
Exploring the Use of the Cynefin Framework to Inform
Software Development Approach Decisions

Rory V. O’Connor
School of Computing
Dublin City University

Dublin
Ireland

Rory.OConnor@dcu.ie

Marion Lepmets
Regulated Software Research Centre

Dundalk Institute of Technology
Dundalk,
Ireland

Marion.Lepmets@dkit.ie
ABSTRACT
Choosing an appropriate software development process is a
complex and challenging task, exacerbated by the fact that all
process models require a certain amount of tailoring to fit to the
business environment of any specific organization in which the
model is to be deployed. This position paper proposes that one of
the potentially most significant factors impacting how a team
should structure their software development process is domain
(contexts defined by the nature of the relationship between cause
and effect) the team is in, an approach pioneered by Snowden
with The Cynefin Framework. Cynefin (pronounced Ku-nev-in) is
a decision framework that recognizes the causal differences that
exist between different types of systems and proposes new
approaches to decision making in complex social environments
and new mechanisms of understanding levels of complexity as
decisions are made. It is argued that using the Cynefin framework
for classifying important software process selection decisions
assists in choosing the right process for the given situational
context. This position paper provides an overview of systems
thinking and the Cynefin framework that organizations can use to
detect the significant characteristics of the domain in which they
operate which has a direct and significant affect on the software
process approach (model / methodology) chosen.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management - Software process
models.

Keywords
Cynefin, software process improvement, process adaptation,
process evolution.

1. INTRODUCTION
The motivation for this position paper is based upon a

perceived lack of a holistic systems approach to software process
decisions, such as model / methodology selection and process
improvement selection. It has long been acknowledged that
different systems require different decision making approaches
and solutions. Traditional management techniques have been
developed to deal with Ordered systems, starting with Scientific
Management and later Business Process Reengineering and
Systems Thinking. Unfortunately these approaches have limited
value when applied to Complex environment such as software

development. We propose taking a holistic approach, using the
Cynefin Framework [1], where an organization is seen as a
system, and where process improvement is but a part of a system
within the larger organizational system.

It has been observed that when it comes to the software
development process, there is no universal process model suited to
all situations [2]. The process models require a certain amount of
tailoring in order to be applied beneficially to organizations. Most
software organizations engage in the tailoring of standard
software process models to their own particular operating context
such as the size of the company, the target market, and project and
system type [3]. The reason for this is that the process models
themselves offer a generic solution and therefore require an
approach to allow alignment between process goals and the
organization’s goals and situation. Furthermore, in terms of
process improvement, all too often processes are assessed in
isolation within an organization. The focus is on the improvement
of a single process area without considering its impact on other
processes, on the organization’s business or product quality goals
thus taking too narrow a view.

Best practice for software development is highly dependent
on the context of the organization. In software development
organizations today classical best practices from lifecycle models
and standards are rarely adopted right out the standards but
tailored to contribute most to the organization. There are times,
though, when adopting best practices might not be feasible– when
the context of the organization is changing so quickly that
implementing any practice does not make sense because each
situation is too different from the previous one [15]. How do
organizations know when to adopt best practice frameworks and
how much effort is required to tailor them? Does it bring value to
adopt software development best practices in one situation but not
in another? We aimed to explore the situational factors behind
software development approaches, i.e. which approach brings
greatest benefits in which software development context.

This paper explores the potential use of Cynefin, a decision
framework that recognises the causal differences that exist
between different types of systems and proposes new approaches
to decision making considerations regarding process adoption and
improvement.

2. CYNEFIN
Systems science argues that the only way to fully understand

why a problem or element occurs and persists is to understand the
parts in relation to the whole [4]. Systems’ thinking encourages
understanding a system, i.e. any set or group of interdependent or
temporally interacting parts, by examining the linkages and
interactions between the elements that comprise the entirety of the
system. In other words, systems thinking views problems as parts
of an overall system, rather than reacting to specific parts,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSSP'15, August 24–26, 2015, Tallinn, Estonia.
Copyright 2015 ACM 978-1-4503-3346-7/15/08... $15.00.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICSSP’15, August 24–26, 2015, Tallinn, Estonia
ACM. 978-1-4503-3346-7/15/08...
http://dx.doi.org/10.1145/2785592.2785608

97

outcomes or events and potentially contributing to development of
unintended consequences. Understanding the internal interactions
requires integrating the components into something larger and
more capable than the components represent alone. In addition, a
system resides within a comparable grouping of environmental
factors that might also be called a context.

Cynefin was first developed by Dave Snowden in 1999 in the
context of knowledge management and organisational strategy.
By 2002, it had developed to include complex adaptive systems
theory [1]. Essentially Cynefin is a sense-making framework to
help make sense of complex systems by explaining behaviours,
decision-making and practices in terms of people’s patterns of
multiple experiences, personal, cultural and business based. The
word “Cynefin” is a Welsh word that means “habitat”, but more
richly includes notions of the multiple experiences that people
have in aspects of their lives. These experiences are a complex
mixture of the personal, the wider cultural, and the business based
or work place based. Cynefin is based on the notion that ‘humans
use patterns to establish order in the world and make sense of
things in complex situations’. Cynefin originated in the practice of
knowledge management with the aim of helping managers to
‘break out of old ways of thinking and to consider intractable
problems in new ways’ [1].

Figure 1. Cynefin framework.

In simplest terms, the Cynefin framework exists to help us
realize that all situations are not created equal and to help us
understand that different situations require different responses to
successfully navigate them.

The Cynefin framework (illustrated in Figure 1) is a
phenomenological framework, meaning that it is about how
people perceive and make sense of situations in order to make
decisions [1]. Cynefin has two large domains: Order and
Unorder, each containing two smaller domains - Simple and
Complicated in the Ordered domain, and Complex and Chaotic in
the Unordered domain. In the centre of the framework is the fifth
domain called Disorder where multiple perspectives fight for
prominence, factional leaders argue with one another and
cacophony rules. Disorder should be avoided by organizations as
it disrupts work. In the domain of order, the most important
boundary of sense-making is between what we can use
immediately (what is known) and what we need to spend time and

energy on finding out (what is knowable). In the domain of
Unorder, distinctions of ‘knowability’ are less important than
distinctions of interaction; that is, distinctions between what we
can pattern (what is Complex) and what we need to stabilize in
order for patterns to emerge (what is Chaotic). In the Ordered
domain, the whole is the sum of the parts and the optimization of
the system can be achieved by the optimization of the parts. In the
domain of Unorder, the whole is never the sum of the parts as any
action changes the nature of the system. Cynefin’s value as a
sense-making framework lies in helping system decision-makers
understand where their systems lie among these domains, and by
extension, what kinds of tools, approaches, processes, or methods
are more likely to work successfully in a given system [4]. The 5
Cynefin domains (as illustrated in Figure 1) can be summarised as
follows:

• Simple is the domain of best practices, where problems are
well understood and a solution requires minimal expertise.
Many issues addressed by help desks fall into this category.
They are handled via pre-written scripts. The correct
approach is to sense the situation, categorize it into a known
pattern, and apply a well-known, and potentially scripted,
solution.

• Complicated is the domain of good practices, where you are
likely to know the questions that need to be answered and
how to obtain the answers. Assessing the situation requires
expert knowledge to determine the appropriate course of
action. The correct approach is to sense the problem and
apply expert knowledge to assess the situation and determine
a course of action.

• Complex is the domain of emergent solutions, where there
are unknown unknowns and the final solution is only
apparent once discovered. The correct approach is to develop
and experiment to gather more knowledge to determine the
next steps, with the goal of moving your problem into the
‘Complicated’ domain.

• Chaotic is the domain of novel solutions where the
immediate priority is containment. The correct approach is to
triage, once you have a measure of control, assess the
situation and determine next steps, with the goal of moving
your problem into another domain.

• Disorder is the space in the middle where you don’t know
where you are and the priority one is to move you to a known
domain. The correct approach is to gather more information
on what you know or identify what you don’t know to be
able to move to a more defined domain.

To use the Cynefin framework when trying to categorize
problem space, one must inspect the relationship between cause
and effect of the problem space. If the relationship between cause
and effect is straightforward and obvious to all, then you problem
is in the simple domain. If the relationship between cause and
effect is not obvious, but can be analysed in advance, then you
have a complicated problem. On the other hand, if the cause and
effect can only be determined with the benefit of hindsight, then
you are in the complex domain, while if there is no obvious
relationship between cause and effect, you are in the chaotic
domain.

Cynefin’s value as a sense-making framework lies in helping
system decision-makers understand where their systems lie among
these domains, and by extension, what kinds of tools, approaches,

98

processes, or methods are more likely to work successfully in a
given system [4].

It is most important to understand that organizations live as
whole systems, not as a collection of independent processes. And
these systems exist in, and interact with an external environment
that includes other systems as well as situational factors that can
be irregular, highly variable and unpredictable [4]. A significant
number of organizations’ situations today qualify as complex.
Their environment may change in short but irregular,
unpredictable cycles, requiring the organization to adapt internally
to avoid degradation. Therefore decision-making processes
depend on the situation. In a Simple situation, decision-makers
sense, categorize and respond, i.e. they assess the facts of the
situation, categorize them, and then base their response on the
established practice [5]. Examples of this abound in standard
procedures where all that is necessary is to decide what procedure
to follow or to make other minor decisions within the procedure.
The way incidents are handled by the Service Desk - received,
then categorized and responded to - is an example of such a
decision-making process. In the simple context there is no analysis
of the impact customer satisfaction has on the entire software
product or service system.

In the Complicated context there are no established best
practices that can be applied automatically, with little thought.
Instead the decision-makers ‘sense and analyze’ the facts to
understand several options and their consequences on multiple
levels, and finally respond. This can be observed in software
development during the project planning phase when one or more
domain experts consider the various stated or implied project
goals and whatever is known about constraints, resources and
risks before deciding how the project will be carried out. The
decision-making process requires analysis, possibly by domain
experts, indicating that the qualitative measures are gathered and
analyzed before the decision-makers can respond to them.

In the Complex domain, the decision-makers cannot impose a
course of action but should allow the path forward to reveal itself
while conducting experiments that are safe to fail. In other words,
the decision-makers should probe first, then sense and finally
respond. This can be observed when an organization forms a cross
functional team to investigate and, if possible, derives an
innovative solution to some situation that the organization’s
standard processes are inadequate to address. In the complex
system, the decision-makers should constantly observe the
environment to understand the dynamic forces around their
organization. Here the decision-makers should also understand
how the system elements affect the behaviour of the entire system.
Because there are no patterns here the best management approach
is experimental, usually some form of ‘probe and learn’. For
example, in the event of a system or service failure the decision-
makers need to probe into the system, observe its responses and
analyze the cause of the failure from those responses. The
possible ways forward will emerge from such an analysis.

3. CYNEFIN AND SOFTWARE PROCESS

3.1 Cynefin and the Software Process
Perspective

The Simple and Complicated Cynefin domains require
project leaders to adhere to a more fact-based management style.
The Simple domain is argued to be the domain of ‘best practice’
and is characterized by stability of the organisation and a clear

cause-and-effect relationship, typically one in which the correct
course of action or decision is often self-evident and undisputed,
where all parties share an understanding that results in commonly
agreed decisions.

The Complicated Cynefin domain can be considered to be
the domain of ‘good practice’ where there may be multiple
competing appropriate solutions and where a clear relationship
between cause and effect can be drawn. This domain requires
expertise, investigating multiple options for possible software
decisions. Here a project manager must not only listen to the
advice of fellow team members but also embrace novel thoughts
and solutions from others. This requires a willingness to
experiment and often involves more creative approaches to
enhance novel thinking and ultimately optimal solutions.

The Complex domain is typically the area that causes the
most difficulty for process improvement. Many software
development issues fall into this category, where tacit knowledge
(“Know How”) is more important than explicit knowledge
(“Know What”) and adaptation of processes is necessary for
success. In the delicate balance between process adherence and
organisational structures, it is in this complex domain that
recognition of starting point and appreciation for emergent order
is key for positive outcome.

Both simple and complicated domains are heavily process
oriented where the guidance of the process models has potential
for the most benefit. While in the simple domain, the process
model guidance may be considered sufficient to tackle a situation,
the complicated domain requires additional goal alignment to
maximize benefit from the process model [6].

The complex domain presents the biggest challenge for
process models. This domain is characterized by synergy of
people, open-mindedness and innovativeness in problem solving,
and goal internalization in decision-making, which process
models do not cover. While agile development methodologies and
Scrum project management might be best suited to the complex
domain in software development so far, there is little in the way of
explicit guidance for iterative process improvement [7]. This issue
has also not been widely recognized in industry. We suggest that
existing process models, as they stand today, are not suited to the
complex Cynefin domain. However, the majority of organizations
today are operating in complex situations. Therefore a significant
issue to be addressed is what type of process models can provide a
solution and if any amount of tailoring of the existing process
models might be enough? So far there have been only few
attempts to study dynamic capabilities in software development so
this could be a fruitful area for research.

3.2 Deploying Cynefin in a Process Context
The Cynefin framework can be used to explain the

orientation of start-ups towards flexible and reactive development
approaches. It has been suggested by Paternoster et al. [8] that in
the context of Cynefin, software start-ups cross the complex and
chaotic domains. Those two domains represent the areas where
applying rigorous process management to control development
activities is not effective, because no matter how much time is
spent in analysis, it is not possible to identify all the risks or
accurately predict what practices are required to develop a
product. Instead, flexible and reactive methods, designed to
stimulate customer feedback, increase the number of perspectives
and solutions available to decision makers. Moving from complex
to chaotic domains, software start-ups open up new possibilities
for creation, generating the condition for innovations. Therefore,

99

any process tailored to the start-up context needs at least to allow,
but optimally even facilitate movements between complex and
chaotic domains that are intrinsic in the innovation generation of
start-ups. In our opinion, this is the main requirement for future
attempts of adapting software engineering processes to the start-
up context.

Paternoster further contends that developers should have the
freedom to choose activities quickly, stop immediately when
results are wrong, fix the approach and learn from previous
failures [8]. However at some point, in preparation for growth,
start-ups need to plan for scalable processes. Similarly to SMEs
[9], they need to find a balance between flexibility and
repeatability in their organizations’ knowledge management and
processes.

Pelrine [10] reports on conducting a facilitated awareness
sessions of the Cynefin framework with software development
professionals where participants related concepts of interpreting
their cognitive biases related to software development, and of
understanding software development in terms of Cynefin
domains. Table 1 offers a sample of typical software development
tasks / challenges provided by participants, together with their
sense-making results.

Table 1. Typical tasks / challenges mapped to Cynefin
domains (adapted from [10])

Domain Example 1 Example 2

Simple Knowing when a
task is done

Monitoring time
spent in phase

Complicated Fixing a build Ambitious
timeline

Complex Changing
requirements Task estimation

Chaotic
Retrospectives
without
consequence

Project scope too
large

Disorder No release
deadline Lack of trust

Software development is a diverse field of endeavour

domain, with software development activities representing all of
the Cynefin domains and the interactions between these software
development activities themselves frequently being of complex
nature [10]. Further, as software development can be
characterized as a multi-level domain where most activities are
composed of a significant number of sub-activities, it is
reasonable to suggest that many of these sub-activities may
themselves be located in different Cynefin domains.

Pelrine [10] suggests that activities tend to be weighted more
to the complicated and complex domains, with activities related to
the coding aspect of software development landing in the
complicated (or sometimes simple) domain, and activities
associated with project management landing in the complex
(sometimes chaotic) domain. Tasks dealing with interaction with
a computer tended to be in the ordered domains, tasks dealing
with interaction with other humans tended to be in the unordered,
i.e., complex and chaotic, domains. Although this does not suggest
that the entire software development activity as a whole is
complex, it does suggest that many parts of it are amenable to
analysis and treatment using complexity-based tools and
techniques.

3.3 Harnessing Cynefin to Inform Process
Decisions

Cynefin can be used to determine how best approach a
team’s product development process. The originator of Cynefin
refers to this as ‘requisite applicability’ [5] which simply put
means “dependent on which domain you are in, you should think
differently, you should analyze differently… rather than one size
fits all which has been the tradition of management theory”. In
support of this viewpoint, Snowden [5] points out the risk that
teams are often used to a specific approach and therefore keep
following this approach as “we interpret the situation based upon
our personal preference for action”.

Accordingly we can use Cynefin to recognize the different
domains and apply different practices to each domain. For
example, as stated in section 2, the Simple domain purview of best
practices, therefore in this domain one is seeking to constantly
improve the process with efficient, effective and repeatable
processes. Whereas by comparison in the Complicated domain it
is the search for good practices and the expertise deployed which
should inform decision making. On the other hand in the Complex
domain it is the search for emergent practices, that must be
clarified, evaluated via ‘probe and sense’. Finally in the Chaotic
domain it is more the application of novel practice, as a ‘reaction’
to the situation where judgement and experience are applied to
find original solutions to tackle mostly unique situations in a
‘learn as you go’ scenario [11].

Therefore we suggest that this means we can infer an
approropiate approache(s) based on which Cynefin domain we are
faced with and by extension what software development practices
best apply.

To illustrate this point, let us examine the Simple domain
which is characterised by ‘Sense – Categorize – Respond’. In a
Simple domain because the solution is well known we expect that
we already know the majority of the product / market information
ahead of time. We can therefore postulate that the Waterfall
model is an appropriate choice, where a fixed process of product
development is followed with defined sequential steps, no
incremental delivery and possibly low levels of iteration or
change requests [12].

By contrast the Complex domain is characterised by ‘Probe –
Sense – Respond’ and we typically expect that product / market
information will be steadily gained over time, often by
experiments over a period of time. We can therefore postulate that
agile methods such as Scrum would be an appropriate choice to
address the work approach of the Complex domain the best, as
there are 2 underlying key principles to be aware of that support
‘Probe – Sense – Respond’, which are ‘Iteration’ (Probe, Sense)
and ‘Incrementalism’ (Respond).

The Complicated domain is characterised by ‘Sense –
Analyse – Respond’, where typically several different solutions
can be successfully employed and therefore the appropriate
response can be situational factors [13]. This is an area where the
people and team should be the focus rather than a specific process.
Snowden [5] offers the following advice in the Complicated
domain “there are several different ways of doing things, all of
which are legitimate if you have the right expertise. Trying to
force people to adopt one of them can actually be counter-
productive”. Essentially you make your choice based on the
specific situation and the expertise of the team that you have.
Therefore team empowerment maybe consider to be of greater

100

importance and accordingly an agile method with a strong
emphasis on team empowerment and ownership would seem
suitable.

Finally the Chaotic domain is more the application of novel
practice, as you are ‘reacting’ to numerous situations where
judgement and experience are applied to find original solutions to
tackle mostly unique situations where you are learning as you go
[11]. Given the high levals of risk associated with novel practice a
more risk adverse lifecycle aproach such as the Spiral model may
be considered more suitable.

3.4 Discussion
It is worth noting that there is a risk of always resorting to a

default position of treating software development like it is a
Complicated [domain] problem, where we enter into some
analysis in order to come up with a plan to be followed, only to be
surprised that the plan does not yield successful software project.
Often then with the benefit of hindsight, it can be seen that this
did not work as we were dealing with a problem that is in [for
example] the Complex domain [14].

As software development organisations face Complex or
Chaotic domains they must take on board more new learning,
more situational assessment and understanding, looking and
combining capabilities to manage emerging patterns and
knowledge, applying experiences, looking for diversity of
opinions and searching for new wisdom or insights. Here
expertise and experience, collaboration and relationships need
significantly leveraging, as you often diverge / converge
constantly as you work through the potential answers [11]. The
mindset here is different and it is one that is based on detection.
Innovation is far more demanding, pushing frontiers, exploring
discoveries, dealing in a series of exchanges and recognizing
emerging patterns to piece together real ‘new to the world’
innovations.

The Cynefin framework can be used to guide our approach to
a set of different situations, but the characteristics also explain
enough to help us recognize the situation in which we currently
reside. Simply put, you can have great solutions, but if they are
applied in the incorrect context, they will be worthless or worse,
harmful [11].

4. SUMMARY
The Cynefin framework can be used to identify the best

suited software development methodology and practices for each
of the identified situation. Executing best practices and expert
models in a disciplined fashion makes sense when dealing with
Simple and Complicated domain issues. Issues in or bordering the
Chaotic domain requires fast action to prevent a catastrophe from
happening. Complex domain issues require experimentation as a
way to learn about and understand its patterns, patience is
required to let the system find a practical and acceptable solution.

Software development is a rich domain, containing many
aspects, a large percentage of which can be classified as complex.
The interaction between these aspects is also complex. Just as we
have benefited from treating software development as complex,
and taking advantage of the toolbox of social complexity, namely
the Cynefin framework, so the field would benefit from a multi-
ontological approach, taking the best techniques for the various
domains, and combining them in an appropriate and flexible
manner. More work is needed to reach a deeper understanding of

the inter-workings of agility and complexity within a Cynefin
context [10].

5. REFERENCES
[1] Kurtz, C. F. and Snowden, D. J.. 2003. The new dynamics of

strategy: Sense-making in a complex and complicated world.
IBM Syst. J. 42, 3 (July 2003), 462-483.

[2] Boehm, B.and Turner, R.. 2003. Balancing Agility and
Discipline: A Guide for the Perplexed. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[3] Coleman G. and O'Connor, R.. 2008. Investigating software
process in practice: A grounded theory perspective. J. Syst.
Softw. 81, 5 (May 2008), 772-784.

[4] Dettmer, H. W., 2011. Systems thinking and the cynefin
framework—A strategic approach to managing complex
systems, Port Angeles, WA: Goal Systems International

[5] Snowden, D. J., & Boone, M. E. 2007. A leaders framework
for decision making. Harvard Business Review, 69-76.

[6] Lepmets, M., McBride, T. and Ras, E.. 2012. Goal alignment
in process improvement. J. Syst. Softw. 85, 6. 1440-1452.
DOI=10.1016/j.jss.2012.01.038.

[7] Salo, O. and Abrahamsson, P. 2007. An Iterative
Improvement Process for Agile Software Development,
Software Process: Improvement and Practice, vol. 12, pp. 81-
100.

[8] Paternoster, N., Giardino, C., Unterkalmsteiner, M.,
Gorschek, T., and Abrahamsson, P. 2014. Software
development in startup companies: A systematic mapping
study. Inf. Softw. Technol. 56, 10, 1200-1218.
DOI=10.1016/j.infsof.2014.04.014

[9] Thorpe, R. Holt, R., Macpherson, A. and Pittaway, L. 2005.
Using knowledge within small and medium-sized firms: a
systematic review of the evidence, Int. J. Manage. Rev., 7
(4), pp. 257–281

[10] Pelrine, J. 2011, On understanding software agility – a social
complexity point of view, E:CO,Vol. 13 Nos 1-2, pp. 26-37.

[11] Hobcraft, P. 2015. The Use of the Cynefin Model for
Innovation, Paul4innovating's Innovation Views, Blog 19
June 2014, available at http://paul4innovating.com/ [Access
March 2015]

[12] Kim, J., 2015. How Complexity Domain Impacts Software
Development Process, Mobile Game Industry Points of
View, Blog 9 March 2014, available at
http://quarterview.com/ [Access March 2015]

[13] Clarke, P. and O'Connor, R.V. 2012. The situational factors
that affect the software development process: Towards a
comprehensive reference framework, Information and
Software Technology, vol. 54, pp. 433-447.

[14] Samios, H. 2015. Software development, Scrum and
Cynefin, Blog 3 December 2013, available at
http://www.hanssamios.com/ [Access March 2015]

[15] Lepmets, M., O'Connor, R., Cater-Steel, A., Mesquida, A.L.,
and McBride, T. 2014. A Cynefin based approach to process
model tailoring and goal alignment. in Proceedings of the 9th
International Conference on the Quality of Information and
Communications Technology. IEEE Computer Society.

101

