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Abstract

We study the uniqueness of viscosity solutions of a Hamilton-Jacobi-Bellman equation
which arises in a portfolio optimization problem in which an investor maximizes expected
utility of terminal wealth in the presence of proportional transaction costs. Our main con-
tribution is that the comparison theorem can be applied to prove the uniqueness of the value
function in the portfolio optimization problem for logarithmic and power utility.
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1 Introduction

The aim of this paper is to establish the uniqueness of viscosity solutions of the following
Hamilton-Jacobi-Bellman (HJB) equation

0 = min
{

LntV(t, b, s),LbuyV(t, b, s),LsellV(t, b, s)
}

, (t, b, s) ∈ [0, T )× S. (1)

The differential operators Lnt, Lbuy, and Lsell in (1) are given by

Lnt = −
∂

∂t
− αs

∂

∂s
−

1

2
σ2s2

∂2

∂s2
,

Lbuy = (1 + λ)
∂

∂b
−

∂

∂s
,

Lsell = −(1− µ)
∂

∂b
+

∂

∂s
,

and the space domain S is

S =
{

(b, s) ∈ R
2 : b+ (1− µ)s > 0, b+ (1 + λ)s > 0

}

.
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Equation (1) is related to an optimal terminal wealth problem in a market with transaction
costs (see Section 2.1 for the model formulation including the definition of the parameters used
above). While it is known that uniqueness holds if one imposes a growth condition at infinity
and assumes that the viscosity solution vanishes on ∂S, this result is not sufficient to cover
some important cases in the corresponding portfolio problem. In particular, if the investor has
a utility function of the form

Up(x) =

{

1
px

p if p < 0,

log x if p = 0,

the corresponding value function V(t, b, s) tends to −∞ at the boundary of S and the existing
comparison theorems do not apply. It is therefore our aim to provide a comparison principle
which covers these cases as well.

1.1 Portfolio optimization with transaction costs

The problem of optimal investment and consumption in the presence of transaction costs has
received considerable attention over the last decades. Despite a wealth of papers, there are
still some open problems which have not been addressed in the literature, in particular, in the
time-dependent case, when the investor aims to maximize expected utility of terminal wealth
without intermediate consumption. While it is known that the corresponding value function
is a viscosity solution of (1), and that the HJB equation admits a classical solution, due to
the lack of a uniqueness result for a certain subset of model parameters it is not known if this
classical solution coincides with the value function in general. Even more, since it is challenging
to construct the optimal strategies, one cannot use a classical verification argument to establish
the link between these two solutions of the HJB equation. Our aim is therefore to establish a
general comparison result for the HJB equation to close this gap. In addition, our uniqueness
result ensures the convergence of numerical algorithms to the correct solution, and hence allows
us to determine the candidate optimal strategy numerically.
The analysis of optimal investment and consumption in the presence of proportional transaction
costs in a continuous-time model was initiated by Magill and Constantinides [21] and insights
were gained on the nature of the optimal strategy. A rigorous solution can be found in the
seminal article of Davis and Norman [10]. Shreve and Soner [25] obtained similar results under
weaker assumptions using a viscosity solution approach. A generalization of this model was
studied by Kabanov and Klüppelberg [15] and de Vallière and Kabanov [12]. All five papers
considered optimal consumption over an infinite time horizon. The optimal terminal wealth
problem with a finite horizon was first treated in Akian et al. [1]. Davis et al. [11] considered
the same HJB equation in an option pricing setting and showed that the value function is a
viscosity solution thereof. Uniqueness was established in the case of exponential utility. Dai and
Yi [9] derived the existence of a regular solution of the HJB equation. Moreover, Kunisch and
Sass [19] and Herzog et al. [14] proposed algorithms to approximate the value function and the
optimal strategies numerically. Liu and Loewenstein [20] obtained a closed form solution under
the assumption that the terminal time is random and Bichuch [4] studied the finite-horizon
problem by means of an asymptotic analysis.
The aforementioned papers approach the portfolio problem using PDE methods. In recent years,
starting with the seminal paper of Kallsen and Muhle-Karbe [17], the infinite horizon problem
has been solved using probabilistic methods. While Kallsen and Muhle-Karbe [17] consider
the logarithmic utility case, the results have been extended to power utility in Herczegh and
Prokaj [13] and Choi et al. [7]. Finally, Kallsen and Muhle-Karbe [18] and Kallsen and Li [16]
use this probabilistic approach to treat the finite-horizon problem for small transaction costs.

2



1.2 Open problems and our contribution

Despite this wealth of papers, a careful inspection reveals that the finite-horizon terminal wealth
problem is still not entirely solved. Open problems include:

(OP1) A rigorous proof of the continuity of the value function in the time variable.

(OP2) Existence of the optimal controls. However, the result is already known to hold in the
infinite-horizon case; see, e.g., Shreve and Soner [25, Section 9]. In the finite-horizon
setting considered in this paper, the existence result appears to be quite sophisticated,
since it requires the existence of an obliquely reflected, two-dimensional process in an
unbounded, time-dependent domain.

(OP3) Uniqueness of the value function as the viscosity solution of the HJB equation in the
case of logarithmic utility or power utility with a negative power. This result is not even
known to hold in the infinite-horizon case.

Regarding (OP3), the main problem is to establish a uniqueness result on the unbounded do-
main [0, T ] × S. In the case of logarithmic utility and negative power utility, it is known that
the value function on the boundary of the space domain S is equal to negative infinity, which
makes a comparison result without growth conditions difficult. We adopt an idea of Vukelja [26]
to tackle this problem. Instead of providing a comparison theorem for subsolutions and super-
solutions u(t, b, s) and v(t, b, s) directly, we first shift the supersolution v by a parameter ε > 0
in the b direction and prove the comparison result for the shifted supersolution. We obtain
the comparison result for supersolutions without shift by sending ε ↓ 0. This approach has the
advantage that the shifted supersolution does not tend to negative infinity at ∂S. For this ap-
proach, it seems to be crucial that the HJB equation does not depend explicitly on the variable
b.
Although our comparison result is general enough to hold for discontinuous viscosity solutions,
we nevertheless prove the continuity of the value function (hence solving (OP1)) in Section 3.
This is because the existing proofs of the viscosity property (cf. Proposition 2.4) and the un-
derlying proof of the dynamic programming principle rely on the continuity of V . Although it
seems to be possible to prove the corresponding results without the continuity (along the lines
of Bouchard and Touzi [6] and Bouchard and Nutz [5]), for the purpose of this paper it seems
to be more straightforward to establish the continuity of V and rely on the existing dynamic
programming and viscosity solution results instead. On the other hand, since we believe that
our method for proving the comparison principle is of independent interest, we state the result
for the general, possibly discontinuous, case.

1.3 Outline of this paper

This paper is organized as follows. In Section 2, we introduce the portfolio optimization problem
under transaction costs. Then we recall some known results, and prove some basic properties of
the value function and the HJB equation. In Section 3, we rigorously establish the continuity of
the value function. Our main result, a comparison principle for the HJB equation (1), is proved
in Section 4.

2 The portfolio problem and known results

In this section, we specify the market model and formulate the optimization problem. Then we
recall some known results about the properties of the value function.
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2.1 Model setup

We consider a market consisting of two assets, namely, a risk-free asset P0 called bond and a
risky asset P1 called stock. On the finite time interval [t, T ], we assume that the prices of the
two assets evolve as

dP0(u) = rP0(u)du, P0(t) = p0,

dP1(u) = αP1(u)du+ σP1(u)dW (u), P1(t) = p1.

We refer to r ≥ 0 as the interest rate, α ∈ R as the drift, and σ > 0 as the volatility of the stock.
Taking P0 to be the numéraire, we may, without loss of generality, assume that r = 0. We assume
that W is a standard Brownian motion defined on the canonical Wiener space

(

Ω,F ,P
)

, where
Ω = C0([0,∞)) denotes the space of continuous functions ω : [0,∞) → R satisfying ω(0) = 0
and where P denotes the Wiener measure. We denote the augmented filtration generated by
(W (u))u≥0 by F = F

0 = (F(u))u≥0 and, similarly, we let Ft = (F t(u))u≥t denote the augmented
filtration generated by (W (u)−W (t))u≥t.

Remark 2.1. The assumption r = 0 ensures that the differential operator Lnt appearing in
the HJB equation (1) does not depend on b. This is crucial for our approach to proving the
comparison principle. Nevertheless, since we can always choose the bond to be the numéraire in
the portfolio optimization problem, this does not pose any restrictions on the market model.

Denote by b and s the investor’s wealth invested in the bond and the stock at time t, respectively.
We assume that whenever the investor buys or sells stocks, she has to pay a fee proportional to
the size of the transaction. That is, if the investor buys stocks for ∆s units of money, she has
to pay transaction costs of size λ∆s, where λ ∈ (0,∞). We assume that the investor pays these
costs from the bond account. Therefore, after the transaction, she holds b− (1 + λ)∆s units of
money in the bond and s+∆s units of money in the stock. Similarly, if the investor sells stocks
for ∆s units of money, she has to pay transaction costs of size µ∆s, where µ ∈ (0, 1).
We can therefore model the investor’s trading strategies as follows. Let L and M be two
F
t-adapted, nondecreasing, càdlàg processes (i.e. right-continuous paths with left limits) with

L(t−) = M(t−) = 0. If L and M represent the cumulative units of money used for stock
purchases and sales, respectively, the investor’s wealth invested in bond and stock, denoted by
B and S, respectively, follows

dB(u) = −(1 + λ)dL(u) + (1− µ)dM(u), u ∈ [t, T ], (2)

dS(u) = αS(u−)du+ σS(u−)dW (u) + dL(u)− dM(u), u ∈ [t, T ], (3)

where we set the initial values to be B(t−) = b and S(t−) = s. The net wealth X of the investor
after liquidation of the stock position at time u is then given by

X(u) :=

{

B(u) + (1− µ)S(u) if S(u) > 0,

B(u) + (1 + λ)S(u) if S(u) ≤ 0.

It is sometimes necessary to stress the dependence of B, S, and X on the initial values and the
trading strategy. To this end, we denote by XL,M

t,b,s (u) the net wealth at time u, if B(t−) = b,
S(t−) = s, and if the trading strategy (L,M) is applied. We may drop some of the indices if
they are clear from the context. Similarly, this applies to B and S in an obvious analog way.
We require admissible strategies to lead to a nonnegative net wealth. For this purpose, we
define the following solvency cone

S :=
{

(b, s) ∈ R
2
∣

∣ b+ (1 + λ)s > 0, b+ (1− µ)s > 0
}

.
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So, whenever (B,S) ∈ S, the investor can liquidate the stock holdings to end up with nonneg-
ative wealth. Let t ∈ [0, T ]. An F

t-adapted trading strategy (L,M) is called admissible for
initial positions (b, s) ∈ S if the corresponding pair (B,S) with initial values B(t−) = b and
S(t−) = s takes values in S for all u ∈ [t, T ]. The set of all admissible trading strategies of this
form is denoted by A(t, b, s).
With this, the objective of the investor is to maximize the expected utility of terminal wealth,
i.e., we consider the optimization problem

V(t, b, s) := sup
(L,M)∈A(t,b,s)

E

[

Up

(

XL,M
t,b,s (T )

)]

(4)

for a utility function Up : (0,∞) → R of the form

Up(x) :=

{

1
px

p if p < 1, p 6= 0,

log(x) if p = 0.
(5)

We extend Up to [0,∞) by setting Up(0) := limx↓0 Up(x).

2.2 Properties of the value function and the HJB equation

The aim of this section is to gather and review existing results and establish some preliminary
properties of the HJB equation which we require later.
We start by constructing a parametrized family of smooth functions which dominate V . For this,
recall that p < 1 denotes the parameter associated with the utility function Up, fix constants
K ≥ 1 and γ ∈ [1− µ, 1 + λ], and define a function ϕγ,p,K : [0, T ]× S → R by

ϕγ,p,K(t, b, s) := Up ((b+ γs)fp,K(t)) (6)

with fp,K : [0, T ] → R+ given by

fp,K(t) := exp

(

K
1

2(1− p)

α2

σ2
(T − t)

)

.

Note that ϕ1,p,1(t, b, s) is the value function of the portfolio optimization problem in the absence
of transaction costs; see Merton [22]. Hence, we can expect ϕγ,p,K ≥ V . Indeed, the next lemma
shows that ϕγ,p,K is a supersolution of (1) and a classical verification argument shows that
ϕγ,p,K ≥ V .

Lemma 2.2. 1. The function ϕγ,p,K is a supersolution of (1) and a strict supersolution if
γ ∈ (1− µ, 1 + λ) and K > 1.

2. We have ϕγ,p,K ≥ V. In particular, V(t, b, s) < +∞ for all (t, b, s) ∈ [0, T ]× S.

Proof. 1. Direct computations reveal that

Lntϕγ,p,K(t, b, s) =
(b+ γs)p

2(1− p)σ2
(fp,K(t))p

[(

α−
γσ2s

b+ γs

)2

+ (K − 1)α2

]

≥ 0,

Lbuyϕγ,p,K(t, b, s) = (b+ γs)p−1(fp,K(t))p(1 + λ− γ) ≥ 0,

Lsellϕγ,p,K(t, b, s) = (b+ γs)p−1(fp,K(t))p(−(1− µ) + γ) ≥ 0,

where the inequalities are strict if γ ∈ (1− µ, 1 + λ) and K > 1.
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2. Fix (t, b, s) ∈ [0, T ]×S, ε > 0, let (L,M) ∈ A(t, b, s), and notice that (L,M) ∈ A(t, b+ε, s).
Let (Kj)j∈N be a sequence of compact sets containing (b, s) and (b + ε, s) such that the
Kj increase to S as j → ∞. For each j ∈ N we define a stopping time

τj := inf
{

u ≥ t :
(

BL,M
t,b (u) + ε, SL,M

t,s (u)
)

6∈ Kj

}

∧ T

and note that τj → T as j → ∞.

Note that BL,M
t,b+ε = BL,M

t,b + ε and write Bε := BL,M
t,b+ε as well as S := SL,M

t,s . Itô’s Formula
for càdlàg semimartingales (see e.g. Protter [24, Theorem II.32]) shows that

ϕγ,p,K(τj , B
ε(τj), S(τj)) = ϕγ,p,K(t, b+ ε, s)−

∫ τj

t
Lntϕγ,p,K(u,Bε(u), S(u)) du

−

∫ τj

t
Lbuyϕγ,p,K(u,Bε(u), S(u)) dLc(u)

−

∫ τj

t
Lsellϕγ,p,K(u,Bε(u), S(u)) dM c(u)

+

∫ τj

t
σS(u)

∂

∂s
ϕγ,p,K(u,Bε(u), S(u)) dW (u)

+
∑

t≤u≤τj

[ϕγ,p,K(u,Bε(u), S(u))− ϕγ,p,K(u−, Bε(u−), S(u−))] ,

where Lc and M c denote the continuous parts of L and M , respectively. Since ϕγ,p,K

satisfies Lbuyϕγ,p,K ,Lsellϕγ,p,K ≥ 0 we see that ϕγ,p,K is non-increasing in the directions
of the jumps of (u,Bε(u), S(u)) by the fundamental theorem of calculus for line integrals
and, hence,

∑

t≤u≤τj

[ϕγ,p,K(u,Bε(u), S(u))− ϕγ,p,K(u−, Bε(u−), S(u−))] ≤ 0.

Moreover, since ϕγ,p,K is a supersolution of (1) it follows that

0 ≤

∫ τj

t
Lntϕγ,p,K(u,Bε(u), S(u)) du,

0 ≤

∫ τj

t
Lbuyϕγ,p,K(u,Bε(u), S(u)) dLc(u),

0 ≤

∫ τj

t
Lsellϕγ,p,K(u,Bε(u), S(u)) dM c(u).

We therefore obtain

ϕγ,p,K(τj , B
ε(τj), S(τj))

≤ ϕγ,p,K(t, b+ ε, s) +

∫ τj

t
σS(u)

∂

∂s
ϕγ,p,K(u,Bε(u), S(u)) dW (u)

and by taking expectations on both sides

ϕγ,p,K(t, b+ ε, s) ≥ E [ϕγ,p,K(τj , B
ε(τj), S(τj))]

for all j ∈ N. Since

ϕγ,p,K(τj , B
ε(τj), S(τj)) ≥ Up (B

ε(τj) + γS(τj)) ≥ Up(ε)
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we can send j → ∞ and use Fatou’s Lemma to see that

ϕγ,p,K(t, b+ ε, s) ≥ E [ϕγ,p,K(T,Bε(T ), S(T ))] = E [Up(B
ε(T ) + γS(T ))] .

Next, observe that we have Bε(T ) + γS(T ) ≥ XL,M
t,b+ε,s(T ) since γ ∈ [1 − µ, 1 + λ]. This

implies that

ϕγ,p,K(t, b+ ε, s) ≥ E

[

Up

(

XL,M
t,b+ε,s(T )

)]

= E

[

Up

(

XL,M
t,b,s (T ) + ε

)]

.

Now send ε ↓ 0 and use monotone convergence to obtain

ϕγ,p,K(t, b, s) ≥ E

[

Up

(

XL,M
t,b,s (T )

)]

and we conclude since (L,M) was chosen arbitrarily.

The following lemma establishes some further elementary properties of V . We note that these
properties have already been observed in Shreve and Soner [25] for the infinite-horizon problem.

Lemma 2.3. 1. The value function is lower bounded, that is

V(t, b, s) ≥ Up (b+min{(1− µ)s, (1 + λ)s}) .

2. For every t ∈ [0, T ], the value function V(t, b, s) is concave in (b, s). In particular, it is
locally Lipschitz continuous on S.

Proof. 1. This follows immediately by considering the strategy of closing the stock position
at initial time t and no trading afterwards.

2. The concavity is inherited from the utility function Up. More details can be found in Shreve
and Soner [25, Proposition 3.1]. Note that every concave function is locally Lipschitz-
continuous in the interior of its domain.

Note that Lemma 2.3.1 allows us to restrict the set of admissible strategies A(t, b, s) to those
strategies (L,M) which satisfy

E

[

Up

(

XL,M
t,b,s (T )

)]

≥ Up (b+min{(1− µ)s, (1 + λ)s}) ,

which we will assume in what follows. Moreover, combining Lemma 2.2.2 and 2.3.1, we see that

V(t, b, s) = Up(0) for all t ∈ [0, T ], (b, s) ∈ ∂S.

The following proposition establishes the link between the value function V and the HJB equa-
tion by showing that the value function is a viscosity solution thereof. We refer to Section 4 for
the definition of viscosity solutions. The proof of the following proposition can be found in Davis
et al. [11] (in a slightly different context), or can be established along the lines of Shreve and
Soner [25, Theorem 7.7]. More details can also be found in Belak et al. [3] and Belak [2], who
consider a more general setting. Note, however, that the value function needs to be continuous
for all these lines of arguments. The proof of the continuity is deferred to Section 3.

Proposition 2.4. The value function V is a continuous viscosity solution of

0 = min{LntV(t, b, s),LbuyV(t, b, s),LsellV(t, b, s)}, (t, b, s) ∈ [0, T )× S,

with boundary condition
V(t, b, s) = Up(0), (b, s) ∈ ∂S,

and terminal condition

V(T, b, s) = Up (b+min{(1− µ)s, (1 + λ)s}) .
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3 Continuity of the value function

In this section, we prove that V is uniformly continuous in the time variable t. In addition, we
use this result to show that the value function is also jointly continuous in (t, b, s).

3.1 Continuity for 0 < p < 1

Let us first consider the case 0 < p < 1. As a preliminary result, we need an estimate on the
growth of the net wealth.

Lemma 3.1. Let (L,M) ∈ A(t, b, s).

1. There exists a constant C0 > 0 independent of (L,M) such that

E [B(T ) + S(T )] = E [|B(T ) + S(T )|] ≤ C0(b+ s).

2. There exists a constant C1 > 0 independent of (L,M) such that

E
[

(B(T ) + S(T ))2
]

≤ C1(1 + b2 + s2).

Proof. We frequently make use of the fact that we have

s ≤ |s| ≤ C(b+ s), b ≤ |b| ≤ C(b+ s)

on S for C = 1 + max{1/µ, 1/λ}. Moreover, the dynamics of B and S imply that we have for
every stopping time θ ≤ T

B(θ) + S(θ) ≤ b+ s+

∫ θ

t
αS(u) du+

∫ θ

t
σS(u) dW (u).

1. Let τn := inf{u ≥ t : |S(u)| ≥ n} ∧ T . Setting K := |α|C, we have

B(τn) + S(τn) ≤ b+ s+

∫ τn

t
αS(u) du+

∫ τn

t
σS(u) dW (u)

≤ b+ s+K

∫ τn

t
B(u) + S(u) du+ σ

∫ τn

t
S(u) dW (u).

Taking expectations on both sides implies that

E [B(τn) + S(τn)] ≤ b+ s+KE

[
∫ τn

t
B(u) + S(u) du

]

.

Since B(u) + S(u) ≥ 0 we have

E [B(τn) + S(τn)] ≤ b+ s+KE

[
∫ T

t
B(u) + S(u) du

]

.

Taking the limit n → ∞ together with Fatou’s Lemma and using that τn → T implies
that

E [B(T ) + S(T )] ≤ b+ s+K

∫ T

t
E [B(u) + S(u)] du

and we conclude by Gronwall’s inequality.
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2. We have

(B(T ) + S(T ))2 ≤ (1 +B(T ) + S(T ))2

≤

(

1 + b+ s+K

∫ T

t
B(u) + S(u) du+ σ

∫ T

t
S(u) dW (u)

)2

.

Using the fact that (a + b)2 ≤ 2a2 + 2b2 and Hölder’s inequality, this implies that there
exists a constant L > 0 such that

(B(T ) + S(T ))2

≤ L

(

1 + b2 + s2 +K2T

∫ T

t
(B(u) + S(u))2 du+ σ2

[
∫ T

t
S(u) dW (u)

]2)

.

(7)

Note that

E

[

(
∫ T

t
S(u) dW (u)

)2
]

= E

[
∫ T

t
S(u)2 du

]

≤ E

[
∫ T

t
(B(u) + S(u))2 du

]

.

Hence, taking expectations in (7) we see that

E
[

(B(T ) + S(T ))2
]

≤ L

(

1 + b2 + s2 +K2T

∫ T

t
E
[

(B(u) + S(u))2
]

du+ σ2

∫ T

t
E
[

(B(u) + S(u))2
]

du

)

and we can again conclude by Gronwall’s inequality.

The next lemma establishes a crucial time-shifting property of the value function, which will
allow us to prove the time continuity by varying the terminal time T instead of the initial time t.

Lemma 3.2. Denote the value function corresponding to the terminal time T by VT . Let
t ∈ [0, T ] and h ≥ −t. Then

VT (t, b, s) = VT+h(t+ h, b, s), (b, s) ∈ S.

Proof. We denote by AT (t, b, s) the set of strategies (L,M) ∈ A(t, b, s) with terminal time T .
We want to show that from every (L,M) ∈ AT (t, b, s), we can construct admissible (Lh,Mh) ∈
AT+h(t+ h, b, s) and vice versa.
For this, recall that every ω ∈ Ω is a continuous function ω : [0,∞) → R with ω(0) = 0. Let
h ≥ −t and (L,M) ∈ AT (t, b, s). Since L and M are F

t-adapted, we see that they can be
written as

L(u, ω) = L
(

u, ω([t+ ·] ∧ u)− ω(t)
)

, M(u, ω) = M
(

u, ω([t+ ·] ∧ u)− ω(t)
)

.

Now, for every ω ∈ Ω and u ∈ [t+ h, T + h], we define

Lh(u, ω) := L
(

u− h, ω([t+ h+ ·] ∧ u)− ω(t+ h)
)

,

Mh(u, ω) := M
(

u− h, ω([t+ h+ ·] ∧ u)− ω(t+ h)
)

.

Then, clearly, Lh and Mh are F
t+h-adapted and (Lh,Mh) ∈ AT+h(t+ h, b, s).

9



Since we can similarly construct admissible strategies for terminal time T from strategies with
terminal time T + h, there is a one-to-one correspondence between the two sets

AT (t, b, s) and AT+h(t+ h, b, s).

Also, it is easy to verify that by the construction of (Lh,Mh) we have

E

[

Up

(

XL,M
t,b,s (T )

)]

= E

[

Up

(

XLh,Mh

t+h,b,s(T + h)
)]

,

which concludes the proof.

We can now turn to the continuity of V in the time variable.

Proposition 3.3. Assume that p ∈ (0, 1) and let (b, s) ∈ S be fixed. Then V(·, b, s) is uniformly
continuous on [0, T ].

Proof. According to Lemma 3.2, we have

|VT (t, b, s)− VT (t+ h, b, s)| = |VT (t, b, s)− VT−h(t, b, s)|

for every h ≥ −t and, hence, in order to prove continuity in t it suffices to prove continuity in
T .

1. We first show that VT is increasing in T . For this, let T− < T+ and fix t ∈ [0, T−]. Let
(L−,M−) ∈ AT−

(t, b, s) and define (L+,M+) such that (L+,M+) = (L−,M−) on [t, T−)

and such that SL+,M+

(u) = 0 on [T−, T+] (i.e., liquidation of the stock position at T− and

no trading afterwards). Then (L+,M+) ∈ AT+
(t, b, s) and XL+,M+

t,b,s (T+) = XL−,M−

t,b,s (T−).

Since (L−,M−) was chosen arbitrarily it follows that VT+
(t, b, s) ≥ VT−

(t, b, s).

2. Let ε > 0. We are left with showing that

VT+
(t, b, s)− VT−

(t, b, s) ≤ ε,

if T+ − T− is sufficiently small. Choose (L+,M+) ∈ AT+
(t, b, s) to be ε-optimal, i.e.,

E

[

Up

(

XL+,M+

t,b,s (T+)
)]

+ ε ≥ VT+
(t, b, s).

Let (L−,M−) be the restriction of (L+,M+) to [t, T−]. We note that clearly (L−,M−) ∈

AT−
(t, b, s). Define A := {XL+,M+

t,b,s (T+) −XL−,M−

t,b,s (T−) > 0}. Then the subadditivity of
Up and Jensen’s inequality show that

VT+
(t, b, s)− VT−

(t, b, s)

≤ E

[

Up

(

XL+,M+

t,b,s (T+)
)

− Up

(

XL−,M−

t,b,s (T−)
)]

+ ε

≤ E

[

Up

(

XL+,M+

t,b,s (T+)1A

)

− Up

(

XL−,M−

t,b,s (T−)1A

)]

+ ε

≤ E

[

Up

((

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−)
)

1A

)]

+ ε

≤ Up

(

E

[(

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−)
)

1A

])

+ ε. (8)
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Write B := BL+,M+

t,b and S := SL+,M+

t,s . Using that (L+,M+) = (L−,M−) on [t, T−], we

have XL+,M+

t,b,s (T−) = XL−,M−

t,b,s (T−) and, hence,

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−)

= XL+,M+

t,b,s (T+)−XL+,M+

t,b,s (T−)

= B(T+)−B(T−) + S(T+)[γ(T+)− γ(T−)] + γ(T−)[S(T+)− S(T−)],

where γ(u) = (1 − µ)1{S(u)>0} + (1 + λ)1{S(u)≤0}. Moreover, note that S(T+)[γ(T+) −
γ(T−)] ≤ 0 and hence

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−) ≤ B(T+)−B(T−) + γ(T−)[S(T+)− S(T−)].

Adhering to the dynamics of (B,S), it follows that

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−) ≤ B(T+)−B(T−) + γ(T−)[S(T+)− S(T−)]

≤ γ(T−)

∫ T+

T−

αS(u)du+ γ(T−)

∫ T+

T−

σS(u)dW (u).

Therefore, we see that

(

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−)
)

1A

≤ (1 + λ)
∣

∣

∣

∫ T+

T−

αS(u) du
∣

∣

∣
+ (1 + λ)

∣

∣

∣

∫ T+

T−

σS(u) dW (u)
∣

∣

∣

and, hence, there exists a constant C > 0 such that

E

[(

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−)
)

1A

]

≤ (1 + λ)E

[

∣

∣

∣

∫ T+

T−

αS(u) du
∣

∣

∣
+
∣

∣

∣

∫ T+

T−

σS(u) dW (u)
∣

∣

∣

]

≤ CE

[
∫ T+

T−

|B(u) + S(u)| du

]

+ CE

[

∫ T+

T−

S(u)2 du

]1/2

≤ C

∫ T+

T−

E[B(u) + S(u)] du+ C

[

∫ T+

T−

E[(B(u) + S(u))2] du

]1/2

.

By Lemma 3.1, there exists a constant K > 0, independent of (L+,M+), such that

E

[(

XL+,M+

t,b,s (T+)−XL−,M−

t,b,s (T−)
)

1A

]

≤ K(b+ s)(T+ − T−) +K(1 + b2 + s2)1/2(T+ − T−)
1/2.

Combining this with (8) yields the desired result.

3.2 Approximation and continuity for p ≤ 0

Note that the only reason why the proof of Proposition 3.3 does not work for p ≤ 0 is because
Up is not subadditive and hence we cannot derive (8). Nevertheless, we can define

U j
p (x) := Up(x+ 1/j), Ũ j

p (x) = U j
p (x)− U j

p (0), x ∈ [0,∞),

11



where j ∈ N. Note that with this Ũ j
p (0) = 0 and hence Ũ j

p is subadditive. We denote by Vj the
value function corresponding to U j

p (x). It can then be verified that Vj(·, b, s) is also uniformly
continuous on [0, T ] for all (b, s) fixed. Indeed, in the proof of Proposition 3.3 we only need to
replace Up by Ũ j

p in (8) (by adding and subtracting U j
p (0)) to make the same proof work.

Lemma 3.4. Let p ≤ 0 and fix (b, s) ∈ S. Then limj→∞ Vj(t, b, s) = V(t, b, s) uniformly in t.

Proof. We consider the case p < 0 only. The case p = 0 follows similarly. First, note that the
family

{

Up

(

XL,M
t,b,s (T )

)

}

t∈[0,T ],(L,M)∈A(t,b,s)
(9)

is uniformly integrable. Indeed, choose q > 1 arbitrary. Then

E

[

∣

∣Up

(

XL,M
t,b,s (T )

)∣

∣

q
]

=
pq

|p|q
E

[

Upq

(

XL,M
t,b,s (T )

)

]

,

and since

Upq

(

b+min{(1− µ)s, (1 + λ)s}
)

≤ E

[

Upq

(

XL,M
t,b,s (T )

)

]

≤ ϕ1,pq,1(0, b, s)

by Lemma 2.3.1 and Lemma 2.2.2 the uniform integrability follows.
Let us now fix j ∈ N, (t, b, s) ∈ [0, T ] × S, and (L,M) ∈ A(t, b, s) arbitrarily. Let furthermore
δ > 0. We calculate

0 ≤ E

[

U j
p

(

XL,M
t,b,s (T )

)

]

− E

[

Up

(

XL,M
t,b,s (T )

)

]

= E

[

(

U j
p

(

XL,M
t,b,s (T )

)

− Up

(

XL,M
t,b,s (T )

)

)

1
{XL,M

t,b,s
(T )>δ}

]

+ E

[

(

U j
p

(

XL,M
t,b,s (T )

)

− Up

(

XL,M
t,b,s (T )

)

)

1
{XL,M

t,b,s
(T )≤δ}

]

≤ U j
p (δ)− Up(δ)− E

[

Up

(

XL,M
t,b,s (T )

)

1
{XL,M

t,b,s
(T )≤δ}

]

,

where the last inequality follows from the fact that the difference U j
p (x) − Up(x) on [δ,∞) is

maximal at δ and since U j
p ≤ 0. Let now ε > 0. By the uniform integrability of (9) and if δ is

small enough, it follows that

E

[
∣

∣

∣

∣

Up

(

XL,M
t,b,s (T )

)

1
{XL,M

t,b,s
(T )≤δ}

∣

∣

∣

∣

]

≤ ε/2,

uniformly in t and (L,M). Next, for this choice of δ, there exists J ∈ N large enough such that

U j
p (δ)− Up(δ) ≤ ε/2

for all j ≥ J . In total, this implies that

sup
t∈[0,T ]

sup
(L,M)∈A(t,b,s)

∣

∣

∣
E

[

U j
p

(

XL,M
t,b,s (T )

)

]

− E

[

Up

(

XL,M
t,b,s (T )

)

]∣

∣

∣
≤ ε

for all j ≥ J .

Proposition 3.5. Let p ≤ 0 and (b, s) ∈ S. Then V(·, b, s) is uniformly continuous on [0, T ].
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Proof. The uniform continuity for (b, s) ∈ ∂S is clear, so let us assume that (b, s) ∈ S. Let
ε > 0, t ∈ [0, T ], and let (tn)n∈N be a sequence in [0, T ] converging to t. By Lemma 3.4 there
exists j ∈ N such that

sup
u∈[0,T ]

|V(u, b, s)− Vj(u, b, s)| ≤ ε/3

and by the continuity of Vj there exists some N ∈ N such that

|Vj(tn, b, s)− Vj(t, b, s)| ≤ ε/3

for all n ≥ N . Hence

|V(tn, b, s)− V(t, b, s)|

≤ |V(tn, b, s)− Vj(tn, b, s)|+ |Vj(tn, b, s)− Vj(t, b, s)|+ |Vj(t, b, s)− V(t, b, s)| ≤ ε

for all n ≥ N .

So, we have in total that V is locally Lipschitz continuous in (b, s) on S and uniformly continuous
in t. In particular, this implies that V is jointly continuous in (t, b, s) as we will see in the
following corollary.

Corollary 3.6. The value function V is continuous on [0, T ]× S.

Proof. Since V(t, b, s) is locally bounded in a small neighborhood of (b, s) uniformly in t, the
local Lipschitz continuity (Lemma 2.3.2) of V holds uniformly in t. With this, it is easy to
prove the joint continuity on [0, T ] × S. Indeed, fix t ∈ [0, T ] and (b, s) ∈ S arbitrarily and let
(tn, bn, sn) be a sequence converging to (t, b, s). Note that (bn, sn) is eventually contained in a
compact subset K of S. By the local Lipschitz continuity of V there exists a constant L > 0
such that

|V(u, bn, sn)− V(u, b, s)| ≤ L(|bn − b|+ |sn − s|)

for all u ∈ [0, T ] and all n. Hence

lim
n→∞

|V(tn, bn, sn)− V(t, b, s)|

≤ lim
n→∞

|V(tn, bn, sn)− V(tn, b, s)|+ |V(tn, b, s)− V(t, b, s)|

= lim
n→∞

L(|bn − b|+ |sn − s|) + |V(tn, b, s)− V(t, b, s)| = 0.

In order to show that the continuity of V extends to the boundary of S, choose (t, b, s) ∈
[0, T ]× ∂S and let (tn, bn, sn)n∈N be a sequence converging to (t, b, s). If s ≤ 0 we have

lim
n→∞

V(tn, bn, sn) ≤ lim
n→∞

ϕ1+λ,p,1(tn, bn, sn) = Up(0),

and if s > 0 we have

lim
n→∞

V(tn, bn, sn) ≤ lim
n→∞

ϕ1−µ,p,1(tn, bn, sn) = Up(0).

Since V(t, b, s) = Up(0) on the boundary this concludes the proof.

4 Uniqueness of viscosity solutions

The notion of viscosity solutions of partial differential equations can be defined in many equiv-
alent ways. We recall the definition which we will use in what follows. An overview of viscosity
solutions and their properties can be found, e.g., in Crandall et al. [8].
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4.1 The notion of viscosity solutions

Denote by S
2 the set of symmetric 2× 2 matrices with entries in R and define

Fnt(s, q, rs, X) := −q − αsrs −
1

2
σ2s2X22,

F buy(rb, rs) := (1 + λ)rb − rs,

F sell(rb, rs) := −(1− µ)rb + rs,

where (b, s) ∈ S, q ∈ R, r = (rb, rs) ∈ R
2, and X = (Xij)i,j=1,2 ∈ S

2. Moreover, set

F (s, q, r,X) := min
{

Fnt(s, q, rs, X), F buy(rb, rs), F
sell(rb, rs)

}

.

Then
F (s,DtV(t, b, s), D(b,s)V(t, b, s), D

2
(b,s)V(t, b, s)) = 0 (10)

corresponds to (1).
Now, let w∗ be an upper semicontinuous function on [0, T ]×S. For (t, x) ∈ [0, T )×S, we define
the superjet J2,+w∗(t, x) of w∗(t, x) to be the set of all (q, r,X) ∈ R× R

2 × S
2 such that

lim sup
t̄→t, x̄→x

1

|t− t̄|+ |x− x̄|2

[

w∗(t, x)− w∗(t̄, x̄)− q(t− t̄)

− 〈r, x− x̄〉 −
1

2
〈X(x− x̄), x− x̄〉

]

≤ 0,

where we assume that (t̄, x̄) ∈ [0, T )× S and where 〈·, ·〉 denotes the inner product on R
2. We

define the subjet J2,−w∗(t, x) of a lower semicontinuous function w∗(t, x) by setting

J2,−w∗(t, x) := −J2,+(−w∗)(t, x).

The closure J
2,+

w∗(t, x) of the superjet J2,+w∗(t, x) is defined to be the set of all (q, r,X) ∈
R × R

2 × S
2 for which we can find a sequence {(tj , xj , qj , rj , Xj)}j∈N with (tj , xj , qj , rj , Xj) ∈

[0, T )× S × J2,+w(tj , xj) such that

lim
j→∞

(tj , xj , w(tj , xj), qj , rj , Xj) = (t, x, w∗(t, x), q, r,X).

The closure J
2,−

w∗(t, x) of the subjet J
2,−w∗(t, x) is defined analogously. In terms of the subjets

and superjets, a viscosity solution can be defined as follows.

Definition 4.1. Let w : [0, T ]×S → R be locally bounded. We denote the upper semicontinuous
envelope of w by w∗, and the lower semicontinuous envelope of w by w∗.

(1) w is called a viscosity subsolution of (10) if, for each (t, b, s) ∈ [0, T )×S and all (q, r,X) ∈
J2,+w∗(t, b, s), we have

F
(

s, q, r,X
)

≤ 0.

(2) w is called a viscosity supersolution of (10) if, for each (t, b, s) ∈ [0, T )×S and all (q, r,X) ∈
J2,−w∗(t, b, s), we have

F
(

s, q, r,X
)

≥ 0.

(3) w is called a viscosity solution of (10) if it is both a viscosity subsolution and supersolution.
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Remark 4.2. Clearly, if w is continuous, then w = w∗ = w∗ and the definition of a viscosity
solution simplifies correspondingly. Hence, in the context of Proposition 2.4, we do not need
to rely on the upper and lower semicontinuous envelopes, but can work with the continuous
value function V right away. However, since it is our aim to prove the comparison result
(Theorem 4.4) in a more general setting, we resort to the more general notion of a discontinuous
viscosity solution in what follows.

The standard tool in proving the uniqueness of viscosity solutions is Ishii’s Lemma, a general-
ization of the maximum principle for viscosity solutions. We state a specialized version of Ishii’s
Lemma suitable for our purposes. More general versions can, e.g. be found in Crandall et al. [8,
Theorem 3.2] or Pham [23, Lemma 4.4.6 and Remark 4.4.9].

Lemma 4.3 (Ishii’s Lemma). Let u be upper semicontinuous and v be lower semicontinuous
on [0, T ]× S. Set

φn

(

(t, x), (t̄, x̄)
)

:= u(t, x)− v(t̄, x̄)−
n

2

(

|t− t̄|2 + |x− x̄|2
)

,

where n ∈ N and (t, x), (t̄, x̄) ∈ [0, T ) × S. If ((t0, x0), (t̄0, x̄0)) is a local maximum of φn, then
there exist X,Y ∈ S

2 such that

(

n(t0 − t̄0), n(x0 − x̄0), X
)

∈ J
2,+

u(t0, x0),
(

n(t0 − t̄0), n(x0 − x̄0), Y
)

∈ J
2,−

v(t̄0, x̄0)

and
(

X 0
0 −Y

)

≤ 3n

(

I −I
−I I

)

,

where I denotes the unit matrix in S
2.

4.2 The comparison principle

We are now ready to present the main result of this paper.

Theorem 4.4. Let u, v : [0, T ]×S → R and fix ε > 0. Assume that u is an upper semicontinuous
viscosity subsolution of (10) and v is a lower semicontinuous viscosity supersolution of (10)
such that

Up(b+min{(1− µ)s, (1 + λ)s}) ≤ u(t, b, s), v(t, b, s) ≤ ϕγ,p,K(t, b, s) (11)

for some p < 1, γ ∈ (1−µ, 1+λ), and K > 1. If u(T, b, s) ≤ v(T, b+ ε, s) and u(t, b, s) ≤ Up(0)
for every (b, s) ∈ ∂S, then u(t, b, s) ≤ v(t, b+ ε, s) on [0, T ]× S.

Proof. Step 1: Suppose that there exists some (t∗, b∗, s∗) ∈ [0, T )× S such that

u(t, b∗, s∗)− v(t∗, b∗ + ε, s∗) > 0.

Let us note that we have by the growth condition (11)

−v(t, b+ ε, s) ≤ −Up(b+ ε+min{(1− µ)s, (1 + λ)s}) ≤ −Up(ε) < ∞.

We therefore have (b∗, s∗) 6∈ ∂S since otherwise

u(t∗, b∗, s∗)− v(t∗, b∗ + ε, s∗) ≤ Up(0)− Up(ε) < 0
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is a contradiction.
Step 2: Define the set

Dε :=
{

(t, b, s, t̄, b̄, s̄) : (t, b, s) ∈ [0, T )× S, (t̄, b̄− ε, s̄) ∈ [0, T )× S
}

.

Now, for some p′ ∈ (p, 1) with p′ > 0, for some δ0 > 0 to be fixed later, and for every n ∈ N, we
consider the upper semicontinuous functions φn : Dε → R defined as

φn(t, b, s, t̄, b̄, s̄) := u(t, b, s)− v(t̄, b̄, s̄)− δ0ϕγ,p′,K(t, b, s)

−
n

2

(

|t− t̄|2 + |b− b̄+ ε|2 + |s− s̄|2
)

as well as φ∞ : [0, T ]× S → R given by

φ∞(t, b, s) := u(t, b, s)− v(t, b+ ε, s)− δ0ϕγ,p′,K(t, b, s).

Note that if (t, b, s, t̄, b̄, s̄) ∈ Dε, then b̄ + min{(1 − µ)s̄, (1 + λ)s̄} ≥ ε and hence −v(t̄, b̄, s̄) ≤
−Up(ε) < ∞. Moreover, since u ≤ ϕγ,p,K ≤ ϕγ,p′,K we have

lim
|b|,|s|→∞

u(t, b, s)− δ0ϕγ,p′,K(t, b, s) = −∞

which implies that the supremum in

Mn := sup
Dε

φn(t, b, s, t̄, b̄, s̄)

is attained at some point (tn, bn, sn, t̄n, b̄n, s̄n) ∈ Dε. Also, both (tn, bn, sn, t̄n, b̄n, s̄n)n∈N and Mn

are finite. Similarly, we have

M∞ := sup
[0,T ]×S

φ∞(t, b, s) < +∞

and the supremum is attained at some point (t∞, b∞, s∞) ∈ [0, T ]× S. Let us now choose

δ0 <
u(t∗, b∗, s∗)− v(t∗, b∗ + ε, s∗)

ϕγ,p′,K(t∗, b∗, s∗)

so that we have

Mn ≥ M∞ ≥ u(t∗, b∗, s∗)− v(t∗, b∗ + ε, s∗)− δ0ϕγ,p′,K(t∗, b∗, s∗) > 0.

Step 3: We want to show that (up to a subsequence)

(tn, bn, sn, t̄n, b̄n, s̄n) → (t∞, b∞, s∞, t∞, b∞ + ε, s∞), Mn → M∞ (12)

and
n
(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)

→ 0. (13)

First, let us recall that the sequence (tn, bn, sn, t̄n, b̄n, s̄n)n∈N is bounded and hence so is the
sequence

(

u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)
)

n∈N

because u− v − δ0ϕγ,p′,K is upper semicontinuous. Now, since Mn ≥ M∞, we have

0 ≤
n

2

(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)

= u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)−Mn

≤ u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)−M∞, (14)
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which implies that the sequence

(n

2

(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)

)

n∈N

is bounded. We can hence find a subsequence of (tn, bn, sn, t̄n, b̄n, s̄n)n∈N (which we again denote
by (tn, bn, sn, t̄n, b̄n, s̄n)n∈N for simplicity) such that

(tn, bn, sn, t̄n, b̄n, s̄n) → (t̂, b̂, ŝ, t̂, b̂+ ε, ŝ) ∈ Dε.

Passing to the limit in (14) now implies that

0 ≤ lim sup
n→∞

n

2

(

|tn − t̄n|
2 + |bn − b̄n + ε|2 + |sn − s̄n|

2
)

≤ lim sup
n→∞

u(tn, bn, sn)− v(t̄n, b̄n, s̄n)− δ0ϕγ,p′,K(tn, bn, sn)−M∞

≤ u(t̂, b̂, ŝ)− v(t̂, b̂+ ε, ŝ)− δ0ϕγ,p′,K(t̂, b̂, ŝ)−M∞ ≤ 0,

which proves (12) and (13).
Step 4: Next we show that t∞ 6= T and (b∞, s∞) 6∈ ∂S. Suppose on the contrary that we have
t∞ = T . Then

0 < M∞ = u(T, b∞, s∞)− v(T, b∞ + ε, s∞)− δ0ϕγ,p′,K(T, b∞, s∞)

≤ u(T, b∞, s∞)− v(T, b∞ + ε, s∞) ≤ 0

which is a contradiction. Similarly, assuming that (b∞, s∞) ∈ ∂S leads to a contradiction since

0 < M∞ = u(t∞, b∞, s∞)− v(t∞, b∞ + ε, s∞)− δ0ϕγ,p′,K(t∞, b∞, s∞)

≤ Up(0)− Up(ε) < 0.

Hence, t∞ 6= T and (b∞, s∞) 6∈ ∂S. Additionally, since tn, t̄n → t∞, bn → b∞, b̄n → b∞+ ε, and
sn, s̄n → s∞, we have (tn, bn, sn, t̄n, b̄n, s̄n) ∈ Dε for n sufficiently large.
Step 5: Let n be large enough such that (tn, bn, sn, t̄n, b̄n, s̄n) ∈ Dε. Then we can apply The-
orem 4.3 (Ishii’s Lemma) to the upper semicontinuous function u − δ0ϕγ,p′,K and the lower
semicontinuous function v to obtain the existence of X,Y ∈ S

2 such that

(n(tn − t̄n), (n(bn − b̄n + ε), n(sn − s̄n)), X) ∈ J
2,+

[u− δ0ϕγ,p′,K ](tn, bn, sn),

(n(tn − t̄n), (n(bn − b̄n + ε), n(sn − s̄n)), Y ) ∈ J
2,−

v(t̄n, b̄n, s̄n),

and such that
(

X 0
0 −Y

)

≤ 3n

(

I −I
−I I

)

. (15)

Since ϕγ,p′,K is smooth, it follows that

(

n(tn − t̄n) + δ0
∂

∂t
ϕγ,p′,K(tn, bn, sn),

(

n(bn − b̄n + ε) + δ0
∂

∂b
ϕγ,p′,K(tn, bn, sn),

n(sn − s̄n) + δ0
∂

∂s
ϕγ,p′,K(tn, bn, sn)

)

,

X + δ0D
2
(b,s)ϕγ,p′,K(tn, bn, sn)

)

∈ J
2,+

u(tn, bn, sn). (16)

17



For ease of notation, let us define

rnt := n(tn − t̄n), rnb := n(bn − b̄n + ε), rns := n(sn − s̄n).

Step 6: Since u is a viscosity subsolution of (10), we can use (16) and the linearity of the
operators Lnt, Lbuy, and Lsell to obtain

min
{

Fnt(sn, r
n
t , r

n
s , X) + δ0L

ntϕγ,p′,K(tn, bn, sn),

F buy(rnb , r
n
s ) + δ0L

buyϕγ,p′,K(tn, bn, sn),

F sell(rnb , r
n
s ) + δ0L

sellϕγ,p′,K(tn, bn, sn)
}

≤ 0. (17)

Similarly, since v is a viscosity supersolution we have

min
{

Fnt(s̄n, r
n
t , r

n
s , Y ), F buy(rnb , r

n
s ), F

sell(rnb , r
n
s )
}

≥ 0. (18)

Our aim is to show that (17) and (18) lead to a contradiction.
Suppose first that we have in (17)

F buy(rnb , r
n
s ) + δ0L

buyϕγ,p′,K(tn, bn, sn) ≤ 0.

But since by (18) we have F buy(rnb , r
n
s ) ≥ 0 it follows that

δ0L
buyϕγ,p′,K(tn, bn, sn) ≤ 0

which is a contradiction since ϕγ,p′,K is a strict supersolution of the HJB equation by Lemma 2.2.1
and since γ ∈ (1− µ, 1 + λ) and K > 1. In a similar fashion, assuming that

F sell(rnb , r
n
s ) + δ0L

sellϕγ,p′,K(tn, bn, sn) ≤ 0

leads to a contradiction. We must therefore have

Fnt(sn, r
n
t , r

n
s , X) + δ0L

ntϕγ,p′,K(tn, bn, sn) ≤ 0.

Thus (18) implies that

Fnt(sn, r
n
t , r

n
s , X)− Fnt(s̄n, r

n
t , r

n
s , Y ) + δ0L

ntϕγ,p′,K(tn, bn, sn) ≤ 0.

Direct computations show that

Fnt(sn, r
n
t , r

n
s , X)− Fnt(s̄n, r

n
t , r

n
s , Y ) = −rnt − αsnr

n
s −

1

2
σ2s2nX22 + rnt + αs̄nr

n
s +

1

2
σ2s̄2nY22

= −αn|sn − s̄n|
2 −

1

2
σ2[s2nX22 − s̄2nY22].

By (15) we have s2nX22 − s̄2nY22 ≤ 3n|sn − s̄n|
2 and, therefore,

Fnt(sn, r
n
t , r

n
s , X)− Fnt(s̄n, r

n
t , r

n
s , Y ) = −αn|sn − s̄n|

2 −
1

2
σ2[s2nX22 − s̄2nY22]

≥ −αn|sn − s̄n|
2 −

3

2
σ2n|sn − s̄n|

2

≥ −2max{|α|,
3

2
σ2}n|sn − s̄n|

2.
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We therefore have

0 ≥ Fnt(sn, r
n
t , r

n
s , X)− Fnt(s̄n, r

n
t , r

n
s , Y ) + δ0L

ntϕγ,p′,K(tn, bn, sn)

≥ −2max{α,
3

2
σ2}n|sn − s̄n|

2 + δ0L
ntϕγ,p′,K(tn, bn, sn)

and since n|sn − s̄n|
2 → 0 as n → ∞ we obtain

0 ≥ δ0L
ntϕγ,p′,K(t∞, b∞, s∞) > 0

which is again a contradiction and hence finishes the proof.

The comparison theorem implies the following uniqueness result. In particular, the value func-
tion V is the unique viscosity solution of the HJB equation.

Corollary 4.5. Let u, v be upper semicontinuous viscosity solutions of the HJB equation satis-
fying

Up(b+min{(1− µ)s, (1 + λ)s}) ≤ u(t, b, s), v(t, b, s) ≤ ϕγ,p,K(t, b, s)

with u(t, b, s) = v(t, b, s) = Up(0) on ∂S and

u∗(T, b, s) = u∗(T, b, s) = V(T, b, s) = v∗(T, b, s) = v∗(T, b, s). (19)

Then u = v.

Proof. Let ε > 0 be arbitrary. Since u and v are viscosity solutions, u∗ is a viscosity supersolu-
tion and v∗ = v is a viscosity subsolution. Moreover, by (19),

v(T, b, s) = Up(b+min{(1− µ)s, (1 + λ)s})

≤ Up(b+ ε+min{(1− µ)s, (1 + λ)s}) = u(T, b+ ε, s) = u∗(T, b+ ε, s).

Hence v(t, b, s) ≤ u∗(t, b + ε, s) ≤ u(t, b + ε, s) everywhere by Theorem 4.4. Sending ε to zero
shows that v ≤ u by the upper semicontinuity of u. Switching the roles of v and u shows the
reverse inequality.
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