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MULTI-MODAL SMART SENSING NETWORK FOR

MARINE ENVIRONMENTAL MONITORING

Dian Zhang

There is an imperative need for long-term, large-scale marine monitoring systems that

will allow decisions to be made based on the analysis of collected data to avoid or limit

negative impacts on the ecosystem. Modern marine environmental sensing technologies,

such as autonomous wireless sensor networks (WSNs), provide the capability to meet the

challenges of high spatial and temporal scales. However, the significant amount of data

generated from WSNs is a significant challenge for manual analysis. These multitudinous

data need to be automatically processed, indexed and catalogued in a smarter way that can

be more easily understood, accessed and managed by operators, scientists and policy mak-

ers. Moreover, current research works show that WSNs have their own limitations, for ex-

ample, reliability issues and the fact that they are passive systems and provide context-less

data. Thus, it is becoming increasingly clear that in order to adequately monitor marine

environments, they need to be characterised from multiple perspectives. Combining mul-

tiple technologies and sensing modalities in environmental monitoring programmes can

provide not only advantages of reliability and robustness for sensing systems, but also

enhanced understanding of environmental processes. In addition, considerable advances

can be made if robust sensing technology can be combined with sophisticated methods of

data analysis, classification and cataloguing. The aim of this work is to bridge the gap be-

tween current aquatic monitoring systems and futuristic ideal large scale multi-modality

smart sensing networks for marine environmental monitoring. To illustrate this, a smart

sensing system is proposed and two case studies are used to show data processing from

in-situ measurements and from camera based visual sensing data automatically using ma-

chine learning techniques. Abnormal events detection results from an in-situ sensor and

shipping traffic detection results from visual sensor are combined to illustrate the benefit

of coupling multiple sensing modalities.
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CHAPTER 1

INTRODUCTION

1.1 Overview

With an estimated coastline length of 3, 171 km and Exclusive Economic Zone (EEZ)

covering an estimated 89 million hectares, the Irish marine resource provides vital and in-

creasing exploitation opportunities. According to the Integrated Marine Plan for Ireland

2012 [1], the Irish ocean economy will generate e6.4 billion a year in turnover by 2020,

contribute 2.4 % of GDP (direct and indirect Gross Value Added) by 2030, and support

approximately 1 % of the total workforce. In Ireland, 99.5 % of foreign trade is facili-

tated through seaports, of which 42 % of the gross domestic product (GDP) is exported

through Dublin Port [2]. From the global economic perspective, marine related activities

are estimated to contribute 2 % of the world’s GDP and approximately 4 % of Europe’s

GDP (in 2007). Approximately 80 % of all international trade is carried by sea [3]. These

increasingly exploited resources must be monitored, managed and protected efficiently

and effectively.

Water quality is also a key factor to human and halobios health. 3.4 million people die

each year from water related diseases [4]. Contaminated water can transmit diseases

such as diarrhoea, cholera, dysentery, typhoid and polio. According to the U.S. National
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Library of Medicine [5], contaminated water is estimated to cause more than 500, 000

diarrhoeal deaths each year. Generally, sea water does not have significant influence on

human health because water cannot stagnate and its saltiness stems bacteria proliferation.

However, open water in estuaries can easily become contaminated due to sewage, surface

runoff or infections spread by wildlife. Bacteria, such as Escherichia coli (E. coli) and

faecal coliform, get into the human body by direct contact or though the food chain and

can cause illness, such as acute enterocolitis and bloody diarrhea.

Fish kills, which are often the first visible signs of environmental stress, may be caused by

a variety of reasons. Dumping of sewage, which has nutrients, such as phosphate, stim-

ulates aquatic plants that use up oxygen as they decompose (known as eutrophication).

The rapid growth of marine flora blocks light to deeper water, further reducing oxygen

levels due to the decrease in the photosynthesis process. Fish and other living vertebrate

die as a result of suffocation. The Irish Central Fisheries Board annual report stated that

53 fish kills were recorded nationally during 2013. Among those, 12 kills were caused by

agricultural practice, 7 by industrial operations and 5 by municipal works. However, the

cause of 28 kills (53 %) are unknown. According to some sources1, over 600 mass death

events were reported in 76 countries in 2014. Approximately 470 out of all those events

are related to the aquatic environment and the causes of the majority of these kills are

undiscovered. Thus, from both economic and ecosystem well-being perspectives, there is

an imperative need for long-term, large-scale marine monitoring systems.

Modern marine environmental sensing technologies, such as autonomous wireless sensor

networks (WSN), provide the capability to meet challenges of high spatial and temporal

scales [6, 7]. In recent years, the development of sensing technology is reaching a mat-

urational stage in terms of cost and accuracy, which presents the opportunity to monitor

large geographical areas with high temporal frequency. However, there are substantial

challenges to widespread deployment of devices to collect data on large spatial scales,

and such goals are not yet achievable in a cost-effective manner, particularly in aquatic

monitoring programmes. High installation and operating costs of deployment infrastruc-

1http://www.end-times-prophecy.org/mass-animal-deaths-2014.html accessed: Nov 2014
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ture coupled with sensor unreliability stemming from factors such as sensor drift and

biofouling result in inadequate spatial coverage of most aquatic zones [8, 9]. In addition,

the significant amount of data generated from in-situ sensor networks cannot be handled

based on manual analysis. These multitudinous data need to be automatically processed,

indexed and catalogued in a smarter way that can be easier understood, accessed and man-

aged by operators, scientists and policy makers. Moreover, current research works show

that WSNs have their own limitations, for example, reliability issues, the use of passive

systems and context-less data. Aquatic environments, especially marine environments,

are very aggressive and sensors are subject to noise, failure or damage. Probes, optical

based sensors in particular, can be blocked by particles which results in noisy readings that

may not reflect the true property of a water body. Malfunctioning sensors may produce

unreliable information or gaps in coverage.

In [10], the author defined in-situ sensing as a technology used to acquire information

about an object when the distance between the object and the sensor is comparable to

or smaller than any linear dimension of the sensor. In contrast, the distance between the

object and the sensor is much greater than any linear dimension of the sensor in remote

sensing.

Current in-situ sensors are passive systems (all the settings are pre-configured and do not

vary during the period of deployment), which are easy to develop, configure and deploy.

However, pre-configured sensors do not adapt based on the occurrences at the scene. In

contrast, active systems adapt based on the dynamics on site, which can provide richer

details of environmental phenomena by increasing sampling rate when it is occurring and

expand life time, especially for reagent based analysers a that contains limited amount

of reagent or battery powered systems, by reducing sampling rate when no events arise.

Also, single modality in-situ sensors result in a lack of surrounding information that could

assist environmental scientists to better understand the causes and the effects of abnormal

events.

Thus, it is becoming increasingly clear that in order to adequately monitor marine envi-

ronments, they need to be characterised from multiple perspectives. Combining multiple
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technologies and sensing modalities in environmental monitoring programmes can po-

tentially provide not only advantages of reliability and robustness for sensing systems,

but also enhanced understanding of environmental processes. In addition, considerable

advances can be made if robust sensing technology can be combined with sophisticated

methods of data analysis, classification and cataloguing.

Automated collection and storage of datasets related to environmental water quality is

now becoming commonplace, however, challenges remain in automated detection of im-

portant events within these datasets and thus determination of the value and ecological

significance of the collected data. This challenge can only increase as the vision of futur-

istic multimodality smart sensing system containing integrated sensing networks becomes

a reality.

Decision-making is the process of reaching a decision based on adequate judgement, in-

cluding identification of the problem, recognition of the solution and ability to evaluate all

options, ultimately reaching the best decision after evaluation of the available data. High

quality, high frequency environmental datasets are required to facilitate this process and

ideally, environmental data would be measured once and utilised in multiple applications

for different purposes.

The aim of this work is to bridge the gap between current aquatic monitoring systems and

the futuristic ideal of large scale multimodality smart sensing networks for marine envi-

ronmental monitoring. To illustrate this, we propose our vision of a smart sensing system,

showing two case studies of automated data processing from in-situ measurements and

from camera based visual sensing data. Ultimately, we combine unusual event detection

results from in-situ sensors and shipping traffic detection from a visual sensor to illustrate

the benefit of coupling multiple sensing modalities. Both case studies demonstrate how

state-of-the-art computer science technologies can be applied to the marine environment

monitoring domain to provide next generation information that supports marine scientists

and policy makers in better understanding marine ecosystems and to allow well informed

decision making.
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1.2 Motivation

Historically, investment in the monitoring of both European and global water bodies has

been low, partly owing to the high costs associated with sample collection and subsequent

analyses in the laboratory. However, monitoring of water, globally and within Europe,

will increase over the coming years to comply with legislative requirements such as the

EU Water Framework Directive [11] and the Water Floods Directive [12], and in response

to the pressures of climate change, which will lead to resource scarcity and water quality

changes. The traditional “spot and grab” sampling approach using conventional sampling

and laboratory based techniques can introduce a significant financial burden, and is un-

likely to provide a reasonable estimate of the true maximum and/or mean concentration

for a particular physico-chemical variable in a water body with marked temporal variabil-

ity. The use of relatively inexpensive in-situ sensors offers the potential to reduce costs

considerably, making it possible to monitor an increasingly wider set of parameters in

the field, as well as providing more useful, continuous monitoring capabilities to give an

accurate idea of changing environmental and water quality. In-situ in the context of envi-

ronmental sensing means sensors in direct contact with the medium of interest, as opposed

to methods such as remote sensing where no contact is made between the sensor and the

analyte. The accurate measurement and detection of environmental pollutants is feasible

under laboratory-controlled conditions but doing so with continuous in-situ monitors re-

mains the most challenging aspect of environmental sensing. One of the advantages of

wireless sensor networks, in-situ sensor or sensors with wireless communication func-

tionality, is that they enable remote continuous monitoring of the environment. Data from

monitoring systems can now be used for a variety of applications in addition to protection

of the environment [13, 14, 15].

Although it is evident that some elements of the ideal monitoring system are in place,

ongoing research and development is required in several areas related to both sensor tech-

nology and field-testing. The ideal monitoring system of the near future might consist

of a network of sensors, deployed at key locations, capable of autonomous operation in
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the field, for long periods (annual to decade time scales). Currently, the building blocks

necessary to achieve the ideal scenario of the measurement, of multiple water quality

parameters, simultaneously and in real-time are available [16]. However, as a scientific

community, we need to improve the quality of some of the more sophisticated sensors

for nutrients, while using the simpler devices in cleverer ways in embedded networks to

make this idea truly achievable. Another consideration is that a common platform for

data validation and sensor verification has yet to be universally implemented to improve

data quality. Data transmission in wireless networked sensors has become one of the most

dynamic and important areas of multi-disciplinary research [17, 18]. Data from monitor-

ing stations can be analysed and communicated by wireless technology to the laboratory,

for statistical processing and interpretation by expert systems. Alerts can be issued to

relevant personnel - through an alarm sent to their mobile devices, such as smart phones,

tablets or laptops - when worrying trends for any constituent of interest or breaches of En-

vironmental Quality Standards (EQS) are detected through the evaluation of water quality

parameters measured numerous times per day. These personnel can then intercept serious

pollution incidents or lead the response deemed to be appropriate.

Existing works in both academia and industry have already showed the power of such

smart systems in terms of better environmental understanding, cost reduction, nature re-

source saving and improved city management. The city of Dubuque, Iowa, U.S., has

used computer science technology to analysis the data collected from 22, 000 smart water

meters. Based on the feedback provided by the system, users changed their behaviours,

which resulted in water consumption decreasing by 6.6 % [19]. In addition, using the

information provided by the Electric Consumption Feedback System, which analyses the

data captured from 765 smart electric meters in Dubuque, householders reduced their

electricity use by 3.7 % [20]. Such reductions lead to less CO2 emissions and ecosystem

damage, which have significant positive environmental impacts.

In Ireland, Dublin City Council (DCC) is already working with IBM on a smart city

project analysing the use of transport within the city, which the council claims has already

led to improved services for users. Insight, a research center at Dublin City University,
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launched a smart gas project that monitored gas emissions at landfill sites using smart gas

sensor [21]. The research findings showed that a smart sensor enabled monitoring sys-

tem presents an effective tool that assists people in better understanding their domiciliary

environments and as a result taking further actions or even changing hardware infrastruc-

ture to reduce their resource usage. In this work, we take the concept underpinning these

works and adapt it to marine water quality monitoring domain.

1.3 Objectives and Research Hypotheses

The objective of this research is to design and investigate novel solutions to address the

gap between current existing single modality in-situ water quality sensors and the future

ideal of multi modality smart sensing networks for marine environmental monitoring. We

aim to explore how state-of-the-art machine learning techniques can be used to automate

the processing of raw sensing data from different modalities thus providing comprehen-

sive information that is more suitable for management. Such information can potentially

provide an improved operator view of the functioning of environments and hence improve

decision making capability. As a result, the system can support scientists in better under-

standing and modelling the marine ecosystem and decision makers in constructing new

policies to better protect environmental and coastal resources.

1.3.1 Hypotheses

In this research the following hypotheses are investigated:

• Machine learning techniques can convert measuring devices to smart sensors that

provide enhanced intelligence to improve marine water quality monitoring opera-

tion and support decision making.

• The use of camera enabled multimodality sensor networks can enhance the use of

a single modality in-situ sensor to provide context information to assist scientists in
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better understanding the ecosystem.

1.3.2 Research Questions

In order to explore the above hypotheses, the following research questions need to be

addressed:

1. Can machine learning methods be used to automate the detection of abnormal

events in the marine environment from in-situ sensing modalities?

2. Can machine learning techniques further group automatically detected abnormal

events into catalogues based on their similarities to assist marine scientists in find-

ing their causes?

3. What information can be extracted from a visual sensor to enhance the deployed

wireless sensor network? Can this information be used to classify the abnormal

events detected by in-situ sensors to assist the marine scientists in better under-

standing and modelling the ecosystem?

4. Can a multi-modal smart sensor framework combine various data sources to pro-

vide a broader picture of monitoring sites and to assist the operators in monitoring

large scale marine environments more efficiently and effectively?

1.4 Contribution

Inspired by the current smart sensing technologies in various domains, we adopt and

adapt the concept of smart sensing to marine water quality monitoring applications. In

this work, a multi-modal smart sensing framework, corresponding to visual support for

in-situ sensors, for marine environmental monitoring is designed. State-of-the-art com-

puter science technologies are investigated to automate the processing of data generated

by both sensing modalities to provide novel information. This work provides a com-

plete framework for unusual event detection and categorisation in a marine environment,
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which can potentially assist marine scientists to better understand, manage and protect the

ecosystem. The investigation results are promising and provide a number of avenues for

further research.

1.5 Thesis Outline

Chapter 1: In this chapter, the need for high spatial and temporal monitoring of a ma-

rine environment is identified from both economical and ecosystem well being perspec-

tives. Current smart sensing technologies applied in various domains have been discussed,

which provides the inspiration for this research. The objectives, hypotheses and research

questions are introduced in this section.

Chapter 2: This chapter provides an overview of the key concepts from the literature

in relation to marine environmental monitoring. Existing marine environmental monitor-

ing applications are reviewed and the key features of these systems are discussed. This

chapter also provides a general introduction to data processing and machine learning tech-

niques applicable to the targeted application domain.

Chapter 3: In order to address the proposed hypotheses, a multi-modal smart sensing

framework is designed. The framework provides a high level infrastructure for a cloud

based, large scale marine sensing system regardless of the number of sensors or sensing

modalities deployed or the number of observing sites. New sensor(s) or site(s) can be

seamlessly plugged into this framework to create a truly dynamic modular system.

Chapter 4: The test site, Dublin Bay, and the technologies deployed along with the issues

are described in this chapter.

Chapter 5: This chapter shows a case study of the in-situ data processing. Anomalies are

first isolated from in-situ sensor measurements then grouped into events. Abnormal events

are further catalogued into sub-classes based on their similarities. The experiments carried

out in this section address the first two research questions, which validates hypothesis 1.

Chapter 6: A second case study is carried out to illustrate the benefits of visual data
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processing. The first part of this chapter investigates the development and evaluation of

a shipping traffic model. The outcome can subsequently be used to evaluate some of the

abnormal events detected from the in-situ data processing stream, which demonstrates the

benefit of coupling multiple sensing modalities. This chapter relates to research questions

3 and 4 and validates hypothesis 2.

Chapter 7 The outcomes of this research are summarised in this chapter along with the

overall conclusions in relation to the research hypotheses. Possible future research direc-

tions are also suggested.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, an overview of some key concepts from the literature in relation to environ-

mental monitoring is provided. It starts with an introduction of the concept of autonomous

wireless sensor networks (WSNs), which provide the fundamental physical infrastruc-

ture for environmental monitoring systems. WSN is a key factor to long-duration and

large-scale environmental monitoring and is the essential component of smart monitoring

systems. The design, such as choosing the network topology and data communication

method, is the first important step of establishing a marine environmental monitoring sys-

tem. Progress of WSNs is highlighted along with the challenges still to be addressed.

Visual sensing as an alternative sensing modality for marine environmental monitoring is

also introduced. Data processing techniques, such as anomaly detection and unusual event

detection, are discussed, which introduces intelligence to WSN systems. To conclude, an

overview of current existing marine monitoring systems is provided in this chapter.
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2.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) have gained significant attention in recent years, par-

ticularly with the concept of the Internet of Things (IoT) [22, 23] and Smart Planet

[24, 25]. A WSN typically consists of a number of sensor nodes (a few to thousands)

working together to monitor a region to obtain data about the environment [26]. These

sensor nodes are often small and inexpensive compared to traditional sensors but with lim-

ited processing resources. In the context of this thesis, a sensor node resident in a WSN

means a device that measures one or multiple physical conditions, for example turbidity,

salinity and temperature levels. A sensor node may also contain a power unit, a control

unit, on board storage and a data transmission component. The power unit provides the

energy source and the control unit controls the processes of data collection and transmis-

sion. The data transmission unit is used to synchronize the signals between a node to

other nodes or a so-called sink node1. It allows the exchange of data remotely without the

need to travel to the observation site, which is useful when the sensor unit is deployed at a

restricted area or a location that is not easily accessed, such as deep underwater. Wireless

Sensor Networks provide the fundamental components of a new generation of develop-

ments that involve observation, understanding and controlling of the physical world.

The advancements in WSNs have resulted in the development of low-cost, low-power,

diminutive and multifunctional devices that consist of sensing, data processing and trans-

mitting components [26]. These low-cost smart units have been successfully employed in

many exciting application domains, such as surveillance, environment, sports, health, au-

tomobile industry etc., and are key components in applications, such as smart bay, smart

home, smart transport, smart product etc. Sensor networks essentially provide a gateway

through which the digital world can sense and respond to changes in the real world [27].

Both Cisco and Ericsson, the world leading communication technology providers, predict

that 50 billion “things” will be connected to the Internet by the year 2020, all sensing,

controlling or providing information about the physical world. WSNs also offer new so-

1In WSNs, a sink node is the unit that establishes and maintains a communication channel between a
WSN deployed at the site and a base station for data exchange.
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lutions for monitoring marine ecosystems in real time. Figure 2.1 (Source: [17], Sensor,

Volume 10, Issue 7, page 6952, with modification) shows a general structure of a WSN

for oceanographic monitoring. Two network topologies, star (point to point) and mesh

(multi-hop), are illustrated.

Generally, devices in a WSN are catalogued in three types, corresponding to sensor node

(treetop), router node (branch) and sink node (trunk). A sensor node may consist of

sensing probes that measure the physical parameters of a body of water; an analogue

to digital converter that digitalizes readings; a wireless transceiver module that sends

or receives data; a power supply module and a micro-controller that controls the whole

process. A router node connects to multiple sensor nodes and other router nodes or sink

nodes depending on the topology applied. The role of router node is to establish and

maintain a data communication channel between sensor node and sink node. The role of

a sink node is to communicate with the base station through various data communication

approaches.

Generally, when developing and deploying a WSN, two aspects need to be emphasised:

the topology of the network and the data transmission method.

Figure 2.1: General structure of a WSN for oceanographic monitoring.
Source: Sensor, Volume 10, Issue 7, page 6952 (with modification)
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2.2.1 Topologies

Many network topologies exist in WSNs. The choice of network architecture for a WSN

is entirely dependent on the application [28]. It depends on the amount and frequency

of data that needs to be transmitted, energy usage, data transmission distance, mobility

of the sensor node, etc [29]. However, the most commonly used topologies in marine

environmental monitoring systems are star, tree and mesh (shown in Figure 2.2, Source:

[30], Sensor, Volume 14, Issue 9, page 16938).

In star topology, all sensor nodes in the network are connected to the sink node directly.

All data passes through the sink node before reaching the base station. The advantages

of star topology are easy configuration, low power consumption and network latency.

Sensor node(s) can be easily connected or removed without disrupting the network. Fault

detection is also much simpler in a star topology. Since the sensor node communicates

with the sink node directly, the network latency is smaller. The disadvantage of this

topology is that there is only one communication channel between sensor node and sink

node. If this channel fails, the sensor node is disabled in the network. In addition, there

is too much dependency on the sink node, if it fails the entire WSN goes down. Also, the

maximum number of nodes in the network depends on the capacity of the sink node.

In a mesh topology, sensor nodes communicate with router nodes, which connect to other

router nodes and finally the sink node, instead of communicating with the sink node di-

rectly. The benefit of mesh topology is it can cover a longer range and provides a fault

tolerance to increase network reliability and the size of the sensor network can be easily

scaled. However, the power consumption is much higher compared with star architecture

and network traffic latency exists. It is also more complicated to maintain a mesh network

and sophisticated routing protocols are required to avoid network traffic collision.

The tree (sometimes referred to as cluster) topology is a hybrid star-mesh architecture,

which takes the advantage of low energy usage from star architecture as well as the ex-

tended range and fault tolerance of mesh topology [30].
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Figure 2.2: General WSN topologies in marine environmental monitoring systems.
Source: Sensor, Volume 14, Issue 9, page 16938

2.2.2 Data Communication

In order to communicate to the base station, sensor nodes in a WSN incorporate a ra-

dio module. Various data transmission technologies exist. The optimal data transmission

method for a WSN is task dependent, normally based on three main factors: bandwidth,

distance and power consumption. However, the underlying protocols, such as Hypertext

Transfer Protocol (HTTP) or Transmission Control Protocol and the Internet Protocol

(TCP/IP), are typically not considered by operators when deploying WSNs. Some com-

monly used wireless data transfer technologies are listed below and discussed in terms of

these factors.

• WiMax: Worldwide Interoperability for Microwave Access is a wide range wireless

communications standard [31] designed to provide high speed connection over long

distance. It can reach 10 Mbps at 10 km with line-of-site (optical visibility). How-

ever, it is a power intensive technology and requires significant electrical support.

In addition, the installation and operational costs are very high. Weather conditions,

such as rain, could also affect the signal.

• Wi-Fi: It is defined as any Wireless Local Area Network (WLAN) that is based on

IEEE 802.11 standards [32]. Wi-Fi is an ad-hoc network, where devices equipped

with a wireless network interface controller connect to a hotspot and the data is

transferred to the Internet or other devices on the local network. Wi-Fi is cheap to
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deploy and maintain. There is no mobile carrier cost if there is a Wi-Fi or Ethernet

connection available on site. Depending on the standards that the devices support,

the data communication speed can reach 300 Mpbs up to 100 meters. The disadvan-

tage of a Wi-Fi enabled sensor is that it consumes relatively high power compared

to other technologies, such as Bluetooth and NFC.

• Mobile Network: In the past decade, mobile network operators have started provid-

ing fast mobile broadband connection services, over 3G and 4G technologies, along

with existing voice and text services based on GSM (Global System for Mobile

Communications) and GPRS (General Packet Radio Service) technologies. The

main advantages of mobile broadband are speed, coverage and cost. The through-

put of mobile broadband connection is between a few hundred kilobits and tens of

megabits per second. According to the Ericsson Mobility Report 2012 [33], more

than 85 % of the world’s population is expected to have 3G coverage by 2017. In

Ireland, almost all areas in the country are covered by cellular carriers and broad-

band contracts are as cheap as e10 per month. However, mobile broadband has a

few limitations. The power requirement is high. A USB 3G dongle may consume a

few watts when transmitting data. Also, the connection is less reliable compared to

others. Mobile network technology is also commonly used in WSNs for data trans-

mission. Many sensors have a GSM module and can send data to another GSM

enabled device or an on-line data portal for further processing. GSM has great cov-

erage throughout the world and the cost of purchase, deployment, maintenance and

operation is low. The greatest disadvantage of GSM is the bandwidth. It is not

suitable for large amounts of data such as image data. Also, if a WSN contains

hundreds of nodes, the cost of sending sensor readings is considerable.

• Bluetooth: It is designed for exchanging data over short distances for fixed and

mobile devices. The new Bluetooth 4.0 includes Classic Bluetooth, Bluetooth

high speed and Bluetooth Low Energy (Bluetooth LE, BLE, marketed as Blue-

tooth Smart). Bluetooth Low Energy [34], the key new feature, is aimed at very low

power applications running off small cell batteries while still providing long range
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and high speed functionality. The power consumption is between 0.01 to 0.5 Watt

depending on use case and it allows 0.27 Mbps throughput and can cover up to 100

meters. Bluetooth is commonly used for inner WSNs communication, where one

sensor node exchanges data with another or other nodes.

• ZigBee: Similar to Bluetooth, it is designed for low power communication over

short distances. ZigBee is typically used in low data rate applications that require

long battery life. Data rates vary from 20 kbit/s to 250 kbit/s and the range is

between 10 to 100 meters. The high power version can reach up to 1500 meters

however, the power consumption is 60 times (60 mW) higher than the standard ver-

sion (1 mW). The cost of deploying and maintaining a ZigBee network is relatively

low. However, like Bluetooth, Zigbee is commonly used for inner node data trans-

mission. Data communication between site and base stations may still require other

types of technologies.

• NFC: Near Field Communication (ISO/IEC 14443 and ISO/IEC 18000-3), is a form

of contactless communication between devices. There are three modes in NFC:

NFC target (acting like a credential), NFC initiator (as a reader) and NFC peer-

to-peer. The main advantages of NFC are it consumes very little power and does

not need to pair like Bluetooth, which allows connection to be quickly established

(less than 1 second). NFC is a relatively new technology and has not been tested in a

marine monitoring system. It may be very useful for on-site data collection, where a

handheld device (reader) can download data from sensor nodes (credentials) within

a close range. Since the NFC target consumes very little power, it can significantly

improve sensor lifetime. However, due to its low power, the transmission distance

is limited (approx. 10 cm).

2.2.3 Issues with WSNs

Sensor networks represent a significant improvement when compared to traditional sen-

sors. However, this brings new challenges. Deployment of a large scale sensor network in
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an environment is generally limited in numbers due to issues related to cost, power, main-

tenance and data transmission capabilities, especially in an aquatic environment [35].

Current deployments of these devices are still relatively small.

Sensing devices are also prone to data faults and node failure. Xu et al. [36] listed factors

that may lead to the failure of WSN, such as hardware or software malfunction, radio

interference, battery depletion or malicious damage. In addition to this, “data fault” is

another recessive failure [37]. Although the sensor is “functioning”, it provides inaccu-

rate information that can lead to incorrect conclusions at the application layer. Previous

research has shown this to be a major issue that still requires further analysis [37].

In addition, sensor networks in marine environments pose unique challenges. Devices,

especially sensing probes, are subject to harsh conditions, which in turn requires greater

levels of protection [27]. Energy consumption is generally much higher in marine en-

vironments since WSNs often need to cover large distances and require attenuated data

transmission channels. Mains power sources may not be available for offshore nodes,

hence energy needs to be harvested on site. Movements of water surface, such as waves,

can cause damage due to friction, such as cable or chain cut. Allowance must be made

for movement of sensor nodes. The cost of installation and maintenance of sensors in ma-

rine environments is much higher than a land-based system [17]. Bio-fouling, the growth

of nuisance or unwanted biofilms on the surface of probes, is one of the major issues in

aquatic monitoring, limiting sensor deployment periods. Developing anti-fouling materi-

als for sensors in coastal or inland aquatic environments is still an active field of research

[9]. Although the cost of sensing instruments are dropping [35], deploying and maintain-

ing such sensing systems are still at a high cost. Chemo-Bio based sensors can only store

a limited amount of reagent and generally consume much more power [35]. Thus, only a

fixed amount of sampling can be performed before maintenance is required.

At application level, raw sensor data generally provides a lack of high level information

that can be easily understood and managed. Hence, techniques for increasing efficiency

and effectiveness of deployed instruments and the adoption of alternative sensing modal-

ities such as visual sensors, as investigated in this thesis, are worth exploring.

18



2.2.4 The Future of WSNs

Current research works in WSNs are not limited to a single domain. The development

of new and reliable physical/chemical sensors, new anti-fouling solutions is still ongoing.

However, in recent years it has been realised that existing WSNs can be significantly

enhanced by introducing alternative sensing modalities [27].

Visual sensing, sensing from camera or satellite-based imaging instruments, has been

proposed as an alternative sensing modality in a variety of contexts in the literature. A

number of initiative research projects [38, 39, 40] have illustrated that visual sensing

represents a very valuable sensing modality for complementing the use of in-situ sensor

networks. It provides visual evidence that can be used to validate in-situ measurements

or context information that can be used to control WSNs. For example, operators can

query image data during the period of an event, which is detected by an in-situ sensor and

examine whether the event is caused by local activities. In addition, activities detected by

visual sensors can be used to trigger in-situ sensor measuring or increase their sampling

rate (adaptive sampling) to increase in-situ sensor efficiency.

The rapid growth of social media, such as Facebook2, Twitter3, Flickr4, Google+5, Tum-

blr6 etc., with billions of registered users, million of images and zillions of messages

shared daily, establishes a new form of WSNs. In contrast to traditional WSNs, the so-

cial media constructs a “virtual wireless sensor network”. Users on social media act as

“sensor nodes” and the images and messages that they share are “sensor measurements”.

However, unlike traditional WSNs, these sensor measurements are highly heterogeneous

and very unreliable. Many projects have already started to investigate how social me-

dia data can be used for some types of monitoring [41, 42]. Moreover, social media has

played a great part in response to environment significance. During the earthquake in

Haiti, social media users were used as a base for volunteers by Ushahidi, a piece of soft-

2https://www.facebook.com
3https://twitter.com/
4https://flickr.com
5http://plus.google.com
6http://www.tumblr.com
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ware that allows digital volunteers to create maps for first responders in a disaster zone

[43]. In [44], Starbird et al. analysed the use of Twitter, an on-line social media service

that allows users to send and read short messages called “tweets”, during the Red River

Valley flooding event in America and Canada in March and April 2009. They concluded

that social media activities can be connected to environmental threats.

It has also been realized that the introduction of intelligence into the sensor networks by

adopting state-of-the-art computer science technologies, particularly from the machine

learning domain, can significantly enhance existing WSNs. In [27], O’Connor applied a

trust and reputation system to WSNs. The system identifies unreliable sensor nodes and

removes them from the network to maintain the overall system reliability. Diamond et

al. [35] notes that less reliable but more abundantly low cost sensors can be used as in-

dicators to modify the operating characteristics of more sophisticated nodes. Information

retrieved from relatively dumb sensors can be used to trigger the delicate nodes. These so-

phisticated sensors can subsequently confirm or dispute the information coming from the

less reliable sensors. This can shorten the duty cycle of the more delicate sensors, which

reduces the energy required and their overall efficiency and increases their lifetime in the

field, while maintaining high resolution sensing. Intelligence on chip can also reduce

communication costs. Data pre-processing, such as anomaly detection, can be performed

locally and only unusual measurements are sent back to the operation centre. This can

significantly reduce the energy consumption since data transmission, especially over long

distance, consumes the majority of energy in WSNs [45].

Information integration is not a new topic and has existed in many forms in various re-

search areas [46, 47, 48]. Information integration, in the context of environmental mon-

itoring, involves combining data from sensors, either heterogeneous or homogeneous, in

order to provide a more complete, a more accurate overall picture of the underlying ecol-

ogy which is being sensed [49]. Research works in [49, 50, 51] demonstrated the potential

usefulness of such an integration system. In this thesis, the focus is to investigate what is

possible with a single such multi-modal system in the context of long term marine envi-

ronmental monitoring. Due to the high cost and the limitation of the test sites currently
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available, multiple deployments of many such systems into a WSN is the subject of future

work.

2.3 Marine Water Quality Monitoring Systems

During the past decade, many marine environment monitoring systems have been devel-

oped and deployed. In this section, a comprehensive review of related projects, systems

and techniques in the literature on marine environment monitoring based on wireless sen-

sor networks is presented.

O’Connor et al. [52] proposed a multi-modal event monitoring system based on WSNs

and visual images for event detection at rivers and estuaries. They investigated the use of

a multi-modal sensor network where visual sensors, such as cameras, along with context

information can be used to complement and enhance the usefulness of a traditional in-situ

sensor network in measuring and tracking some features of a river or coastal location.

A study has also been conducted in [52] to illustrate how context information can be

extracted from images and further used to evaluate in-situ sensor measurements.

Khan et al. [53] proposed a decentralized ad-hoc wireless sensor network for ocean pol-

lution detection. To extend the network deployment duration and to improve its quality of

service, they focused on the deployment of sensors, protocol stacks, synchronization and

routing algorithms.

In [54], Perez et al. presented a small scale WSN based monitoring system for a coastal

shallow water body. The system was tested in a real environment in the Mar Menor

coastal lagoon, situated in the South-East of Spain. Two solar panels were equipped for

energy harvesting on site. A data portal was developed using LabVIEW (Laboratory

Virtual Instrumentation Engineering Workbench) prototype software package. Inner net-

work communication (between nodes) was implemented using ZigBee, and GPRS was

used for communicating with a base station. The project focused on the design and test-

ing of the hardware infrastructure for general oceanographic observation purposes, where
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no sophisticated data processing was presented.

Alkandari et al. [55] showed a case study of monitoring water characteristics, such as

temperature, pH, dissolved oxygen, etc., at sea surface. An architecture of a WSN along

with a data acquisition, transmission and visualization platform was introduced. A web

portal, which allows operators to access sensor readings via Internet was also provided.

SquidBee (Adruino and XBee based open hardware device) was used as the sensing nodes

and ZigBee data transfer protocol was applied for data communication between sensing

nodes and cluster head node (sink node). The cluster head node has Wi-Fi capability,

which sends data to a server. The system was tested in the laboratory and planned to be

deployed at Kuwait Gulf. High level data processing was not presented in this work.

Regan et al. [56] described the development and testing of a multi-sensor heterogenous

real-time water monitoring system that measured water quality parameters, such as pH,

temperature, conductivity, turbidity and dissolved oxygen. The features that are required

for such monitoring systems were introduced. The challenges of design, development,

maintaining water quality monitoring systems in real word environment were listed and

the possible solutions were discussed in this work. The system was deployed at five sites

on the River Lee, Ireland. A ZigBee data transmission system was developed to enable

data acquisition and dissemination at the site. Trend analysis was carried out in this work.

In [57], Cesare et al. designed and deployed a WSN-based seawater luminosity, tem-

perature and moisture monitoring system. It has been deployed with success at Moreton

Bay, Brisbane, Australia, to monitor the water conditions of a segment of the Australian

Coral Reef. Data transmission followed the ZigBee protocol. ZigBee standard was used

for data communication between node and gateway and ZigBee high power was used for

information exchange between gateway and base station. A graphical user interface was

developed for data browsing.

In addition to the research works discussed above there are many other WSNs based ma-

rine monitoring systems outlined in the literature [58, 59, 60, 61]. However, the majority

of these research works focus on the design and the development of hardware infrastruc-
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ture and data communication protocols, which demonstrate the lack of data processing

at a higher level. Very little work has been done to bring intelligence into WSNs and to

automate data processing to convert raw data into information that is easier to interpret

and understand. WSN developers are usually not, or not completely aware, of the poten-

tial that computer science technologies can offer. On the other hand, computer science

researchers are not familiar with all the real problems and subtle requirements of WSN

systems [62]. For this reason, in this research, the focus is to bring these two fields to-

gether. Specifically, applying the state-of-the-art machine learning and image processing

techniques to automate the processes of raw sensor data from multiple sensing modalities

to create a rich content based information repository that is more suitable for management.

2.4 Anomaly Detection

In order to detect and catalogue events in aquatic environments, anomalous sensor mea-

surements need to be isolated from the input data stream. To achieve this, an anomaly

detection technique is generally applied. Anomaly detection refers to the problem of find-

ing values in sensor readings that do not conform to expected behaviour. These non-

conforming values are often referred to as anomalies, outliers, discordant observations, or

exceptions depending upon the application domain [63]. Anomaly detection is an impor-

tant problem that has been studied within diverse research areas and application domains

[64, 65]. Many anomaly detection techniques have been developed over time. In [63],

Chandola et al. listed a number of challenges to be faced when developing an anomaly

detection method:

• Defining a normal region that encompasses every possible normal behaviour is very

difficult.

• Normal behaviour keeps evolving and a current notion of normal might not be suf-

ficiently representative in the future.

• The exact notion of anomaly is different for different application domains.
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• Availability of labelled data for training/validation of models used by anomaly de-

tection techniques is usually a major issue.

Due to these facts, most of the existing anomaly detection techniques solve a specific

formulation of the problem. Some of the popular techniques are density based [66, 67,

68], machine learning and data mining based [69, 70, 71, 72, 73, 74].

Anomalies can be classified as point anomalies, where an individual data instance is sig-

nificant from the rest of the data; contextual anomalies, where a data instance is anoma-

lous in a specific context, but not otherwise; collective anomalies, where individual in-

stance is normal but a collection of related data instances is anomalous with respect to the

entire dataset [75]. All the above types of anomalies exist in marine monitoring systems.

For example, an excessive turbidity measurement may be caused by blockage of the sen-

sor probe, a high temperature reading is normal in summer time but is abnormal during

the winter period and tide levels may not follow the sine wave pattern as expected.

To develop an anomaly detection algorithm and the subsequent evaluation protocol, a set

of labelled (sometimes referred to as annotated or ground truth dataset) data is generally

required. In other research domains, such as image processing, many organizations pro-

vide public annotated datasets that can be used to develop, evaluate and compare different

methods proposed by researchers. However, obtaining such a dataset that is accurate as

well as representative of all types of behaviours is often difficult and expensive, and not

yet available in marine environmental monitoring research domains.

Machine learning and data mining based anomaly detection methods can be categorised

into three modes: supervised, semi-supervised and unsupervised. Supervised detection

methods require labelled training data to build a model, and then can be used to classify

a new given instance. However, these methods are not commonly used due to a number

of issues. Firstly, the number of anomalous instances are far less than normal instances,

which will introduce an imbalanced class distribution. This issue has been addressed in

the data mining and machine learning literature [76, 77]. New methods are still being

developed to solve this issue [78, 79, 80]. Secondly, supervised learning methods tend to
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work well on the data that have been seen but may perform poorly on unobserved data

as supervised learning requires more accurate and representative training data that ideally

describes all scenarios. However, in real marine environments, gathering such a training

dataset is prohibitive. For example, a natural disaster event may only happen once over

many years. In addition, building a model requires a set of training data, which means it

cannot perform the detection task until the training phase is completed. Semi-supervised

detection is a situation in which the training data of some of the samples are labelled.

Semi-supervised methods are able to make use of unlabelled data to better capture the

nature of the underlying data distribution and generalize better to new instances. This

method also operates when only normal data is available, which can be used to build

a normal model. A limited set of anomaly detection techniques exists that assume only

anomaly samples are available for training [81, 82, 83]. These methods are not commonly

used as it is difficult to obtain a training data set that covers all possible anomalous sce-

narios. Unsupervised anomaly detection techniques detect anomalies in an unlabelled test

data set under the assumption that the majority of the instances in the data set are normal

and proceed by looking for instances that seem to fit least to the remainder of the data set.

Such techniques typically suffer from high false alarm rate [84]. Anomaly detection is

the first step of the detection of unusual events, which consist of a single or a collection

of anomalies.

2.5 Unusual Event Detection and Clustering in WSNs

Unusual event detection is a key component for many WSN applications [85, 86]. An un-

usual event can be defined as a collection of a single or multiple consecutive anomalies in

the environmental parameters. It is one of the most important tasks in WSN applications

because it is an efficient way for mining meaningful information out of huge volumes of

sensor data [86].

The prevailing approach is to use a single or combined multi-threshold primitives also

known as SQL-like semantics [85, 87, 88, 89]. For example, select all anomalous events
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with temperature value greater than 30 ◦C and/or salinity level lower than 20 NTU. How-

ever, this simple threshold solution may not be always suitable especially in a dynamic

environment, where the ambient conditions are constantly changing. Defining and main-

taining suitable thresholds in a dynamic environment is very difficult. Complex events

with spatio-temporal variety in the environment can typically not be captured by a sim-

ple cut-off method [90]. There is also no clear border between normal and unusual data

instances. In some applications, unusual event patterns are predefined by field experts,

who have made thorough analyses of historical data in an off-line fashion. This manual

process is labour intensive and in many areas such domain knowledge is limited [86].

Furthermore, unusual events may be of different varieties. For example, a wind storm

is an abnormal event in the context of marine environment while a heavy rainfall is also

an unusual event but these two events have very different characteristics. A solution to

these issues is to learn these event patterns through a training process, known as machine

learning. In 1959, Arthur Samuel defined machine learning as a “Field of study that

gives computers the ability to learn without being explicitly programmed” [91]. Tom M.

Mitchell provided a widely quoted, more formal definition: “A computer program is said

to learn from experience E with respect to some class of tasks T and performance measure

P, if its performance at tasks in T, as measured by P, improves with experience E” [92].

Machine learning, a sub-field of artificial intelligence (AI), is the design and development

of algorithms that take in empirical data, such as sensor readings, and make informed

decisions. Algorithms can take the advantage of examples (training data) and capture

patterns of interests and predict properties of unknown data. Machine learning has been

widely used in the fields of natural language processing, computer vision, information

retrieval, object recognition, pattern recognition etc. Machine learning algorithms can be

organized into the following categories: supervised learning, unsupervised learning and

reinforcement learning.

• Supervised learning is the machine learning task, which creates a function from a

training data set with ground truth. Each data entry in the data set is a pair con-

sisting of a set of values (called feature vector) that represent some object and a
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desired output value. In some cases, more than one features are extracted from

an object and they are grouped together to represent the object. For convenience,

these features are called low level features and the grouped feature set is refereed

as descriptor. A supervised learning algorithm analyses this data set and produces

an inferred function, which is called a classifier, to be able to predict the correct

output label for new valid instances that may not yet have been seen. Supervised

learning is often referred as concept learning in human and animal psychology re-

search domains. Classification, an instance of supervised learning, is to solve the

problem of identifying the sub-class to which a new instance belongs. An example

of a classification problem would be the vehicle classification, in which the aim is

to assign each input vector (e.g. size, weight) to one of the finite number of discrete

categories (e.g. car, van, bus or truck). Regression analysis, another instance of su-

pervised learning, is to estimate the relationship between a dependent variable and

one or more independent variables. An example of a regression problem would be

the prediction of water level as a function of visual features such as the appearance

of a rock or the position of a floating dock within an image.

• In unsupervised learning, the training data consists of a set of raw input vectors

without any corresponding target values. The system tries to learn the hidden struc-

ture within the data set. The goal of unsupervised learning may be to discover

groups of similar examples within the data, known as clustering, or to determine the

distribution of data within the input space, called density estimation, or to project

the data from a high-dimensional space down to low-dimensions for the purpose of

data visualization or reducing the amount of data to be further processed. Since the

examples given to the learner are unlabelled, there is no error or reward signal to

evaluate a potential solution.

• In reinforcement learning, an algorithm is responsible for making decisions, and it

periodically receives some sort of award or utility for its actions. Reinforcement

learning is learning by interacting with an environment [93]. It is defined not by

characterizing learning methods, but by characterizing a learning problem. A good
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example of reinforcement learning is a robot navigation system. A negative penalty

will be given if its collision sensor detects that the robot has hit an object. Even-

tually the robot will correlate the range finder sensor data with the collision sensor

data and the directions that it sends to the wheels. This will finally make the navi-

gation decisions that result in the robot not bumping into barriers.

2.6 Evaluating Classification Results

There are many approaches that can be used to measure performance of a classifier, from

more generally used Precision and Recall, to more considered metrics that suit certain

experimental use cases [94, 95, 96]. When evaluating the performance of a classifier,

there are four basic outputs: true positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN). These outputs are normally arranged into 2 x 2 contingency

table, referred as a confusion matrix, with columns corresponding to actual value and

rows corresponding to classification value as shown in Table 2.1.

classification value

actual value
TP FN
FP TN

Table 2.1: Confusion matrix table.

Precision is the fraction of retrieved instances that are relevant, while recall is the fraction

of relevant instances that are retrieved. Both precision and recall are based on an under-

standing and measure of relevance. The precision and recall values can be calculated as

follows:

precision =
TP

TP + FP
(2.1)

recall =
TP

TP + FN
(2.2)

The F-score is a measure of a test’s accuracy, which considers both precision and recall
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of the test to compute a single accuracy measure [97]. F-score can be interpreted as

a weighted average of precision and recall. The most commonly used F-score is the

balanced F-score referred as F1-score, which is the harmonic mean of precision and recall.

The F1-score reaches its best value at 1 and worst score at 0:

F1 = 2 · precision · recall

precision + recall
. (2.3)

Another commonly used performance metric for classification algorithms is the Receiver

Operating Characteristic (ROC), where the true positive rate is plotted against the false

positive rate at varied classification threshold settings. This performance metric has been

widely used in anomaly detection and abnormal event detection applications [98, 99, 100].

In ROC space, the lower left point represents the strategy of never alarming, the upper

right point represents the strategy of always alarming, the upper left point represents per-

fect classification, and the diagonal line (bottom left to upper right) represents the strategy

of randomly guessing the class. Informally, one point in ROC space is better than another

if it is to the upper left (TP is higher, FP is lower, or both). ROC analysis provides tools

to illustrate the behaviour of a classifier without regard to class distribution or error cost,

and so decouples classification performance from these factors [101]. It is also common

to calculate the area under the ROC curve (AUC), which is the line that connects the set

of points of the corresponding classifier in ROC space, for model comparison. The larger

area the curve covers indicates a better classification performance.

2.7 Summary

In this chapter, an overview of the key concepts from the literature in relation to marine

environmental monitoring is provided. The current and future progress of sensor networks

are discussed. As outlined in [16], the basic hardware infrastructure is now in place for

long term marine environment monitoring. Although there is ongoing research and de-

velopment in the areas relating to both sensor and wireless data transmission technolo-
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gies, there is a clear need to investigate innovative methods to manage these monitoring

systems effectively and efficiently. Anomaly detection, the first element of introducing

intelligence to WSNs is highlighted in this chapter followed by the discussion of unusual

event detection and clustering in WSNs. Standard classification performance evaluation

methods, which are used to evaluate the experimental result in this thesis, are also intro-

duced.
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CHAPTER 3

A FRAMEWORK FOR A MULTI-MODAL SMART

SENSING SYSTEM

3.1 Introduction

In order to investigate the proposed hypotheses in Section 1.3.1, a multi-modal smart sen-

sor network framework must be designed. Figure 3.1 illustrates the proposed structure of

the system. This framework is architected in a flexible manner that can be deployed in

a computing cloud. A computing cloud is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.

networks, servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction [102]. Deploy-

ing the designed multi-modal smart sensing system in a cloud has a number of benefits. In

a real deployment, the amount of information available will grow quickly over time. As

the volume of the data grows, the computational and storing resources that are required to

process and store this data increases. Cloud computing offers an attractive solution that

such resources can be located on-demand with minimal modification and costs. Whilst

the cloud-based repository presents an attractive proposition from a storage perspective,

this information is only useful if it can be easily accessed after the fact.
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The framework consists of three layers corresponding to data collection, data process-

ing and information layers. The data collection layer takes input from multiple resources

at various observation sites and provides formulated data segments to the data process-

ing layer. The data processing layer acquires these formulated data segments from the

data repository (resident in the data collection layer), detects and catalogues real world

events, which may be interesting depending on user requirements. The information layer

provides an interactive graphical user interface (GUI) that allows end user queries in the

sensor network, via the cloud, to support a rich set of queries. High level content-based

knowledge is provided at this layer, which can be easily understood and accessed by the

end user.

Figure 3.1: A schematic outlining the architecture of the proposed multi-modal smart
monitoring system, including treatment of the data and the feedback mechanisms for
decision-making.
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3.2 Data Collection Layer

The data collection layer is the middle tier that sits between deployment sites and back-

end system, rendering the sites and various sensing modalities transparent to the data

process. This virtual data aggregation system, as shown in Figure 3.2, allows the number

of observing sites and the number of sensors equipped at each site to expand dynamically.

The designed architecture of the data collection layer is flexible and extendible allowing

other sites and data sources to be added without overly increasing complexity.

Figure 3.2: Block diagram of the data collection system. Data acquisition system extracts
data from various sensors through different communication methods and stores data to a
centralized repository. The system also provides formatted data segments to the back-end
data processing system. All the data acquisition, storage and processing systems can be
deployed on a computing cloud, which can be expanded on-demand.

The data collection layer takes inputs from multiple resources at various observation sites,

e.g. multi-parameter in-situ sensors (in-situ Internet, in-situ 3G, in-situ GSM), visual sen-

sors, external data sources (meteorological data for instance) and save them to a central-

ized data repository (e.g. a cloud data centre). Each sensor modality may have its own

data and communication format. For instance, an in-situ sensor sends plain text measure-

ments to the server via GSM network. In contrast, an image sensor sends a sequence of

images to a data centre through the 3G mobile internet connection. Furthermore, exter-
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nal resources, such as rain gauge data and tidal information, which are relevant to water

quality parameters may all have different data formats. The data collection layer pro-

vides a Universal Serial Bus (USB) like interface. Once the data format and the data

communication method of a sensor modality are defined, it can simply be plugged into

the data aggregation system. Ideally, the multi-modal sensing system would integrate as

many sensing modalities as possible and fuse all data into a centralised location to be pro-

cessed. Access to such data sources can potentially provide much greater understanding

of environment than any one modality along [51, 52].

3.3 Data Processing Layer

The smart system, resident in the data processing layer, pulls a set of formulated data

segments from the data repository and then processes it using the state-of-the-art machine

learning techniques to convert raw sensor measurements into organized knowledge that

can be easily understood and accessed by end users. Various machine learning techniques

can be applied to process data gathered from all sensor modalities and generate multiple

outputs according to a user’s interests. The system can also send real time alerts, via text

message or e-mail, to operators if an abnormal event is being detected, so that they can

react quickly to avoid or limit negative impacts. In this work, a sensor communication

malfunction alerting system is developed using Nexmo. The alerting system tracks the

inputs from all sensors and if any sensor is off-line longer than a pre-defined period, a

text message will be sent to system operators. Nexmo1 is a cloud-based Short Message

Service (SMS) and Voice API (application program interface) that provides the service of

sending and receiving high volume of messages at wholesale rates.

1https://www.nexmo.com/
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3.4 Information Layer

The information layer provides a graphic user interface (GUI) for end users to interact

with. For example, show all the events detected by a visual sensor along with in-situ

sensor readings during these periods. Also, the end user could query all turbidity abnor-

mal events in the last N months and browse the image data associated with these events.

Within this list of abnormal events, find events that are similar in terms of sensor measure-

ment patterns from the previous year. Based on the information provided, operators can

send feedback to the deployed system, for instance to reduce the redundancy in the sensor

network or increasing/decreasing the sampling rate. New policies can be specified based

on the analysis of the information provided by the system. For example, re-scheduling

the discharging of waste water to make less impacts to the aquatic environments.

3.5 Summary

In this chapter, a multi-modal smart sensing system framework has been designed and the

structure of the system discussed. The framework is architected in a flexible manner that

can be deployed on a computing cloud. The system is designed to meet the requirement

of future large scale multi-modality sensor networks, whereby sites and sensors can be

dynamically added or removed. The system also provides a user interface that allows a

rich set of queries from end users. In the next chapter it is explained how this system

was deployed at a specific test site. In Chapter 5 and 6, two case studies have been

carried out to illustrate how the designed system could perform in practice. The first case

study (Chapter 5) shows how raw in-situ water quality parameters can be converted into

organized event based information and the second case study (Chapter 6) exhibits how

the smart system can be used to detect events from a visual sensor. Subsequently, an

example of how these multi-modality information can be combined at the information

layer is presented. The two case studies show an implementation of the proposed multi-

modal smart sensing system at one test site (Dublin Bay) from data collection layer to data
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processing and information layers as illustrated in Figure 3.1. Future work shall involve

the evaluation of the proposed methods used in the two case studies on multiple test sites

once they become available, which completes the implementation of the overall proposed

framework.
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CHAPTER 4

TEST SITE AND SYSTEM DEPLOYMENT

4.1 Introduction

The following chapter describes Dublin Bay, Ireland, as a test site along with the equip-

ment used for collection of continuous monitoring data. This corresponds to a practical

implementation of the framework described in the previous chapter. Both the in-situ and

visual sensing modalities deployed at the site, are described in detail in this chapter along

with practical issues concerning deployment in a real environment.

4.2 Dublin Bay

Dublin Bay (latitude: 53◦20’39”, longitude: -6◦12’59”) is located on the lower Liffey

Estuary in Dublin Ireland (Figure 4.1). The River Liffey, which flows through the centre

of Dublin, plays an extremely important role in terms of water management in Dublin as

around 60 % of its flow is abstracted for drinking water and to supply industry. Much of

this makes its way back into the river after purification in waste water treatment plants

(WWTP). The catchment area of the River Liffey is 1, 256 km2. The long term average

flow rate of the River Liffey is 18.0 Cubic Metres per second (m3/s) [103]. The ESB
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Dublin Bay hydroelectric power plant, the Poolbeg generation station and the Celtic An-

glian waste water treatment plant (as shown in Figure 4.1) are also located at the estuary,

which all contribute to the local ecosystem.

The estuary hosts a diverse ecosystem including benthic communities, fish and shellfish,

sea bird populations and marine mammals [104, 105]. The topography of the estuary has

been greatly modified, and is constrained by walls along its whole length and is regularly

dredged to remove accumulated sediments. The sediments in Dublin Bay at the lower

limit of the estuary are predominantly sand. Muddy sediments are also presented starting

from Dublin Bay to the upstream of the River Liffey [106].

Figure 4.1: Overview of the Dublin Bay area, indicating the location of the deployed
pilot system , which provided the datasets used in this research. The ESB Dublin Bay
hydroelectric power plant, the Poolbeg generation station and the Celtic Anglian waste
water treatment plant are also located at the estuary, which all contribute to the local
ecosystem Dublin Bay background image source: Google Maps. Retrieved: 2014-04-11
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The research site is located in the upper part of the estuary, where the ship traffic is less

intensive. Average water depth in the area is approximately 8 m and the width of the

channel is approximately 260 m. It is a very complex site in terms of marine environ-

mental monitoring, as the estuary is macrotidal (the tidal range is in excess of 4 m) with

strong salinity gradients and seawater flushes into and out of the port, which causes water

column stratification. In [106], Briciu-Burghina et al. built vertical profiles of the water

column for salinity, temperature, DO and pH. It was shown that the column stratification

occurs at depths between 1 and 2 meters at the estuary.

Anthropogenic disturbances include input of pollutants (runoff, storm drains, discharges

from sewage treatment plant, industrial discharges, port activity and recreational boating)

and the modification of flow (upstream dam releases). All these episodic changes dictate

the chemical, physical and biological parameters at the site and thus increase its complex-

ity [106]. In addition, Dublin Bay is a busy port environment with a diverse ecosystem.

The area is subject to a large amount of recreational and commercial activity and the port

is heavily used with a high amount of shipping traffic.

Figure 4.2: A YSI 6600EDS V2-2 multi-parameter water quality sonde with simultaneous
measurement of turbidity, dissolved oxygen, temperature, salinity, and depth. Source:
https://www.ysi.com/6600-V2-4

Given the large amount of activity at the site and its importance from an environmental
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and ecological perspective, the site was equipped with a multi-parameter in-situ sonde

(YSI 6600EDS V2-2 as shown in Figure 4.2). The sonde unit contains individual sensors

for turbidity, dissolved oxygen, temperature, conductivity and depth, and was deployed

along with a visual sensing system. From the data processing perspective, more data may

contribute additional information to the machine learning method, thus produce a more

accurate model. If it does not provide useful inputs to the model, it can be removed at

processing stage. Moreover, water quality sensors are point sensors, a single sensor may

not reflect the true property of a large water body. However, due to the high cost and the

requirement of labour intensive maintenance work as well as the hosting agreement issue,

only one multi-parameter sonde is deployed at the site.

4.3 Deployed System

The system deployed at Dublin Bay consists of two parts - the in-situ sensor and the

visual sensor. Each sensing modality has its own communication methods capable of

transmitting data to a server. The in-situ sensor node measures physical parameters in the

water body, whereas the visual sensor captures the surroundings above the water surface.

Figure 4.3 shows the relative position of the sonde and the camera deployed at the marina.

4.3.1 In-Situ Sensor

A multi-parameter sonde (YSI 6600EDS V2-2), equipped to measure turbidity (Nephelo-

metric Turbidity Units (NTU)), optical dissolved oxygen (mgL−1/% saturation), temper-

ature (◦C), salinity (ppt), depth (m) and telemetry system (EcoNet) were purchased from

YSI Hydrodata UK 1.

The unit was powered with a 12 V external battery and data recorded onto an internal

logger, before sending to a cloud data server via GSM. The sonde was deployed at a

depth of 2.5 m from the water surface, and data was collected from 1st of Oct 2010 with

1http://www.ysi.com/index.php
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Figure 4.3: The relative positions of the in-situ and visual sensor deployed at Dublin Bay.

a sampling interval of 15 mins.

Temperature, dissolved oxygen and salinity were checked using a ProPlus handheld multi-

parameter instrument (YSI Hydrodata UK) and turbidity was validated using a portable

turbidity meter Turb R© 430 IR (VWR Ireland 2). Both hand held instruments were cali-

brated in the laboratory prior to deployment as per manufacturer’s protocols. Site visits

were undertaken fortnightly in winter and weekly in spring for cleaning, calibration and

validation. A protocol for the operation and maintenance of a continuous water quality

monitor at sites with rapidly changing conditions was adapted from [107]. The following

maintenance procedures were performed every time on arrival at the scene:

2https://ie.vwr.com/
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1. Readings and time are recorded from both the lab calibrated meters and the sonde.

The clock drift, due to the precision of the onboard real-time clock, of the sonde is

logged. If the drift is significant, over 5 mins, the on-board clock is reset.

2. To compare the measurements between the in-situ sensor and the calibrated device,

an ambient water sample was taken in an insulated bucket. Both of the instruments

were placed inside this sample, and both systems allowed to run in parallel. The

disparity between the two instruments was recoded.

3. The sonde is cleaned and step 2 is repeated multiple times to ensure readings are

accurate.

4. The sonde is rinsed thoroughly and the sensors calibration is finally checked fol-

lowing the calibration criterion.

5. If the calibration criterion is breached, the sonde is recalibrated.

Calibration criterion: Temperature±0.2 ◦C, DO±0.3mg/l, Specific Conductance±3 %

of the measured value and Turbidity ±5 % of measured value. Copper tape and mechan-

ical wipers (for the optical oxygen and turbidity sensors) were used to control biofouling

of sensor systems. However, it can only suppress the growth of microorganisms. Figure

4.4 shows an example of biofouling (6 weeks after deployed) on the deployed sensor at

the test site.

4.3.2 Visual Sensor

The components of the visual sensing unit are shown in Figure 4.5. The camera installed

at the test site is an Axis P1344-E IP camera, which is an IP66-rated camera that has

protection against dust, rain, snow and sunlight, and can operate in temperature as low

as −40 ◦C. It also provides 1 Mega Pixel HDTV 720p resolution, day and night image

and/or video streams. Another advantage of this camera is that it can be either powered

by an 8− 20 V external power source or powered over Ethernet (POE). It also consumes
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Figure 4.4: An example of biofouling (6 weeks after deployed) on the deployed sensor at
Dublin Port during May-June 2013.

relatively low power (max. 6.4 W) compared to other commonly used IP cameras (e.g.

Vivoteck IP8352 IP camera consumes max. 10 W). The camera was mounted on a pole

at a height of 4.36 m above the ground and approximately 20 m from the river bank wall.

This position is suitable for monitoring the shipping traffic while also being close to the

location of the sonde. The camera is connected to a Fit-PC2i control board through Eth-

ernet cable. For this pilot system, the visual sensor is connected to the mains electricity.

Figure 4.5: The visual sensor unit, which consists of an IP66-rated Axis P1344-E IP
camera for image capturing, a Huawei E353 3G modem for image data transmission and
a Fit-PC2i nettop for controlling.

The Fit-PC is a tiny, light, fan-less, inexpensive nettop computer. It supports the main

operating systems such as Window and Linux. It consumes relatively low power, 6 W at

low load and 8 W at full load. It supports a Wi-Fi connection by using a Wi-Fi network
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card and a 3G mobile network by using a mobile broadband modem, WiMAX network

connection by using a WiMax dongle or RJ45 wired Internet connection. It also provides

standard USB and HDMI ports, which are convenient for on-site diagnostics. In this initial

system, Fit-PC is chosen due to its convenience for development and on-site diagnostics.

For a future release version of visual sensing system, a much more cost effective embed-

ded board, such as Raspberry Pi (10 % of the cost and 30 % of the power consumption

compare to Fit-PC), could be investigated. The control board connects to the IP camera

through RJ45 connection and retrieves image data from it via HTTP protocol. Image data

are then sent back to a cloud server through a 3G mobile network. At our test site, the

frame rate of the camera is set to 1 frame every 10 seconds. This is due to two main rea-

sons: the network speed at the location and the duration of the target events. From human

inspection, we found that the fastest object moving on the water surface is speeding boats.

The configured frame rate will capture at least one image of such an event. In some cases,

there may also a upper limit of the amount of data that can be transmitted, e.g. the monthly

data allowance of some mobile broadband package allows 10 Gigabytes data per month.

Mobile broadband is one of the wireless internet connection mechanisms that is based on

third generation wireless broadband technologies (3G). A mobile broadband service can

be used anywhere within a coverage area. It provides high speed upload internet access.

Current HSDPA (one of the 3G standards) deployments support down-link speeds of up

to 42 Mbps and up-link speeds of up to 5.76 Mbps. In this work, a HuaWei E353 3G

modem with Meteor mobile carrier is used. Figure 4.6 shows the results of Meteor 3G

mobile broadband upload and download speed tests at various locations in Dublin. From

the graph, it can be seen that the minimum upload speed is 0.75 Mbps. At the test site

(Dublin Bay), the upload speed is 2.7 Mbps. The upload speed that the system requires is

0.31 Mbps when uploading image data at 1 frame per second. Thus, 3G mobile broadband

provides sufficient bandwidth for the visual sensor.

The main technical issue of the visual sensing system is the unreliable 3G connection.

The control board has to restart itself to establish a new connection, which can result in a

small disruption to the image data stream (2 minutes data lost).
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Figure 4.6: Meteor 3G mobile broadband upload and download speed test. Dublin Bay
data is obtained from the test site.

4.4 Summary

This chapter provides an overview of the test location used for a practical deployment

of the system introduced in the previous chapter and the complexity of the site is dis-

cussed. This test site presents a real challenge in environmental monitoring because of

the complex interactions of parameters such as tide, stratification and human activities.

The technologies deployed at the site are also discussed in this chapter along with their

maintenance procedure. It should be noted that both of the sensors suffer real world issues

such as biofouling and data communication issues.
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CHAPTER 5

IN-SITU DATA PROCESSING

5.1 Introduction

In this chapter, a case study of abnormal event detection and clustering from in-situ sen-

sor data is carried out. The case study illustrates how state-of-the-art computer science

techniques can be used to automate the processing of raw sensing data measured from

aquatic sensing instruments to provide comprehensive information, which is more suit-

able for management especially at a much larger scale. Anomaly sensor readings are first

isolated from the input data stream and further grouped into events based on their tempo-

ral information. These abnormal events are then catalogued into clusters based on their

similarities. This chapter is organized as follows. Section 5.2 introduces the importance

of salinity and turbidity at estuaries. An abnormal event detection and clustering system

framework is proposed in Section 5.3. The testing data, which is used for evaluating the

proposed methods is described in Section 5.4 and statistical analysis of this testing dataset

is carried out in Section 5.5. Section 5.6 shows how the parameters of the detection and

clustering system are selected. The experimental results are described in Section 5.7 and

5.8 followed by a discussion in Section 5.9. The analysis carried out in this chapter relates

to research question 1 and 2 in Chapter 1.
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5.2 Importance of Salinity and Turbidity at Estuaries

There are numerous water quality parameters that can reflect overall water quality of es-

tuaries, however, current state-of-the-art sensor technology may not capture them all. De-

veloping reliable in-situ or portable sensors for marine or estuarine water quality parame-

ters, such as Escherichia coli (E. coli), enterococci, phosphate and nitrate among others is

still an active research domain. As previously described, a YSI V-6600 multi-parameter

sonde was deployed at the pilot site to measure salinity (ppt), turbidity (NTU), temper-

ature (◦C), dissolved oxygen (mg/L and % saturation) and depth (m). In this work, the

focus on salinity and turbidity measurements are investigated due to their high variance

and complexity when compared with others, such as temperature and dissolved oxygen.

The importance of salinity and turbidity in estuarine zones is discussed in detail in the

sections 5.2.1 and 5.2.2 respectively.

5.2.1 Salinity

Salinity is the dissolved salt content contained in a body of water. Salinity is an important

factor in determining many aspects of the chemistry of natural waters and of biological

processes within it. It is a thermodynamic state variable that, along with temperature and

pressure, governs physical characteristics like the density and heat capacity of the water.

Intertidal environments in estuaries are critical exchange environments for both marine

and freshwater systems. Salinity is the key tracer of freshwater input into coastal zones

and directly contributes to seawater density and circulation patterns. However for envi-

ronments like estuaries, where large salinity changes can occur on a daily and/or seasonal

basis, prediction of levels is difficult. By their very nature, estuaries also exhibit consider-

able spatial and temporal heterogeneity in environmental parameters, which complicates

study and understanding of transport processes. Characterisation of this heterogeneity

through isolated point samples is commonly time-consuming, expensive and often un-

representative. Additionally, estuarine environments are dynamic and complex systems

where biotic and abiotic factors are often difficult to model and predict [108, 109]. Estu-
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aries are therefore attractive locations for deployment of multi-modal sensing platforms

[110]. Practical considerations such as ease of access to near-shore infrastructure, readily

available power supplies and communications mean that such zones are generally conve-

nient for testing and prototyping of novel systems.

An example requirement of estuarine and marine monitoring systems is the ability to pre-

dict water levels and changing freshwater inputs into any given system. Key goals include

identifying relationships between catchment rainfall and runoff in an estuary, including

the dominant forcing mechanisms affecting the transport of stormwater within the es-

tuary, estimating volumes of storm water associated with high-precipitation events and

predicting residence times of storm water within the system following monitored high-

precipitation events. Understanding effects of flow rates and salinity gradients within

estuarine systems are important when considering the effects of such forces on both nat-

ural and anthropogenic systems [111, 112]. For example, large variations in freshwater

influx into a system can profoundly affect phytoplankton dynamics (believed to be related

to nutrient transport or stratification-destratification events), or can significantly affect the

probability of a flood event occurring. The ability to continuously monitor salinity and

understanding of riverine discharge rates are thus crucial to many environmental phe-

nomena occurring in otherwise complex estuarine systems. However, these goals cannot

be achieved without isolating and cataloguing the significance from a long term salinity

measurement stream. Salinity measurements from a YSI In-Situ sensor is determined

automatically from the sonde conductivity and temperature readings according to algo-

rithms found in standard methods for the examination of water and wastewater. The use

of the practical salinity scale results in values that are unitless, since the measurements are

carried out in reference to the conductivity of standard seawater at 15 ◦C. However, the

unitless salinity values are very close to those determined by the previously used method,

where the mass of dissolved salts in a given mass of water (parts per thousand) was re-

ported. Hence, the designation “parts per thousand (ppt)” is reported by the instrument to

provide a more conventional output [113].
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5.2.2 Turbidity

Turbidity is defined as the decrease in the transparency of a solution owing to the presence

of suspended and some dissolved substances, which causes incident light to be scattered,

reflected and attenuated rather than transmitted in straight lines [114]. Turbidity is now

seen as a key water pollutant and is often used as a surrogate variable for suspended solids

concentration [115, 116]. Turbidity levels are important drivers of population, commu-

nity, and ecosystem level dynamics of phytoplankton and bacterioplankton in estuarine

systems [117, 118]. Sustained and sporadic increases in turbidity levels are associated

with fluctuations in microbial populations and concentration of re-suspended contami-

nants such as heavy metals or other pollutants [119, 120]. For a number of estuarine

systems strong correlation has been found between suspended particle concentration and

the number of attached bacteria, an important parameter in estimating microbial popu-

lation of bacteria such as Escherichia coli and faecal coliforms [121]. Re-suspension of

benthic sediment leading to higher turbidity levels, rather than runoff from surrounding

lands, can create elevated E. coli concentrations in estuarine waters. Thus modelling of

turbidity levels can enhance understanding of sediment effects on the fate and transport

of E. coli in surface waters with subsequent implications for monitoring and management

of microbiological water quality [121].

Turbidity levels can also influence photosynthetic activity and growth of phytoplankton

cells by shortening the depth of the photic zone. For example, estuarine waters may often

be rich in nutrients, but phytoplankton are unable to avail of these nutrients due to high

turbidity resulting in high attenuation and light limitation of growth. Higher turbidity also

increases water temperatures as suspended particles absorb more heat, thus altering the

vertical stratification of heat in the water column. This, in turn, reduces the concentration

of dissolved oxygen (DO) because warm water holds less DO than cold.

Many factors can contribute to changing turbidity levels within water bodies, especially in

heavily industrialised urban river and estuarine waters where anthropogenic disturbance

may influence natural systems [122]. In particular water movement from factors such as
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rainfall, tide level, and shipping traffic can affect suspended sediment loads in complex

ways. Rainfall levels directly contribute to run-off and discharge rates. Storm events and

unusually high rainfall patterns are usually associated with increased turbidity generation,

although propagation of storm-event turbidity pulses in urban river and estuarine systems

are relatively poorly studied [122]. Together with rainfall levels, tidal dynamics are an

important driver of turbidity levels within estuarine systems. The relationship between

rainfall measurements and tide level are however often heavily estuary specific and are

a function of local geology and localised features. Generally however, long, strongly

tidal estuaries tend to have greater suspended particulate matter concentrations within

their high-turbidity regions than shorter estuaries with comparable tidal ranges at their

mouths, or weakly tidal estuaries [123]. In this study, the focus is on the integration of

shipping traffic and turbidity significance. Future work would include the integration of

other factors such as rainfall and tide levels into the smart system.

Shipping can regularly and profoundly affect turbidity levels through a number of mech-

anisms, including shore erosion from wakes, increased vertical mixing and stirring of the

sediments, especially in the turning area outside harbours from large ships (150-200 m

long) or indirectly through regular dredging [124]. Pressure changes, propeller suction,

use of bow thrusters, drag and acceleration caused by shipping can result in visible wa-

ter displacement, swell, pressure waves and turbulence. All of which results in periodic

increases in mixing energy driving vertical mixing, artificial upwelling, temporary water

currents and material transport [125]. Regular water column disturbance may result in

partial or complete water column destratification and artificial upwelling. This in turn

affects nutrient ava ilability [126], water temperature profiles [106] and dominant species

in the locale [115]. Sediments that are frequently disturbed by re-suspension and sub-

sequent deposition remain unconsolidated and relatively easy to erode. Such disturbance

may either promote or interfere strongly with growth of planktonic and benthic organisms

including cyanobacterial growth and bloom formation [117].

According to the YSI sonde operation manual [113], YSI measures turbidity with an

optical sensor. Light from the emitter enters the sample and scatters off particles in the
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water. The light, scattered at 90 degrees, enters a detector fibre and is measured by a

photodiode. This follows the nephelometric technique of measurement, and values are

expressed in nephelometric turbidity units (NTUs).

5.3 Abnormal Event Detection and Clustering from In-

Situ Data

Figure 5.1: Flow diagram of the proposed system framework

To detect and cluster environmental events, anomalous sensor readings (also referred to

as outliers) need to be extracted from a continuous data stream. These abnormal sensor

measurements are then grouped into events based on proximity in time (temporal infor-

mation). A set of features is extracted that is characteristic of different anomalies and

is used to identify individual events. Each event might have different temporal charac-

teristics; so to compare their similarities, a bag-of-words approach is adopted to encode

these features as constant length descriptors. Bag-of-words is a nonlinear representation

method that uses finite pre-trained ‘ words’ to represent inputs. Each feature set of the

detected anomalies is matched against a pre-defined codebook (“a bag of words”) and the

closest matching codeword is used to represent the feature. The event is then represented

by the frequency of occurrence of each word. Once the feature vector of the event is

constructed, a clustering method is applied to group these events into subclasses based on

their similarities. Figure 5.1 shows the flow diagram of the proposed framework. Each

step of the proposed framework is introduced in detail in the following sections.
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5.3.1 Anomaly Detection

In order to detect abnormal events, unusual sensor measurements in the data stream need

to be detected. An unusual or anomalous sensor measurement is defined as a sensor read-

ing that differs considerably from recent observations. Thus, an anomaly can be detected

by modelling previous sensor measurement trends. To achieve this, we have modified the

pixel-based adaptive segmenter (MoPBAS) method originally proposed by Martin Hof-

mann et al. for image segmentation [127]. By examining the PBAS method, it is found

that slightly modifying the original method, it meets the four challenges (See Section

2.4) of anomaly detection from in-situ sensor measurements in a marine environment.

A non-parametric water quality background trend model is built based on a history of

recently observed sensor readings, which defines a normal region (challenge 1). The

model is updated over time according to the dynamics of the measurements. This ensures

that the evolving normal behaviour is modelled accurately by the adaptive back ground

trend model (challenge 2). The classification of an unusual reading depends on a decision

threshold, which is constantly adapting based on the variations in the data stream. Thus,

the definition of an anomaly varies based on how turbulent the water body is (challenge

3). When the water body has high variance, the increased threshold will decrease the sen-

sitivity of the anomaly detection system, which will ignore relatively small changes. In

contrast, the decreasing of the threshold will ensure that small variation will be detected

during calm periods. The MoPBAS is an unsupervised learning method, no labelled data

is required to train a trend model (challenge 4). Moreover, MoPBAS is computational

inexpensive, which provides the opportunity of introducing intelligence on chip (imple-

ment anomaly detection algorithm on the sensor’s control board). Above all, MoPBAS

is a suitable method for anomaly detection in marine environments. Similar to any other

machine learning method, MoPBAS has a number of tunable parameters, some are fixed

values during the detection process and the others are constantly updating according to

the variation of the inputs, which controls the sensitivity of the anomaly detection pro-

cess. There are two ways to set the value of these parameters. They can be set by domain

experts based on the analysis of how each parameter affects the MoPBAS model or using
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parameter optimization algorithms. The advantage of the first method is it does not re-

quire a set of training data to obtain a set of optimized parameter value set. Initial values

can be set based on the analysis of discrete samples that are collected from a site. Thus,

the detection can be started as soon as an in-situ sensor is deployed. However, it may not

achieve the best detection accuracy. In addition, it may require operators to evaluate the

results at some point to confirm the initial values are appropriate. The main advantage of

the second method is that the set of optimal values is obtained based on the data collected

at the site, which produces a more accurate model. However, the main drawback of this

method is that the detection may not be started until the training phase is over. How does

each parameter affects the detection model and how to train a set of parameters using a

parameter optimization algorithm are described in details in Section 5.6.

In the following, the process by which the MoPBAS method is used to detect abnormal

sensor readings is described.

5.3.1.1 Background Trend Model and Anomaly Classification

To classify a new incoming value I(t), a sensor reading trend model B(t) is built. B(t) is

defined by an array of N recently observed values.

B(t) = {B1(t), ..., Bk(t), BN(t)} (5.1)

As described by Hofmann et al. [127], incoming values are classified based on the total

number of distances between input value I(t) and all elements in B(t) that are smaller

than threshold T (t). We found that comparing the minimum distance with the threshold

is sufficient to differentiate the measurements.

I(t) =

 1, if min( dist(I(t), Bk(t)) ) > T (t)

0, otherwise
(5.2)

If the input value is classified as normal (I(t) = 0), it can be used for updating the back-

ground trend model. The update probability depends on the learning rate L(t).
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5.3.1.2 Update of the Decision Threshold

When monitoring water quality of estuarine waters, there can be periods of time where

large variations occur in measured variables, such as after heavy rainfall, and time periods

with little change or fluctuation. Ideally, for periods of high variability, the threshold T (t)

should be increased and for stable conditions, T (t) should be decreased. To quantify

this dynamic, the mean dmin(t) of the previous N minimum distances between input

values and the trend model are calculated as the measure of the trend variations. For

instance, assuming the water quality measurements remain constant, dmin(t) will be zero.

In contrast, dmin(t) will be higher for more dynamic backgrounds. The decision threshold

can then be adapted as follows:

T (t) =

 T (t)× (1− Tinc/dec), if T (t) > dmin(t)× Tscale

T (t)× (1 + Tinc/dec), otherwise
(5.3)

where Tinc/dec is a static value that controls the threshold update rate and Tscale is also

a fixed parameter, which stretches dmin(t) to the same range as T (t). Tlower and Tupper,

which are also fixed values, control the upper and lower bounds of the threshold, thus the

threshold will not grow out of range.

5.3.1.3 Update of the Learning Rate

Another important parameter of MoPBAS is the trend model learning rate L(t). Water

quality measurements have characteristics that are significantly different from image seg-

mentation data. Values measured by in-situ sensors are typically very noisy, have lower

sampling rates (in terms of minutes compared to fraction of a second in the image pro-

cessing domain) and vary from a baseline (they change gradually due to “global” effects,

such as wind, tide etc.). Unlike background modelling in the image processing domain,

in which foreground objects will be slowly merged into the background if it no longer
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moves, water quality parameters will usually return to a baseline level after an event.

Thus, we normalise (R(t)/Rupper) and invert the original learning rate (R(t)) proposed in

the PBAS method. Here, the learning rate L(t) is defined as follows:

R(t) =

 R(t) + Linc

dmin(t))
, if anomaly = true

R(t)− Ldec

dmin(t))
, if anomaly = false

(5.4)

L(t) = 1−R(t)/Rupper (5.5)

Where Linc and Ldec are fixed values that control the increasing and decreasing intervals.

The variation in R(t) is limited by an upper and lower bound: Rlower < R(t) < Rupper.

The learning rate also depends on the background dynamics (dmin(t)). When an event

occurs, measured values provided by the sensor will usually deviate greatly from the

baseline level. Thus, the trend model should be updated slowly or not updated at all.

In contrast, after an event occurs, sensor readings will usually stabilise or return to the

baseline, and the trend model should be updated quickly. When an anomaly is first de-

tected (dmin(t) is small), R(t) increases rapidly, thus the learning rate L(t) decreases

sharply. However, dmin(t) will become large quickly when multiple anomalous readings

are detected, which results in R(t) and indeed L(t) remaining constant or only changing

slightly. When sensor readings stabilise or return to a normal range, dmin(t) becomes

small and L(t) will increase.

5.3.1.4 Update of the Trend Model

Updating the trend model,B(t), is essential to capture global effects, such as tide or wind.

The learning rate L(t) is used as the update probability and an element in the trend model

is randomly chosen and replaced by the incoming value. However, this process is only

performed when no anomalous values are detected. This allows the incoming sensor mea-

surement to be “learned” and incorporated into the trend model. In the original PBAS, a

randomly chosen neighbouring pixel is also updated, however, as there is no “neighbour”
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(image data is 2D as opposed to 1D water quality data) this step is not performed.

5.3.1.5 Distance Calculation

Rather than using common distance metrics, such as Euclidean distance, we use the root

of the absolute square difference (RASD) to calculate the distance between incoming

value and the ith element in the trend model.

Di(t) =
√
|I(t)2 −Bi(t)2| (5.6)

Figure 5.2 shows the ratio between our distance metric and the 1-D Euclidean distance (for

illustration purposes, the input I(t) range is set from 5 to 104 in steps of 1, background

Bi(t) is set to 5). It can be seen from Figure 5.2 that when the distance is large, the output

is approximately equal to the 1-D Euclidean distance. However, the output is enhanced

when the difference between I(t) andBi(t) is small. This is a key factor when calculating

the background dynamic dmin(t), as it smooths the effect of an event to dmin(t). Thus,

the value of dmin(t) will not increase rapidly when an event occurs as shown.

Figure 5.2: Demonstration of the ratio between RASD distance metrics and 1-D Euclidean
distance, the inner graph shows RASD distance method, which enhances small distances,
smoothing the variation of the background dynamics dmin(t).
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5.3.2 Anomalous Feature Extraction

To capture the similarity in anomalies detected, and for further clustering of anomalous

events, we need to extract a set of features that are sufficiently discriminative to allow us

to classify unusual readings and subsequent events. As previously discussed, MoPBAS is

a computational inexpensive technique, which can be potentially implemented on the in-

situ sensor’s control board. In addition, anomaly detection needs to be in real-time so that

operators can be notified as soon as an irregular sensor measurement is being detected.

Thus, a feature set is proposed using only the current sensor reading, the local variations

between current sensor reading’s contiguous measurements and the current values of two

parameters from the MoPBAS trend model.

The feature set of an anomalous reading has the following components: the difference

between the previous sensor measurement I(t− 1) and current sensor measurement I(t),

current sensor measurement I(t), the difference between current sensor measurement I(t)

and the next sensor measurement I(t + 1), the minimum distance between sensor mea-

surement and trend model dmin, and the distance between the minimum distance dmin and

the threshold T (t). The feature set f(anomaly) can be represented as:

f = [I(t− 1)− I(t), I(t), I(t)− I(t+ 1), dmin, dmin − T (t)] (5.7)

5.3.3 Creating Event

Anomalies detected by the MoPBAS method are grouped into events according to their

temporal information. To achieve this, agglomerative hierarchical clustering is applied.

As shown in Figure 5.3, consecutive anomalies are combined together into a single event.

In real environment, a sensor reading could be a noise (e.g. blockage of the sensor probe).

A threshold Tgap is set to allow some tolerance to sensor readings. For example, if a

sensor reading is classified as normal in a sequence of measurements, which all the rest

values are classified as anomalies, then this “normal” reading is likely caused by noise,

which will be ignored when creating an event. Thus, if the gap between a new anomaly
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and previous outlier is smaller than a threshold, Tgap, the new anomalous value will be

merged into the same event. In contrast, if this gap is greater than Tgap, a new event will

be created.

Figure 5.3: Anomalies are grouped into events using agglomerative hierarchical clustering
based on their temporal information

5.3.4 Event Clustering

A Bag-of-Words approach is widely used in text document classification [128], content-

based image retrieval [129] and image recognition tasks [130], where a document is repre-

sented as a bag of its “words” or a bag of small image patches (visual words) in the image

processing domain. Most classification or clustering methods require a fixed number of

feature dimensions. However, for many tasks, such as text document indexing, the num-

ber of features extracted from each file are generally different. The Bag-of-Words method

represents these features by counting the frequency of occurrence of each “word” as the

descriptor of the object. For text document processing, a “word” generally means an entry

in a “codebook”, which is the combination of a single word in a dictionary or a phrase.

In the image processing domain, a word (some times referred as a “visual word”) means

a small image patch or fragment. As each environmental event may contain a different
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number of anomalous values, each outlier feature set is represented by a “sensor word” in

order to quantify the similarities between events, and the frequency of their occurrence is

reconstructed as the descriptor of the event. To create a codebook, K-means clustering is

performed over a set of training data. The centres of the learned clusters are then defined

as codewords. Each anomaly feature set in an event is mapped to a certain codeword in

the codebook and the event can be represented by the histogram of the occurrence of the

codewords.

To divide events into groups, a clustering method known as robust on-line clustering

[131] is used. Clustering is the process of dividing instances into groups in such a way

that instances in the same group are more similar than elements in other groups. There

are many common clustering methods that are widely used such as K-Means or Mean-

shift. Current research indicates that there is no known single clustering method that

categorically out performs all others in all tasks. The benefit of using robust on-line

clustering in this context is that, unlike K-Mean or Mean-Shift, this method is not sensitive

to “noisy” data. This is a key requirement for environmental monitoring tasks where

highly variable data could indicate a significant event. Moreover, robust on-line clustering

is an on-line method that can be used to process a continuous data stream provided by in-

situ sensors.

5.4 In-Situ Test Data: Dublin Bay

The dataset that is used for evaluating the proposed abnormal event detection and clus-

tering method was collected from deployed remote water quality monitoring systems in

Dublin Bay between Oct 01 2010 and May 03 2011 (215 days) with a total number of

20, 544 measurements (at the sampling rate of 15 mins). Two water quality parameters,

salinity and turbidity, are selected for evaluating the proposed system. One of the main

reasons for choosing these two parameters is that they are much more complex compared

to other water quality parameters, such as temperature or dissolved oxygen as previously

discussed in Section 5.2. In addition, salinity and turbidity are not only affected by global
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factors but local variations as well. The data exhibits a wide variety of environmental

occurrences that include short-term events (such as human activities), mid-term natural

phenomena (rainfall, tide for example), as well as long-term changes in measurements

related to seasonal effects. To evaluate the results, both of the salinity and turbidity mea-

surements are annotated manually. A total number of 2, 416 turbidity values and 753

salinity values are annotated as anomalous.

5.5 Statistical Analysis of In-Situ Data

The descriptive statistics of the in-situ sensor measurements are shown in Table 5.1.

Table 5.1: Descriptive statistics of in-situ measurements

Parameter(units) No. of Samples Range Max Min Mean Median
Turbidity (NTU ) 20544 95 95.2 0.2 5.38 4.5
Salinity (ppt) 20544 14.05 31.00 16.95 30.35 30.5

Std. Deviation Variance
Turbidity (NTU ) 3.77 14.23
Salinity (ppt) 0.706 0.499

From the table, it can be seen that turbidity measurements have a very different distri-

bution than salinity readings. Turbidity values have a much higher standard deviation

and variance that indicates they are much noisier than salinity measurements. Figure

5.4 shows the scatter plot of turbidity readings vs. salinity values and their Spearman’s

correlation coefficient with the p-value. The Spearman’s correlation is a non-parametric

measure of the monotonicity of the relationship between two datasets. Unlike Pearson

correlation, the Spearman’s correlation does not assume that both datasets are normally

distributed. Like other correlation coefficients, Spearman’s correlation varies between−1

and +1 with 0 implying no correlation. Correlations of −1 or +1 imply an exact mono-

tonic relationship. Positive correlations imply that as “x” increases, so does “y”. Negative

correlations imply that as “x” increases, “y” decreases. The p-value roughly indicates the

probability of an uncorrelated system producing datasets that have a Spearman’s corre-

lation at least as extreme as the one computed from these datasets. The p-values are not
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entirely reliable but are probably reasonable for datasets larger than 500 [132]. As can

be seen from Figure 5.4, the correlation value between turbidity and salinity readings is

very low, which indicates there is no strong monotonic relation between these two sensor

parameters.

Figure 5.4: Scatter plot of Turbidity vs. Salinity and their Spearman’s correlation coeffi-
cient(rho) and the p-value.

Figure 5.5 and 5.6 show the graphic representation of the distribution of salinity and tur-

bidity with 50 bins. The inner graphs show the cumulative histogram of the salinity and

turbidity measurements. As can be seen from the figures, a small number of bins have

higher frequency than others. Due to the global effects such as seasonality, we cannot

simply select a threshold to classify anomalies based on their occurrence frequency. Low

turbidity measurements can be classified as normal values and high turbidity reading can

be classified as abnormal values. However, the sensor readings in the middle range are

more problematic as a value can be categorized as normal if previous inputs are lower

and have low variation or as abnormal if the previous trend shows high variations. Thus,

a simple threshold mechanism may not sufficient to separate anomalous sensor measure-

ments. The same situation occurs in salinity sensor inputs as well, whereby middle range

values are difficult to classify.
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Figure 5.5: Salinity sensor measurements distribution.

Figure 5.6: Turbidity sensor measurements distribution.

5.6 Parameter Settings

The MoPBAS method consists of a large number of tunable parameters, which can be

used to control the sensitivity of the anomaly detection process. Some parameters, such
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as the number of elements in the background trend model, upper and lower bonds of

threshold, are fixed values during the whole process while others, model learning rate and

decision threshold for instance, are updated automatically based on the variation of the

input data. The optimal set of parameters, which gives the best performance is application

dependent with the potential to be set by the user. Multiple states may be set where for

instance one setting may capture all small changes, while another may only capture short-

term rapid changes. As previously discussed, one way to obtain a set of values is to

analyse the discrete water samples and the affects of each parameter to the model. The

second way to obtain a set of parameters is to use a parameter optimizing algorithm.

As turbidity readings have a different range and dynamics when compared to salinity

measurements, it requires a different set of parameter values in order to detect turbidity

anomalies. All the MoPBAS parameters are listed below and how they affect the model

is discussed.

• N : is the number of elements of the trend model B. Increasing N will reduce the

sensitivity of the system as there is high probability that there might be an element

in the background model similar to the incoming sensor reading. However, only the

normal values will be pushed into the trend model, thus further increases in N only

duplicates existing elements (elements in the trend model are similar to each other)

and results in an increase in memory and computational complexity.

• Tinc/dec: is the step by which the threshold T increases or decreases. Detection

performance is not very sensitive to this value and this value is increased if the data

exhibits a high degree of variability. This value depends on three main factors, the

duration of an event, sampling rate and how fast sensor readings stabilise after an

event. The number of Tinc/dec should allow an increase of T from minimum to

maximum longer than the duration of events and roughly the same length as the

time required for stabilisation.

• Tupper: is the upper bound of the decision threshold. Increasing this value will re-

duce the sensitivity of anomaly detection i.e. only large variations will be classified
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as anomalies (high precision). This value depends on the variation of sensor mea-

surements at the site and how an outlier is defined. It is also related to the distance

calculation method used.

• Tlower: is the lower bound of the decision threshold. Reducing this value will in-

crease the sensitivity (high recall) of anomaly detection, smaller changes will be

classified as an anomaly.

• Tscale: is the equilibrium factor, which stretches dmin(t) to the same range as the

threshold. Lowering this value leads to low precision while a high value leads to

low recall.

• Linc: is the trend model learning rate control parameter R increasing interval.

• Ldec: is the trend model learning rate control parameter R decreasing interval. The

value taken depends on the distribution of the background trend dynamic.

• Rupper: The upper bound of learning rate control parameterR. A lower value results

a faster updated model. The value taken approximately equals the ratio between

Linc and the trend of dmin(t) values.

• Rlower: The lower bound of the learning rate control parameter R. This takes the

form of a small positive number to avoid zero background model update probability.

The ratio of Rupper and Rlower roughly defines how fast the learning rate increases.

Based on our understanding of the ecosystem at the site and the analysis of the discrete

samples collected at the site, an initial range for each parameter is selected. The values

are shown in Table 5.2. For anomaly detection at the test site, a set of parameter values

can be chosen from this table.

Table 5.2: Initial Parameter Spaces Based on The Analysis of Discrete Water Samples

N Tupper Tlower Tinc/dec Tscale
Turbidity [10, 50] [4.5, 5.5] [0.5, 2.0] [0.02, 0.10] [2.0, 6.0]
Salinity [10, 50] [5.0, 13.0] [2.0, 3.0] [0.01, 0.10] [0.5, 4.0]

Linc Ldec Rupper Rlower

Turbidity [3.0, 6.0] [0.05, 0.3] [1.0, 5.0] [0.05, 0.15]
Salinity [3.0, 8.0] [0.05, 0.3] [1.0, 5.0] [0.05, 0.15]
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As previously discussed, to obtain one optimal set of parameters, which gives the best

performance on the data set, Hyper-Parameter Optimization [133] was applied. Hyper-

Parameter Optimization is the process of selecting a set of parameter values for a machine

learning algorithm that obtain high performance with good generalization. Many widely-

used machine learning algorithms take a significant amount of time to train from data. At

the same time these same algorithms must be configured prior to training. These configu-

ration variables are called hyperparameters. Hyperparameters generally have a significant

effect on the success of machine learning algorithms, for instance, a poorly configured

Support Vector Machine may perform no better than random selection. There are many

Hyper-Parameter Optimization method in the literature, such as Sequential Model-based

Global Optimization (SMBO) [134, 135], Gaussian Process Approach (GP) [136], Tree-

Structure Parzen Estimator Approach (TPE) [133], Random Search for Hyper-Parameter

Optimization [137]. HyperOpt [138] is a python library for optimizing the hyperparam-

eters of machine learning algorithms which was developed by James Bergstra et al. Hy-

perOpt provides algorithms and software infrastructure for carrying out hyperparameter

optimization for machine learning algorithms. In this work, Random Search with Hyper-

Opt implementation is selected due to its simplicity and availability. Moreover, in [138],

the author reports that Random Search over the same domain is able to find models that

are as good or better within a small fraction of the computation time. The loss function

used to obtain the best set parameters for MoPBAS is the inverse of F1 score (1 − F1).

The F-Score or F-measure is a measure of a statistic tests accuracy. It considers both

precision p and recall r of the test to compute the score: p is the number of correct results

divided by the number of all returned results and r is the number of correct results divided

by the number of results that should have been returned. The F1 score can be interpreted

as a weighted average of the precision and recall, where an F1 score reaches its best value

at 1 and worst score at 0. To find an optimized set of parameters, we first set an initial

range for each of the parameters based on the observation of the data and evaluate 1, 000

times on the training dataset to get an initial result. If the optimized parameter value re-

turned is too close to the boundary of the initial range, the initial range of this parameter
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is extended. Then we re-evaluate 50, 000 times with the adjusted initial range to obtain

the best parameter set. The total number of evaluation loops is hardware dependent, on a

standard desktop PC with Intel i7-2600 CPU, it requires approximately 45 hours to eval-

uate 50, 000 times on the training data. To avoid over fitting, we use the first 10, 000

continuous data points (approx. 50% of the whole dataset) to obtain the parameter values

and use the rest data entries for testing. Because MoPBAS randomly selects and updates

the element in the background trend model, we run the test 10 times and the averaged F1

score is reported. The initial parameter spaces for turbidity and salinity anomaly detec-

tion are shown in Table 5.2 and the results returned from HyperOpt are illustrated in Table

5.3. The results show that although the accuracy on the testing data is not as good as the

result obtained from the training dataset, it still achieved comparative performance. This

indicates that the parameter values returned from HyperOpt are good sets of parameters

for the anomaly detection method and do not over-fit to the training dataset.

Table 5.3: Hyper-Parameter Optimizations Results

N Tupper Tlower Tinc/dec Tscale Linc
Turbidity 20 5.00 1.73 0.055 4.42 3.60
Salinity 41 10.10 2.96 0.027 1.70 5.26

Ldec Rupper Rlower Best F1train Avg. F1test
Turbidity 0.20 2.77 0.07 0.86 0.844
Salinity 0.187 1.85 0.09 0.895 0.841

The histogram of the turbidity and salinity F1 scores, obtained from the parameter opti-

mizing phase, are shown in Figure 5.7 and 5.8. Both of the figures show that within the

initial parameters range, MoPBAS achieves relatively high accuracy. Majority random

selected parameter set obtained over 0.8 F1 score. This indicates that MoPBAS anomaly

detection is not very sensitive to the initial parameter values, the method can still return

relativity high accurate results without tenuously tuned parameters. This also indicates

that the initial range of the parameters, which are set based on the analysis of the dis-

crete water sample and how each parameter affects the model are appropriate. A set of

parameter values can be set manually. The main advantage of this is that when deploying

an anomaly detection system at a new site, the operator can just give a loose set of pa-
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Figure 5.7: Histogram of turbidity MoPBAS HyperOpt training F1 scores (50,000 run)

Figure 5.8: Histogram of salinity MoPBAS HyperOpt training F1 scores (50,000 run)

rameter values, which can be obtained from a site survey, to MoPBAS and it will return

relatively accurate results. Anomaly detection can be started as soon as an in-situ sensor

is deployed.

A major challenge of the bag-of-words approach is the estimation of the optimal size
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of the codebook. If the codebook is too small, it may cause over-clustering with higher

intra-class distortion. Therefore, it is common to choose an appropriately large value

of codebook size, but that may cause a dispersive histogram and introduce more noise.

One of the common methods to evaluate the codebook size is the Elbow method. The

Elbow method is a widely used method for determining an optimal number of words

for a codebook. The method starts with a small number of cluster centres K value and

keeps increasing it. A plot of the average within cluster sum of squared error (ASSE)

against a series of sequential cluster levels can provide a useful graphical way to choose

an appropriate K. In general, as the number of clusters increases, ASSE should decrease

because clusters are, by definition, smaller. An optimal K value can be defined as the

solution at which the reduction in ASSE becomes steady (increasing K does not reduce

ASSE dramatically). This produces an “elbow” in the plot of ASSE against number of

clusters (words) K. The following measure represents the average within cluster sum of

squared error between data points in a given cluster Ck and its cluster centre µk where xi

is the element in the cluster:

ASSE =
1

K

K∑
k=1

∑
xiεCk

‖xi − µk‖2 (5.8)

The advantage of this method is its simplicity, the fact that it is computationally inexpen-

sive and easy to interpret. However, in some cases, there will not be such an obvious break

in the distribution of ASSE against number of words. To evaluate the codebook model,

the range of K is set from 1 to 99 with step of 1. Due to the fact that the K-Means method

randomly selects the initial cluster centres (some K-Means implementations choose these

initial values in a smart way but may be still different), for each K value, we run the

experiment 10 times and report the average ASSE and the standard deviation values. As

the standard K-Means method uses Euclidean distance, features needs to be normalised.

To normalise the features, feature scaling is applied.

x′ =
x−min(x)

max(x)−min(x)
(5.9)
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The first 10, 000 (approx. 50%) data entries are used to obtain the maximum and min-

imum value and these values are held constant for the rest of the experiments, which

means the range of the normalised features are not limited to 0 and 1. There are a few

reasons why normalisation is performed at this step rather than normalising the raw input

sensor readings. Firstly, the MoPBAS anomaly detection method does not require nor-

malised data. Although MoPBAS does need some prior knowledge about the range and

the characteristics of the sensor readings in order to set the initial parameter values, these

can be obtained from marine scientists or an initial site survey, which is generally carried

out before deploying sensors. Secondly, MoPBAS only needs a few samples (N value)

to start detecting anomalies, but the normalisation requires a much larger dataset to get

an upper and lower bound. Moreover, any pre-processing will lead to the loss of infor-

mation; thus, the normalisation should be only performed when necessary. In addition,

if another method, feature set or distance measure, which does not require normalised

inputs, is used for building a codebook, normalisation may not be required at all. All of

the above suggest that normalisation is preferably performed at a later stage rather than

on the raw data.

Figure 5.9: Determining the optimal size of turbidity codebook using the Elbow method

The average ASSE and the standard deviation values for each K are illustrated in Figure
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Figure 5.10: Determining the optimal size of salinity codebook using the Elbow method

5.9 and 5.10. The graphs show that both the salinity and turbidity ASSE errors drop dra-

matically when the codebook size is smaller than 20 and decrease gradually when K is

greater than 20. Also, the standard deviation values become small and stable when the

codebook consists of more than 20 words. These suggest that a codebook with more than

20 words is a good representation of the anomalous sensor reading detected by MoPBAS.

However, adding more words to the codebook will still increase the accuracy. As dis-

cussed previously, a smaller codebook may result in an over-clustering model with higher

intra-class distortion. This means that the anomalies within the same cluster may have

bigger distances between each other. In other words, two anomalies may be assigned to

the same word in contrast to different words when using a larger size codebook. Thus,

smaller codebook will result of less unique events constructed. Unique events mean that

the event has a different feature than all other events in the dataset in contrast to equal

events, which have the same feature values extracted. However, the raw sensor readings

of equal events may be still different. Figure 5.11 and 5.12 show the number of unique

turbidity and salinity abnormal events generated using codebook size from 5 to 80 with

step of 5. The results show that increasing the number of words does produce more unique

events. For turbidity measurements, approximate 100 unique events are generated when
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using the codebook with 5 words and over 350 unique events are constructed when code-

books consisting of more than 75 words are applied. Similar to turbidity, the number of

unique salinity abnormal events constructed is 48, when the codebook has only 5 words,

and over 90, when the codebooks with more than 65 words are applied. In addition, both

of the plots show that when codebooks with 5 to 25 words are used, the number of dis-

similar events increases rapidly. In contrast, the increasing ratio becomes small and stable

when the number of words is over 25. This suggests that in order to differentiate events

constructed, the codebook should consist of at lease 25 words. However, choosing an

optimised codebook size for abnormal event detection is still a challenge. Thus, we use

a sequence of codebook models from size 5 to 80 with step of 5 and explore how they

affect the abnormal events detection results. Once a codebook is created, it can be reused

without the need of rebuilding again.

Figure 5.11: Number of unique turbidity events generated using different size of codebook

When constructing an event, Tgap is set to 1 to avoid sensor noise and sensor reliability

issues. This means that two anomalies are merged into the same event if the gap between

them is smaller than 2 samples. This value generally depends on the sampling rate, re-

liability of the in-situ sensor and the complexity of the monitoring site. Tgap should be

increased if the sampling rate is high, the reliability of the sensor is low or the monitoring

site has high variance.
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Figure 5.12: Number of unique salinity events generated using different size of codebook

The robust on-line clustering method requires a specified number of clusters. Ideally, this

value should be the same or slightly larger than the number of factors that may cause an

event at the observation site. However, there are many reasons why this may cause rapid

changes in sensor readings, some are known, for example, rainfall events, flood events or

shipping events, some are unknown. Thus, choosing a suitable number of abnormal event

clusters is complex. Similar to evaluating the size of a codebook, the average within

cluster error is calculated to illustrate how the number of the clusters affects the model.

Figure 5.13 and 5.14 illustrate the ASSE value using different codebook sizes and num-

bers of clusters. The two results show that the ASSE values decrease when the number of

cluster centres grow. This suggests that increasing the number of the cluster centres will

reduce the within cluster error. Both turbidity and salinity ASSE values drop dramatically

when the cluster centres increase from 10 to 20 and decline uniformly when the number of

cluster centres is more than 20. This indicates that less than 20 clusters may cause an over-

fitted model. The differences among events in a cluster may be much bigger. Although

both of the turbidity and salinity within cluster errors show that codebooks with less than

25 words achieved better results, however, the error is much bigger when the number of

the cluster centres is small and varies significantly when increasing the number of clus-
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ters. This is due to the fact that a smaller codebook will produce an over-clustered model

with higher intra-cluster distortion, which results in less unique events to be generated as

previously discussed. Events cannot be differentiated when smaller codebooks are used.

This also can be seen from Figure 5.13 and 5.14, with the same number of cluster centres,

where the distribution of the ASSE values are much larger when the codebook size is

smaller than 25 which also suggests that codebooks with less than 25 words may not sep-

arate abnormal events accurately and will lead to an over-fitted model. Moreover, Figure

5.13 and 5.14 show that a codebook with more than 25 words achieved comparable but

much more stable results for both salinity and turbidity events clustering, which again in-

dicates that less than 25 codewords may cause over-clustering when building a codebook

and consequently, can not be used represent the abnormal event precisely. Therefore, the

results suggest that a codebook with 50 codewords is a better selection which keeps high

accuracy of event representation while keeping computation costs low. Further increasing

this number does not reduce ASSE values much. In addition, 50 cluster centres for turbid-

ity event clustering, and 30 cluster centres for salinity event clustering, achieved relatively

low within cluster errors and produced stable clustering models. Thus, these two values

will be used for the subsequent turbidity and salinity events clustering experiments.

Figure 5.13: Average within cluster error using different codebook size and number of
clusters (turbidity)
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Figure 5.14: Average within cluster error using different codebook size and number of
clusters (salinity)

5.7 Salinity Experiment Results

Applying the described MoPBAS anomaly detection, using the optimised set of param-

eters obtained from Section 5.6, to the entire test dataset results in 861 out of 20, 544

salinity measurements being classified as anomalies. Figure 5.15 shows a 10-day window

of the anomaly detection results. The red dots indicate salinity anomalies detected, while

the blue line is the sensor measurements and the green solid line is the closest matching

entry in the background trend model. As illustrated in Figure 5.15, most of the abnormal

salinity readings are detected accurately. Figure 5.16 demonstrates adaptation of the de-

tection threshold and background learning rate based on variation in the mean minimum

distance (dmin) between sensor measurements and background trend model. The red line

at the bottom represents the background learning ratio. The decision threshold is shown

in blue and the minimum distance between sensor readings and the best match entry in

the model is shown in green. However, as can be seen from Figure 5.15, the spike oc-

curs (vertical magenta dash line after Oct 10 2010) after the last event is ignored by the

anomaly detection system. This is due to the fact that after an event happened, the water

body is typically very turbid before it settles down. This can be seen from Figure 5.15,
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the raw salinity measurements after Oct 10 2010 are much noisier than sensor readings

prior to Oct 07 2010. However, the overall trend of the sensor readings falls back to a

similar range as before. During this settle down period, the sensor readings are normally

very noisy which may not reflect the true property of the water body. Thus, the increase

of the threshold will ignore small spikes during this stabilizing period, especially after a

significant event occurs. An example of this is shown in Figure 5.15 (vertical red dash

line); even though the absolute value of the salinity reading is lower than the majority of

the anomalous detected, the system still classifies it as a normal reading. The threshold

decreases towards the lowest value (Tlower) after the event terminates. The duration of this

decreasing interval approximately equals to the settle down period, thus the system will

start capturing small events again after the water body calms. But if the operators need

to capture these spikes, higher Tinc/dec and lower Tlower values are required to shorten the

threshold dropping period and increase the anomaly detection sensitivity. However, in the

current implementation with static Tinc/dec and Tlower values, this will also increase the

overall sensitivity of the system.

Figure 5.15: A 10-day window of the MoPBAS salinity anomaly detection results. Ver-
tical dash line indicates the settling down period (a short time window after a significant
event) where relatively large variation will be ignored.

In order to cluster events into groups based on their similarity, detected anomalies are
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Figure 5.16: Detection threshold, background trend model learning rate and minimum
distance between input value and best match element in model.

merged into events based on their timestamps. From the 861 outliers detected, 222 salinity

events are constructed using the agglomerative hierarchical clustering method with TGap

equal to 1. For each salinity anomaly detected, a set of features is extracted as the feature

vector of the sample. Each feature set of the anomalous value is normalised as a “word”

using the codebook that previously built. The histogram of the occurrence of each word

for each event constructed is used as the feature set of the event.

Table 5.4: Clustering results, showing the number of similar events within each cluster
group.

Clusters Number of events Events

Clusters 0 179 Event 0, 2, 5, 25, 107, 109, etc.
Clusters 1 3 Event 205, 206, 213
Clusters 2 3 Event 35, 220, 221
Clusters 3-39 1 (in each) Event 6, 7, 22,23,30,31, 40

Event 44, 45, 47, 53, 61, 63
Event 65, 70, 71, 72, 73, 74
Event 82, 111, 121, 126, 129
Event 139, 149, 151, 152, 157
Event 158, 159, 160, 168, 173
Event 174, 209, 218

After applying the described clustering methods to the whole dataset, a total of 40 (N =
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40) clusters are created. The number of events in each cluster is shown in Table 5.4. ROC

is a tree-like clustering method; under any cluster center, there is still a sub binary tree

structure that consists of nodes and elements. A node could contain sub-level nodes or

elements or their combinations.

Figure 5.17: Plot of the salinity measurements of all events in cluster 0.

Figure 5.18: An example of the salinity measurements of some events that under the same
node and different nodes in cluster 0.
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Figure 5.19: Plot of the salinity measurements of the three events in cluster 1.

Figure 5.20: Cluster 2 consists of three salinity events.

Figure 5.17 plots the salinity sensor measurements of all events in cluster 0. As can be

seen from the figure, cluster 0 contains the highest number of events. Figure 5.18 shows

events within cluster 0 under different nodes. As shown, the events under the same node

are very similar and there are some connections between different nodes, such as, all

events under node A and B have downwards ‘V’ shape but are offset vertically. Cluster
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1 consists of 3 similar events and there are also 3 events in cluster 2. Cluster 3 to cluster

39 only contain 1 event in each. Figure 5.19 demonstrates the three events in cluster

1, the results show that events are similar to each other within the cluster. All of the

three events have a ‘W’ like shape, which have a decreasing reading at the beginning

and increasing measurements at the end. Event 206 and 213 have a peak in the middle

but event 205 has not, however, the gap is relatively small. Figure 5.20 shows all the

events in cluster 2 where it can be seen that tree events do have similar variations (a

rotated ‘W’ shape). Although event 35 contains more samples (longer duration) than the

other two events in the cluster, it still has a similar ‘W’ shape to the others. Figure 5.21

illustrates the difference between events in different clusters. As can be seen from the

graph, events within the same cluster have similar trends but events in different clusters

have very different profiles. For visualisation purposes, every 5th cluster, from cluster 3

to the others, are plotted

Figure 5.21: Comparison of salinity events in different clusters.
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5.8 Turbidity Experiment Results

Applying the same procedures to turbidity data, 2, 706 sensor measurements are classified

as anomalies. Figure 5.22 demonstrates a 10-day subset of turbidity anomaly detection

results. The red dots are the turbidity anomalies detected, the blue line is the sensor mea-

surements and the green solid line is the closest matching entry in the background trend

model. Figure 5.23 demonstrates adaptation of the detection threshold and background

learning rate based on variation in the mean minimum distance (dmin) between sensor

measurements and background trend model. As with detection of anomalies in the salin-

ity dataset, the classification threshold increases when readings become highly variable

and decreases when measurements do not change rapidly. In contrast, the model learn-

ing rate decreases sharply when events are happening and increases slowly when sensor

readings are stabilising.

Figure 5.22: A 10-day window of the MoPBAS turbidity anomaly Detection Results.

Turbidity anomalies are grouped into events according to their timestamps. For the whole

dataset, 693 events are constructed from the classified anomalies. Table 5.5 lists the clus-

tering results and the turbidity events in each cluster.
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Figure 5.23: Detection threshold, background trend model learning rate and minimum
distance between input value and best matching element in the background model.

Table 5.5: Results of turbidity event clustering, showing the number of similar events in
each cluster group.

Clusters Number of Turbidity Events Events

Clusters 0 628 Event 0, 1, 10, 21, 152, 577, etc.
Clusters 1 4 Event 150, 175, 289, 349
Clusters 2 2 Event 649, 683
Clusters 3 2 Event 133, 288
Clusters 4 2 Event 64, 252
Clusters 5-59 1(in each) Event 15, 16, 35, 53, 57, 84, 87

Event 92, 94, 119, 123, 126, 129, 141
Event 174, 177, 179, 180, 226, 230
Event 233, 235, 239, 273, 300, 301
Event 316, 326, 328, 347, 366, 368
Event 372, 381, 388, 392, 421, 496
Event 505, 522, 552, 555, 570, 607
Event 608, 615, 620, 641, 642, 674
Event 681, 687, 690, 691, 692

Figures 5.24 and 5.25 show all events in the corresponding cluster where it can be seen

that the events within the same cluster have similar variations. Three out of four events

in cluster 1 have a rapid increase at the beginning followed by a small rise and then settle

down. Although, event 150 does not have a rapid change at the start, its overall trend is

very similar to the other three events in the cluster. It has a very similar variation but offset
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to the right by a few samples. As can be seen in Figure 5.25, the two events in cluster 2

are different in length. However, both of them show an ‘M’ like pattern. This shows the

advantage of bag-of-words approach, which encode anomaly features as constant length

descriptors. Events in cluster 3 are shown in Figure 5.26. It can be easily seen that

both of the two turbidity events have comparable appearance. Events shown in Figure

5.27 once again demonstrates the advantage of the bag-of-words approach. Although, the

two events do not have an exact pattern, the variations are very similar. Both of the two

turbidity events have an increased reading at the beginning followed by a concave shape

then rise quickly again before settling down.

Figure 5.24: Plot of the turbidity measurements arising from events classified as being in
cluster 1.
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Figure 5.25: Plot of the turbidity measurements from events in cluster 2.

Figure 5.26: Plot of the turbidity measurements from events in cluster 3.
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Figure 5.27: Plot of the turbidity measurements from events in cluster 4.

Figure 5.28 shows a comparison of events in different clusters. The plot illustrates that

events within different clusters do have disparate trends. A sample of unique turbidity

events (event in every 10th cluster from cluster 5 to 55) is shown in Figure 5.29.

Figure 5.28: Comparison of events in different clusters (Cluster 1,2,3,4). For illustration
purposes, only one event in each cluster is shown.
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Figure 5.29: Illustration of the differences in turbidity readings between assigned clusters.

5.9 Discussion

Both salinity and turbidity anomaly detection results show that the MoPBAS method is

suitable for detection of anomalous sensor readings. The MoPBAS method not only de-

tects upward turbidity unusual sensor readings but downward abnormal salinity measure-

ments. Real-time updating of the background trend model provides the capacity to model

the trend of both a highly variable data stream and gradual changes such as tide or seasonal

effects. The dynamic threshold and model updating rate are appropriate for detection of

environmental events in estuaries. As can be seen from Figures 5.16 and 5.23, the clas-

sification threshold is increased when an anomaly is detected. This is due to the fact that

after an event happens, there is usually a period of time where the sensor measurements

return to a baseline (i.e. these readings usually alter in step changes rather than mono-

tonic increases). During this settling down period, the water body is turbid, which results

in a much noisier sensor reading. The raising of the threshold can handle this effect and

reduce false positives. The threshold falls back slowly when the water body starts settling

down. Another advantage of this adapted threshold is that the system only detects large
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variations during periods of high fluctuation while small changes will be captured during

periods of relative stability. In contrast, the background learning rate remains high during

stable periods and decreases rapidly when an anomaly is detected. This is because the

background model should simulate the trend of the water quality parameters but ignore

sudden variations. However, as the threshold is raised, the input is likely to be classified

as normal even though it is relatively different to the average trend. So the model learning

rate is increased and the trend model will be updated as soon as the sensor readings are

returning to normal.

Figures 5.21 and 5.29 show that the ROC clustering method successfully discriminates

between events, assigning them to clusters where events within the same cluster are rel-

ativity similar to each other. Unique events are treated as new cluster centres (such as

clusters 5, 15 and 25 in the turbidity clustering example). This feature is very important

from a water quality event detection perspective as these events have no analogous events

in the past, and thus are potentially of greater importance to operators. These are the sig-

nificant events, which would trigger an alert when being detected, thus allowing operators

to react accordingly.

5.10 Summary

In this chapter, a case study is carried out to illustrate how abnormal events can be detected

and further catalogued into groups from in-situ salinity and turbidity measurements. By

applying state-of-the-art machine learning techniques, such processes can be fully auto-

mated. The system provides an opportunity to convert raw sensor readings into a more

human understanding and accessible format, which is more suitable for management.

This also introduces intelligence into the in-situ sensor network, for example, alerting

operators when an abnormal event is being detected. In addition, the system can po-

tentially process in-situ data at a greater scale, which enables the monitoring of marine

environment over a much larger region. Ultimately, such information can potentially pro-

vide an improved operator view of the functioning of environments such as estuaries, and
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hence improve decision making capability. The system can support decision makers in

constructing new policies to better protect environmental and coastal resources.
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CHAPTER 6

VISUAL DATA PROCESSING

6.1 Introduction

Visual systems have been identified as effective tools for aquatic environment monitoring.

Automated analysis of image data for detecting environmental processes has been studied

in a wide variety of contexts.

Davidson et al. [139] described the CoastView project, which focuses on the development

of a video-derived coastal state indicating system in support of coastal zone management.

The CoastView project illustrated how the use of fixed remote video sensing system can

potentially ameliorate issues associated with in-situ sensing. Goddijn-Murphy et al. [38]

used an off-the-shelf digital camera to estimate near shore water color by calculating yel-

low substance and chlorophyll concentrations from the image data stream. In [39], Wang

et al. built a Short-Term Rainfall Nowcasting system using rainfall radar images. By using

image processing and morphology analysis techniques, they achieved a high accuracy in

predicting short-term rainfall over a large area. Research in the Fish4Knowledge project

[40] demonstrated the use of under water cameras for fish detection, species identification

and behaviour recognition. Over 3, 000 different species of fish were observed during the

three years deployment period.
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Other studies have investigated the use of cameras and analysis of the resulting image

data for other forms of environmental monitoring applications. Graham et al., in [140],

investigated the use of cameras in determining the dynamics of expanding leaf area for

Rhododendron Occidental. In [141], Richardson et al. explored whether digital images

could be used to monitor spring green-up in a deciduous northern hardwood forest. They

all concluded that cameras offer an inexpensive means by which environmental changes

can be quantified.

Analysis of the in-situ sensor data obtained from our pilot system along with on-site

observations and discrete grab sampling demonstrates that when shipping traffic occurred

at the port it often coincided with rapid changes in data from the turbidity sensor. The

same effects are not seen with the activity of small boats in the area. Isolating such events

that are caused by known factors from the sensor measurements stream automatically is

greatly desired from an environmental monitoring perspective. It can significantly reduce

the amount of data that needs to be further analysed since the causes of these events are

identified. Moreover, when analysing and modelling long term environmental variations,

such as climate changes, these data points need to be removed as they are caused by local

activities and do not reflect the global characteristics of the water body. However, there

were turbidity events without associated shipping events. These turbidity variations are

highly interesting to marine scientists as their causes are unknown and require further

investigation. In addition, successfully identifying such events can be used to indicate

when a grab sampling should be carried out to increase the efficiency and effectiveness of

these manual processes.

The benefits of using visual sensing for environmental monitoring can be summarized as

follows:

• Cameras provide visual evidence that can be used to verify in-situ sensor variations.

• By combining outcomes from visual sensors and in-situ sensor modalities, the

amount of data that requires further analysis can be reduced.

• Visual analysis in multi modality sensor networks increases the accuracy of long
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term environmental modelling by removing variations caused by local factors.

• Multi-modal smart sensing system can be used as an indicator of when a sophisti-

cated grab sampling should be performed to increase the efficiency and effective-

ness of the manual processes.

In this chapter, a case study of how shipping events can be detected using image data

captured by a visual sensor and how this information can be used to complement in-situ

sensor abnormal event detection from in-situ data process stream is presented. A series of

experiments were carried out to evaluate the performance of the proposed system.

This chapter is organized as follows. Section 6.2 explains how motion of large size ships

affects water quality such as turbidity levels, at coastal areas, both from the results re-

ported in the literature and on-site discrete sampling analysis outcomes. The proposed

detection framework is introduced in Section 6.3 and the methodology is described in

detail in Section 6.4. The dataset used for evaluating the performance of the proposed

system is described in Section 6.5. Parameter selection for low level feature extraction,

high level descriptor construction and event classification is carried out in Section 6.6.

The performance of the proposed system is evaluated and the results are discussed in Sec-

tion 6.7. The combination of turbidity event detection results from in-situ data processing

stream and the shipping event detection from visual data processing stream is illustrated

in Section 6.8. Based on the results obtained, further experiments were carried out in

Section 6.9 to detect a more specific shipping event (P&O arrival) at the scene by altering

the settings of the proposed system. A summary of the visual data processing stream is

drawn in Section 6.10.

6.2 Shipping Traffic and Turbidity at Estuaries

Turbidity events are largely related to vessel activity at Dublin Port, caused by re-suspension

of sediments by vessel propulsion systems [106]. The effect of shipping traffic to the lo-

cal marine ecosystem has previously been discussed in Section 5.2.2. At the test site,
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on-site discrete sampling was carried out by colleagues on 15th Aug and 7th Sep 2012

to investigate how shipping events can affect turbidity levels and other water quality

parameters.[106]. Figures 6.1 and 6.2 (Source: [106]) show the analyses of water samples

collected at different depths (0.5, 2.5 and 4.5 m) before (approx. 15 mins), shortly after

(approx. 10 mins) and after (approx. 45 mins) a P&O ferry arrival event along with the

turbidity levels measured from in-situ sensor.

Figure 6.1: Analysis of discrete water samples collected on 15th August 2012. (a) Tur-
bidity measurements from in-situ sensor; A, B and C represent the sampling times and
the anchor represents the P&O ferry docking time. (b) Total Suspended Solids, (c) E.
coli and (d) Enterococci levels from grab sample. Source: Environ Monit Assess (2014)
186:5561-5580.

Total Suspended Solids (TSS) is a water quality measurement listed as a conventional

pollutant in the U.S. Clean Water Act. It is the dry-weight of particles trapped by a filter,

typically of a specified pore size. Although TSS is not exactly the same as turbidity, they

both refer to particles present in the water column, directly or indirectly. Both E. coli and

enterococci are used as microbial indicators of water quality. E. coli is an indicator for
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freshwater faecal pollution while enterococcus is used for seawater water or seawater. It

can be seen from the results that all the turbidity, TSS, E. coli and enterococci levels in-

creased rapidly when a shipping event occurred at the site. Apart from enterococci, which

remained constantly high, turbidity, TSS and E. coli settled down after approximately two

hours. This indicates that a shipping event does contribute to turbidity, TSS and E. coli

variations at the site. In addition, there are strong monotonic relationship among turbidity,

TSS and E. coli levels when a shipping event occurs at the test site.

P&O ferry arrival events are selected for the grab sampling due to the fact that it is the

closest shipping event to the bank wall that can be accessed.

Figure 6.2: Analysis of discrete water samples collected on 9th September 2012. (a)
Turbidity measurements from in-situ sensor; A, B and C represent the sampling times
and the anchor represents the P&O ferry docking time. (b) Total Suspended Solids, (c) E.
coli and (d) Enterococci levels from grab sample. Source: Environ Monit Assess (2014)
186:5561-5580
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6.3 Proposed Solution

Using a camera to automatically monitor shipping traffic through a port has obvious ben-

efits in terms of security and logistical monitoring. However, with the simultaneous de-

ployment of a turbidity sensor, it can also provide an indication of the effect of the traffic

on turbidity levels at the site. Initial analyses of in-situ and camera data demonstrated

that at times the shipping traffic seemed to contribute to large variations in turbidity mea-

surements. However, this relationship appeared to depend on a number of factors such

as water level, type of vessel etc. Therefore, without further analysis, it is unclear that

these rapid increases in turbidity measurements are directly attributable to shipping traf-

fic. Automated detection of ships in the images would greatly accelerate and improve

such analysis. This would lead to a better understanding of how commercial activities are

influencing the local environment and be relevant in subsequent decision making tools for

port management. Although some agencies supply shipping schedule information, such

data may not always be publicly available or may not provide sufficient meta-data on ves-

sel type and trajectory into the port which can create significant variation in relation to

turbidity readings.

Thus, in the following we present a novel approach for automatically detecting shipping

events in data collected from the camera deployed at our test site. This is a challenging

image dataset, but despite this, a very high accuracy rate for shipping event detection is

demonstrated.

Figure 6.3 illustrates an overview structure of the proposed shipping events detection sys-

tem. The framework consists of three layers, corresponding to raw feature extraction, high

level feature construction and classification. This follows the same high-level structure for

event detection in in-situ data which is introduced in Chapter 5.

• In the image raw feature extraction layer, low level image features from each indi-

vidual frame in an image sequence or a video segmentation are extracted. Although

temporal features require information from preceding frames, a feature set is still

assigned to a single frame.
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• In the high level feature construction layer, low level features are grouped into high

level descriptors. Common techniques include fixed length sliding window and

activity triggered dynamic windowing.

• In the classification layer, high level descriptors are catalogued into different classes

based on some kind of similarity measurement method.

Figure 6.3: Block diagram of shipping event detection framework.

6.4 Methodology

Since our objective is to be able to detect when large ships (150-200 m long) enter or

leave the harbour that may cause a rapid change in turbidity measurements, we need to

extract a set of features that are sufficiently discriminative to allow us to classify such

events. Traditional image processing research work focuses on spatial information only

[142, 143, 144], which may not be sufficient to represent events that occupy a duration

of time. Recently in the image processing domain, the focus has been shifted to extract

temporal information from video segments or a sequence of images. Interesting points

are first extracted from a single frame, then tracked over a short of period (few consec-

utive frames). In [145], Laptev and Lindeberg introduced a method called Harris3D for

detection of space-time local regions by extending the Harris corner detector [146] and

this has been successfully used for human action recognition [147, 148]. The Gabor3D

94



interest point detection method, introduced by Dollar et al. [149], is based on two 1D

Gabor filters. It has been used in many event detection tasks including facial expression

detection, mouse behaviour analysis [149] and human activity identification [150]. Work

in [150] shows that Gabor3D method achieved over 90 % accuracy when detecting sin-

gle person action. However, both Gabor3D and Harris3D are not scale-invariant, which

means they can not detect similar objects or actions if they are captured at different scales,

e.g. one is closer to the camera than the other. Hessian3D, proposed by Willems et al.

[95], is another interest point detector, which is a spatio-temporal extension of the Hessian

blob detector [151]. Experiments in [152] compared Harris3D, Gabor3D with Hessian3D.

The author concluded that Hessian3D outperformed the other two interest point detection

methods. Wang et al. [153] proposed a densely sampled interest point detector named

Dense. The Dense detector samples interest points in spatial and temporal coordinates

at multiple overlapping scales. Compared with other detectors, Dense provides a richer

amount of points to be tracked. The overlapped scaling mechanism is able to deal with

actions at different scale. A series of experiments was carried out by the author and the

results showed that the Dense detector outperforms Harris3D, Gabor3D and Hessian3D,

especially when the dataset represents a more real word environment.

Inspired by the success of Dense detector, Wang and Klaser further introduced the dense

trajectory descriptor [154] that captures the shape of motion of the dense interest points,

named Trajectory, and combining with Histogram of Oriented Gradients (HOG) [155],

Histogram of Optical Flow (HOF) [156] and Motion Boundary Histogram (MOH) [157].

A sequence of experiments was carried out in [154] using various standard benchmarking

datasets include KTH, YouTube, Hollywood2, Olympic Sports etc. Results on all datasets

showed that the dense Trajectory approach outperformed current state-of-the-art methods.

The dense Trajectory feature is selected for this work. To extract dense trajectory features,

interesting points Pt = (xt, yt) are sampled on a grid space by W pixels at frame t and

tracked to the next frame t+1 by median filtering in a dense optical flow field ω = (ut, vt).

W is the width of the grids, which is pre-defined. M is the median filtering kernel and

(x̄t, ȳt) is the rounded position of (xt, yt). The median filter is a non-linear transformation
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that replaces the value at a point by the median value of a small region around the point.

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ω)|(x̄t,ȳt) (6.1)

Interesting points tend to drift from their initial location during tracking due to image

noise. To avoid this, the points are tracked within L frames. As soon as a trajectory

exceeds length L, it is removed from the tracking process. Trajectory-aligned descriptors

are also extracted in a 3D volume along trajectories. HOG, HOF and MBH are calculated

within a local neighbourhood ofN∗N pixels overM consecutive frames (a fraction of L).

The use of full dense trajectory feature describes each scene with finer details. However,

due to the limitation of the annotated dataset available and to reduce the complexity, only

the Trajectory feature is used in this work. Using full dense trajectory feature results in a

dispersive feature space (426 dimensions) which very likely leads to an over-fitted model

on a small dataset. Figure 6.4 and 6.5 demonstrate the Trajectory feature points extracted

from an image of a static scene and an image of a shipping event occurring.

A key factor in continuous real-time event detection is how to select the set of raw fea-

tures extracted from each frame to be aggregated for event classification. These low level

features need to be added up into fragments that can be mapped to specific events. In this

work, features extracted from each individual frame are grouped into temporal overlap-

ping windows as shown in Figure 6.6. Each image may produce varying numbers of raw

features. In order to compare these features and further classify shipping events, a vector

quantization method known as “bag-of-visual-words” is adopted. With this method, each

trajectory feature is passed to a pre-built codebook using K-means clustering method and

represented by the clustering centre (“a visual word”) to which it belongs. The histogram

of all visual words within a time window is calculated as the descriptor of the window.

Fixed-length sliding window is a common grouping technique and has been widely used

in the literature [158, 159, 160]. In contrast to fixed-length sliding window, activity trig-

gered dynamic grouping is another common solution. The system monitors the overall

activity level at the scene or within a pre-defined triggering region; it starts grouping fea-

96



Figure 6.4: A sample image demonstrates Trajectory feature points that are extracted from
an image of a static scene at the observation site.

tures if the activity level is over a certain threshold and stops when the activity level drops

below the terminating threshold. The window length as well as both thresholds are nor-

mally dynamically derived at run-time. The main advantage of activity trigger grouping is

that the window always starts when an event occurs and stops when the event terminates.

However, for this work, due to the low frame rate of the visual sensing system as previ-

ously discussed and the nature of marine environment, determining suitable thresholds is

difficult. The low frame rate results in large gradual changes, which may be caused by the

change of lighting condition, moving cloud, waves and water surface reflection, between

successive frames. To differentiate such gradual changes from the true unusual activity,

which is required to define the triggering and terminating thresholds, is challenging. In

addition, activity triggering requires a large amount of training data to model events com-

pared to the sliding window method. Modelling these events is much more complicated

in contrast to fixed-length time window, especially when multiple events occur simultane-

ously. Thus, this method often applies when large scale benchmarking data is available.
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Figure 6.5: A sample image demonstrates Trajectory feature points that are extracted from
an image with a shipping event occurring at the observation site.

In this work, we only focus on the detection of shipping events and do not differentiate

event type in this case and thus overlapped fixed-length time window is sufficient enough

to perform this operation. The major limitation of this method is that a single event may

lead to multiple true samples, especially when the event does not start at the beginning

of a time window, which produces nosier classification results. However, the majority of

these noisy outputs do not affect the final event detection results and can be ignored. This

is further discussed in the result and discussion section.

Figure 6.6: Temporal windowing, overlapping windows are distributed equidistantly over
a sequence of frames.
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Once the time window based descriptors are constructed, they are passed to a classifier.

There are a variety of classification methods in the literature, all have their advantages and

disadvantages. Some commonly used classifiers are Bayesian [161], Decision Tree [162],

Neural Network [163], k-Nearest Neighbours [164] and Support Vector Machines(SVM)

[165]. The strength and weakness of each classification method are well defined in the

literature. A fundamental discussion can be found in Toby Segaran’s Collective Intelli-

gence [166] and a more detailed introduction is provided by Ian H. Witten’s Data Mining

book [167]. Selecting the best classifier is always task dependent. The objective of this

work is to illustrate how a visual sensor can provide additional information to enhance

in-situ sensing and to further assist environmental scientists to better understand marine

ecosystems. Comparing and contrasting the optimized classifier for the shipping event

detection system is beyond the scope of the current work. In this work, classification is

performed using the Support Vector Machines (SVM) classification method. SVM is a

state-of-art classifier which was introduced in 1992 by Boser, Guyon and Vapnik [168]. In

its simplest form, an SVM finds a linear separating hyperplane with the best possible sep-

aration between two classes. SVM is widely used in many research areas such as machine

vision [169, 170, 171], audio processing [172, 173], and text categorisation [128, 174].

Previous results show that SVM is a very powerful classifier and is likely to work as well

as or better than other classification methods [166]. One of the strengths of a SVM is

that by using kernel functions, feature vectors can be mapped onto a higher dimensional

space, where non-linear or very difficult classification problems can be effectively solved.

Moreover, after a model is built, it is very fast to classify new inputs, since classification

is simply done by determining on which side of the hyperplane an input lies. One disad-

vantage of SVM is that it may over-fit the training data with a small dataset, especially

when a non-linear kernel is applied or when processing imbalanced data. To avoid this,

cross-validation is normally performed. Generally, there are two steps to perform SVM

classification: determine which kernel to used and select an optimal set of parameters.

Some of the most common kernel functions are linear, polynomial, sigmoid and radial

basis function (RBF).
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• Linear kernel is defined as:

k(x, x′) = xTx′ + b (6.2)

It is the simplest kernel function, x and x′ are two samples represented as feature

vector in some input space. B is called the bias, where xTx′ + b = 0 defines a

hyperplane, which is the decision boundary of the classifier. It divides the input

data into two categories, positive (e.g. is an unusual event) and negative (e.g. is not

an unusual event).

• Polynomial kernel is defined as:

k(x, x′) = (xTx′ + b)d (6.3)

where d is the polynomial degree. The most common degree is d = 2, since larger

degrees tend to build an over-fitted model. In general, polynomial kernel performs

well on normalized data. Polynomial kernel is very popular in natural language

processing.

• Sigmoid kernel is defined as:

k(x, x′) = tanh(xTx′ + b) (6.4)

It is also known as Hyperbolic Tangent kernel. It is commonly used in the neural

network field as an activation function for artificial neurons.

• RBF kernel is defined as:

k(x, x′) = exp(−γ ‖x− x′‖2
), where− γ > 0 (6.5)

where ‖x− x′‖2 is the squared distance between two vectors, γ is a free parame-

ter that defines how far the influence of a single training example reaches, where

low values means ‘far’ (the influence of a single training entry is significant to the
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decision boundary) and high values means ‘close’.

An SVM also consists of a soft margin parameter C for all kernels, which trades off

misclassification of training examples against simplicity of the decision surface. A low

value of C makes the decision surface smooth, while a high value of C aims at classifying

all training examples correctly. An RBF kernel is chosen as the kernel function for the

following event classification process due to its ability to generalize data well and it can

also handle a non-linear decision boundary.

6.5 Visual Test Data: Dublin Bay

A month of image data from the 1st May 2012 to 31st May 2012 (total of 255,956 images

captured at 1 frame every 10 seconds) was used to evaluate the proposed shipping traffic

detection method. The first 50 % of continuous data was used to train a model and the

following 25 % of sequential data was used for classification parameter optimization. The

remaining 25 % of data was used for testing. The data exhibits a wide variety of lighting

and weather conditions, as well as many different types of ships and trajectories. Figure

6.7 demonstrates the complexity of the dataset. The dataset contains daytime images

as well as nighttime images with reflections of lighting on water surface. A variety of

weather conditions, such as sunny, cloudy, light shower, heavy rainfall and storm, are also

present in the dataset. Human activities, such as a yacht race, also occurred during the data

capture period. Technical issues, such as the failure of the control board, which extracts

image data from the camera and uploads to a cloud data centre, loss of mobile network

connection, which results in a short period of missing image data, are also present in the

dataset. Therefore, the image dataset used for the following experiments truly reflects the

nature of a practical deployment.

A total of 255, 956 color images of 640×480 pixels were annotated as the ground truth of

the dataset. To reduce the amount of data that needs to be processed, a region of interest

(x : 0, y : 100, width : 640, height : 200) is drawn on the original image before ex-
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Figure 6.7: Samples of the image data, which exhibit a wide variety of lighting and
weather condition, demonstrate the complexity of the dataset.

tracting features. This is due to two reasons. Firstly, image processing is computationally

expensive; processing data within the region of interest significantly reduces processing

time. Secondly, shipping events only occur in certain areas within the image, e.g. within

the channel, and so unrelated information extracted from outside the region of interest

provides no useful information to the classifier and may interfere with the results. Ini-

tial analysis on the dataset shows that the duration of the majority of shipping events is

between 3 to 7 mins. Thus, raw image features were grouped into 15 mins time inter-

vals, which is approximately twice as large as a long shipping event, with 10 mins (2/3)

overlapping (e.g 15:00 to 15:15 and 15:05 to 15:20). If a large part of the event (90 %)

falls into a time interval, it is annotated as true. Because of the overlapping mechanism, a

shipping event may lead to multiple positive entries in the dataset. However, these entries

are temporally close to each other (successive samples). Feature sets were categorised

into two classes: no shipping events and shipping events. The total amount of shipping

events in the training, evaluation and testing set are 176, 51 and 54 respectively; the total

amount of positive samples are 387, 100 and 117.
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6.6 Parameter Settings

The Elbow method, discussed in Chapter 5, was applied to determine an optimized code-

book. The plot of the average within cluster sum of squared error (ASSE) against a series

of sequential cluster levels is shown in Figure 6.8 and the explained variance ratio is il-

lustrated in Figure 6.9. Due to the limitation of hardware resources, every 10th sample in

the training data is used for the evaluation process and the range of cluster center is set

from 1 to 50 with a step of 5 (e.g 1, 5, 10, 15) and 50 to 3000 with a step of 50 (e.g. 50,

100, 150). However, building a codebook does not require the calculation of ASSE, thus,

the full training dataset was used to build the final codebook.

Figure 6.8: Average within-cluster sum of squared error vs. the number of clusters in the
codebook. A lower error value means that the codebook model is a closer representation
of the whole dataset.
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Figure 6.9: Percentage of variance explained vs. the number of clusters in the codebook.
The higher percentage means the better that the codebook represents the original data.

As shown in Figure 6.8, the ASSE decreases rapidly when the number of clusters is small.

When the number of clusters is greater than 100 the decrease becomes smaller. After 500

clusters, the changes of ASSE are very small and the decreasing rate becomes steady.

These suggest that a codebook with at least 100 words is a good representation of the

raw feature data. In addition, using more than 500 words does not increase the accuracy

by much. Further increasing the number of words still improves performance but it also

increases the computational complexity and may lead to a dispersive descriptor, which

increases the possibility of producing an over-fitted classification model. The same con-

clusion can be drawn from Figure 6.9; the increase of explained variance ratio becomes

small when the number of clusters exceeds 100 and steady when the codebook contains

more than 500 words. This suggests that a codebook with the number of words between

100 (less accurate but computationally inexpensive) and 500 (more accurate but compu-

tationally expensive) is a good representation of the Dense feature. To keep the balance

between accuracy and computation requirement, a codebook with 200 words is chosen as

the model for the feature representation process.

When training a SVM with the RBF kernel, two parameters must be considered: C and
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γ. To obtain an optimised set of parameters, grid search [175] was applied. Grid search

is one of the standard methods of performing hyperparameter optimization. Various pairs

of (C, γ) values are tried and the one with the highest evaluation accuracy is picked. In

[175], the author suggests that trying exponentially growing sequences of C and γ is a

practical method to identify good parameters. Thus, we set the range of C from 1e−2

to 1e9 and the range of γ from 1e−7 to 1e3. The classification F1 scores on the training

and evaluation dataset are shown in Figure 6.10 and 6.11. Evaluation results suggest that

C = 100 and γ = 1e−5 are the optimal parameter values for the SVM classifier on the

dataset.

Figure 6.10: Grid search results for RBF kernel parameters C and γ on training data. The
result shows that the classifier achieved good results when the C and γ values are in the
grey region.
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Figure 6.11: Grid search results for RBF kernel parameters C and γ on evaluation data.
The highest classification accuracy is obtained with parameter values C = 100 and γ =
1e−5, which suggests this value pair is the optimal parameter set for classification of
shipping events.

6.7 Results and Discussion

Applying the described shipping event detection method, using the optimized set of pa-

rameters obtained from Section 6.6, to the test data results in 143 (FP+TP) out of 2232

(TN+FN+FP+TP) descriptor sets being classified as positive samples. The classification

confusion matrix and the F1 scores are shown in Table 6.1 and the Receiver Operating

Characteristic (ROC) curve is shown in Figure 6.12.

Table 6.1: Training, evaluation and testing confusion matrix of shipping detection using
SVM classifier with RBF kernel and the optimized parameter values.

Training Evaluation Testing
No Shipping Events TN FP 4041 34 2079 46 2064 37
Shipping Events FN TP 0 385 18 87 23 106
F1 Score 0.73 0.78
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Figure 6.12: Shipping events classification evaluation and test dataset ROC curves.

As can be seen from the confusion matrix, 46 out of 2, 125 negative samples (TN+FP)

and 18 out of 105 positive samples (FN+TP) are misclassified in the evaluation dataset

and 37 out of 2, 102 negative samples (TN+FP) and 23 out of 129 (FN+TP) positive sam-

ples are misclassified in the test data. The evaluation and testing F1 scores are 0.73 and

0.78 respectively. As previously discussed, a ship entering event may result in multiple

true samples in the data set due to the overlapping fixed-length window based grouping

mechanism applied. Depending on preceding and succeeding outputs, the classification

error can be further grouped in three categories:

• Type I - Event Missed: No descriptor is classified as True, a shipping event is

completely missed by the detection system.

• Type II - Event Incorrectly Detected: System returns positive, but no event occurred

at the site.

• Type III - Don’t Care Error: Descriptor is wrongly classified, but shipping event is

still detected.

To illustrate this, a sample shipping event and the descriptors constructed during the pe-

riod of this event are shown in Figure 6.13. For convenience purposes, they are named
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Figure 6.13: This example shows three types of classification errors that may occur. Both
descriptor B and C are labelled as true since both of them cover shipping event K. De-
scriptor G is labelled as false since there is no shipping event but it is classified as true by
the system.

as A to I , which represent successive descriptors constructed from the low level features

that are extracted from images. Descriptor A and D are negative samples since they only

cover small portion of the shipping event. B and C are annotated as true samples since

both of them cover a shipping event. If either of these two descriptors is incorrectly clas-

sified while the other one is correctly detected (assume descriptor A and D are correctly

identified), a shipping event is still detected by the system. Thus, this classification error

is a type III error, which does not affect the shipping event detection result since the event

is still captured by the system. However, if both descriptor set B and C are wrongly clas-

sified, event K will be missed by the detection system, which results a type I error. As

illustrated in Figure 6.13, descriptor set G is classified as true by the detector, however,

there is no shipping event at the time, which results a type II error (false detected).

Since only type I and type II errors affect shipping detection accuracy, type III errors

can be ignored. This results in 4 out of 54 shipping events missed and 2 events wrongly

classified in the test dataset, which results in an overall shipping events detection rate of

93.2% (48 out of 54). A more visualised classification result is shown in Figure 6.14.

The red bars are the outputs from the classifier and the blue bars are the ground truth.

The variant width of the bar indicates that there are multiple successive descriptors that

are labelled or detected as positive sample. A sample of type I and type II error are also

illustrated in the graph. Some aligned red and blue bars have different width which are
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caused by type III errors, however, it does not affect the overall system accuracy as events

are still detected. As can be seen from Figure 6.14, the proposed system achieved a very

high shipping event detection accuracy.

Figure 6.14: Classification outputs vs. ground truth indicates that the system achieved
very high shipping events detection accuracy. A sample of type I and II error are illus-
trated.

Figure 6.15 and 6.16 show some example images of the two incorrectly detected events

(Type II error). As can be been from the sample frames, the first wrongly detected event

is caused by one speed boat and one fishing boat crossing the channel. The velocity of the

speed boat is very high, which generates strong waves over a short period of time. The

wake generates a lot of motion features, which affect the classification results. In addition,

the impact of wake caused vibration of the pontoon and docked boats, which generate mo-

tion features that also affects the classifier. The second wrongly detected event is caused

by a large size sailing boat and a tug boat crossing the channel, which generates a lot of

motion within the image. These classification errors are mainly cased by the limitation

of bag-of-words representation and the sliding window mechanism. Bag-of-words along

with the sliding window approach discards local temporal information to reduce descrip-

tor complexity. For example, raw features extracted from two individual medium size

boat events are simply accumulated, which may appear as a similar to features extracted

from a large size vessel. One potential solution to solve this issue is to extract spatial

information, such as activity regions. Multiple medium or small size boat events gener-

ate multiple small, high density activity regions and large vessels generate single large
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activity regions, which can be used to discriminate above events. A more sophisticated

solution could be to combine Dense feature with other local shape features, such as HOG,

which may discriminate above events. However, to evaluate these solutions requires a

much larger labelled dataset, which is currently not available.

Figure 6.15: Sample images of the first wrongly classified shipping event. Speed boat, fish
boat and the impact of wake creates large amount of motion, which affects classification
results.

Figure 6.16: Sample images of the second wrongly classified shipping event. Tug boat
and sail boat appeared at the scene, which leads to incorrect classification.

Figure 6.18 to 6.20 show example images of the four missed events (type I error). The

first two missed events are a P&O ferry departure from the left of the channel to the right.

The reason why these two events are missed by the classifier needs to be further studied.
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There are 18 similar P&O departure events in the test data set, 16 were correctly detected

by the system. The third missed event is the Shoalway trailing suction hopper dredging

ship turning at the right edge of the image region. Although this event is annotated as true,

the ship only appears partially at the scene which may not provide enough information for

the classifier. The final undetected event is a medium sized passenger ship coming into

the harbour, turning anti-clockwise and docking against the wall at the far side. The key

reason for this error is that this event only occurred once in the whole dataset. No sim-

ilar events are available for training the classification model. A supervised classification

method tends to perform well if sufficient training data is provided. Here, only binary

classification is performed, thus, if an event is not ‘similar’ to a positive sample in the

training set or has not been observed before, it is likely to be catalogued as false.

Figure 6.17: Sample images of the first missed shipping event.

Figure 6.18: Sample images of the second missed shipping event.

Figure 6.19: Sample images of the third missed shipping event.
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Figure 6.20: Sample images of the fourth missed shipping event.

6.8 Combination of Visual and In-Situ Data Processing

Results

In order to better understand and subsequently model the environmental dynamics at the

observation site, the output of visual sensor modality is combined with the turbidity events

detected to further distinguish whether a turbidity event is caused by shipping traffic. This

provides an opportunity of filtering out turbidity variations that are caused by local activ-

ities and to determine the abnormal events that need to be further analysed. The turbidity

anomalies detected, as shown in Figure 6.21, are grouped into events by applying the event

construction method introduced in Chapter 5. Figure 6.21 also shows a combination of

turbidity occurrences and shipping events.

Figure 6.21: Matching of shipping and turbidity events by their timestamps. The graph
shows that not all shipping events lead to a rapid change in turbidity sensor data stream.
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From Figure 6.21, it can be seen that the majority of shipping events do not affect turbidity

measurements collected by the in-situ sensor at the site. Further analysis of the images

and in-situ data shows that P&O ferries are more likely to cause a rapid change in turbidity

reading than other shipping events. This is mainly due to the following facts:

• Single Point Sensor: As discussed in the previous section, purchase, deployment

and maintenance of an in-situ sensor system is costly and is a subject to restrictions

in hosting permission. Thus, to prove the concept, only one multi-parameter sonde

is deployed at Dublin bay. The drawback of the current system is that it is a single

point system, which may not capture the overall water quality dynamics of the entire

site. As shown in Figure 6.22, the YSI sonde is deployed opposite of Terminal 3

(anchor point), the shipping events that occur at the far side of the channel may not

be reflected in the sensor reading. Events such as these may cause a rapid change

in turbidity values but it may not be captured by the deployed sensor.

• Manoeuvring: When a P&O ferry is entering the terminal, it manoeuvres first then

reverses to the dock. During this process, the vessel has to use its bow thrusters to

change the direction, which cause turbulence. Also, the stern main engine is also at

its high load, which disturbs the water body as well. The impact of this intensive

mixing and stirring has been observed visually on-site and is shown in Figure 6.22.

Moreover, as these events often occur in the middle of the channel, there is a high

chance for the in-situ sensor to capture these effects compared to other large scale

vessel events, which appear at the far end of the channel. In contrast, when a P&O

ferry departures from the terminal, the bow thrusters are not applied and the speed

of the ferry is relatively low. As a consequence, P&O departure events do not lead

to a rapid change in turbidity measurements.

Thus, in the following section, we altered the setting of the proposed system to detect

only P&O arriving events.

113



Figure 6.22: Demostration of a P&O ferry entering port terminal.

6.9 P&O Ferry Arrival Event Detection

To further evaluate how shipping events affect the in-situ sensor measurements, we altered

the settings of the previous experiments to detect P&O ferry arrival events. In order to

estimate the generalization of the proposed detection framework, a different set of test

data is used for evaluation.

Two weeks of image data from the 8th Nov 2012 to 21st Nov 2012 (109, 143 images)

was annotated and used for the subsequent experiments. Following the same procedure

of the previous test, dense feature within the region of interest is first extracted from

each individual frame and passed to the codebook previously built. The ‘words’, output

from the codebook model, are used as the representation of low level raw features (the

Trajectory feature). Since the low level dense feature describes the motion characteristic

of an interesting point, this does not require to rebuilding the codebook. These words

are further grouped together using fixed-length overlapping sliding window mechanism

and the frequency of their occurrence is used as the high level descriptors. Descriptors
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are catalogued into two groups corresponding to P&O arrival events, which were labelled

as positive samples and all others, such as no shipping or other shipping events, were

labelled as negatives entries. The data shows a very different characteristic than previous

test dataset due to seasonal effects. For example, the sunshine hours during this period is

much shorter than the former dataset, which results in the majority of P&O ferries arriving

in the dark mornings or evenings in contrast to bright daylight time, even though these

events may occur approximately at the same time of the day as before. In addition, other

activities, such as yacht races, dredging, the traffic of cargo freighters, are less intensive

than in the summer time. Thus, a different classifier needs to be built for this period of

time. The first week (50% continuous) data is used to train a model and the remaining

week data is used for testing. All the parameters are set to the optimized values that are

obtained from Section 6.6 (C = 100andγ = 1e−5). The test data classification confusion

matrix is shown in Table 6.2

Table 6.2: Testing confusion matrix of P&O arrival shipping detection using SVM clas-
sifier with RBF kernel and the optimized parameter values that were obtained from the
previous experiment.

P&O Entering Events TN FP 1967 17
All Ohters FN TP 3 27
F1 Score 0.73

Further analysis of the classification output indicates that there is 1 event missed due to

the type I error and 1 event is incorrectly detected by the classifier (type II error) out of

17 events in total. The system achieved 88.25% (15 out of 17) overall event detection

accuracy. A more visualised classification result is shown in Figure 6.23. The red bars

are the outputs from the classifier and the blue bars are the ground truth. Sample images

of missed and incorrectly classified events are shown in Figure 6.24. The top row shows

three sample frames of the missed P&O arrival event and the bottom row presents three

sample frames of incorrectly classified event. As can be seen from the graph, the type

II error is caused by a giant Sea Star cargo ship. By further examining the image data,

we found that the vessel first left the dock at the far side and then entered the channel.

Dragged by the pilot boats, the vessel manoeuvred clockwise and accelerated to the right.

115



The trajectory of this event is very similar to a P&O arrival event apart from the reverse

order of the action. This illustrates a limitation of the descriptor used, it can not differenti-

ate actions with inverse patterns. The descriptor counts the frequency of the occurrence of

each visual word within a sliding window but does not take into account when it happens

within the time period. The same solutions, as discussed in previous section (Section 6.7),

can be applied to avoid this limitation. However, the causes of the type I error need to be

further investigated.

Figure 6.23: P&O entering events classification output vs. ground truth.

Figure 6.24: Samples image of missed and incorrectly classified events. Top row: missed
P&O arrival event, bottom row: incorrectly classified event.

A combination of turbidity event detection results and P&O ferry arrival event classifi-

cation results over the same period of time are shown in Figure 6.25. The graph shows

that large amounts of turbidity variations are likely caused by the arrival of P&O ferries.
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However, it also indicates that there are turbidity events that do not have shipping activi-

ties associated with them, such as the event that occurred at around mid-night of Nov 19th

and two events which happened at mid-day on Nov 20th. Interestingly, not all shipping

activities lead to a rapid change in turbidity sensor measurements. Four shipping events

within the testing time period, three on Nov 18th and one on Nov 19th, do not affect tur-

bidity readings at all. Moreover, although P&O ferries follow a similar trajectory when

they come into the port and berth at the dock, the turbidity signatures do not always show

a similar pattern. This can be seen from the graph where the turbidity trends associated

with the first two shipping events have similar shapes; the turbidity data captured after

shipping event 4 and 13 have similar variations, however, the majority of the turbidity

events associated with these shipping events have diverse patterns.

Figure 6.25: Combination of turbidity event detection and P&O arrival events classifica-
tion output.

6.10 Summary

In this chapter, we firstly introduced how visual sensing can be used as an alternative

sensing modality for many forms of environmental monitoring. Many other works in

the literature demonstrated that a low cost off-the-shelf camera can provide much richer
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content based information that can be used to enhance in-situ sensors. Inspired by these

research works, a visual sensing modality was installed at our pilot site to complement

the in-situ sensor deployed. Due to the unique characteristics of our test site, we firstly

focused on the detection of large scale vessels present at the site since these type of ships

potentially affect turbidity levels at estuaries. The contribution of shipping events to local

turbidity variation has been studied in the past, however, only from a manual perspective

and verified by discrete sampling, which cannot be quantified for long term water quality

monitoring and subsequent modelling. We proposed an automated shipping event detec-

tion system that determines when a large scale ship is appearing at the scene. A series of

experiments were carried out to evaluate the proposed method and results show that ship-

ping events can be identified accurately. However, mapping all occurrences of shipping

transits with abnormal event detection results obtained from in-situ sensor measurements

using the method described from Chapter 5, we found that most of the occurrences do not

lead to a rapid change in turbidity readings. As discussed, the potential causes of these

phenomena are the location of where the in-situ sensors are deployed and the trajectories

of the shipping events. Further analysis on the data suggested that, at the test site, the

arrival of a P&O ferry often leads to rapid changes in the sensor readings while other

shipping events do not have such an effect. Thus, we altered the settings of our proposed

framework and adapted the system to detect P&O arrival events only. Results show that

significant amount of turbidity events are caused by the arrival of P&O ferries. However,

the results also demonstrated that the same shipping events may not necessarily generate

a turbidity variation, due to the complexity of the environment. Turbidity is affected by

many factors. Although shipping events do have a significant contribution, but it also

relies on other constraints. For example, speed and direction of water flow, sediments

at the channel, water depth at the time of shipping transit occurs, wind etc. all provide

different outcomes of turbidity patterns. It can also be seen from the results that the tur-

bidity variations associated with the same shipping events certainly do not show similar

trends. However, the results suggest that in-situ sensor variations can be verified by visual

sensors. The output of visual sensors can be used to enhance the event detection results
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from in-situ sensor data. Events from in-situ sensor can be further classified as being

caused by a local activity, which can then be filtered out, or classified as unknown. The

environmental scientists can then focus on the remaining events only.

The case study carried out in this chapter demonstrates the advantage of coupling a visual

sensor with an in-situ sensing unit, which addresses research questions 3 and 4 and further

validates our hypothesis 1, in Chapter 1. By applying state-of-the-art machine learning

methods, in-situ and visual data streams can be processed automatically. Unusual events

can be isolated from data streams and catalogued into sub-groups. This also enables

the opportunity of monitoring the marine environment on a much greater scale. Visual

sensing provides context information that can be used to verify events detected from in-

situ sensor measurements. The system provides context based information rather than raw

sensor reading based information to assist scientists in better understanding the marine

ecosystem. New policies can then be developed to further protect these environments.

Feedback can be applied to hardware infrastructure, e.g. change location, angle or altering

sampling rate, to make the deployed system more effective.
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CHAPTER 7

CONCLUSION

7.1 Thesis Overview

In this thesis, the requirements for a multi-modality smart marine monitoring system are

identified. Results obtained from the case studies show that marine environmental moni-

toring applications will strongly benefit from the integration of multiple sensing modali-

ties. Different sensing modalities can complement each other to provide more robust and

comprehensive information that is more suitable for decision making, especially in a large

scale setting. Such information can potentially provide an improved operator view of the

functioning of environments and hence improve decision making capability. A summary

of the findings in each chapter is provided and the research hypotheses are revisited. The

research contribution and limitations of this study are also discussed followed by sugges-

tions for future research.

In the introductory chapter, the need for high spatial and temporal monitoring of marine

environment is identified from both economical and ecosystem well-being perspectives.

Current state-of-the-art research works carried out in other research domains which mo-

tivate this work are discussed. The aims and objectives of this research work are out-

lined. The research hypotheses and the expanded research questions that are investigated
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throughout the thesis are listed followed by the outline of this thesis.

An overview of some key concepts from the literature in relation to marine environmental

monitoring is provided in Chapter 2. This chapter starts with an introduction of the con-

cept of WSNs, which provides the fundamental physical infrastructure for environmental

monitoring systems, followed by the discussion of current progress together with the is-

sues that WSNs are facing. Visual sensing as an alternative sensing modality for marine

environmental monitoring is introduced. Current existing marine monitoring systems are

introduced and the main focus of these systems is outlined. Anomaly detection, the first

step of introducing intelligence to WSNs, is highlighted in this chapter followed by the

discussion of unusual event detection and clustering in WSNs. Standard classification

performance evaluation methods, which are used to evaluate the experimental results in

this work, are also introduced.

In Chapter 3, a multi-modal smart sensing system framework has been designed and the

structure of the system is discussed. The framework is architected in a flexible manner that

can be deployed on a computing cloud, which meets the requirement of futuristic large

scale multi-modality smart sensor networks. High level content-based knowledge (the

output from the back end smart system using machine learning techniques) is provided,

which can be more easily understood and accessed by end users. The system also provides

a user interface that allows a rich set of queries from end users.

Dublin Bay, Ireland, is the site used as the location for practical deployment of the pro-

posed system and is described in Chapter 4. This test site presents a real challenge in

environmental monitoring due to the complex interactions of parameters such as tide,

stratification and human activities. Both of the in-situ and visual sensing modalities,

which are deployed at the site, are described in detail in this chapter along with issues

concerning deployment in the real environment.

The first case study is carried out in Chapter 5, which illustrated how raw in-situ sensor

data can be converted into organized content based information. This chapter begins

with the introduction of the importance of salinity and turbidity at estuaries followed by
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abnormal event detection from these two sensor parameters. The experiments carried out

in this section address the first two research questions, which validates our first hypothesis.

The second case study is carried out in Chapter 6, which illustrated event detection from

visual sensing and the combination of event detection results from both visual and in-

situ sensing modalities. A shipping traffic event detection system has been proposed and

evaluated. The results show that the appearance of a large vessel at the scene can be

identified accurately. However, it has been found that most of the occurrences do not lead

to a rapid change in turbidity readings. Further analysis on the data suggested that, at the

test site, the arrival of a P&O ferry often leads to rapid changes in the sensor readings

while other shipping events do not have such affect. This is mainly due to the location

where the in-situ sensor is deployed. Thus, we alter the settings of the shipping event

detection system and adapt the system to detect P&O arrival events only. Results shown

that a significant amount of turbidity events were caused by the arrival of P&O ferries. The

results found in this case study demonstrate the advantage of coupling multiple sensing

modalities, where visual sensor provides context information that can be used to verify

events detected from in-situ sensor measurements. The case study carried out in this

chapter demonstrates the advantage of multi-modality sensing system, which addresses

research questions 3 and 4 and validates our second hypothesis.

7.2 Analysis and Discussion of Hypotheses

In this thesis, a number of research questions in conjunction with research hypotheses

are explored to investigate how computer science techniques can improve the efficiency

and effectiveness of current marine monitoring systems. In the following, the research

questions are examined with respect to the experimental results obtained.

1. Can machine learning methods be used to automate the detection of abnormal

events in the marine environment from in-situ sensing modalities?

This research question is explored in Chapter 5. Anomaly detection, as the first step
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of abnormal event detection, is carried out using a modified background modelling

technique (MoPBAS) originally from the image processing domain. The system

achieved very high F1 scores on both salinity and turbidity test data. Abnormal

events are then created using agglomerative hierarchical clustering based on the

temporal information of the anomalies detected. From 861 salinity anomalies de-

tected, 222 salinity events are constructed. In contrast, 693 turbidity events are

constructed from the classified turbidity anomalies. The experiments carried out

illustrated that it is possible to identify unusual water quality parameter variations

from continuous sensor data stream.

2. Can machine learning techniques further group automatically detected abnormal

events into catalogues based on their similarities to assist marine scientists in

finding their causes?

This research question is also investigated in Chapter 5. ROC clustering method

was employed to catalogue the detected abnormal events into sub-classes. Results

show that detected abnormal events can be assigned into groups based on their

similarity measurements. Events in the same group have similar variations but have

very different trends compared with events in other groups. Significant events,

which are potentially of greater importance to marine scientists, are assigned to

new categories since there are no analogous events in the past.

3. What information can be extracted from a visual sensor to enhance the deployed

wireless sensor network? Can this information be used to classify the abnormal

events detected by in-situ sensors to assist the marine scientists in better under-

standing and modelling the ecosystem?

In Chapter 6, the second case study shows that shipping traffic at the test site can

be accurately identified from a visual sensor. This content based information pro-

vided by the visual sensing modality can be used to validate the abnormal events

detected from in-situ water quality sensors. The abnormal events, associated with

the shipping traffic, can then be further classified as caused by local activity, which
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can be ignored. Marine scientists only need to focus on investigating the causes of

the remaining detected events.

4. Can a multi-modal smart sensor framework combine various data sources to pro-

vide a broader picture of monitoring sites and to assist the operators in monitor-

ing large scale marine environments more efficiently and effectively?

In Chapter 3, a multi-modal smart sensing system is designed. The two case studies

carried out in Chapter 5 and Chapter 6 illustrated the data processing from various

sensing modalities. Although the designed system is not fully implemented, the

case studies carried out in this research work demonstrated an example of how each

building block of the designed system performs. Significant events that are detected

by the system are also isolated (catalogued in new clusters). The system also aligns

the events detected from all sensing modalities, thus providing richer information to

marine scientists. The output of the studies shows that raw data can be converted to

structured high level information that can potentially assist operators in monitoring

large scale marine environments more efficiently and effectively.

7.3 Research Contributions

The contributions of this research consist of the following:

• An investigation into the need for multi-modal smart sensing network for marine

environmental monitoring and the design of such a smart sensing system.

• The adaptation of a foreground extraction technique from image processing domain

to anomaly detection from in-situ water quality sensor measurements.

• An evaluation of abnormal event detection and clustering from in-situ sensor data.

• An evaluation of shipping traffic event detection from visual sensor data.

• An investigation of the combination of event detection results from multi sensor

modalities in a particular marine monitoring application scenario.
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7.4 Future Work

During this research work, only one test site is deployed and maintained due to very prac-

tical concern such as the necessity for a hosting permission agreement, labour intensive

maintenance requirements and high cost. This may limit the generalization of the out-

comes from this research work. However, following the success of this work, we are now

deploying sensors at two more test sites along the River Liffey in collaboration with Intel

Labs Europe, Dublin City Council (DCC) and The Commissioners of Irish Lights (CIL).

The architecture for these deployments follow the same framework as the designed site.

New datasets will be collected in the near future, which can be used to further improve

the proposed system. The location of the new sites, Dublin Bay Buoy and Strawberry

Beds are shown in Figure 7.1. Strawberry Beds is located at the upper stream of the Liffy

River, which is a fresh water environment. In contrast, the other new test site is located at

Dublin Bay, where is the location that the Liffy River reaches the Irish Sea.

Figure 7.1: A map shows the location of the two new test sites, Dublin Bay Buoy and
Strawberry Beds, which are currently under construction (source: http://maps.google.ie).

There are a wide range of novel opportunities for marine environment monitoring with

the help of new developed hardware and software platforms. Marine well-being is also

a key research area under the EU research and innovation program Horizon 2020. The

findings of this research poses many new research possibilities:

Visual Sensing Recent released embedded systems, such as Raspberry Pi, Banana Pi,

BeagleBoard etc. enables the development of a low cost self-powered mobile visual
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sensing system that could be deployed at any marine site. Projects developed based

on the used of these embedded systems, such as Feeder Tweeter 1 have shown the

potential of such system that can be used for long-term environmental monitoring.

In terms of image analysis, future work involves extraction of additional informa-

tion from image data. An example of this is estimating water levels from the rela-

tive position of a reference object or objects in the image. Such systems can provide

validation information to water level sensors or a replacement if visual sensor can

achieve a relative high accuracy. Water level sensors then can be removed to reduce

cost and maintenance.

External Data Sources Integration of other data sources, such as weather forecasts, can

provide additional information that can potentially assist the marine scientists in

better understanding the nature process. For example, a heavy rainfall will result in

a large volume of fresh water into the test site, which may have significant effect on

in-situ sensor readings. Although, in this research work, only two sensing modal-

ities were investigated, the designed multi-modality smart sensing framework has

the capability of integrating external sources into the smart system.

System Implementation In this work, a multi-modality smart sensing system framework

for environmental monitoring has been proposed. Two case studies have been car-

ried out and evaluated to illustrate how the proposed system performs. However,

in order to benefit the marine scientists, a fully functional system is required. Vari-

ous components of the system have been developed during this work, the next step

would be to integrate these components into a complete system and also to create a

Graphical User Interface (GUI) that allows user to interact with the smart sensing

system.

1Feeder Tweeter: http://www.feedertweeter.net/
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Luther III, “Marine chemical technology and sensors for marine waters: potentials

and limits,” Annual review of marine science, vol. 1, pp. 91–115, 2009. 5

[15] T. Voigt, F. Osterlind, N. Finne, N. Tsiftes, Z. He, J. Eriksson, A. Dunkels, U. Bam-

stedt, J. Schiller, and K. Hjort, “Sensor networking in aquatic environments-

experiences and new challenges,” in Local Computer Networks, 2007. LCN 2007.

32nd IEEE Conference on, pp. 793–798, IEEE, 2007. 5

128



[16] B. O’Flynn, F. Regan, A. Lawlor, J. Wallace, J. Torres, and C. O’Mathuna, “Ex-

periences and recommendations in deploying a real-time, water quality monitoring

system,” Measurement Science and Technology, vol. 21, no. 12, p. 124004, 2010.

6, 29

[17] C. Albaladejo, P. Sánchez, A. Iborra, F. Soto, J. A. López, and R. Torres, “Wire-
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[98] O. L. Junior, D. Delgado, V. Gonçalves, and U. Nunes, “Trainable classifier-fusion

schemes: an application to pedestrian detection,” in Intelligent Transportation Sys-

tems, pp. 1–6, 2009. 29

[99] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd behavior detection using

social force model,” in Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pp. 935–942, IEEE, 2009. 29

[100] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, “Anomaly detection in

crowded scenes,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, pp. 1975–1981, IEEE, 2010. 29

[101] F. Provost and T. Fawcett, “Robust classification for imprecise environments,” Ma-

chine learning, vol. 42, no. 3, pp. 203–231, 2001. 29

[102] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011. 31

[103] S. E. R. B. District, “South eastern river basin district management system initial

characterisation report @ONLINE.” Accessed on 22nd Dec 2014. 37

[104] S. Roth and J. G. Wilson, “Functional analysis by trophic guilds of macrobenthic

community structure in dublin bay, ireland,” Journal of Experimental Marine Biol-

ogy and Ecology, vol. 222, no. 12, pp. 195 – 217, 1998. 38

[105] J. Wilson, “Productivity, fisheries and aquaculture in temperate estuaries,” Estuar-

ine, Coastal and Shelf Science, vol. 55, no. 6, pp. 953 – 967, 2002. 38

[106] C. Briciu-Burghina, T. Sullivan, J. Chapman, and F. Regan, “Continuous high-

frequency monitoring of estuarine water quality as a decision support tool: a dublin

port case study,” Environmental monitoring and assessment, pp. 1–20, 2014. 38,

39, 50, 90, 91

138



[107] R. J. Wagner, H. C. Mattraw, G. F. Ritz, and B. A. Smith, Guidelines and standard

procedures for continuous water-quality monitors: Site selection, field operation,

calibration, record computation, and reporting. US Department of the Interior, US

Geological Survey, 2000. 41

[108] T. O’Higgins and J. Wilson, “Impact of the river liffey discharge on nutrient and

chlorophyll concentrations in the liffey estuary and dublin bay (irish sea),” Estuar-

ine, Coastal and Shelf Science, vol. 64, no. 2, pp. 323–334, 2005. 47
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