
Zhang et al.

RESEARCH

Service Workload Patterns for QoS-driven Cloud
Resource Management
Li Zhang1, Yichuan Zhang1, Pooyan Jamshidi2, Lei Xu2 and Claus Pahl2*

Abstract

Cloud service providers negotiate SLAs for
customer services they offer based on the reliability
of performance and availability of their lower-level
platform infrastructure. While availability
management is more mature, performance
management is less reliable. In order to support a
continuous approach that supports the initial static
infrastructure configuration as well as dynamic
reconfiguration and auto-scaling, an accurate and
efficient solution is required. We propose a
prediction technique that combines a workload
pattern mining approach with a traditional
collaborative filtering solution to meet the accuracy
and efficiency requirements. Service workload
patterns abstract common infrastructure workloads
from monitoring logs and act as a part of a
first-stage high-performant configuration
mechanism before more complex traditional
methods are considered. This enhances current
reactive rule-based scalability approaches and basic
prediction techniques by a hybrid prediction
solution. Uncertainty and noise are additional
challenges that emerge in multi-layered, often
federated cloud architectures. We specifically add
log smoothing combined with a fuzzy logic
approach to make the prediction solution more
robust in the context of these challenges.

Keywords: Quality of Service; Resource
Management; Cloud Scalability; Web and Cloud
Services; QoS Prediction; Workload Pattern
Mining; Uncertainty

1 INTRODUCTION
Quality of Service (QoS) is the basis of cloud service
and resource configuration management [1] [2]. Cloud

*Correspondence: cpahl@computing.dcu.ie
2IC4 / School of Computing, Dublin City University, Dublin, Ireland

Full list of author information is available at the end of the article

service providers – whether at infrastructure, platform
or software level – provide quality guarantees usually
in terms of availability and performance to their cus-
tomers in the form of service-level agreements (SLAs)
[3]. Internally, the respective service configuration in
terms of available resources then needs to make sure
that the SLA obligations are met [4]. To facilitate SLA
conformance, virtual machines (VMs) can be config-
ured and scaled up/down in terms of CPU cores and
memory, deployed with storage and network capabili-
ties. Some current cloud infrastructure solutions allow
users to define rules manually to scale up or down to
maintain performance levels.

QoS factors like service performance in terms of re-
sponse time or availability may vary depending on net-
work, service execution environment and user require-
ments, making it hard for providers to choose an ini-
tial configuration and scale this up/down to maintain
the SLA guarantees, but also optimising resource util-
isation at the same time. We utilise QoS prediction
techniques here, but rather than bottom-up predict-
ing QoS from monitored infrastructure metrics [5] [6]
[7], we reverse the idea, resulting in a novel technique
for pattern-based resource configuration.

A pattern technique is at the core of the solution.
Various types of cloud computing patterns exist [8],
covering workload, but also offer types and application
and management architectures. These patterns link in-
frastructure workloads such as CPU utilisation with
service-level performance. Recurring workloads have
already been captured as patterns in the literature [8],
but we additionally link these to service quality.

We determine service workload patterns through
pattern mining from resource utilisation logs. These
service workload patterns (SWPs) correspond to typ-
ical workloads of the infrastructure and map these to
QoS values at the service level. A pattern consists
of a relatively narrow range of metrics measured for
each infrastructure concern such as compute, mem-
ory/storage and network under which the QoS concern
is stable. This can be best illustrated through utilisa-
tion rates. Should resources be utilised in a certain
range, e.g., low utilisation of a CPU around 20%, then
the response-time performance can be expected to be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Zhang et al. Page 2 of 20

high and not impacted negatively by the infrastruc-
ture.

These patterns can then be used in the following
way. In a top-down approach, we take a QoS require-
ment and determine suitable workload-oriented config-
urations that maintain required values. Furthermore,
we enhance this with a cost-based selection function,
applicable if many candidate configurations emerge.

We specifically look at performance as the QoS con-
cern here since dealing with availability in cloud envi-
ronments is considered as easier to achieve, but per-
formance is currently neglected in practice due to less
mature resource management techniques [4]. We in-
troduce pattern mining mechanisms and, based on a
QoS-SWP matrix, we define SWP workload configu-
rations for required QoS. The accuracy of the solution
to guarantee that the chosen (initially predicted) re-
source configurations meet the QoS requirements is of
utmost importance. An appropriate scaling approach
is required in order to allow this to be utilised in dy-
namic environments. In this paper, we show that the
pattern-based approach improves the efficiency of the
solution in comparison with traditional prediction ap-
proaches, e.g., based on collaborative filtering. This en-
hances existing solutions by automating current man-
ual rule-based reactive scalability mechanisms and also
advances prediction approaches for QoS, making them
applicable in the cloud with its accuracy and perfor-
mance requirements.

Cloud systems are typically multi-layer architectures
with services being provided at infrastructure, plat-
form or software application level. Uncertainty and
noise are additional challenges that emerge in these
multi-layered, often federated clouds architectures. We
extend earlier work [9] to address these challenges.
We propose to use log smoothing and a fuzzy logic-
based approach to make the prediction solution more
robust in the context of these challenges. Smoothing
will deal with log data variability and will allow detect-
ing trends (but adds more noise). Uncertainty often
occurs as to the completeness and reliability of mon-
itored data, which will here be addressed through a
fuzzy logic enhanced prediction. We will demonstrate
the robustness of the solution against noise and uncer-
tainty.

Section 2 outlines the solution and justifies its prac-
tical relevance. Section 3 introduces SWPs and how
they can be derived. Section 4 discusses the selection
of patterns as workload specifications for resource con-
figuration. The application of the solution for SLA-
compliant cloud resource configuration is described in
Section 5. Section 6 deals with uncertainty through
a fuzzification of the patterns. Section 7 contains an

evaluation in terms of accuracy, performance and ro-
bustness of the solution and Section 8 discusses related
work.

2 QUALITY-DRIVEN CONFIGURATION
AND SCALING

Cloud resource configuration is the key problem we
address. We start with a brief discussion of the state-
of-the-art and relevant background.

An SLA is typically defined based on availability.
Customers expect that the services they acquire will
be always available. Thus, providers usually make clear
and reliable claims here. The consensus in the indus-
try is that cloud computing providers generally have
solutions to manage availability. Response time guar-
antees, on the other hand, are harder to guarantee [4].
These types of obligations are more carefully phrased
or fully ignored. A quote to illustrate this is ”We are
putting a lot of thought into how we can offer pre-
dictable, reliable and specific performance metrics to
a customer that we can then [build an] SLA around,”
[C. Drumgoole, vice president global operations, Ver-
izon Terremark, 2013]. Thus, we specifically focus on
performance, although our solution is in principle ap-
plicable to availability as well. From a providers per-
spective, the question is how to initially configure and
later scale VMs and other resources for a service such
that the QoS (specifically response time) is guaranteed
and, if additionally possible, cost is optimised. From
an infrastructure perspective, memory, storage, net-
work conditions and CPU utilisation impact on QoS
such as performance and availability significantly. We
consider data storage size, network throughput and
CPU utilization as representatives of data, network
and computation characteristics. Common definitions,
e.g., throughput as the rate of successful message deliv-
ery over a communication channel or bandwidth, shall
be assumed. Figure 1 illustrates in a simple example
that values of the three resource configuration factors
can be linked to the respective measured performance.
It shows how the performance differs depending on the
infrastructure parameters, but not necessarily in a way
that would be easy to determine and predict.

Figure 1: Measured QoS mappings: Infrastructure
to Service ([CPU, network, storage] → Performance).



Zhang et al. Page 3 of 20

The first step is to monitor and record these input
metrics in system-level resource utilisation logs. The
second step is pattern extraction. From repeated ser-
vice invocations records (the logs), an association to
service QoS values based on prediction techniques can
be made. An observation based on experiments that we
made is that most services have relatively fixed service
workload patterns (SWP):

• The patterns are defined here as ranges of storage,
network and CPU processing characteristics that
reflect stable, small acceptable variations of a QoS
value.
• Generally, service QoS keeps steady under a SWP,

allowing this stable mapping between infrastruc-
ture input and QoS to be used further.

If we can extract SWPs from service logs or the re-
spective resource usage logs (based on pattern min-
ing), the associated service quality can be based on
usage information using pattern matching and predic-
tion techniques. Even if there is no or insufficient usage
information for a given service, quality values can be
calculated using log information of other similar ser-
vices, e.g., through collaborative filtering. These two
steps can be carried out offline. The next, first online
step is pattern matching, where dynamically a pattern
is matched in the matrix against performance require-
ments. The final step is the (if necessary dynamic) con-
figuration of the infrastructure in the cloud.

The hypothesis behind our workload pattern-driven
resource configuration based on required service-level
quality is the stability of variations of quality under
SWPs. We assume SLA definitions to establish QoS re-
quirements and the charged costs for a service to be de-
cided between provider and consumer. Service-specific
workload pattern are mined and constructed which
considers environmental characteristics of a service (in
a VM) deployment. We experimentally demonstrate
that the hybrid technique for QoS-to-SWP mappings
(based on pattern matching and collaborative filtering
for missing information) enhances accuracy and com-
putational performance and makes it applicable in the
cloud. In contrast, traditional prediction techniques
can be computationally expensive and unsuitable for
the cloud.

We limit this investigation to services and infrastruc-
ture with some reasonably deterministic behaviour,
e.g., classical business or technology management ap-
plications. However, we deal with larger substantial
uncertainties arising from the infrastructure and plat-
form environment in which the services are executed.
We also focus on the variability of log data, noise that
occurs and uncertainties arising from multi-cloud en-
vironments.

3 WORKLOAD PATTERNS
The core concept of our solution is a Service Workload
Pattern (SWP). A SWP is a group of service invoca-
tion characteristics reflected by the utilised resources.
In a SWP, the value of workload characteristics is a
range. The QoS is meant to be steady under a SWP.
We describe a SWP M as a triple of ranges low to high
(as low ∼ high ranges):

M = [ CPUlow ∼ CPUhigh,

Storagelow ∼ Storagehigh,
Networklow ∼ Networkhigh ]

(1)

CPU, Storage and Network are common server com-
putation, memory and network characteristics that we
have chosen for this investigation [7]. The CPU time
used and utilisation rates are typically the most influ-
ential factor. The RAM (memory) utilisation rate and
storage access are equally important. In distributed
applications, network parameters such as bandwidth,
latency and throughput have an influence of service
QoS (we consider here the latter). Note that in prin-
ciple, the specific characteristics could be varied.

We initially work with monitored absolute figures for
CPU time used, stored data size and network through-
put. Later on, we also convert this into normalised util-
isation rates with respect to the allocated resources.

3.1 SWP Pattern Mining and Construction
We assume service-level execution quality logs in the
format< q1, . . . , qn > and infrastructure-level resource
monitoring logs < ri1, . . . , r

i
m > with i = 1, . . . , j for j

different quality aspects (e.g., storage, network, server
CPU utilisation) of the past invocations of the services
under consideration, as illustrated in Figure 1. For
each service, the resource metrics and the associated
measured performance are recorded. The challenge is
now to determine or mine combinations of value ranges
for input parameters r that result in stable, i.e., only
slightly varying performances. The solution is a SWP
extraction process that constructs the workload pat-
terns.
• A SWP is composed of storage, network and

computation characteristics. For these, we take
throughput, data size and CPU utilization as rep-
resentatives, respectively.

• We consider the execution (response) time as the
representative of QoS here.

An execution log records the input data size and exe-
cution QoS; a monitoring log records the network sta-
tus and Web server status. We reorganize these two
logs to find the SWP under which QoS keeps steady.



Zhang et al. Page 4 of 20

Our SWP mining algorithm is based on a generic algo-
rithm type, DBSCAN (density-based spatial clustering
of applications with noise). DBSCAN [10] analyses the
density of data and allocates the data into a cluster if
the spatial density is greater than a threshold. The
DBSCAN algorithm has two parameters: the thresh-
old ε and the minimum number of points MinPts. Two
points can be in the same cluster if their distance is
less than ε. The minimum number of points is also
given. We also need a parameter MaxTimeRange, the
max time range of a cluster. We expect the range of
time is a cluster that can be steady and that has a size
limit. When the cluster is too large, e.g., if the range
exceeds a threshold, the cluster construction should
be stopped. The main steps are given in the following
algorithm 1:

• Select any object p from the object set S and find
the objects set D in which the object is density-
reachable from object p with respect to ε and
MinPts.
• Choose another object without cluster and repeat

the first step

The pattern extraction algorithm is presented in Al-
gorithm 1.

We give higher precedence to more recent log entries.
Exponential smoothing can be applied to any discrete
set of sequential observations xi. Let the sequence of
observations begin at time t = 0, then simple expo-
nential smoothing is defined as follows:

y0 = x0

yt = αxt + (1− α)yt−1, t > 0, 0 < α < 1
(2)

The choice of α is important. Close to 1 has no
smoothing effect and gives higher weight to recent
changes and as a result the estimate may fluctuate
dramatically. Values of α closer to 0 have a better
smoothing effect and the estimate is less responsive
to recent changes. We can choose a value like 0.8 as
the default, which is relatively high, but reflects the
most recent multi-tenancy situation (which can un-
dergo short-term changes). We will discuss this sepa-
rately later in more detail in Section 4.4.

3.2 Pattern-Quality Matrix

The input value ranges form a pattern that is linked
to the stable performance ranges in a Quality Matrix
MS(M,S) based on patterns M and services S. MS as-
sociates a service quality QoSP (Si,Mi) (with P stand-
ing for performance) of service Si in S under a pattern
Mj in M .

Algorithm 1 SWP Extraction Algorithm based on
DBSCAN.
Input: Service Usage InforSet (execution + monitoring
log), ε, MinPts, MaxTimeRange.
Output: SWP PatternBase, Pattern-QoS information,
PatternQoS.
1: for (Infori < CPU,DataSize, ThroughPut, Performance >
∈ InforSet do

2: if Infori does not belong to any exist cluster then
3: Pj=newPattern(Infori) {create a new pattern with

Infori as seed}
4:
5: Add( Pj , PatternBase )
6: InforSet = InforSet− Infori
7: SimInfor = SimilarInfor(InforSet, Infori, ε)

{SimInfor is the information set which includes all
the similar usage information of Infori. Differences
between the information in SimInfor and Infori
on the characteristics value except execution time are
less than ε. n is the number of information items in
SimInfor.}

8: InforSet = InforSet− SimInfor
9:

10: if n > MinPts then
11: {MinPts is min number of exec info in cluster}
12: (S1, S2 . . . , Sm) = Divide( SimInfor ) {Divide

SimInfor into different groups.}
13:
14: Group S1 includes all information of service s1
15: for (k = 1;K ≤ m;k ++) do
16: for Inforj ∈ Sk do
17: if MaxTime−MinTime < MaxTimeRange

then
18:
19: SimInfor = SimilarInfor(InforSet,

Inforj , time,MinPts, ε) {Search similar
info of Sk in execution information set. If the
number of similar information item is less than
MinPts, then the density will turn low and
top the loop.}

20: Sk = Sk + SimInfor
21: InforSet = InforSet− SimInfor
22: end if
23: end for
24: PatternCharacteristics(Sk) {Organizes the informa-

tion in the cluster and statistics for the ranges of
characteristics completes matrix}

25: end for
26: end if
27: end if
28: end for



Zhang et al. Page 5 of 20

MS =


S1 S2 . . . Sm

M1 q1,1 q1,2 . . . q1,m
M2 q2,1 q2,2 . . . q2,m
. . . . . . . . . . . . . . .
Ml ql,1 ql,2 . . . ql,m

 (3)

Figure 1 at the beginning illustrated monitoring and
execution logs that capture low-level metrics (CPU,
storage, network) and the related service response time
performance. SWPs Mi then result from the log min-
ing process using clustering.

The following is a set of patterns M1 to M3 for the
given example in Figure 1:

CPU Strg Netw
M1 = [ 2.1 ∼ 2.5 , 10 ∼ 11 , 0.1 ∼ 0.2 ]
M2 = [ 2.0 ∼ 2.2 , 8 ∼ 30 , 0.2 ∼ 0.4 ]
M3 = [ 1.2 ∼ 2.0 , 10 ∼ 20 , 0.1 ∼ 0.5 ]

(4)

For those patterns, we can construct the following
quality matrix MS:


S1 S2 S3

M1 0.2 ∼ 0.5s 1.5 ∼ 1.8s
M2 1.4 ∼ 1.8s 1.1 ∼ 1.5s
M3 1.5 ∼ 2.1s

 (5)

The matrix MS above shows the QoS in this example
for performance information of all services sj for all
patterns Mi. The quality qij(1 ≤ j ≤ l, 1 ≤ i ≤ m)
is the quality of service sj under pattern Mi with the
quality value qij defined as follows:
• as φ if the service sj has no invocation history

under pattern mi and
• as lowij ∼ highij if the service sj has an invoca-

tion history under mi with range ∼.
For a pattern M1 = [0.5 ∼ 0.6, 0.2 ∼ 0.4, 30 ∼ 40]

the CPU utilization rate is 0.5−0.6, storage utilization
is 0.2−0.4 and network throughput is 30−40MB. The
sample matrix illustrates the workload pattern to QoS
association for services. Empty spaces (undetermined
null values) for a service indicate lacking data. In that
case, a prediction based on similar services is necessary,
for which we use collaborative filtering.

3.3 Pattern Matching
For monitored resource metrics (CPU, storage, net-
work), we need to determine which of these influences
performance the most. This determines the matched
pattern. Let the usage information of service s be a
sequence xk of data storage D, network throughput

N and CPU utilisation C values mapped to response
time R for k = 1, . . . , n:

[< x1D, x
1
N , x

1
C >, x1R]

. . .

[< xkD, x
k
N , x

k
C >, xkR]

. . .

[< xnD, x
n
N , x

n
C >, xnR]

(6)

We use response time performance in the log as the
reference sequence xR(k), k = 1, . . . , n, and other con-
figuration metrics as comparative sequences. Then, we
calculate the association degree of other characteris-
tics with response time and use characteristics of an
invocation as standard and carry out a normalization
of the other metrics. Thus, the normalized usage in-
formation y is (schematically) for any invocation k:

[< yD(xkD), yN (xkN ), yC(xkC) >, 1] (7)

Response time is the reference sequence x0(k), k =
1, . . . , n and the other infrastructure characteristics
are the comparative sequences. We calculate the as-
sociate degree of the other three characteristics with
response time. We take one invocation as standard
and then normalise the others. The reference (i = 0)
and comparison sequences (i = 1, . . . , 3) are han-
dled dimensionless. We obtain standardised sequences
yi(k), i = 0, 1, . . . , 3; k = 1, . . . , n, see Figure 2.

Figure 2: Normalised QoS mappings: Infrastructure
to Service ([CPU, network, storage] → Performance).

Next, we calculate absolute differences for the table
above using

∆oi = |yo(k)− yi(k)| (8)

With Oi here ranging over the quality aspects, we
get O1 = D, O2 = N and O3 = C. The resulting
absolute difference sequence is for our 3 quality aspects
the following:

∆01 = (0, y01(1), . . . , y01(n)),

∆02 = (0, y01(2), . . . , y02(n)),

∆03 = (0, y01(3), . . . , y03(n)),

(9)



Zhang et al. Page 6 of 20

In the next step, we determine a correlation coef-
ficient between reference and comparative sequence
(using here the correlation coefficient of the Gray rel-
evance):

ζoi(k) =
∆min + ρ∆max

∆oi(k) + ρ∆max
(10)

Here ∆oi(k) = |y0(k)−yik| is the absolute difference,
∆min = mini mink∆0i(k) is the minimum difference
between two poles, ∆max = maxi maxk∆0i(k) is the
maximum difference, ρ ∈ (0, 1) is a distinguishing fac-
tor. Afterwards, we use the formula

roi =
1

n

n∑
i=1

ζo1(k) (11)

to calculate the correlation degree between the metrics.
Then, we sort the metrics based on the correlation
degree. If r0 is the largest, it has the greatest impact
on response time and will be matched prior to others
in the pattern matching process.

Clouds are shared multi-user environments where
users and applications require different quality set-
tings. A multi-valued utility function Ũ can be added
representing the user weighting of a vector Q̃ of quality
attributes q ∈ Q for a matrix mi ∈M as a weighting.
This utility function allows a user to customise the
matching with user-specific weightings:

Ũp,m,q : rng(Q̃m,q)→ [0, 1] (12)

The overall utility can be defined, taking into ac-
count the importance or severity of the quality at-
tributes ωi for each q ∈ Q :

Ũm =
∑
∀qi∈Q

ωiŨm,qi(Q̃m,qi(MS))

Ũm,q =
∑
∀p∈p

Ũp,m,q∑
i

ωi = 1, ωi ≥ 0

(13)

Finally, the pattern that optimizes the overall con-
figuration utility is determined through the maximum
utility calculated as:

maxm∈MsŨm (14)

Note, that the utility is based on the three quality
concerns, but could potentially be extended to take
other factors into account. Furthermore, costs for the
infrastructure can also be taken into account to deter-
mine the best configuration. We will define an addi-
tional cost function in the cloud configuration Section
5 below.

4 QUALITY PATTERN-DRIVEN
CONFIGURATION DETERMINATION

The QoS-SWP matrix is the tool to determine SLA
requirements-compliant SWPs as workload specifica-
tions for the resource configuration and re-configuration
and re-scaling. For quality-driven configuration, the
question is: for a given service Si and a given perfor-
mance requirement QoSP , what are suitable SWPs to
configure the execution environment? The execution
environment is assumed to be a VM image configu-
ration with storage and network services samples are
discussed in Section 5. We first determine a few config-
uration determination use cases to get a comprehensive
picture where the pattern technique can be used and
then discuss the core solutions in turn.

4.1 Use Cases
In general, there is a possibly empty set of patterns
MS(si) for each service si, i.e., some services have us-
age information, others have no usage information in
the matrix itself. Consider the sample matrix from the
previous section. Three use cases emerge that indicate
how the matrix can be used:
• Configuration Determination – Existing Patterns:

For a service s with monitoring history: Since s1
has an invocation history for various patterns for
a requested response time of 0.45s, we can return
this set of patterns including M1 and M3.

• Configuration Determination – Non-existing Pat-
terns: For a given service s without history: Since
s2 has no invocation history for a required re-
sponse time of 2s, we can utilise collaborative fil-
tering for the prediction of settings, i.e., use sim-
ilar services to determine patterns for the given
service [11] [12].

• Configuration Test – For a given triple of SWP
values and a service s: If a given s1 has an invo-
cation history for a required response time of 2s
and we have a given workload configuration, we
can test the compliance of the configuration with
a pattern using the matrix.

4.2 Pattern-based Configuration Determination
If patterns exist that satisfy the performance require-
ments, then these are returned as candidate configu-
rations. In the next step, a cost-oriented ranking of



Zhang et al. Page 7 of 20

these can be done. We use quality level to cost map-
pings that will be explained in Section 5 below. If no
patterns exist for a particular service (which reflects
the second use case above), then these can be deter-
mined by prediction through collaborative filtering, see
[7].

QoS Prediction Process. For any service s, if there is
information of sv under pattern mi, then calculate the
similarity between other services sj and sv. We can
get the k neighbouring services of service sj through
a similarity calculation. The set of these k services is
S = s′1, s

′
2, . . . , s

′
k. We fill the null (empty) QoS val-

ues for the target invocation using the information in
this set. Using the information in S, we then calcu-
late the similarity of mi with other patterns that have
the information for target service sj . We choose the
most similar k′ patterns of mi, and use the informa-
tion across the k′ patterns and S to predict the quality
of service sj .

Service Similarity Computation. If there is no infor-
mation of sj in a pattern Mi, we need to predict the
response time qi,j for sj . Firstly, we calculate the simi-
larity of sj and services which have information within
pattern Mi ranges. For a service sv in Ii where Ii is
the set of services that have usage information within
pattern Mi we calculate the similarity of sj and sv.
We need to consider the impact of configuration en-
vironment differences, i.e., redefine common similarity
definitions. Mvj is the set of workload patterns which
have the usage information of services sv and sj .

simS(sv, sj) =∑
mc
∈Mvjj(qc,v − qv)(qc,j − qj)√∑

mc∈Mvj(qc,v − qv)2
√∑

mc∈Mvj(qc,j − qj)2
(15)

Here, qv is the average quality value for service sv
and qj is the respective value for sj . From this, we can
obtain all similarities between sj and others services
which have usage information within pattern mi. The
more similar the service is to sj , the more valuable its
data is.

Predicting Missing Data. Missing or unreliable data
can have a negative impact on prediction accuracy.
In [13], we considered noise up to 10% to be accept-
able. In order to deal with uncertainty beyond this,
we calculate the similarity between two services and
get the k neighbouring services. Then, we establish
the k-neighbour matrix Nsim, see Equation (16), and
complete the missing data. Nsim shows the usage in-
formation of the k neighbour services of sj under all
patterns, reducing the data space to k columns.

Nsim =



sj s′1 . . . s′k
M1 s1j s1,1 . . . s1,m
. . . . . . . . . . . . . . .
Mi si,j si,1 . . . si,m
. . . . . . . . . . . . . . .
Ml sl,j sl,1 . . . sl,m

 (16)

Empty spaces are filled, if required. Then, we add
si,p as the data of service sp under pattern mi:

si,p = q′p +

∑
n∈S′ simn,p × (q′i,n − q′n)∑

n∈S′(|simn,p|)
(17)

Again, q′p is the average quality value of sp, and
simn,p is the similarity between sn and sp. Now ev-
ery service s ∈ S′ has usage information within all
pattern ranges in mi.

Calculating Pattern Similarity and Prediction. There
is QoS information of k neighbouring services of sj in
matrix Nsim. Some of them are prediction values. We
can calculate the similarity of pattern mi and other
patterns using the correction cosine similarity method:

simM (mi,mj) =∑
sk∈S(t′i,k − t′i)(t′j,k − t′j)√∑

sk∈S(t′i,k − t′i)2
√∑

sk∈S(t′j,k − t′j)2
(18)

After determining the pattern similarity, the data of
patterns with low similarity are removed from Nsim,
the set of the first k patterns. The data of these pat-
terns are retained for prediction. If pi,j is the data to
be predicted as the usage data of service sj within
pattern mi, it can be calculated.

pi,j = q′i +

∑
n∈M ′ simn,i × (q′n,j − q′n)∑

n∈M ′(|simn,i|)
(19)

The average QoS of data related to pattern mi is q′i
and simn,j is the similarity between patterns mn and
mp.

4.3 Pattern-based Configuration Testing
We can use the pattern-QoS matrix to test a standard
or any known resource configuration in SWP format
(i.e., three concrete values rather than value ranges for
the infrastructure aspects) for instance in the situa-
tion outlined above for a service si for which its per-
formance is uncertain. This can also be done instead



Zhang et al. Page 8 of 20

of collaborative filtering, as indicated above, if the re-
turned set of patterns is empty and a candidate con-
figuration is available. Then, the matrix can be used
to determine the respective QoS values, i.e., to pre-
dict quality such as performance in our case through
testing as well.

This situation shall be supported by an algorithm
that matches candidate configurations with stored
workload patterns based on their expected service
quality. The algorithm takes into account whether or
not possibly matching workload patterns exist.

Algorithm 2 Matching Candidate Configurations
Input: Service Usage Information of a Service.
Output: Metrics Sorted by Correlation Degree.
1: Match [ candidate configuration Config = < y1, y2, y3 > of

target service si ] with [characteristics (ranges) < low1 ∼
high1, low2 ∼ high2, low3 ∼ high3 > ] of stored patterns
Mi.

2: if there is a pattern that can be matched then
3: return it
4: else
5: use Gray relevance analysis (Formula (3.7)) to match a

pattern
6: end if
7: Let the matched pattern be mi

8: Search information about matched pattern mi in matrix M
9: if there is QoS information of service si in mi then

10: return it as expected QoS for candidate configuration
11: else
12: if no related QoS information exists then
13: predict QoS by collaborative filtering (4.1)(4.4)
14: end if
15: end if
16: Return

If no patterns exist, existing candidate configurations
can be tested – to enable always a solution, at least
one default configuration should be provided. Alterna-
tively, similar services can be considered; these can be
determined through collaborative filtering and then we
would start again.

4.4 Variability and Smoothing
While the solution above extracts patterns for a given
log, some practical considerations shall be taken into
account. In log data corresponding to resource work-
load measurements, we can usually observe high vari-
ations over time, which makes predictions over par-
ticularly small time-scales unreliable. The workload
contains often many short-duration spikes. In order
to alleviate the disturbance caused by these, we can
use smoothing techniques before actually applying the
pattern mining based on DBSCAN.

We use a time-series forecasting technique [14] to
better estimate the workload at some future point in
time.
• We use double exponential smoothing for the

workload aspect because it can be used to smoothen

the inputs and predict trends in log data. This
model takes the number of requests for application
services at runtime into account before predicting
the future workload. This is suitable for the three
workload types CPU, storage and network.

• On the other hand, for estimating response-time,
we use single exponential smoothing because for
the oscillatory response-time, we do not need to
predict the trend but a smoothed value.

Both the exponential smoothing techniques weight
the history of the workload data by a series of ex-
ponentially decreasing factors. An exponential factor
close to one gives a large weight to the first samples
and rapidly makes old samples negligible.

The specific formula for single exponential smooth-
ing is:

st = θxt + (1− θ)st−1, t > 0; s0 = x0 (20)

Similarly, the formula for double exponential smooth-
ing is:

st = βxt + (1− β)(st−1 + bt−1)
bt = γ(st − st−1) + (1− γ)bt−1; 0 < θ, β, γ < 1

(21)

where xt the raw data sequence and st is the out-
put of the techniques and θ, β, γ are the smoothing
factors. Note, the number of data points here depends
on the control loop intervals and the frequency of the
performance counter retrievals in each loop.

Smoothing helps with significant, but irregular vari-
ations of workload. It also help adding more weight
to more recent events. In both, cases the benefit is
more reliable prediction of quality at the service level.
Single exponential smoothing is specifically used for
these irregular short-term variations of workload re-
sulting in oscillatory response-time. These spikes can
often not be dealt with properly in the cloud due to
non-instantaneous provisioning times (this context is
sometimes referred to as the throttling pattern) [13].
Smoothing can build in an adequate response (or non-
response) of the system allowing to ignore a certain
situation.

However, smoothing is a kind of noise added to the
system and we need to address the robustness of the
prediction against noise later on in the evaluation.

5 PATTERN-DRIVEN RESOURCE
CONFIGURATION

This section shall illustrate how the approach can be
used in a cloud setting for resource (VM) configura-
tion, costing and auto-scaling. Predefined configura-
tions for VMs and other resources offered by providers



Zhang et al. Page 9 of 20

as part of standard SLAs could be the following that
relate to the CPU, storage and network utilisation cri-
teria < CPU, Storage,Network > we used in Section
3 and 4 for the SWPs.

Gold, Silver and Bronze in Figure 3 are names for
the different service tiers based on different configura-
tions that are commonly used in industry. We can add
pricing for Pay-as-you-Go (PAYG) and monthly sub-
scription fees to the above scheme to take cost-based
selection of configurations into account, see Figure 4.

Figure 3: VM Configuration.

Figure 4: VM Charging Scheme.

We define below a cost function C : Config → Cost
to formalise such a table. The categories based on the
resource workload configurations can now be aligned
by the provider with QoS values that are promised
in the SLA – here with response time and availabil-
ity guarantees filled in the Configuration − Quality
matrix CQ:

Gold 0.75 99.99
Silver 1.0 99.9
Bronze 1.5 99

 (22)

In general, the Configuration-Quality matrix is de-
fined by

CQ = [cij ] with i : configuration category

and j : quality attribute
(23)

A selection function σ determines suitable workload
patterns Mi for a given quality target q as defined in
the Configuration-Quality matrix and a service sj :

σ(q, s) = {Mi ∈M |MS(q, sj) ∈ qij} (24)

From this set of workload patterns M1, . . . ,Mn, we
determine the most optimal one in terms of resource
utilisation. For minimum and maximum utilisation
thresholds minU and maxU that are derived as inter-
val boundaries from the pattern mining process, the
best pattern is selected based on a minimum devia-
tion of pattern ranges Mi(q) across all quality factors
(based on the overall mean value) from the threshold
average value, defined as the mean average deviation
(where x indicates the mean value for any expression
x):

mini

√∑
(maxU −minU −Mi(q))2 (25)

The thresholds can be set at 60% and 80% of the
pattern range averages to achieve a good utilisation
with some remaining capacity for spikes [15].

Based on the best selected SWP Mi with the given
key metrics, a VM image can be configured accordingly
in terms of CPU, storage and network parameters and
deployed with the service in question. If several SWPs
apply to meet performance requirements, then costs
can be considered to select the cheapest offer (if the
cost in the table reflects in some way the real cost of
provisioned resources and not only charged costs)

σ(q, s)Cost = miniC(σ(q, s)) (26)

for a cost function C that maps a pattern in σ(q, s) to
its cost value. The cost function can create a ranking of
otherwise equally suitable patterns or configurations.

The service-based framework presented in Sections 3
and 4 was here applied to the cloud context by link-
ing it to standard configuration and payment models.
Specific challenges arose from the cloud context that
we have addressed are:
• Standard cloud payment models allow an explicit

costing, which we took into account here through
the cost function. Essentially, the cost function
can be used to generate a ranked list of candidate
patterns for a required QoS value in terms of the
operational cost. In [16], we have demonstrated
that different performance result, but also costs
vary for a given configuration pattern.

• Cloud solutions are subject to (dynamic) configu-
rations, generally both at IaaS and PaaS level.
While our configuration here is geared towards
typical IaaS attributes, our implementation work
with Microsoft Azure (see Section 7) also demon-
strates the possibility and benefit of PaaS-level
configuration. In [16], we have discussed different
PaaS-level storage configurations and their cost
and performance implications.



Zhang et al. Page 10 of 20

• User-driven scalability mechanisms such as Cloud-
Scale or CloudWatch or the AWS Autoscaling
typically work on scaling rules defined on the
granularity of VMs added/removed. Our solution
is based on similar metrics, e.g., GB for storage or
network bandwidth, i.e., further automates these
solutions.

We have briefly mentioned uncertainties that arise
from cloud environments in Section 2. While we have
neglected this aspect here so far, [13] presents an ap-
proach that adds uncertainty handling on top of pre-
diction for VM (re-)configuration, which we will adapt
for our problem setting in the next section. Uncertain-
ties arise for instance from incomplete or potentially
untrusted monitoring data or from varying needs and
interpretations of stakeholders regarding quality as-
pects. The approach in [13] adds a fuzzy logic pro-
cessing on top of a prediction approach.

6 MANAGING UNCERTAINTY
The QoS-SWP matrix captures predictions in the form
of mappings or prediction rules M ×S → Q where for
SWPs in M and services in S as antecedents, we as-
sociate quality values Q as consequents of those rules.
Due to the possibly varying number of recorded map-
pings and consequently different patterns for different
services, there is some uncertainty regarding the re-
liability of predictions across the service base caused
by possibly insufficient and unrepresentative log data.
Sources of uncertainty include:
• at early stages, the amount of log data available

is insufficient,
• different monitoring tools provide different log

data quality,
• temporary variations in workload might render

prediction unreliable.
In order to address these uncertainties, we propose a

fuzzy logic-based approach to capture uncertain infor-
mation, fuzzify this and infer here quality predictions
based on the fuzzified recorded log data.

6.1 Fuzzification of Rule Mappings
The hypothesis that motivates our framework is the
observation that utilisation rates for the resources in
question (CPU, storage, network) are often subopti-
mal. We can look at the Q values in the matrix and
find patterns M i that run at 60-80% rate for a given
q ∈ Q. As we might find a number of possible patterns,
a degree of uncertainty emerges as either a number of
candidate patterns for a single service or even for a set
of similar services might exist.

Our proposal if to fuzzify all pattern mapings Mi×S
and calculate an optimum quality in a fuzzified space
before defuzzifying the result as a concrete pattern

with a predicted quality value. Note that this patterns
might not be in the pattern-quality matrix, i.e., does
not necessarily reflect actual observations. More con-
cretely, we fuzzify M1 ×M2 ×M3 → Q mappings for
one quality range q̃ ∈ Q with q̃ = qmin ∼ qmax and
a given service s ∈ S. Here, each M i refers to one of
the three aspects CPU, storage and network, result-
ing in a set of m patterns with ranges for the three
aspects that all map to the same quality range q̃. The
patterns are the different patterns for a service (or a
class of similar services) that predict a quality range
q̃ = qmin ∼ qmax:

M1
1..3 → q̃

M2
1..3 → q̃
· · ·

Mm
1..3 → q̃

(27)

This set will be fuzzified, resulting in joint, fuzzy rep-
resentation of the merged patterns.

This technique is based on a fuzzy logic approach to
uncertainty that we developed for cloud auto-scaling
[13], but adopted here to service quality prediction.
The approach is differently applied here in that instead
of different linguistic concept definitions used in use-
defined auto-scaling rules, we have different (impre-
cise) workload ranges. Furthermore, instead of differ-
ent scaling actions as rule antecedents, we look at dif-
fering performance values (moderately varying). While
in [13], we addressed uncertainty regarding human-
specified scalability rules, this is uncertainty regarding
the monitoring systems and their data.

Here, we obtain data from different, but similar ser-
vices via the collaborative filtering technique. Differ-
ent associated performances (unpredictable variations
caused my factors not considered in the calculation)
are determined. Through the variable Y , we will later
on capture predictions such that M1...3I → q̃ ∈ Q This
can take into account a targeted 60-80% utilisation
rate optimum.

In order to simplify the presentation, we only develop
the fuzzy logic approach for the CPU processor load
as core compute resource, linked to performance at
the service level. However, specific characteristics that
would distinguish CPU, storage and network do not
play any role and, therefore, selecting just one here for
simplification does not restrict the solution.

6.2 Fuzzy Logic Definitions for Uncertainty
Fuzzy logic is a suitable tool to reflect the uncertainty
that is incorporated in the different patterns for a ser-
vice, particularly since these rely on collaborative fil-
tering based on similarity with related services.



Zhang et al. Page 11 of 20

Fuzzy logic distinguishes different ways to represent
uncertainty. A type-1 (T1) fuzzy set associates as a
function a possibility value of some attribute, resulting
in a single value depending on the input. A type-2 (T2)
fuzzy set is an extension of a type-1 (T1) fuzzy set [17].
At a specific value x′ (cf. Figure 5), there is an interval
instead of a crisp value for each input.

Figure 5: A type-2 fuzzy set based possibility
distribution.

This leads to the definition of a three dimensional
membership function (MF), a T2 MF, which charac-
terizes a T2 fuzzy set (FS). Note that the core fuzzy
logic definitions here are standard definitions in fuzzy
theory from the literature such as [18, 19]. Figure 5
visualises the definitions.

A T2 FS, denoted by R̃ , is characterized by a T2
MF µR̃(x, u) with

R̃ = {((x, u), µR̃(x, u)|∀x ∈ X,∀u ∈ Jx, µR̃(x, u) ≤ 1}
(28)

When these values have the same weight, it leads to
definition of an interval type-2 fuzzy set (IT2 FS):

If µR̃(x, u) = 1 , R̃ is an interval T2 FS, also abbre-
viated as an IT2 FS.

Therefore, the membership function MF of a IT2 FS
can be fully specified by the two boundary T1 MFs.
The area between the two MFs (the grey area in Figure
5) characterizes the uncertainty.

The uncertainty in the membership function of an
IT2-FS, R̃, is called footprint of uncertainty (FOU) of
R̃. Thus, we define:

FOU(R̃) =
⋃
x∈X

Jx = {(x, u)|∀x ∈ X,∀u ∈ Jx} (29)

The upper membership function (UMF) and the
lower membership function (LMF) of R̃ are two T1-
MFs µR̃(x) and µ

R̃
(x), respectively, that define the

boundary of the FOU.

An embedded fuzzy set Re is a T1 FS that is located
inside the FOU of R̃.

6.3 Qualification of Infrastructure Inputs

We need to apply the definitions above to construct
IT2 membership functions for our mappings, but first
the add labels to ranges in order to work with qualified
rather than quantified ranges. This is common in cloud
resource configuration.

Assume the following pattern-to-quality mapping
with normalised input values in [0..100] for CPU, stor-
age and network parameters, respectively:

M1
1..3 = [40− 54], [20− 26], [30− 37]→ q̃ = [1.1− 1.4]

M2
1..3 = [20− 33], [26− 32], [80− 86]→ q̃ = [0.9− 1.3]

M3
1..3 = [16− 23], [65− 72], [50− 55]→ q̃ = [1.2− 1.6]

M4
1..3 = [48− 56], [71− 78], [82− 89]→ q̃ = [1.5− 1.9]

The ranges above reflect observed CPU utilisation
ranges under which the performance is relatively sta-
ble. Ranges with similar performance are clustered. We
now use a qualified representation of the individual
range clusters. For the CPU processor load, we use five
individual labels Very Low, Low, Medium, High and
Very High. Thus, for the above mapping, we can map
the CPU ranges [16-23] to the Very Low label, [20-33]
to Low and [40-54] and [48-56] to Medium. The labels
themselves are suggested by experts and are commonly
used in the configuration of cloud infrastructure solu-
tions. While this qualification into concept labels is
technically not necessary, these labels help to visualise
and communicate the pattern-based prediction to the
cloud users.

Figure 6 shows the qualified patterns. For each la-
bel, the black bar denotes the variation of the means
of each of the pattern value ranges as given by the
experts, e.g., the means of [40-54] and [48-56] for the
Medium label. The light grey bars denote the overall
variation of ranges for each label.

The qualified categorisation will in the next step be
used to define fuzzy membership functions that fuzzify
the infrastructure input captured in the patterns.



Zhang et al. Page 12 of 20

Figure 6: Qualification of Pattern Ranges before
Fuzzification.

6.4 Defining Membership Functions
Infrastructure monitoring tools measure the input val-
ues for the prediction solution (CPU, storage, net-
work) as infrastructure parameters and performance
as service-level data). Their conversion to fuzzy values
is realized by MFs. In this section, we show how to de-
rive appropriate IT2 MFs based on the data extracted
from the infrastructure and service monitoring logs.
We follow the guidelines in [20] in order to construct
the functions. To simplify the investigation, we focus
on CPU load and performance only.

As illustrated in Figure 5, we used triangular or
trapezoidal MFs to represent different CPU load
ranges:
• For each normalized CPU range [CPUmin ∼
CPUmax], we define one type-2 MF as in Figure
7 for five ranges.
• We order these and label them accordingly, e.g.,

with VL to VH labels representing Very Low to
Low, Medium, High and Very High CPU loads.

Figure 7: IT2 Membership Functions for CPU load.

Let a and b be the mean values of the interval end-
points CPUmin and CPUmax of the labelled ranges
with standard deviations σa and σb, respectively (see
Figure 6). For instance, for the Low, Medium and High
label, the corresponding triangular T1 MF is then con-
structed by connecting left l, middle m and right r as
follows:

l = (a−σa, 0),m = ((a+b)/2, 1), r = (b+σb, 0) (30)

Accordingly, for Very Low and Very High proces-
sor load ranges that border 0 or 100% on the nor-
malized scale, the associated trapezoidal MFs can be
constructed by connecting points as follows:

(a− σa, 0), (a, 1)(n, 1), (b+ σb, 0) (31)

The labels above refer to utilisation rates of re-
sources, with a maximum value being 100. So, irre-
spective of the concrete system, the labels are assigned
to normalised utilisation ranges.

As indicated by the standard deviations in Figure 6,
there are uncertainties associated with the ends and
the locations of the MFs. As an example, a triangular
T1 MF might be defined follows:

l′ = (a− 0.3× σs, 0)
m = ((a+ b)/2, 1)
r′ = (b+ 0.4× σb, 0)

(32)

These uncertainties cannot be captured by T1 fuzzy
MFs. In IT2 MFs on the other hand, the footprint of
uncertainty (FOU) can be captured by the upper and
lower MFs (UMF and LMF) for each range, see Figure
8. A blurring parameter 0 ≤ α ≤ 1 can determine the
FOU (see Figure 6).

Here, we use α = 0.5. Parameter α = 0 reduces IT2
MFs to a T1 MFs, while parameter α = 1 results in
fuzzy sets with the widest possible FOUs.

Figure 8: Locations of the main points of IT2 MFs.



Zhang et al. Page 13 of 20

6.5 The Fuzzy Prediction Process

After constructing the IT2 fuzzy sets with the MFs and
the set of rules for the infrastructure load patterns, the
prediction can then start to determine service quality
estimations. The fuzzy prediction technique proceeds
in a number of steps as follows (which we will explain
in more detail afterwards):

1 The inputs comprising the workload are first
fuzzified.

2 Then, the fuzzified input activates an inference
mechanism to produce output IT2 FSs.

3 Decisions made through the inference mechanism
are represented in the form of fuzzy values, which
cannot be directly used as prediction results. The
outputs are then processed by a type-reducer,
which combines the output sets and subsequently
calculates the center-of-set.

4 The type-reduced FSs are T1 fuzzy sets that need
to be defuzzified in the last step to determine the
predicted quality value q.

5 This value q is then passed back to the user as the
predicted quality.

In the first step, we must specify how the numeric
inputs ui ∈ Ui for the CPU utilisation rates are con-
verted to fuzzy sets (a process that called ”fuzzifica-
tion” [18]) so that they can be used by the FLS. Here,
we use singletons:

µR̃1
=

{
1 x = ui

0 otherwise
(33)

For the defuzzification step, we use the construct of
a centroid [21]. The centroid of a IT2 FS R̃ is the union
of the centroids of all its embedded T1 fuzzy sets Re:

CR̃ ≡
⋃
∀Re

c(Re) = [cl(R̃), cr(R̃)] (34)

For the type-reducing step we use the center-of-sets
construct [36]. The center-of-set (cos) type reduction
is calculated as follows:

Ycos =
⋃

f l∈F l,yl∈C
G̃l

ΣN
l=1f

l × y1

ΣN
l=1f

l
= [yl, yr] (35)

where f l ∈ F l is the firing degree of mapping rule l
and yl ∈ CG̃l is the centroid of the IT2 FS G̃l. The

centroids cl(R̃), cr(R̃) and yl, yr are calculated using
the KM algorithm from [21].

6.6 Fuzzy Reasoning for Quality Prediction

Our quality mappings that encode the SWPs are in
a multi-input single-output format. Because the log
records of different services may not be similar, many
patterns may be conflicting, i.e., we might have rule
mappings with the same antecedent, but different con-
sequent values. In this step, mappings with the same
if-part are combined into a single rule. For each map-
ping in the patterns retrieved from the logs, we get the
following for a sample rule R1:

IF (x1 is F
l
1) and ... and (xp is F

l
p),

THEN (y is y(t
l
u))

(36)

where tlu is the index for the result. In order to com-
bine these conflicting mappings, we used the average
of all the responses for each mapping and use this as
the centroid of the mapping consequent. Note, that
the mapping consequents are IT2 FSs. However, when
the type reduction is used, these IT2 FSs are replaced
by their centroids. This means that we represent them
as intervals [yn, yn] or crisp values when yn = yn. This
leads to rules with the following form for an arbitrary
rule Rl:

IF the CPU workload (x1) is F̃i1 ,

AND the network load (x2) is G̃i2 ,

AND the storage utilisation (x3) is H̃i3 ,
THEN qi is the predicted value.

where C is the value of associated consequent, i.e., here
a quality value for performance in ms, and wl

u is the
weight associated with the u-th consequent of the lth
mapping. Therefore, each qi can be computed.

In a concrete example, we now illustrate the details
of the prediction process. Assume that the normal-
ized values regarding the three input parameters are
x1 = 40, x2 = 50 and x3 = 55, respectively – see the
solid lines for the workload in Figure 9 as a sample fac-
tor. For x1 = 40, two IT2 FSs for the processor work-
load ranges F2 = Low and F2 = Medium with the de-
grees [0.3797, 0.5954] and [0.3844, 0.5434] are fired[1].
Similarly, for x2 = 50 , three IT2 FSs for the per-
formance ranges G3 = Medium, G4 = Slow, and
G5 = V ery Slow with the firing degrees [0, 0.1749],
[0.9377, 0.9568] and [0, 0.2212] are fired. For x3 = 55
similar values would emerge. Intuitively, the lower and

[1]The term ’fired’ is commonly used for rules, generally
assuming the consequents of the rules being actions
that are fired. We have kept the term, but it applies
here only to mappings to quality values.



Zhang et al. Page 14 of 20

upper values of the intervals can be computed by find-
ing the y-intercept of the solid lines in the Figure, re-
spectively, with the LMF and the UMF of the crossed
FSs. As a result, six pattern mappings might result
that are fired (here a sample is given):

M8 : (F2, G3, H1),M9 : (F2, G4, H4),
M10 : (F2, G5, H4),M13 : (F3, G3, H2),
M14 : (F3, G4, H1),M15 : (F3, G5, H2)

(37)

Figure 9: IT2 MFs of for CPU workload ranges.

The firing intervals are computed using the meet op-
eration [17]. For instance, the firing interval associated
to the pattern M9 for the CPU attribute is:

m9 = µ
M̃9

2

(x′1)⊗µ
G̃9

4

(x′2) = 0.3797×0.9377 = 0.3560

(38)

The output can be obtained using the center-of-set:

Yl(40, 50, 55) =
[yl(40, 50, 55), yr(40, 50, 55)] =
[0.9296, 1.1809]

(39)

The defuzzified output can be calculated as follows:

Y (40, 50, 55) =
0.9296 + 1.1809

2
= 1.0553 (40)

Thus, we can finally calculate the predicted quality
Y (x1, x2, x3) for all the possible normalized values of
the input infrastructure parameters (i.e., x1 ∈ [0, 100],
x2 ∈ [0, 100], x3 ∈ [0, 100] for CPU, storage and net-
work).

7 EVALUATION
Our proposed solution builds on a core pattern-based
quality prediction solution that can be used for cloud
configuration in an environment where there is uncer-
tainty about concerns such as correctness or complete-
ness. We have implemented an experimental test en-
vironment to evaluate the accuracy, efficiency and ro-
bustness of the solution in the context of uncertainty
and dynamic processing needs.

7.1 Implementation Architecture and Evaluation
Settings

The implementation of the prediction and configura-
tion technique covers different parts – off-line and on-
line components:
• The pattern determination and the construction

of the patterns-quality matrix is done off-line
based on monitoring logs. The matrix is needed
for dynamic configuration and can be updated as
required in the cloud system. For the prediction,
the accuracy is central. As the construction is off-
line, performance overhead for the cloud environ-
ment is, as we will demonstrate, negligible.

• The actual prediction through accessing the ma-
trix is done in a dynamic cloud setting as part of a
scaling engine that combines prediction and con-
figuration. Here the acceptable performance over-
head for the prediction needs to be demonstrated.

• Uncertainties and noise are additional problems
that arise in heterogeneous, cross-organisational
cloud architectures. Robustness in the presence of
these challenges needs to be demonstrated.

For both the accuracy and performance concern, we
use a standard prediction solution, collaborative fil-
tering (CF) as the benchmark, which is widely used
and analysed in terms of these properties, cf. [11] [12]
or [5] [6]. We have implemented a simulation envi-
ronment with a workload generator to evaluate accu-
racy of the prediction approach and the performance
of the prediction-based configuration. Test data is de-
rived from sources such as [22] where quality met-
rics (response time, throughput) are collected for 5825
Web services with 339 users. We selected 100 applica-
tion services from three different categories, each cate-
gory either sensitive to data size, network throughput
or CPU utilization. Figure 10 describes the testbed
with the monitoring and SWP extraction solution for
Web services. The primary concern is the accuracy of
the pattern extraction and pattern-based prediction
of performance for deployed services. Furthermore, as
dynamic reconfiguration, i.e., auto-scaling, is an aim,
also performance needs to be looked at.

We have tested our scalability management in Mi-
crosoft Azure. We have implemented a range of stan-
dard applications, including an online shopping appli-
cation, a services management solution and a video



Zhang et al. Page 15 of 20

processing feature to determine the quality metrics
for different service and infrastructure configuration
types. For the first two, we used the Azure Diagnos-
tics CSF to collect monitoring data (Figure 10). We
also created an additional simulation environment to
gather a reliable dataset without interference from un-
controllable cloud factors such as the network. Con-
crete applications systems we investigated are the fol-
lowing: a single-cloud storage solutions for online shop-
ping applications [16] and a multi-cloud HADR solu-
tion (high-availability disaster recovery system [23].
This work has resulted in a record of configura-
tion/workload data combined with performance data
– as for instance shown in [16] where Figs. 3-6 capture
response time for different service types and Figs. 7-8
show infrastructure concerns such as CPU and stor-
age aspects. In that particular case, 4100 test runs
were conducted, using a 3-service application with be-
tween 25 and 200 clients requesting services. Azure
CSF telemetry was used to obtain monitoring data.
This data was then looked at to identify our workload
patterns (CPU, Storage, Network) → Performance.

7.2 Cloud Application Workload Patterns
A number of different application workload patterns
are described in the literature [8, 13]. These include
static, periodic, one-in-a-lifetime, unpredictable, con-
tinuously changing as in [8], or slowly varying, quickly
varying, dual phase, steep tri-phase, large variation
and big spike [13]. We need to make sure that this
experimental evaluation does indeed cover the appli-
cation workload pattern in order to guarantee general
applicability. We followed [13] and induced these six
patterns in our experiments. Based on the successful
pattern coverage, we can conclude that the technique
is applicable for a range of the most common situa-
tions.

We have implemented our prediction mechanism in
different platforms. Work we described in [13] deals
with how to implement this in an auto-scaling solution
such as Amazon AWS where Amazon-monitored work-
load and performance auto-scaling metrics are con-
sidered together with a prediction of anticipated be-
haviour to configure the compute capabilities.

7.3 Accuracy
Reliable performance guarantees based on configura-
tion parameters is the key aim – real performance
needs to match the expected or promised one for the
provider to fulfill the SLA obligations. Accuracy in vir-
tualisation environments is specifically challenging [24]
due to resource contentions because of the layered ar-
chitecture, shared resources and distribution.

Accuracy of prediction is measured in terms of devia-
tion from the real behaviour. The metric we use here is

based on the mean absolute error (MAE) between pre-
diction (SLA imposed) and real response time, which
is the normal choice to measure prediction accuracy.
Different characteristics of QoS have different ranges.
Consequently, we use NMAE (the Normalized Mean
Absolute Error) instead of the MAE. The smaller the
NMAE, the more accurate is the prediction. We com-
pare our solution with similar methods based on tradi-
tional prediction methods in terms of matrix density.
This covers different situations from situations where
little is known about the services (density is low) and
situations where there is a reliable base of historic data
for pattern extraction and prediction (high density).

Figure 11: Accuracy Evaluation.

In earlier work, we included average-based predica-
tions and classical collaborative filtering (CF) in a
comparison with our own hybrid method (MCF) of
matrix-based matching and collaborative filtering [7].
The NMAE of k = 15 and k = 18 (higher or lower
ks are not interesting as lower values are statistically
not significant and higher ones only show a stabili-
sation of the trend) shows an accuracy improvement
for our solution compared to standard prediction tech-
niques, even without utility function and exponential
smoothing, see Figure 11. For this evaluation here, we
also include time series (TS) into the comparison. For
the evaluation, we considered some noisy data which
cannot be in any pattern. We also removed invocation
data and then predicted it using the CF, MCF and
also the TS time series method from [25].

We can observe that an increase of the dataset size
improves the accuracy significantly. In all cases, our
MCF approach outperforms the other ones by result-
ing in less prediction errors.

7.4 Efficiency Overhead (Runtime)
For automated service management in the context
of cloud auto-configuration and auto-scaling we need
sufficient performance of the extraction and matching
approach itself. To be tested in this context are the
performance of three components:



Zhang et al. Page 16 of 20

Figure 10: Evaluation Architecture.

1 SWP Extraction from Logs (Matrix Determina-
tion)

2 Configuration-Pattern Matching (Existing Pat-
terns)

3 Collaborative Filtering (Non-Existing Patterns)
For cases 1 and 2, we determined 150 workload pat-

terns from 2400 usage recordings. We tested the algo-
rithm on a range of different datasets extracted from
a number of documented benchmarks and test cases.
Com-pared to other work based on the TS and CF
solutions, the matrix for collaborative computation is
reduced from 2400*100 to 150*100, which reduces ex-
ecution time significantly by the factor 16. For case 3,
only when a matched pattern provides no information
for a target service, the calculation for collaboration
prediction is required, see Figure 12, where we com-
pare prediction performance with (MCF) as described
in Sections 3 and 4 (using Algorithms 1 and 2) and
without (CF) the pattern-based matrix utilisation.

7.5 Robustness against Noise and Uncertainty
Exponential smoothing causes noise and results in
some unavoidable errors. We need to demonstrate that
our prediction solution is resilient against input noises,
one of which is the estimation error through smooth-
ing.

We experimentally evaluated the robustness against
noise. We observed that the worst estimation error
happens for large variation and quickly varying pat-
terns and is less than 10% of the actual workload.
Based on this, we injected a white noise to the input

Figure 12: Performance Evaluation.

measurement data (i.e., x1) with an amplitude of 10%.
We ran RMSE (root-mean-square error – measure of
the differences between values predicted by a model or
an estimator and the values actually observed) mea-
surements for each levels of blurring, and for each mea-
surement, we used 10,000 data items as input. We used
different blurring values. Two observations emerged:
• Firstly, the error of control output produced by

the prediction technique is less than 0.1 for the
blurring levels.

• Secondly, the error of control output is decreasing
when we configured the technique with a higher
blurring.

A higher blurring as part of the smoothing leads to
a bigger FOU in the uncertainty management, where



Zhang et al. Page 17 of 20

FOU is a representative for the supporting levels of un-
certainty. Therefore, the designer should make a choice
in terms of the level of uncertainty that is acceptable.
Note that in some circumstances an overly wide FOU
results in a performance degradation. However, we can
state that these observations provide enough evidence
that robustness against input noise is maintained. Us-
ing IT2 FLS in the uncertainty management actually
alleviates here the impact of noise.

7.6 Threats to Validity
Some threats to the validity of the observations here
exist. The usefulness of the approach relies on the qual-
ity of the workload patterns. While the existence of
the patterns can be guaranteed by simply defining the
individual ranges in the broadest possible way, thus
resulting in some over-arching default patterns, their
usefulness will only emerge if they denote sufficiently
narrow ranges to allow the resources to be utilised in
an equally narrow band. For instance, a band of 60 to
80% is aimed at for processor loads.

While this has emerged to be possible for traditional
software services that are computationally intensive or
are typical text and static content-driven applications,
multi-media type applications for instance with differ-
ent network consumption patterns require more inves-
tigation.

7.7 Summary of Evaluation
Thus, to conclude the evaluation, the computational
effort for the dynamic prediction is decreased to a
large extent due to the already partially filled matrix.
As already explained, the performance of the pattern
extraction and matrix construction (DBSCAN based
clustering and collaborative filtering) can be computa-
tionally expensive, but can be done offline and only the
matrix-based access (as demonstrated in the perfor-
mance figure above) impacts on the runtime overhead
for the configuration. However, as the results show,
our methods overhead increases only slowly even if the
data size increases substantially. Consequently, the so-
lution in this setting is no more intrusive than a re-
active rule-based scalability solution such as Amazon
AWS Auto Scaling that would also follow our proposed
architecture.

We specifically looked at the accuracy and robust-
ness of the solution. The accuracy of the core solu-
tion based on the matrix is better than a traditional
collaborative filtering approach. However, in cloud en-
vironments, other concerns needed to be addressed
in addition. In order to address uncertainty due to
different and possible incomplete and unreliable log
data, we added smoothing and fuzzification. We have
demonstrated that these features improve the robust-
ness against external influence factors.

8 RELATED WORK
QoS-based service selection in general has been widely
covered. There are three main categories of prediction-
based approaches for selection.
• The first one covers statistical and other mathe-

matical methods, which are often adopted for sim-
plicity [1] [2] [3] [26] [27]. Others, e.g., in the con-
text of performance modeling use mathematical
models such as queues.

• The second category selects services based on user
feedback and reputation [28] [29]. It can avoid ma-
licious feedback, but does not consider the im-
pact of SLA requirements and the environment
and cannot customise prediction for users.

• The third category is based on collaborative filter-
ing [11][12] [30], which is a widely adopted recom-
mendation method [31] [32] [33], e.g., [32] summa-
rizes the application of collaborative filtering in
different types of media recommendation. Here,
we combine collaborative filtering with service
workload patterns, user requirements and SLA
obligations and preferences. This considers differ-
ent user preferences and makes prediction person-
alized, while maintaining good performance re-
sults.

To demonstrate that our solution is an advancement
compared to existing work on prediction accuracy, we
had singled out two approaches for categories 1 and 3
for the evaluation above.

8.1 General Prediction Approaches
Some works integrate user preferences and user charac-
teristics into QoS prediction [11] [12] [30] [5], e.g. [11]
[12] propose prediction algorithms based on collabo-
rative filtering. They calculate the similarity between
users by their usage data and predict QoS based on
user similarity. This method avoids the influence of
the environment factor on prediction. However, even
the same user will have different QoS experiences over
time depending on the configuration of the execution
environment or will work with different input data.
Current work generally does not consider user require-
ments. Another current limitation of current solutions
is low efficiency as we demonstrated. Our work in [13]
is a direction based on fuzzy logic to take user scala-
bility preferences into account for a cloud setting.

In [34] [7], pattern approaches are proposed. [34]
suggests pattern-based management for cloud config-
uration management, but without a detailed solution.
[7] is about bottom-up QoS prediction for standard
service-based architectures, while in this paper QoS
requirements are used to predict suitable workload-
oriented configurations taking specifically cloud con-
cerns into consideration. We added additionally expo-
nential smoothing and utility functions and the cost



Zhang et al. Page 18 of 20

analysis here, but draw on some evaluation results
from [7] in comparison to standard statistical meth-
ods.

8.2 Cloud Quality Prediction and Scalability

Various model-based predictive approaches are in use
for cloud quality and resource management, includ-
ing machine learning techniques for clustering, fuzzy
clustering, Kalman filters, or low band filters, used
for model updates which are then used for optimiza-
tion and integrate with controllers Supporting cloud
service management can automatically scale the in-
frastructure to meet the user/SLA-specified perfor-
mance requirements, even when multiple user applica-
tions are running concurrently. Jamshidi et al. [13] deal
with multi-user requirements as part of an uncertainty
management approach, which is based on prediction
as only exponent smoothing. Ghandi et al. [35] also
leverage application level metrics and resource usage
metrics to accurately scale infrastructure. They use
Kalman filtering to automatically learn changing sys-
tem parameters and to proactively scale the infrastruc-
ture, but have less of a performance gain than through
patterns in our solution. Another work in this direc-
tion is [36], where the solution aims to automatically
adapt to unpredicted conditions by dynamically up-
dating a Kriging behaviour model. These deal with
uncertainty concerns that we have excluded. However,
an integration of both directions would be beneficial in
the cloud. These approaches can add the uncertainty
management solutions required.

8.3 Uncertainty Management in Clouds

Uncertainty is a common problem, particularly in open
multi-layered and distributed environments such as the
cloud applications. In [13], fuzzy logic is used to deal
with auto-scaling in cloud infrastructures. We have
adopted some of the principles here, but applied them
to quality prediction here rather than resource alloca-
tion there. A similar fuzzy controller for resource man-
agement has been suggested in [37] based on adaptive
output amplification and flexible rule selection. How-
ever, this solution is based on T1 FLS and does not
address uncertainty.

The proposed method in this paper takes full ac-
count of user requirements (reflected in SLA obliga-
tions for the provider), the network and computational
factors. It abstracts the service workload pattern to
keep the service QoS steady. When user/SLA require-
ments are known, prediction-base configuration can be
done based on matched patterns. This approach is ef-
ficient and reduces the computational overhead.

9 CONCLUSIONS
Web or cloud services [38] usually differ with respect
to QoS characteristics. Relevant service-level qualities
are response time, execution cost, reliability, or avail-
ability. There are many factors that impact on QoS
[39]. They depend not only on the service itself, but
also how it is deployed. Some factors are static, some
are run-time static, the others are dynamic. Run-time
static and dynamic factors like client load, server load,
network channel bandwidth or network channel delay
are generally uncertain, but can be influenced by suit-
able configuration in virtualised environments such as
the cloud. Most factors can be monitored, and their im-
pact on service-level quality can be calculated as part
of a service management solution. Service management
in cloud environments requires SLAs for individual
users to be managed continuously through dynamic
platform and infrastructure configuration, based on
monitored QoS data.

We provided a solution that links defined SLA obli-
gations for the provider in terms of service perfor-
mance with lower-level metrics from the infrastructure
that facilitates the provisioning of the service. Our so-
lution enables cloud workload patterns to be associ-
ated to performance requirements in order to allow
the requirements to be met through appropriate con-
figuration. Note, that the investigation was based on
the three quality concerns, but could potentially be
extended to take other factors into account.

Performance management is still a problem in the
cloud [4] [40]. While availability is generally man-
aged and, correspondingly, SLA guarantees are made,
reliably guaranteeing performance is not yet solved.
Through a mining approach we can extract resource
workload patterns from past behaviour that match the
performance requirement and allow a reliable predic-
tion of a respective configuration for the future.

What our approach signifies is the increased level of
noise and uncertainty in cloud environments. Uncer-
tainty emerges as different user roles are involved in
configuring and running cloud applications, both on
the consumer and provider side, and furthermore, data
extracted from the cloud is uncertainty regarding its
completeness and reliability as it might originate from
different tools at different layers, possibly controlled
by different providers or users. Noise occurs naturally
in this setting, but is worsened by a need to apply for
instance smoothing to address variability and detect
trends.

There are wider implications that would still need
more work for any solution to be practically viable.
We started with three resource concerns, choosing one
for each category. For the fuzzification, we focused on
one concern to reduce complexity. Our experiments



Zhang et al. Page 19 of 20

with concrete cloud platforms (Openstack and Azure)
also show the need considerable integration work with
platform services for monitoring and resource manage-
ment.

In order to further fine-tune the approach in the fu-
ture, we could take more infrastructure metrics into
account. More specific cloud infrastructure solutions
and more different use cases shall be used on the ex-
perimental side to investigate whether different pat-
terns emerge either for different resource provisioning
environments or for different application domains and
consumer customisations [41].

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

LX and YZ have worked on the collaborative filtering solution presented in

Sections 3 and 4. LX (supervised by CP) has mapped this to the cloud

computing context (Sections 2 and 5). PJ is the central contributor of

Section 6 (work that has been supervised by CP). CP is responsible for

Introduction and Conclusions. All authors have contributed to the

evaluation. All authors read and approved the final manuscript.

Acknowledgements

This research has been supported by the Fundamental Research Funds for

the Central Universities of China (grant N130317005), by the National

Natural Science Foundation of China (grant 61402090), and the Irish

Centre for Cloud Computing and Commerce IC4, an Irish national

Technology Centre funded by Enterprise Ireland, the Irish Industrial

Development Authority, and by Science Foundation Ireland (International

Strategic Cooperation Award Grant Number SFI/13/ISCA/2845).

Author details
1Software College, Northeastern University, Shenyang, China. 2IC4 /

School of Computing, Dublin City University, Dublin, Ireland.

References
1. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for

workflows and web service processes. Journal of Web Semantics 1,

281–308 (2004)

2. Kritikos, K., Plexousakis, D.: Requirements for qos-based web service

description and discovery. IEEE Transactions on Services Computing

2(4), 320–337 (2009)

3. Ye, Z., Bouguettaya, A., Zhou, X.: Qos-aware cloud service

composition based on economic models. In: Proceedings of the 10th

International Conference on Service-Oriented Computing. ICSOC’12,

pp. 111–126. Springer, Berlin, Heidelberg (2012)

4. Chaudhuri, S.: What next?: A half-dozen data management research

goals for big data and the cloud. In: Proceedings of the 31st

Symposium on Principles of Database Systems. PODS ’12, pp. 1–4.

ACM, New York, NY, USA (2012)

5. Zhang, L., Zhang, B., Liu, Y., Gao, Y., Zhu, Z.-L.: A web service qos

prediction approach based on collaborative filtering. In: Services

Computing Conference (APSCC), 2010 IEEE Asia-Pacific, pp. 725–731

(2010)

6. Zhang, L., Zhang, B., Na, J., Huang, L., Zhang, M.: An approach for

web service qos prediction based on service using information. In:

Service Sciences (ICSS), 2010 International Conference On, pp.

324–328 (2010)

7. Zhang, L., Zhang, B., Pahl, C., Xu, L., Zhu, Z.: Personalized quality

prediction for dynamic service management based on invocation

patterns. 11th International Conference on Service Oriented

Computing ICSOC 2013 (2013)

8. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.:

Cloud Computing Patterns - Fundamentals to Design, Build, and

Manage Cloud Applications. Springer, Vienna, Austria (2014)

9. Zhang, L., Zhang, Y., Jamshidi, P., Xu, L., Pahl, C.: Workload

patterns for quality-driven dynamic cloud service configuration and

auto-scaling. In: Utility and Cloud Computing (UCC), 2014

IEEE/ACM 7th International Conference On, pp. 156–165 (2014)

10. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm

for discovering clusters in large spatial databases with noise. In: Proc.

of 2nd International Conference on Knowledge Discovery And, pp.

226–231 (1996)

11. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized

qos prediction forweb services via collaborative filtering. In: Web

Services, 2007. ICWS 2007. IEEE International Conference On, pp.

439–446 (2007)

12. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Qos-aware web service

recommendation by collaborative filtering. IEEE Trans. Serv. Comput.

4(2), 140–152 (2011)

13. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for

cloud-based software. In: Proceedings of the 9th International

Symposium on Software Engineering for Adaptive and Self-Managing

Systems. SEAMS 2014, pp. 95–104. ACM, New York, NY, USA

(2014)

14. Kalekar, P.S.: Time series forecasting using holt-winters exponential

smoothing. Technical report, Kanwal Rekhi School of Information

Technology (2004)

15. Zhao, H., Li, X.: Resource Management in Utility and Cloud

Computing. Springer, New York, USA (2013). Springer Briefs in

Computer Science

16. Xiong, H., Fowley, F., Pahl, C., Moran, N.: Scalable architectures for

platform-as-a-service clouds: Performance and cost analysis. 8th

European Conference on Software Architecture, ECSA 2014 (2014)

17. Mendel, J.M.: Type-2 fuzzy sets and systems: An overview [corrected

reprint]. Computational Intelligence Magazine, IEEE 2(2), 20–29

(2007)

18. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems

made simple. Fuzzy Systems, IEEE Transactions on 14(6), 808–821

(2006)

19. Wu, D.: On the fundamental differences between interval type-2 and

type-1 fuzzy logic controllers. Fuzzy Systems, IEEE Transactions on

20(5), 832–848 (2012)

20. Liang, Q., Karnik, N.N., Mendel, J.M.: Connection admission control

in atm networks using survey-based type-2 fuzzy logic systems.

Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on 30(3), 329–339 (2000)

21. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set.

Information Sciences 132(14), 195–220 (2001)

22. Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed qos evaluation for

real-world web services. In: Web Services (ICWS), 2010 IEEE

International Conference On, pp. 83–90 (2010)

23. Xiong, H., Fowley, F., Pahl, C.: An architecture pattern for multi-cloud

high availability and disaster recovery. In: Workshop on Federated

Cloud Networking FedCloudNet’2015 (2015)

24. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Workload analysis

and demand prediction of enterprise data center applications. In:

Proceedings of the 10th International Symposium on Workload

Characterization. IISWC ’07, pp. 171–180. IEEE Computer Society,

Washington, DC, USA (2007)

25. Cavallo, B., Di, P., Canfora, G.: An empirical comparison of methods

to support qos-aware service selection. In: the 2nd International

Workshop on Principles of Engineering Service-Oriented Systems

(2010)

26. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for

qos-based web service composition. In: Proceedings of the 19th

International Conference on World Wide Web. WWW ’10, pp. 11–20.

ACM, New York, NY, USA (2010)

27. Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J.,

Chang, H.: Qos-aware middleware for web services composition. IEEE

Trans. Softw. Eng. 30(5), 311–327 (2004)

28. Vu, L.-H., Hauswirth, M., Aberer, K.: Qos-based service selection and

ranking with trust and reputation management. In: Proceedings of the

2005 Confederated International Conference on On the Move to

Meaningful Internet Systems. OTM’05, pp. 466–483. Springer, Berlin,

Heidelberg (2005)



Zhang et al. Page 20 of 20

29. Li, Y., Zhou, M.-H., Li, R.-C., Cao, D.-G., Mei, H.: Service selection

approach considering the trustworthiness of qos data. Journal of

Software, 2620–2627 (2008)

30. Wu, G., Wei, J., Qiao, X., Li, L.: A bayesian network based qos

assessment model for web services. In: Services Computing, 2007. SCC

2007. IEEE International Conference On, pp. 498–505 (2007)

31. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based

collaborative filtering recommendation algorithms. In: Proceedings of

the 10th International Conference on World Wide Web. WWW ’01,

pp. 285–295. ACM, New York, NY, USA (2001)

32. Zeng, C., Xing, C.-x., Zhou, L.-z.: A survey of personalization

technology. Journal of Software 13(10), 1952–1961 (2002)

33. Xu, H.L., Wu, X.: Comparison study of internet recommendation

system. Journal of Software, 350–362 (2009)

34. Srinivas, D.: A patterns/workload-based approach to the cloud. DIMS

Lightning Talk, IBM (2013)

35. Gandhi, A., Harchol-Balter, M., Raghunathan, R., Kozuch, M.A.:

Autoscale: Dynamic, robust capacity management for multi-tier data

centers. Transactions on Computers Systems 30(4), 14–11426 (2012)

36. Gambi, A., Toffetti Carughi, G., Pautasso, C., Pezze, M.: Kriging

controllers for cloud applications. IEEE Internet Computing 17(4),

40–47 (2013)

37. Rao, J., Wei, Y., Gong, J., Xu, C.-Z.: Dynaqos: Model-free self-tuning

fuzzy control of virtualized resources for qos provisioning. In: Quality

of Service (IWQoS), 2011 IEEE 19th International Workshop On, pp.

1–9 (2011)

38. Pahl, C., Xiong, H.: Migration to paas clouds c migration process and

architectural concerns. 7th International Symposium on Maintenance

and Evolution of Service-Oriented and Cloud-Based Systems

(MESOCA 2013) (2013)

39. Lelli, F., Maron, G., Orlando, S.: Client side estimation of a remote

service execution. In: Proceedings of the 2007 15th International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems. MASCOTS ’07, pp. 295–302. IEEE

Computer Society, Washington, DC, USA (2007)

40. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: A

systematic review. IEEE Transactions on Cloud Computing 1(2),

142–157 (2013)

41. Wang, M., Bandara, K.Y., Pahl, C.: Process as a service distributed

multi-tenant policy-based process runtime governance. In: Proceedings

of the 2010 IEEE International Conference on Services Computing.

SCC ’10, pp. 578–585. IEEE Computer Society, Washington, DC, USA

(2010)


