
Osborne-O'Hagan, A. and O’Connor, R. V., Towards an Understanding of Game Software Development
Processes: A Case Study, In O'Connor, R.V. Akkaya, M., Kemaneci K., Yilmaz, M., Poth, A. and Messnarz
R. (Eds), Systems, Software and Services Process Improvement, CCIS 543, Springer-Verlag, 2015.

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards an Understanding of Game Software
Development Processes: A Case Study

Ann Osborne O’Hagan1, Rory V. O’Connor2

1 Dundalk Institute of Technology, Ireland

ann.osborneohagan@dkit.ie
2 Dublin City University, Ireland

roconnor@computing.dcu.ie

Abstract. This paper aims to fill the gap that exists about software development
processes in game development in the research literature, and address the gap in
the research literature by investigating and reporting information about the
software development processes used in game development. To investigate the
role of the software development process in relation to the game development
process, and to better understand the processes and practices used in game
software development, a single industrial based case study was undertaken and
reported to investigate in a real world context the software development
processes and practices used in game development. This research contributes to
our knowledge of the field of game development and potentially forms the
foundation for further research in the area.

Keywords: Game Development, Software Process, Software Process Improvement (SPI).

1 Introduction

Creating computer games is a complicated task that involves the expertise of many
skilled professionals from many disciplines including computer science, art and media
design and business. Mcshaffry et al. [1] state that game software development differs
from classical software development in many aspects. Games are products that have
much more limited life cycle than conventional software products. According to [2]
games are usually developed in a shorter timescale and all phases of the life cycle
need to be minimised. The main maintenance activity for most computer games is
corrective such as bug fixing as the average lifespan is 6 months before a new version
of a game is released. As successful games may lead to one or more sequels this could
involve some perfective maintenance based on user feedback. The pressure on game
development companies to get a product to market as quickly as possible means that
there are often schedule over runs and poor time estimation is a problem. For these
reasons game project management differs significantly from traditional software
project management.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/30934793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The games development process remains relatively unchanged from inception to
consumption despite the fluidity of the industry. The main activities are
development/production, publishing / commercialisation, distribution and customer
engagement. The publishing role is constantly increasing and changing as the market
is getting increasingly more crowded. Traditional distribution is increasingly being
bypassed by developers and publishers and there are many intermediates that act as
virtual shop windows for online and mobile games. The role of customer engagement
is moving beyond that of technical support and involves assisting users with game
play and strategy. The Development/production activity is at the core of the game
industry, all other activities emanate from this. The game development process will be
explored further.

There are various challenges in the game development process. A survey of actual
problems in computer games development from analysing post-mortems by [3]
affirms that both the traditional software industry and games industry have mainly
management problems rather than technology problems, some examples are:

• An important problem specific to the game industry is the communication
among the team members. In the electronic games industry, a multidisciplinary
team includes people with distinct roles, such as artists, musicians, scriptwriters
and software engineers. This mix of roles although being positive in terms of
having a more creative work environment, causes a division, dividing it in to
“the artists” and “the programmers”. This division can be a source for
communication problems;
• Within the game development process the game requirements elaboration is
complex, subjective elements such as “fun” do not have sufficient/efficient
techniques for its determination. It is necessary to extend the traditional
techniques of requirement engineering to support the creative process of the
electronic game development. A method currently used is to create an early
prototype of the game and start people playing it. This helps establish the fun
gameplay and once there is a prototype in place there can be an evolutionary
approach to development [4]. To develop great games means that you have to
design the software to accommodate nearly constant change;
• Transitioning from design to development where there are many defined and
undefined requirements can be problematic; it can be hard to project manage
unstable and volatile requirements. There can be legacy problems from the
preproduction stage. A lot of the game play elements may not have been
established and these can cause a much bigger workload in production. It is vital
that there is constant user feedback so that the fun elements of the game are
developed and that features that are not used or are not delivering user
satisfaction are removed or changed.

The subjective nature of game development and the tendency for problems to be
related to managerial challenges is making the software development process used in
game development worthy of consideration.

1.1 Software Development Processes in Game Development

The over-arching phases of game development according to [5] are preproduction,
production, and testing (often referred to in the literature as post production).
Preproduction involves the conception of a game, and the construction of a Game
Design Document (GDD). By the end of preproduction, the game design document
GDD should be finished and will be updated during other phases. In the
preproduction phase the game designers and developers do some game prototyping in
order to establish the fun or innovative element of a game. This influences the next
phase of production as actions in preproduction determine requirements and affect the
production phase. Production is where the majority of assets are created, which
includes software code. This is a challenging time in the life cycle of the game as a
poorly managed production phase results in delays, missed milestones, errors, and
defects. In the production phase, the developers can create prototypes, iterations
and/or increments of the game. These changes in prototypes or iterations of the game
can cause drastic changes to the GDD, with poorly managed changes causing
widespread problems affecting functionality, scheduling, resources, and more. The
testing phase is usually the last phase and involves stressing the game under play
conditions. The testers, not only look for defects, but push the game to the limits for
example the number of players could be set to the maximum and can be labelled
stress testing (or load testing). These phases are more complicated than the overview
given.

Current game development literature suggests that the traditional software
development model, exemplified by the Waterfall Model that requires explicit
requirement assessment followed by orderly and precise problem solving procedures
is inadequate for the innovative and creative process of the videogame industry [6].
Agile development methodologies are less focused on documenting the pre-
production phase and more focused on quickly getting a workable version of the
game, by using iterative design and dynamic problem solving techniques that are
facilitated through frequent and co located meetings. This goes some way towards
easing the transition from preproduction to production. Shell [7] describes an iterative
process that he calls looping, which essentially consists of an iterative cycle of design
and test. Agile development methods are increasingly becoming the industry norm
and according to [21] more agile practices should be incorporated into game
development.

From an examination of the literature, most of the works relating to game software
development focus on the design phase and design challenges, and on the problems
associated with transitioning from preproduction to production. This is reiterated in
[7] who state that the game development process literature mostly has design and
design problems as a primary concern, as opposed to production and the issues that
relate to production. A case study on a game development company reports on the
organisational enablers for agile adoption [8]. Successful agile adoption requires
project stakeholders to have common project objectives, employees having the ability
to make decisions at relevant levels of abstraction, effective project management and
a supportive learning environment.

The focus of this research is on the software development processes in game
development and as such it would be beneficial to explore the SDLC used in the
development phase of the game development process. The SDLC does not include all
elements needed to create a game; it basically describes the steps and iterations
needed to develop software. Overall there is a lack of published studies relating to the
software development processes/methodologies used in game development and this
gives supporting evidence for the proposition about the lack of research in the
literature on the software development processes/methodologies used in game
development.

In this research it was found that there is a lack of categorisation in the literature
relating to game development processes and to lay a foundation it would be helpful to
categorise and systematically analyse the literature in relation to game development
processes in a scientific way. It is proposed that a Systematic Literature Review
(SLR) would be a suitable method to do this and would also help establish a gap in
the literature relating to the use of agile methods in the game development process.

A Systematic Literature Review of the software processes used in game
development was conducted [9] where a total of 404 papers were analyzed as part of
the review and the various process models that are used in industry and
academia/research are presented. Software Process Improvement initiatives for game
development are dis cussed. The factors that promote or deter the adoption of process
models, and implementing SPI in practice are highlighted. Our findings indicate that
there is no single model that serves as a best practice process model for game
development and it is a matter of deciding which model is best suited for a particular
game. Agile models such as Scrum and XP are suited to the knowledge intensive
domain of game development where innovation and speed to market are vital. Hybrid
approaches such as reuse can also be suitable for game development where the risk of
the upfront investment in terms of time and cost is mitigated with a game that has
stable requirements and a longer lifespan.

Given the above a set of four research questions were formulated as follows:
• What software processes are game development companies using and how
are these software processes established?
• What phases/steps are involved in the software processes used in game
development?
• How do the software processes, that game development companies are using,
change and what causes these software processes to change?
• How do the operational and contextual factors, present in game development
companies, influence the content of software processes?

2 Case Study Research Approach

It is proposed to conduct a single industrial case study using grounded theory data
coding methods [10] to help with data analysis to develop theory about game
development processes and to capture the best practices of a game development
company.

An interview guide was developed as an instrument to help guide the interviewer
in gathering specific data during an interview session, and to help the researcher
collect data in a consistent and predefined manner. The interview guide included
closed and open-ended questions and some related notes about ranges and samples of
possible information appropriate to the research. Closed questions looked for specific
information and open ended questions allowed scope for the participant to add
contextual information that may be of importance to the research. The sample
responses were included to help guide the interviewer and act as examples should
they be required, these examples also helped keep the interviewer on the right track
due to the fact that some of the terminology could have more than one meaning and
therefore there could be misinterpretation.

The data analysis methods based on grounded theory coding were selected for use
in this study as they were deemed to be more robust and traceable than qualitative
data analysis and more explicit and systematic than content analysis. Coding can be
described as the key process in grounded theory [11] and the three coding techniques
proposed by Grounded Theory methodology are: open coding; axial coding; and
selective coding[12]. The 4 main stages used in applying the grounded theory method
that helped with data analysis are described:

• Open Coding - This involved identifying categories, properties, and
dimensions.
• Axial Coding - This involved examining conditions, strategies, and
consequences.
• Selective Coding - This involved coding around an emerging storyline.
• The Conditional Matrix – This involved reporting the resulting framework
as a narrative framework or as a set of propositions.

The researcher investigated various tools which are used for data management in
qualitative research and selected Atlas Ti [13] a tool designed specifically for using
with grounded theory. This tool enabled the researcher to: store and keep track of
interview scripts; to code and, manage codes and related memos; to generate families
of related codes; and to create graphical representation for codes, concepts and
categories. Atlas TI provided support for axial and selective coding used in this study.
Overall Atlas TI supported data storage, analysis and reporting.

2.1 Case Study Company

The game development company was chosen based on the fact that it was in close
proximity to the researcher and is representative of a typical case for game software
development in a small start-up company which is representative of many indigenous
Irish game companies. The researcher proactively studied the game development
project during the production/implementation phase of development. The case study
research was initiated in June 2014 and was executed over a three month period.

The game development company was founded in September 2012 with the goal of
developing a Massively Multi-Player Online (MMO) game for the seven to twelve
year old demographic with an educational aspect. The company is developing games
for the mobile and online platforms. The company can be described as a VSE with an

official employee count of 5. At the time of the case study the company had no games
published and can be described as a start-up company. That company had one game
development project in the production phase that had commenced in September 2013

2.2 Data Collection

Data collection involved the use of semi-structured interviews. To support the semi-
structured interviewing process the researcher developed an interview guide with a
formal question set. The interview guide contained 24 questions and these were
divided into the following 7 sections: (i) General company and job description (ii)
Process Establishment [14] (iii) How the process works [15] (iv) Software Process
Improvement [16] (v) Project Success factors [17] (vi) Operational and contextual
Factors [18] that affect the process [19] (vii) Ending. The use of an interview guided
allowed the researcher collect data in a consistent and unbiased fashion. The questions
were based on the researcher’s prior knowledge and were proof read by someone
external to the case study that had an expertise in software process. When conducting
interviews it is desirable to have different viewpoints that can be analysed and
compared and that are complimentary to each other. The researcher proposed to have
two viewpoints: managers; and developers. Therefore interviews were conducted on
company employees from both management and development roles in the game
development company and as such allowed a complimentary analysis based on both
viewpoints. The subject sampling strategy was to interview all employees currently
employed at the game development company. The animator who was a member of the
software development team was not available at the time of the study. Each
participant was given an information sheet describing the research project and was
asked to sign a consent form regarding the recording of the interview. All participants
attended the interview voluntarily and data collected was treated in strict confidence.
The three interviewees were from various roles within the game development
company: (i) The general manager, (ii) a member of the development team and (iii) a
senior technical member of the company.

The interviews varied between 20 minutes and 60 minute duration. The reason for
the variation in the interview times was that the CEO who was the first interview only
wanted to partake in the first section of the interview. This interviewee maintained
that she had no knowledge of process and did not want to answer the remaining
questions. The CEO had valuable information pertaining to the general company and
was the main access to the company for carrying out further interviews. Some notes
were taken by the researcher during the interviews. All interviews were audio
recorded for later transcription and analysis. A session summary sheet was completed
after each interview. This described who was involved, the issues covered, their
relevance to the research questions, and any implications for subsequent data
collection.

Data collection and analysis were conducted concurrently. Each interview was
transcribed by the researcher. The transcribed files and any additional collected data
were stored in the qualitative analysis tool Atlas Ti.

2.3 Data Analysis

The grounded theory coding analysis method was used to inductively generate theory
about game development processes. The researcher used Glaser’s[20] non-linear
method of theory generation as guidance for the data analysis as illustrated in figure 1.

Fig 1. Grounded Theory Data Analysis Steps

All interviews were recorded and transcribed, and the analysis was conducted with

rigour using open coding, axial coding and selective coding techniques. The open
coding technique: involved the following 2 steps: Step 1- The researcher assigned
codes to various quotes in the transcript to classify or categorise it. A code can
represent a certain theme. One code can be assigned to many quotes, and onequote
can be assigned to more than one code. Codes can contain sub-codes. There was an
initial code approach using gerunds and in vitro coding approaches. Each statement of
interest in the transcribed material was coded and the next step (step 2) involved
sorting the codes into categories based on how the codes are related and linked. The
emerging categories were used to organise and group the initial codes into meaningful
clusters. This involved breaking the interview data into discrete parts based on
similarities and differences; the researcher went through the material to identify any
phrases that are similar in different parts of the material, patterns in the data or
variances of any kind. These code categories were then used in subsequent data
collection. The open codes that were conceptually similar were grouped into more
abstract categories based on their ability to explain the sub units of analysis.

The researchers analysed the three interviews and during this iterative process a
small set of generalizations were formulated. Diagrams in the form of flow charts
were produced to help focus what was emerging from the data and network charts of
codes were generated to help link concepts to categories. The transcripts were re-read
and re-coded in a different order to see if any new themes emerged and when no new
themes emerged this suggested that the major themes had been identified. From the
data collected, the key points were marked with a series of 220 codes, which were
extracted from the text. The codes were grouped into similar concepts in order to
make the data more workable, this grouping was facilitated using Atlas Ti. From these
concepts, 25 categories were formed, which were the basis for the creation of a
theory.

3 Case Study Findings

The theory is based on two conceptual themes, Process of Game Development and
Game Software Development Process, and four core theoretical categories, Project
Management, Contextual Factors, Operational Factors and End Product. The axial
coding role identified the categories into which the discovered codes and concepts
could be placed and selective coding was used to explain the relationships between
the categories to provide the overall theoretical picture. The objective of selective
coding was to identify a key category or theme that could be used as the fulcrum of
the study results. In this research, the analysis showed that there was one central
category to support and link the two theoretical themes. The final list of themes, the
core categories and the main categories identified by the study are shown in Table 1.
Each category and code can be linked to quotations within the interviews and these
are used to provide support and rich explanation for the results. The saturated
categories and the various relationships were then combined to form the theoretical
framework.

Table 1. Themes, Core Category and Main Categories

Theme Main Categories
Process of Game
Development

Company Profile
Market Sector
Business Drivers
Company Formation

Game Software
Development Process

As-is Process
Drivers for Change
Process improvement
Process problems
Process Strength
Ideal process

Project management Planning / Prioritise
Tools

Contextual Factors Team Size/Experience/Motivation

Subjectivity
Technology/Resources

Operational Factors Up-capturing the intention
Create the Right Working Environment
Injection of Confidence
Adequate Resources
Capacity to Get a Good Review
Vendor Requirements

End Product Re-Use
End-User
Schedule
Revenue

3.1 The Theoretical Framework

The emergent grounded theory was summarised in terms of themes, core categories
and main categories. This summary is shown as a network diagram in Figure 2 which
identifies the relationships between the major themes, core category, linked
categories, and associated attributes. Within the theoretical framework, each node is
linked by a precedence operator with the node attached to the arrowhead denoting the
successor. All of the relational types within the framework are precedence and the
network is read from left to right.

The root node of the framework, Process of Game Development, is a conceptual
theme and is a predecessor of its four categories, Company Profile, Market Sector,
Company Formation and Business Drivers.

The Business Drivers and the Role and Experience of Employees contribute to the
Process Origin used as the basis for the company’s software development activity and
the Process Model in use. The Role and Experience of the Employees coupled with
the Background of Founder of the company creates an associated Management Style
and this, in conjunction with the adapted process model, creates the company’s initial
As-is Software Development Process.

The Game Software Development Process can be described as follows. The
Drivers for Change to the As-is Software Development Process can lead to Process
Improvement. Process Improvement along with Process Problems and Process
Strengths can contribute to creating an Ideal Process. The As-is Software
Development Process is influenced by Project Management, Contextual Factors,
Operational Factors and End Product requirements.

End Product is affected by an Ideal Process and Project Management. End
Product can itself then impact the organisation’s ability to Reuse, meet End Users
needs, provide Revenue and the ability to deliver a product on Schedule.

Project Management impacts the organisations ability for Planning/Prioritise what
gets done and Tool usage.

Contextual Factors affecting the as-is game software development process include
Team Size/Motivation/Experience, the Subjective nature of games and is impacted by
the Technology/Resources available.

Operational Factors affecting the as-is game software development process
include ‘Up Capturing’ the Intention Correctly, Creating the Right Working
Environment, having an Injection of Confidence, having Adequate Resources, having
the Capacity to get a Review and meeting Vendor Requirements.

Fig 2. Theoretical Framework

In creating the theoretical framework, several of the Atlas TI features were utilised.

The Code Family option allows codes, created from both the open and axial coding
phases to be grouped together under a family heading, for example, End Product.
This facility allowed the various interviews to be searched for passages where
references to codes, which were classified as members of the End Product family, had
been raised by the practitioners. Another feature of Atlas TI that was used in
developing the framework was the Code Frequency Table. This option shows how
often codes occurred within a particular interview, and across the entire suite of
interviews, thus providing support for developing the more widespread categories. In
addition to employing the code family and frequency table aids, Atlas’s query tool
also provided major assistance with data analysis. The query tool contains Boolean
and proximity operators which test for the co-occurrence of codes in the data. For
example, a Boolean query can search for occurrences of Code A and/or Code B,
whilst proximity can test the distance between, or closeness of, code occurrences in
the text. An example of a proximity query included examining the distance between
developer references to end user and a subsequent reference to a code in the End
Product category.

4 Discussion

The focus of this research was on the software development processes in game
development. Based on the proposed gap in the literature identified in this paper, the
aims of this research was to explore the gap that exists about software development
processes in game development in the research literature, and address the gap in the
research literature by investigating and reporting information about the software
development processes used in game development; and to Investigate the role of the
software development process in relation to the game development process, and to
better understand the processes and practices used in game software development. A
set of four research questions were formulated. These research questions are revisited
below and an analysis of the findings is reported.

Research Question 1 relates to identifying the software processes used by the game
development company and finding out how the software processes was established.
The software process in use is agile development using the Scrum methodology. The
process in use has been established from the previous work experience of the CEO,
CTO and the Developer. The previous experience of the CEO in managing previous
companies led to a management style (umbrella) that in conjunction with the previous
software development experience of the CTO and the Developer in Agile
Development using the Scrum methodology contributed to process establishment. In
this instance the CEO had little technology experience and was relying on the
software development team for expertise in process for game software development.
This could indicate that it is not a pre requisite for the CEO of a game development
company to have technical expertise.

Research Question 2 relates to identifying the phases/steps that are involved in the
software processes used in game development. It is interesting to note that the CTO
describes all phases/steps of the game development process. He does not see a
distinction between the game development process and the software processes used in
game software development. The CTO has more experience of game development
and is more aware of all that is involved in a full game development process. The
developer is only aware of the current and preceding phase of game development. By
contrast to the CTO perspective the game software development process as described
by the developer is a subset of the game development process and is described as a
design/development phase. The developer is describing the as-is software
development process that is the design/development phase. There is a difference in
the process described by both the CTO and Developer and the reason why is because
the company is a start up game development company and the process is not fully
enacted or established. It could be that the ideal game software development process
involves a hybrid of process described by both the CTO and Developer and could
consist of a design, develop and test steps within a development phase.

Research Question 3 relates to how the software process that the game
development company is using change and to identify what causes the software
process to change. There were variations between the CTO and the Developer as to
how the software process changed. The CTO was aware of changes to do with tools
such as the software repository tool: The software repository system was left at times

because it was unreliable and was done in an alternative fashion. The Developer was
aware of changes to some of the steps in the software development process such as:
the Sprint cycle time was reduced from 2 weeks to 1 week. The Developer is best
positioned to describe the actual software development process because he is the one
doing the development work. The CTO carries overall responsibility for security in
terms of version control, backup and security codes. Some of the above changes to the
process caused an improvement to the process. An example of this was introducing
the tool Illustrator to the process. This helped speed up the process. Any tool that
helps speed up the process in terms of creating graphics is very worthwhile in game
software development. The process in game software development is inextricably
linked to satisfying the needs of end-users.

Research Question 4 relates to how the Contextual and Operational factors, present
in game development companies influence the content of software processes.
Contextual Factors cited by both the CTO and the Developer related to team attributes
and resources. While these are common to both traditional and game software
development there are variations in emphasis. The subjective nature of the game
software development process alluded to by the CTO is critical in game software
development. The following contextual factors can influence the game software
development process: The team size affects the volume of work than can get done. A
small, co-located team allows for a fluid process where creativity can flow and
eliminates the need for a change management process. The small team size means that
the workers need to be flexible and may need to share roles and tasks. The game is a
moving target at all times and can require that the workers are highly enthusiastic and
well motivated, also there needs to be a clear vision about the goal being undertaken.
Some of the roles within the team are part time which means that workers must have
the discipline and motivation to work on their own without too much overseeing.
Often there is a lack of experience which means there is a very high learning curve.
There can be a lot of experimentation needed and ideally the majority of this will have
been worked out prior to the development phase. Games are played for pleasure,
emotional challenge and not for functional reasons. The appeal of a game is an
emotional contract formulated between the designer, developer and the end-user. The
best way to counterbalance the deeply subjective nature of games is to engage with
end-users as much as possible during the software development process. It is possible
here to see what appeals to the end-user and cut out the functions that are not used or
not appealing to the end-users.

4.1 Future Work

This research potentially forms the foundation for further research and as a follow on
to the research the researcher would like to outline three areas with potential for
future research: Firstly a multiple case study to investigate game software
development processes would be of benefit. An advantage of a multiple case study
would be its increased scope for replication and generalisation. This research made
certain propositions and a multiple case study could build on these propositions and
makes the results more generalisable.

Second, this research showed various gaps in research relating specifically to the
game software development process. There is no ‘best practice model for game
software development’. A best practice model for game software development could
be beneficial for the games industry and as such could reduce development time
which could reduce time to market; it could also help improve the quality of game
software. This is a gap here for this research to be done. Such a best practice model
could be based on existing standards, such as ISO/IEC 29110 [22] if the were
accepted [23] by organizations.

Finally there is no easy method to capture the likes and dislikes of computer game
end-users. A tool that could easily capture these requirements of these end-users could
greatly improve the game software development process. It was shown during this
study that the interaction with the end-user is of paramount importance, but a tool to
do this could effectively save time and money in terms of creating art assets.

References

1. McShaffery, M. 2005. Game Coding Complete, Paraglyph Press.
2. Ampatzoglou, A. & Stamelos, I. 2010. Software engineering research for computer games:

A systematic review. Information and Software Technology, 52, 888-901.
3. Petrillo, B., Pimenta, M., Trindade, F. & Dietrich, C. 2008. Houston, we have a problem: a

survey of actual problems in computer games development. Proceedings of the 2008
ACM symposium on Applied computing. Fortaleza, Ceara, Brazil: ACM.

4. Shull, F. 2011. Managing Montezuma: Handling All the Usual Challenges of Software
Development, and Making It Fun: An Interview with Ed Beach. Software, IEEE, 28, 4-7.

5. Kanode, C. M. & Haddad, H. M. Software Engineering Challenges in Game Development.
Information Technology: New Generations, 2009. ITNG '09. Sixth International
Conference on, 27-29 April 2009 2009. 260-265.

6. Winget, M. A. & Sampson, W. W. 2011. Game development documentation and
institutional collection development policy. Proceedings of the 11th annual international
ACM/IEEE joint conference on Digital libraries. Ottawa, Ontario, Canada: ACM.

7. Schell, J. 2008. The art of game design – A book of lenses, Burlington, Morgan Kaufman
Publishers.

8. Srinivasan, J. & Lundqvist, K. 2009. Organizational Enablers for Agile Adoption:
Learning from GameDevCo. In: Abrahamsson, P., Marchesi, M. & Maurer, F. (eds.) Agile
Processes in Software Engineering and Extreme Programming. Springer Berlin
Heidelberg.

9. Osborne O’Hagan, A., Coleman, G., O’Connor, R.V.: Software development processes for
games: a systematic literature review. In: Barafort, B., O’Connor, R.V., Poth, A.,
Messnarz, R. (eds.) EuroSPI 2014. CCIS, vol. 425, pp. 182–193. Springer, Heidelberg
(2014)

10. O'Connor, R., Using grounded theory coding mechanisms to analyze case study and focus
group data in the context of software process research, in Mora, M., Gelman, O.,
Steenkamp, A. and Raisinghani M. (Eds), Research Methodologies, Innovations and
Philosophies in Software Systems Engineering and Information Systems, Chapter 13, IGI
Global, pp. 1627-1645, 2012.

11. Strauss, A., & Corbin, J. 1990. Basics of qualitative research: Grounded theory procedures
and techniques, Newbury Park, CA, Sage.

12. Coleman G. and O'Connor R., Using grounded theory to understand software process
improvement: A study of Irish software product companies, Journal of Information And
Software Technology, Volume 49, Issue 6, Pages 531-694, June 2007

13. Coleman, G.,O’Connor, R.: Investigating software process in practice: A grounded theory
 perspective. Journal of Systems and Software 81, 772–784 (2008)

14. Coleman G. and O'Connor R., An Investigation into Software Development Process
Formation in Software Start-ups, Journal of Enterprise Information Management, Vol. 21,
No. 6, 2008, pp.633-648

15. O’Connor, Rory V., and Gerry Coleman. "An investigation of barriers to the adoption of
software process best practice models." ACIS 2007 Proceedings (2007): 35.

16. Clarke, Paul, and Rory V. O'Connor. "An empirical examination of the extent of software
process improvement in software SMEs." Journal of Software: Evolution and Process 25.9
(2013): 981-998.

17. Clarke, P., O’Connor, R.V.: Business success in software SMEs: recommendations for
future SPI studies. In: Winkler, D., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2012.
CCIS, vol. 301, pp. 1–12. Springer, Heidelberg (2012)

18. Clarke, P., O’Connor, R.V.: The situational factors that affect the software development
process: Towards a comprehensive reference framework. Journal of Information and
Software Technology 54, 433–447 (2012)

19. Jeners, S., Clarke, P., O’Connor, R.V., Buglione, L., Lepmets, M.: Harmonizing software
development processes with software development settings – a systematic approach. In:
McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364, pp.
167–178. Springer, Heidelberg (2013)

20. Glaser, B. G. 1978. Theoretical Sensitivity: Advances in the Methodology of Grounded
Theory, Mill Valley, CA., Sociology Press.

21. Petrillo, F. & Pimenta, M. 2010. Is agility out there?: agile practices in game development.
Proceedings of the 28th ACM International Conference on Design of Communication.
Brazil: ACM.

22. Mora, M., Gelman, O., O’Connor, R., Alvarez, F., & Macias-Luevano, J. (2009). An
overview of models and standards of processes in the SE, SwE, and IS Disciplines. In A.
Cater-Steel (Ed.), Information technology governance and service management:
Frameworks and adaptations (pp. 371–387). Hershey, PA: IGI Global

23. Sanchez-Gordon, M.L., O’Connor R.V. and Colomo-Palacios, R., Evaluating VSEs
Viewpoint and Sentiment Towards the ISO/IEC 29110 Standard: A Two Country
Grounded Theory Study, In Rout, O'Connor, R.V. and Dorling. (Eds), Software Process
Improvement and Capability Determination, CCIS 526, Springer-Verlag, 2015.

