanthuismitheoiŕı : ‘His grandparents were Irish (peo-

ple)’

subj(Ba, sheanthuismitheoiŕı)
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top npred poss subj

Ba Éireannaigh a sheanthuismitheoiŕı
‘His grandparents were Irish’

• Clefts

The copula is also used for clefting (fronting). With clefting, the subject is

the entire relative clause (The subj label is used to attach the head (the verb)

to the copula.

Example

Is [i gceann de na páirceanna sin] [a chéadchonaic mé ghabhar]14:

lit. ‘It’s in one of those fields that I first saw the goat’ (‘I first saw the goat in

one of those fields’)

subj(Is, chéadchonaic)

top ppred padjunct det pobj dem cleftparticle subj subj det obj

Is i gceann de na páirceanna sin a chéadchonaic mé an gabhar
‘It was in one of those fields that I first saw the goat’

• In the following example, the infinitival phrase ‘to send 4 copies of the short-

story’ is the subject.

Example

Nı́ [mór] [4 choip den ghearrscéal a sheoladh] : ‘4 copies of the short-story

need to be sent’

subj(Nı́, sheoladh)

14The square brackets [] delimit the scope of the subject and predicate phrases.
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top adjpred quant obj padjunct pobj toinfinitive subj

Nı́ mór 4 chóip den ghearrscéal a sheoladh
‘4 copies of the short-story need to be sent’

A.9.2 csubj : clausal subject – (Copula)

• Full clausal subject

– The clause is in subject position of a copula construction

Example

Is léir ón teideal [go bhfuil dráıocht i gceist] : ‘It’s clear from the title that

there is magic involved’

csubj(Is, bhfuil)

top adjpred vparticle csubj subj ppred pobj padjunct pobj dem

Is léir go bhfuil dráıocht i gceist sa dráma seo
‘It is clear that there is magic in this play’

Example

B’fhéidir nach mbeadh i ngach baile ach aon gharráı amháin : ‘Maybe there

would only be one garden in every town’

csubj(B’, mbeadh)
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top npred vparticle csubj ppred det pobj particle det subj adjadjunct

B’ fhéidir nach mbeadh i ngach baile ach aon gharráı amháin
‘Maybe there would only be one garden in every town’

A.9.3 pred : predicates – (Copula)

In copular constructions, pred is usually used to label the predicate. There is a

set of sublabels for pred: nominal predicate npred, adjectival predicate adjpred,

prepositional predicate ppred, adverbial predicate advpred.

The order of copular constructions is usually: COP, PRED, SUBJ. This also

applies to cleft constructions.

• npred - nominal predicates

Example

Ba Éireannaigh a sheanthuismitheoiŕı: ‘His grandparents were Irish (peo-

ple)’

npred(Ba, Éireannaigh)

top npred poss subj

Ba Éireannaigh a sheanthuismitheoiŕı
‘His grandparents were Irish’

Example

Más rud é : ‘If it’s a thing’

npred(Más, rud)

Example

Is iad seo na pŕıomhchineálacha breiseán bia : ‘These are the main types of
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top npred subj

Más rud é
‘If it’s a thing’

food additives’

npred(Is, iad)

top npred dem det subj nadjunct nadjunct

Is iad seo na pŕıomhchineálacha breiseán bia
‘These are the main types of food additives’

• adjpred - adjectival predicates

Example

Nach bocht an cás é: ‘Isn’t it a terrible case’

adjpred(nach, bocht))

top adjpred det subj aug

Nach bocht an cás é
‘Isn’t it a terrible case’

Example

Is dóigh liom go bhfuil.. : ‘I think that..’ 15

adjpred(Is, dóigh), obl(dóigh, liom)

• advpred - adverbial predicates

Example

Creidtear gur go maiĺıseach a tosáıodh an tine : ‘It’s believed that it was

15lit. It is likely to me that..
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maliciously that the fire was started’

advpred(gur, maiĺıseach), particle(maiĺıseach, go)

top comp advparticle advpred cleftparticle subj det obj

Creidtear gur go maiĺıseach a tosáıodh an tine
‘It is believed that the fire was started maliciously’

• ppred - prepositional predicates

Example

Is ann a bh́ı cónáı ar Cholm : ‘It’s there that Colm lived’

ppred(is, ann)

top ppred cleftparticle subj subj obl nadjunct

Is ann a bh́ı cónáı ar Cholm
‘It’s there that Colm lived’

Example

Ba [ar an phobal sin is mó] a thit ualach na heisimirce : ‘It was [mostly on

that community] that the burden of emigration has fallen”

ppred(is, ar)

top ppred det pobj dem particle adjadjunct cleftparticle subj subj det nadjunct

ba ar an phobal sin is mó a thit ualach na heisimirce
‘It was mostly on that community that the burden of emigration hit’
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A.9.4 xcomp : open complement – (Copula)

• Infinitival phrases

Example

Nı́ ceadmhach iad a úsáid : ‘It is not permissable to use them’

xcomp(nach, úsáid)

top adjpred obj toinfinitive xcomp

Nı́ ceadmhach iad a úsáid
‘It is not permissable to use them’

A.10 Quant Dependents

A.10.1 qparticle: quantifier particle (Quant)

• number particles (time)

Example

ar a seacht a chlog tráthnóna : ‘at 7 o’clock in the afternoon’

qparticle(dó, a)

qparticle quant det pobj nadjunct

ar a seacht a chlog tráthnóna
‘at 7 o’clock in the afternoon’

A.11 Foreign Words

• If there is only one foreign word within an Irish sentence, and it is simply a
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translation of the previous word or string, it should be labelled as for.

Example

aidiachtáı a chŕıochnáıonn ar chonsan leathan mall slow : ‘adjectives that

end in a broad consonant mall slow’

for(mall, slow)

relparticle relmod obl pobj adjadjunct adjadjunct for

aidiachtáı a chŕıochnáıonn ar chonsan leathan mall slow
‘Adjectives that end in a broad consonant mall slow’

• If there is only one foreign word within an Irish sentence, and it fits into the

syntactic structure of the sentence, parse it as normal.

Example

Beidh an-weekend againn! : ‘We will have a great weekend!’

for(Beidh, an-weekend)

top subj obl punctuation

Beidh an-weekend againn !
‘We will have a great weekend!’

• If there is a string of foreign words, parse the first item as normal, but label

the rest of the words as for dependents of that first item.

Example

Thug an Tiarna Longueville “that general Jail-Deliverer” air : ‘Lord Longueville
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called him “that general Jail-Deliverer” ’

det(Thug, that), for(that, general), for(that, Jail-Deliverer)

top det nadjunct subj punctuation det for for punctuation obl

Thug an Tiarna Longueville ’ that general Jail-Deliverer ’ air
’Lord Longueville called him “that general Jail-Deliverer”’

A.12 Sentence Root/ Head

• Normally the head of the sentence is the main verb.

Example

Bh́ı gá leis an gcogadh sin : ‘That war was necessary’

top(root, Bh́ı)

top subj obl det pobj dem

Bh́ı gá leis an gcogadh sin
‘That war was necessary’

• But in the case of pseudo clefts, where the copula is dropped, the head of

the clefted (fronted) part is promoted to head position. This can happen for

nominal, prepositional, adjectival and adverbial clefting.

Example

[Is] I gceann de na páirceanna a chéadchonaic mé an gabhar : ‘ In the park

[is] where I first saw the goat’

top(ROOT, I gceann)
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top padjunct det pobj dem cleftparticle subj subj det obj

i gceann de na páirceanna sin a chéadchonaic mé an gabhar
‘It was in one of those fields that I first saw the goat’

• The same applies to regular copular constructions (e.g. identity construction

below) where the copula is dropped.

Example

: [Is] Post ilghnéitheach é seo : ‘[This is] a varied job’

top(ROOT, Post)

top adjadjunct aug subj

Post ilghnéitheach é seo
‘This is a varied job’

A.13 Coordination

Coordinates are agus ‘and’, nó ‘or’, ná, &

• We use LFG-inspired coordination where the coordinating conjunction is the

head, and its coordinated phrases are dependents.

Example

Bh́ı an lá an-te agus bh́ı gach duine spalptha leis an tart ‘It was a hot day and

everybody was parched with the thirst’:

coord(agus, Bh́ı), coord(agus, bh́ı)

• This multiple use of ‘and’ is more common and acceptable in Irish than in

English. In cases such as the following, where there is an uneven number of
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coord det subj adjpred top coord det subj adjpred obl det pobj

Bh́ı an lá an-te agus bh́ı gach duine spalptha leis an tart
‘It was a hot day and everybody was parched with the thirst’

coordinates, we mark the final two as a cluster.

coord(agus1, Tháinig), coord(agus1, agus2), coord(agus2, lean), coord(agus2,

chuir)

Example

[Tháinig mé abhaile] agus1 [chonaic mé an litir] agus2 [bh́ı áthas orm] : ‘I

came home and I saw the letter and I was happy’

coord(agus1, Tháinig), coord(agus1, agus2), coord(agus2, chonaic), coord(agus2,

bh́ı)

coord subj advadjunct top coord subj det obj coord coord subj obl

Tháinig mé abhaile agus chonaic mé an litir agus bh́ı áthas orm
‘I came home and I saw the letter and I was happy’

• Punctuation can be the head of the coordination.

Example

fad is a bh́ı daoine óg, lúfar : ‘while people are young (and) agile’

adjpred(bh́ı, ,), coord(, , óg), coord(, ,lúfar)

top subadjunct vparticle comp subj coord adjpred coord

fad is a bh́ı duine óg , lúfar
‘while people are young (and) agile’

• The particle ná, which has many other functions such as subordinating con-

junction, can also mean ‘nor’.
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Example

Nı́ fios domsa [conas] ná [cén fáth] : ‘I don’t know [how] nor [why]’

top npred obl coord subj coord subj

Nı́ fios domsa conas ná cén fáth
‘I don’t know how or why’

A.14 Punctuation

All punctuation is labelled punctuation.

• Initial and Final punctuation always attach to the root (top)

Example

Tá sé ag caoineadh gan stad . : ‘He is crying non-stop.’

punctuation(Tá, .)

top subj xcomp pobj padjunct pobj punctuation

Tá sé ag caoineadh gan stad .
‘He is crying non-stop.’

• Internal punctuation always attaches to the following head word.

Example

an bradán san abhainn, an breac sa loch : ‘the salmon in the river, the trout in the

lake’

punctuation(breac, ,)
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det padjunct pobj punctuation det nadjunct padjunct pobj

an bradán san abhainn , det breac sa loch
‘the salmon in the river, the trout in the lake’

• If a word or phrase is within quotes or brackets, both quotes or brackets are

dependent on that word, or the head of the phrase.

Example

a chur ar fáil don ‘Eoraip’ : ‘to make available to ‘Europe’’

punctuation(Eoraip, ‘), punctuation(Eoraip, ’)

toinfinitive obl pobj padjunct punctuation pobj punctuation

a chur ar fáil don ‘ Eoraip ’
‘to make available to ‘Europe’’

A.15 Questions

We regard the verb as the sentential head and mark the WH-element as a dependent

of that verb, labelled as subj q, obj q or advadjunct q.

Example

Cad a déarfaidh an fear liom : ‘What will the man say to me?’

obj q(déarfaidh, Cad)

obj q vparticle top det subj obl

Cad a déarfaidh an fear liom
‘What will the man say to me?’
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• When there is no verb present, however, WH-elements such as cad, for example,

should be treated as an interrogative copula.

top npred subj

Cad é sin
‘What is that?’

A.16 MWEs - Multiword Expressions

We do not label multi-word-expressions in this release of the treebank as there has

not been enough research carried out yet on idioms and multi-word expressions in

Irish.16

16Katie Nı́ Loinsigh in Fiontar, DCU is doing a PhD in this area at present. Expected publication
date is 2016.
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Appendix B

Annotation Guidelines for Irish

Twitter Part-of-Speech Tagging

In this appendix, we present the annotation guidelines for POS tagging Irish tweets.

The style of language used in tweets is noisy and varies from standard canonical

Irish text in a number of ways:

• phrases and sentences are limited to 140 characters

• tweets can contain typographical errors and ungrammatical structures

• diacritics are often omitted

• text can switch from Irish to English (code-switching)

• new ‘text-speak’ words are formed based on phonetic spelling

(e.g. 7tain (seachtain) ‘week’)

• words and phrases are often abbreviated

(e.g. mgl (maith go leor ‘fair enough’))

• twitter specific symbols are used

(e.g. hashtags, at-mentions, retweet indicators)
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For these reasons, we have developed a tweet-specific POS tagset (presented in

Table B.1). We discuss tokenisation and POS annotation of Irish tweets below. In

general, the tagging rules are similar to the assignment of the PAROLE Morphosyn-

tactic Tagset (ITÉ, 2002) by the rule-based Irish POS-tagger (Uı́ Dhonnchadha and

van Genabith, 2006). We discuss the cases that require specific explanation here.

Tag Description (PAROLE TAGS)
N common noun

∧ proper noun
O pronoun
VN verbal noun
V verb (incl. copula)
A adjective
R adverb
D determiner
P preposition, prepositional pronoun
T particle
, punctuation
& conjunction
$ numeral, quantifier
! interjection
G foreign words, abbreviations, item
˜ discourse marker
# hashtag
#MWE multi-word hashtag
@ at-mention
E emoticon
U URL/ email address/ XML

Table B.1: Irish Twitter part-of-speech tagset.

B.1 Tokenisation of Irish tweets

In general, the tweets are tokenised on white spaces. However, the following strings

are split into separate tokens, and tagged individually:
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• final punctuation (e.g. óıche mhaith. → óıche mhaith .)

• time (e.g. 15:15pm → 15:15 pm)

Punctuation is not split in the following contexts:

• the punctuation is part of a contraction (e.g. Tá’n (lit. Tá an))

• part of an email address (e.g. XYZ@gmail.com)

• an abbreviation (e.g. i.n. iarnóin ‘afternoon’)

• emoticon (e.g. :0 )

• inflection such as an urú (e.g. Lá na n-oibrithe ‘workers’ day’)

• compounds (e.g. ró-ard)

Multiword units (e.g. compound prepositions) are conjoined with an underscore

and should be tagged with P.

• go dt́ı ‘to’

• a lán ‘a lot of/ many’

• Ard Mhaca ‘Armagh’

• ar ais ‘back’

If the tokeniser incorrectly splits a unit, it will be tagged as an unknown (G).

• rphost/Twitter (should be: rphost / Twitter ‘email / Twitter’)

B.2 POS tagging Irish Tweets

B.2.1 Prepostional pronouns/ pronominal prepositions

Most of the simple prepositions in Irish can inflect for pronominal objects. For

example, liom ‘with-me’, leo ‘with-them’. Despite these forms containing a nominal

element, they are labelled as prepositions (P).
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B.2.2 Hashtags

Hashtags are used to categorise a tweet. If hashtags are syntactically part of the

sentence, mark them as per their correct syntactic POS.

• Nı́ raibh an toghairm churtha amach roimh ré as #Gaeilge∧

‘The summons wasn’t sent out beforehand in #Irish’

Otherwise, if they are appended or prepended to a tweet, they are tagged as #.

• #offline# óıche mhaith. tá mé tuirseach

#offline good night. I am tired

B.2.3 Multi-word hashtags

If a hashtag contains a string of words, they are tagged as #MWE.

• #Bı́ǵıAnn (Bı́ǵı Ann)

‘Be there with us’

• #snaSAMrófhada (sna SAM ró-fhada)

‘too long in the U.S.A’

B.2.4 At-mentions

At-mentions are used to refer to, or link a tweet to, another user. Similarly, if

at-mentions are syntactically part of the sentence, mark them as per their correct

syntactic POS.

• Rugbáı Beo ar @TG4dotTV∧ inniu ag 15:15pm

‘Live Rugby on @TG4dotTV today at 15:15pm’

Otherwise, if they are appended or prepended to a tweet, they are tagged as @.

• @EIREHUB@ Tá fáilte romhat

‘@EIREHUB You are welcome’
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B.2.5 Retweets

Tweets can be “retweeted” by another user. They are introduced by the indicator

RT, followed by the original tweet’s username and a colon. Both RT and the colon

are tagged with the discourse marker tag ~. The following is a retweet of a tweet

from @TG4TV.

• RT∼ @TG4TV :∼ Go n-éiŕı linn anocht ag @IFTA

‘RT @TG4TV Good luck to us tonight at @IFTA’

B.2.6 Verbal Nouns

Irish Verbal nouns have distinct roles from common or proper nouns and thus require

a separate tag.

Verbal nouns are used to denote non-finite phrases. Sometimes this is optionally

indicated by a preceding infinitive marker a:

• Nı́l sé éasca bheithV N ag ithe yo-yos

‘It’s not easy to eat (to be eating) yo-yos’

• Áthas orm é sin a chloisteáilV N

‘I’m happy to hear that’

Progressive aspectual phrases in Irish are denoted by the preposition ag followed

by a verbal noun:

• Bh́ı mé ag éisteachtV N sa charr

‘I was listening in the car’

B.2.7 Names

Names of people, organisations, places etc. are tagged as proper nouns. If the name

is a string, all nouns are tagged as proper nouns.
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• Daft∧ Punk∧ asP Gaeilge∧

‘Daft Punk in Irish’

If there are other function words in the proper noun phrase they are tagged as

per their normal POS.

• Cú∧ naD mBaskerville∧

‘The Hound of the Baskervilles’

The days of the week in Irish use the particle Dé. This particle is also labelled

as a proper noun.

• Dé∧ Máirt

‘Tuesday’

B.2.8 Foreign

Irish tweets contain code-switching from Irish to English. This can occur at an

intra-sentential level or inter-sentential level. Non-Irish words are tagged as G.

• Beagnach 500 likesG ag @NaGaeilOga ar facebook

‘@NaGaeilOga have nearly 500 likes on Facebook’

• an t-am seo an t7ain seo chugainn bei 2 ag partyáil le muintir Ráth Daingin!

HopeG youreG notG tooG scaredG #upthevillage

this time next week we will be partying with the Ráth Daingin people! Hope

youre not too scared #upthevillage

B.2.9 Typographical errors and non-standard spelling

The user-generated nature of the text found in tweets results in non-standard spelling

and typos.

Irish tweeters sometimes omit diacritics, and instead use un-accented vowels.

While these are technically incorrectly spelt, they should be tagged as per their

intended form.
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• Ce acu is mo a dheanann dochar don teanga → Cé acu is mó a dhéanann

dochar don teanga

‘Which one of them harms Irish the most’

The text speak and online variation of Irish has seen the creation of new forms

of spelling, the purpose of which is often to shorten the length of the string. These

new forms are tagged as per their original POS.

• Fuair mé seo an t7ain → Fuair mé seo an tseachtain seo

‘I got this this week’

• v → bh́ı

‘was’

Typos and mistakes can also result in misspellings. These should be tagged as

per their intended form.

• bh́ı sibh at fheabhas inniu → bh́ı sibh ar fheabhas inniu

‘You were great today’

B.2.10 Abbreviations

There are regular and standard abbreviations in Irish include srl ‘etc’. Other types

of abbreviations arise from ‘text speak’ where words or phrases are shortened. All

abbreviations are tagged as G.

• GRMA → Go Raibh Maith Agat

‘Thank You’

• mgl → maith go leor

‘fair enough’

• srl

‘etc.’
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B.2.11 Particles

There are numerous particles in Irish, all of which are tagged as T.

• Adjectival: An leabhar isT deise

‘The nicest book’

• Complementiser: Ceapaim goT mbeidh mé cŕıochnaithe

‘I think I will be finished’

• Time: Ag snámh anseo ag aT deich a chlog

‘Swimming here at 10 o’clock’

• Interrogative: AnT mbualfaidh mé leat ansin?

‘Will I meet you then?’

• Verbal: d’T iarr mé orthu

‘I asked them’

• Infinitive Marker: Nı́ mór dúinn aT bheith airdeallach

‘We have to be alert’

• Adverbial: @labhaoisen beidh sé sin ag teacht goT luath :)

‘@labhaoisen that will be coming soon :)’

B.2.12 Interjections

Interjections typically include exclamations like Bhuel ‘Well’ or Ó ‘Oh’. User-

generated text also contains many more informal interjections. All of these are

tagged as !. Often English interjections are used where an Irish version is not avail-

able, and often when they are onomatopoeic. These are tagged also as ! (and not

as G).

• LOL (laugh out loud)

• Ehm
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• Ouch

• Féar plé ‘Fair play’

• Hmmm

• Yó ‘Yo’

• Haha

• AAAAHHHHH

• Úúúú ‘Oooh’
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Appendix C

Irish Dependency Treebank

Statistics

In this appendix, we present some statistics on the content of the Irish Dependency

Treebank.

Firstly, Table C.1 provides an overall summary of the basic statistics associ-

ated with the treebank, much of which is discussed in the main body of this thesis

(Chapter 3 and Chapter 4). We then provide an overview of the dependency labels

distribution throughout the treebank in Table C.2, giving the frequency and relative

frequency of the top 25 most used labels. Table C.3 gives a summary of the edge

lengths throughout the treebank. This is the number of tokens an edge spans be-

tween a head token and its dependent. We also provide a summary of the sentence

length distribution in Table C.4, within length groupings of 5. Table C.5 shows

the top 25 dependency paths of length 2. Finally, we give a list of the frequencies

for the top 25 coarse-grained POS dependency label pairs in Table C.6 (i.e. the

combination of coarse-grained POS of a head token and the dependency label used

to attach a dependent).
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# trees 1020
# coarse-grained POS tags 31
# fine-grained POS tags 62
# coarse-grained dependency labels 21
# fine-grained dependency labels 47
# projective trees 924
# non-projective trees 96

Table C.1: Basic statistics for the Irish Dependency Treebank (as of January 2016)

Label frequency % relative frequency
1 pobj 2932 12.4
2 punctuation 2407 10.2
3 nadjunct 1808 7.6
4 padjunct 1785 7.5
5 det 1660 7.0
6 subj 1567 6.6
7 coord 1466 6.2
8 obl 1031 4.4
9 top 1019 4.3
10 obj 707 3.0
11 adjadjunct 703 3.0
12 comp 697 2.9
13 advadjunct 535 2.3
14 vparticle 532 2.2
15 xcomp 474 2.0
16 subadjunct 446 1.9
17 relmod 434 1.8
18 relparticle 386 1.6
19 quant 381 1.6
20 adjpred 314 1.3
21 ppred 310 1.3
22 dem 298 1.3
23 toinfinitive 290 1.2
24 npred 234 1.0
25 poss 234 1.0

Table C.2: Top 25 dependency labels used (% to the nearest one decimal point)
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edge length frequency % relative frequency
1-10 22110 93.35
11-20 974 4.11
21-30 319 1.35
31-40 143 0.60
41-50 53 0.22
51-60 26 0.11
61-70 12 0.05
71-80 10 0.04
81-90 4 0.02
91-100 5 0.02
100+ 28 0.12

Table C.3: Summary of edge lengths (distance between head and dependent)

Sentence Length (#tokens)
Group

frequency % relative frequency

1-5 49 4.8
6-10 200 19.6
11-15 139 13.6
16-20 147 14.4
21-25 123 12.1
26-30 106 10.4
31-35 65 6.4
36-40 69 6.8
41-45 35 3.4
46-50 17 1.7
51-55 15 1.5
56-60 11 1.1
61-65 8 0.8
66-70 10 1.0
71-75 1 0.1
76-80 3 0.3
81-85 6 0.6
86-90 3 0.3
91-95 1 0.1
96-100 1 0.1
100+ 10 0.1

Table C.4: Summary of sentence lengths
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Head-Dependent frequency % relative frequency
1 padjunct-pobj 1635 8.9
2 pobj-nadjunct 732 4.0
3 obl-pobj 583 3.2
4 pobj-det 442 2.4
5 nadjunct-det 433 2.4
6 comp-subj 425 2.3
7 pobj-padjunct 416 2.3
8 subj-det 357 1.9
9 relmod-relparticle 344 1.9
10 subadjunct-comp 321 1.7
11 coord-subj 265 1.4
12 comp-vparticle 252 1.4
13 nadjunct-nadjunct 251 1.4
14 xcomp-pobj 238 1.3
15 subj-nadjunct 232 1.3
16 ppred-pobj 223 1.2
17 pobj-adjadjunct 219 1.2
18 coord-coord 204 1.1
19 coord-padjunct 191 1.0
20 coord-pobj 181 1.0
21 obj-det 178 1.0
22 pobj-coord 174 0.9
23 comp-punctuation 166 0.9
24 comp-padjunct 151 0.8
25 coord-nadjunct 150 0.8

Table C.5: Top 25 dependency paths of length 2 (% to the nearest one decimal
point)
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POS/ label frequency
Prep / pobj 2888
Noun / det 1464
Noun / nadjunct 1293
Conj / coord 1283
Verb / subj 1171

/ top 1019
Verb / punctuation 874
Verb / padjunct 639
Verb / obl 598
Noun / adjadjunct 596
Noun / padjunct 587
Verb / vparticle 520
Verb / obj 429
Noun / punctuation 390
Conj / punctuation 386
Noun / relmod 373
Verb / relparticle 371
Verb / xcomp 323
Conj / comp 311
Noun / quant 309
Verbal / toinfinitive 284
Verbal / padjunct 284
Cop / subj 270
Verb / subadjunct 265
Verb / advadjunct 256
Prop / nadjunct 249
Noun / dem 247

Table C.6: Top 25 Coarse-grained POS/ dependency label pairs

315


