
-

A Pattern Language for Evolution Reuse in

Component-Based Software Architectures

Aakash Ahmad Abbasi

BS in Software Engineering (IIUI) 2008

A Dissertation submitted in fulfilment

of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

DUBLIN CITY UNIVERSITY

FACULTY OF ENGINEERING AND COMPUTING

SCHOOL OF COMPUTING

Supervisor: Dr. Claus Pahl

August, 2015

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of

study leading to the award of Doctor of Philosophy is entirely my own work, that I have exercised

reasonable care to ensure that the work is original, and does not to the best of my knowledge

breach any law of copyright, and has not been taken from the work of others save and to the

extent that such work has been cited and acknowledged within the text of my work.

Signed: —————————–

Aakash Ahmad Abbasi

Student ID : 58111221

Date: ——————————-

A Pattern Language for Evolution Reuse in Component-Based Software Architectures

Abstract

Context: Modern software systems are prone to a continuous evolution under frequently vary-

ing requirements and changes in operational environments. Architecture-Centric Software Evo-

lution (ACSE) enables changes in a system’s structure and behaviour while maintaining a global

view of the software to address evolution-centric trade-offs. Lehman’s law of continuing change

demands for long-living and continuously evolving architectures to prolong the productive life

and economic value of software. Also some industrial research shows that evolution reuse can

save approximately 40% effort of change implementation in ACSE process. However, a systematic

review of existing research suggests a lack of solution(s) to support a continuous integration of

reuse knowledge in ACSE process to promote evolution-off-the-shelf in software architectures.

Objectives: We aim to unify the concepts of software repository mining and software evolution

to discover evolution-reuse knowledge that can be shared and reused to guide ACSE.

Method: We exploit repository mining techniques (also architecture change mining) that inves-

tigates architecture change logs to discover change operationalisation and patterns. We apply

software evolution concepts (also architecture change execution) to support pattern-driven reuse in

ACSE. Architecture change patterns support composition and application of a pattern language

that exploits patterns and their relations to express evolution-reuse knowledge. Pattern language

composition is enabled with a continuous discovery of patterns from architecture change logs and

formalising relations among discovered patterns. Pattern language application is supported with

an incremental selection and application of patterns to achieve reuse in ACSE. The novelty of

the research lies with a framework PatEvol that supports a round-trip approach for a continuous

acquisition (mining) and application (execution) of reuse knowledge to enable ACSE. Prototype

support enables customisation and (semi-) automation for the evolution process.

Results: We evaluated the results based on the ISO/IEC 9126 - 1 quality model and a case

study based validation of the architecture change mining and change execution processes. We

observe consistency and reusability of change support with pattern-driven architecture evolution.

Change patterns support efficiency for architecture evolution process but lack a fine-granular

change implementation. A critical challenge lies with the selection of appropriate patterns to

form a pattern language during evolution.

Conclusions: The pattern language itself continuously evolves with an incremental discovery

of new patterns from change logs over time. A systematic identification and resolution of change

anti-patterns define the scope for future research.

Keywords: Software Evolution, Software Architecture, Architecture-Centric Software Evolution, Soft-

ware Repository Mining, Pattern Discovery, Change Patterns, Pattern Language

Acknowledgments
Alhamdulillah,

I am extremely thankful to my Ph.D. supervisor, Dr. Claus Pahl for his continuous patience,

encouragement, guidance and support throughout my research. Claus thank you very much for

all your support, helping me to think more independently and encouraging to freely share and

develop ideas beyond the thesis topic.

Thank you to people at Lero - the Irish Software Engineering Research Centre for all the

support throughout and for fully funding my Ph.D. research.

I feel fortunate enough to be a part of the Software and System Engineering Research Group at

DCU. Veronica, Wang, Kosala I thank you very much for being open and accommodating towards

me and enlightening me with different cultures and interesting discussions. Javed and Yalemisew

thank you for your inspiring ideas and technical feedback during our discussions in CNGL board-

room. Thank you Imran and Khalid for your support and company.

My early days in Ireland - Paul and Oísin, I am sincerely thankful to you for introducing me

to the Irish culture and helping me to settle down. Ray thank you very much for all your support

and encouragement during my Ph.D.

Pooyan and Hourieh, I could never thank you enough for looking after me with an immense

warmth, and being my family while away from home. John and Huanhuan it was always a pleasure

to visit you.

Claus and Pooyan, you made me believe that doing research is all about satisfaction and

passion, thank you for sharing mine!

Fatimah, thank you for your love and support. My dad, brother and Hamza at home.

To Ammi - no words to express, you are and you will be the biggest inspiration!

List of Abbreviations

Abbreviations Description

ACSE Architecture-centric Software Evolution
AERK Architecture Evolution Reuse Knowledge
AK Architecture Knowledge
ACL Architecture Change Log
CBSA Component Based Software Architecture
GOF Gang-of-Four
GPride Graph-based Pattern Identification
PatEvol Pattern-driven Architecture Evolution
QOC Question Option Criteria
UML Unified Modeling Language
MOF Meta Object Facility
AG Attributed Graph
ATG Attributed Typed Graph
GML/GraphML Graph Modeling Language
DCAS Data Acquisition and Control Service
COTS Commercial-Off-The-Shelf
CBSE Component Based Software Engineering
SOSE Service Oriented Software Engineering
ADL Architecture Description Language
SPO Single Push Out
DPO Double Push Out
EBPP Electronic Business Presentment and Payment
CS-AS Client Server Appointment System
SLR Systematic Literature Review
SEI Software Engineering Institute
SOA Service Oriented Architecture
SOA-MF SOA Migration Framework
ADM Architecture Driven Modernisation
STAC Software Tuning Panels for Autonomic Control
MAPE-K Monitor, Analyse, Plan, Execute Knowledge
IBM International Business Machine
RQ Research Question
HCI Human Computer Interaction
ARCH Architecture Model
OPR Operations
CNS Constraints
PAT Pattern
COL Collection
PRE Preconditions
POST Postconditions
INV Invariants
CD Change Data
AD Auxiliary Data
CFG Configuration
CMP Component
CON Connector
POR Port
EPT Endpoint
LenEqu Length Equivalence
OrdEquv Order Equivalence
TypEquv Type Equivalence
BFS Breadth First Search
ALMA Architecture Level Modifiability Analysis
ISO International Organisation for Standardisation
TCO Total Change Operations
AMS Auction Management System
SLA Service Level Agreement
QoS Quality of Service
ECA Event Condition Actions

iv

Glossary of Definitions

• Architecture Evolution Reuse Knowledge is defined as a collection and integrated rep-

resentation (problem-solution mapping) of empirically discovered change implementation

expertise that can be shared and reused as a solution to frequent evolution problems.

• Reuse Knowledge Acquisition is defined as the process to systematically discover reuse

knowledge (change operations and patterns) that can be shared for future reuse.

• Reuse Knowledge Application is defined as the process to systematically apply reuse

knowledge (change operations and patterns) to support evolution of architectures.

• Architecture Change Log is defined as a repository infrastructure with fine-grained repre-

sentation of architecture evolution by capturing the intent, scope and operationalisation of

individual architectural changes.

• Attributed Graph contains a set of nodes and edges. An attributed graph is defined as a

type of graph in which we can associate a number of attributes to the nodes and edges of

the graph.

• Change Log Graph is defined as a graph that represents the change log data as a graph. In

change log graph architectural changes are represented as graph nodes, while the sequenc-

ing among change operations is maintained with graph edges.

• Atomic Change Operation is defined as an operation that supports a single change on an

individual architecture element. It represents the most fundamental unit of architectural

change to enable evolution.

• Composite Change Operation is defined as a collection of atomic change operations to

support a collection of architectural changes. Composite changes abstract the details from

individual atomic changes.

• Architecture Change Primitives are defined as the types of architectural changes that sup-

port the addition, removal and modification of components and connectors in architectural

configurations.

• Architecture Change Pattern is defined as a collection of generic and reusable change oper-

ationalisation that can be discovered as recurrent, specified once and instantiated multiple

times to support reuse in architecture evolution.

• Change Pattern Language is defined as a collection of interconnected patterns that supports

an incremental application of patterns to support reuse in architecture evolution.

• Pattern Language Vocabulary is defined as the collection of discovered patterns and their

possible variants.

• Pattern Language Grammar is defined as the structure of pattern language that support

possible interconnections among patterns in the language.

• Pattern Language Sequencing is defined as an ordered sequence in which pattern can be

selected and applied in a pattern language.

v

Selective Publications

(Full list at: http://ahmadaakash.wix.com/aakash#!publications/c1p03)

Journal Articles

• Aakash Ahmad, Pooyan Jamshidi, Claus Pahl. Classification and Comparison of Architecture

Evolution-Reuse Knowledge - A Systematic Review. Journal of Software: Evolution and Process,

vol 26, issue 7, pp: 654 - 691, 2014.

• Aakash Ahmad, Pooyan Jamshidi, Claus Pahl, Fawad Khaliq. A Pattern Language for Evo-

lution Reuse in Component-based Software Architectures. ECASST Special Issue on Patterns

Promotion and Anti-patterns Preventions, vol 59, pp: 2 - 32, 2013. (invited paper)

Conference and Workshop Papers

• Aakash Ahmad, Pooyan Jamshidi, Claus Pahl, Fawad Khaliq. PatEvol - A Pattern Language

for Evolution in Component-based Software Architectures. In 1st International Workshop on

Patterns Promotion and Anti-patterns Prevention (PPAP, co-located with CSMR), 2013.

• Aakash Ahmad, Pooyan Jamshidi, Claus Pahl. A Framework for Acquisition and Application of

Architecture Evolution Reuse Knowledge. In ACM SIGSOFT Software Engineering Notes (SEN),

vol. 38, no. 5, 2013.

• Aakash Ahmad, Pooyan Jamshidi, Claus Pahl. Graph-based Implicit Knowledge Discovery from

Architecture Change Logs. In 7th Workshop on SHAring and Reusing architectural Knowledge

(SHARK, co-located with WICSA/ECSA). ACM, 2012.

• Aakash Ahmad, Pooyan Jamshidi, Claus Pahl. Graph-based Pattern Identification from Ar-

chitecture Change Logs. In 10th International Workshop on System/Software Architectures

(IWSSA, co-located with CAiSE). Lecture Notes in Computer Science, 2012.

• Aakash Ahmad, Pooyan Jamshidi, Claus Pahl. Pattern-driven Reuse in Architecture-centric

Evolution for Service Software. In 7th International Conference on Software Paradigm Trends

(ICSOFT). SCITEPRESS Digital Library, 2012.

• Aakash Ahmad, Claus Pahl. Pat-Evol: Pattern-Driven Reuse in Architecture-Based Evolution for

Service Software. In ERCIM News 88, Special Issue on Software Evolution, 2012.

• Aakash Ahmad, Claus Pahl. Customisable Transformation-driven Evolution for Service Architec-

tures. In 15th European Conference on Software Maintenance and Reengineering (CSMR),

IEEE Computer Society, 2011.

• Aakash Ahmad, Claus Pahl. Pattern-based Customisable Transformations for Style-based Service

Architecture Evolution. In 6th International Conference on Next Generation Web Services

Practices (NWeSP). IEEE Computer Society, 2010.

vi

http://ahmadaakash.wix.com/aakash##!publications/c1p03

Contents

Abstract ii

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Architecture-Centric Software Evolution . 1

1.1.1 Software Evolution . 1

1.1.2 Software Architecture . 2

1.1.3 Evolution of Software Architecture . 3

1.1.4 Reuse in Evolution of Software Architectures 3

1.2 Implication of Change Reuse on Architectural Evolution 4

1.2.1 Practical Benefits for Reuse-driven Architecture Evolution 5

1.2.2 Change Reuse from Practitioners’ Point-of-View 6

1.2.3 Efficiency of Architecture Evolution Process Relative to Change Reuse 6

1.3 Overview of the Research Challenges . 7

1.3.1 Identification of Knowledge Discovery Sources 8

1.3.2 Discovery of Evolution-Reuse Knowledge . 8

1.3.3 Representation and Specification of Evolution-Reuse Knowledge 8

1.3.4 Application of Evolution-Reuse Knowledge 8

1.4 Research Problems and Proposed Solution . 9

1.4.1 Central Hypothesis . 9

1.4.2 Research Questions for the Thesis . 10

1.4.3 Solution Framework . 11

1.5 Research Contributions and Assumptions . 12

1.6 Overview of the Thesis Chapters . 15

1.7 Chapter Summary . 17

2 Background 18

2.1 Chapter Overview . 19

2.2 Reuse Knowledge Management in Software Architectures 19

vii

2.2.1 Architecture Knowledge Activities . 19

2.2.2 Architecture Evolution-Reuse Knowledge . 20

2.2.3 The Notion of Architecture Change Logs . 21

2.3 Change Patterns as Elements of Architecture Evolution Reuse 22

2.3.1 A 3-step Process for Pattern-based Architecture Evolution 22

2.3.2 Composition of an Architecture Change Pattern Language 24

2.3.3 Modelling of Pattern-based Architecture Evolution Activities 25

2.3.4 UML vs Graph-based Modelling of Architecture Evolution Activities 28

2.4 Graph Modelling for Change Mining and Change Execution 29

2.4.1 Types of Graph Models . 29

2.4.2 Attributed Graphs to Model Activities of Architecture Evolution 30

2.4.3 Graph-based Modelling of Architectural Changes from Logs 32

2.4.4 Graph-based Modelling and Transformation of Architecture Models 32

2.5 Component-based Architectures and their Evolution 33

2.5.1 Modelling and Architecting with Component-based Models 34

2.5.2 Graph-based Modelling of Component-based Software Architectures 36

2.5.3 Configuration of Architecture Model . 37

2.5.4 Architecture Descriptions with Graph Modeling Language 38

2.6 Chapter Summary . 40

3 A Systematic Literature Review of Architecture Evolution Reuse Knowledge 41

3.1 Overview of Systematic Literature Review . 42

3.2 Secondary Studies on Software Architecture Evolution 43

3.2.1 Systematic Literature Reviews of Software Architecture Evolution 43

3.2.2 Survey-based and Taxonomic Studies on Architecture Evolution 44

3.2.3 A Systematic Review of Architecture Evolution Reuse Knowledge 44

3.3 Research Methodology for Systematic Literature Review 45

3.3.1 Research Questions for Systematic Review . 46

3.3.2 Extracting and Synthesising Review Data . 47

3.3.3 Classifying and Documenting the Results . 47

3.3.4 A Framework to Classify Evolution Reuse Knowledge Research 47

3.4 Results Categorisation and Reuse Knowledge Taxonomy 49

3.4.1 A Taxonomical Classification of Evolution Reuse Knowledge 50

3.4.2 Definition of Architecture Evolution Reuse Knowledge 52

3.5 Application of Evolution Reuse Knowledge . 54

3.5.1 Methods and Techniques for Application of Reuse Knowledge 55

3.5.2 Comparison of Methods and Techniques for Evolution Reuse 55

3.6 Acquisition of Architecture Evolution Reuse Knowledge 61

3.6.1 Methods and Techniques for Acquisition of Reuse Knowledge 61

3.6.2 Comparison of Methods and Techniques for Acquisition of Reuse Knowledge 62

3.7 Implications of Systematic Literature Review . 64

3.7.1 Research Trends and Future Directions . 64

3.8 Summary of Chapter . 68

viii

4 A Framework for Change Mining and Change Execution 71

4.1 Chapter Overview . 71

4.2 PatEvol - Pattern-driven Architecture Evolution Framework 72

4.2.1 Elements of the PatEvol Framework . 73

4.3 Processes and Activities in the PatEvol Framework 74

4.3.1 Process I - Architecture Change Mining . 74

4.3.2 Process II - Architecture Change Execution . 78

4.3.3 Types of Collection in the Framework . 79

4.4 A Summary of Comparison for Research on Architecture Evolution Reuse 81

5 Change Logs as a Source of Architecture-centric Evolution Knowledge 82

5.1 Chapter Overview . 83

5.2 Change Logs as Source of Evolution Knowledge . 83

5.2.1 Architecture Change Instance vs Architecture Change Operation 84

5.3 Recording Architecture Changes in Logs . 85

5.3.1 A Meta-model for Architecture Change Logs 85

5.3.2 Log-based Representation of Architecture Change Instances 88

5.4 Preserving Evolution History in Change Logs . 92

5.4.1 Maintaining Architecture Change Sessions . 93

5.5 Graph-based Modelling of Architecture Change Log Data 95

5.5.1 Creating Change Log Graph . 95

5.5.2 Creating Architecture Change Session Graph 96

5.5.3 Sequential vs Hierarchical Representation of Log Data 98

5.6 Mapping Log Data to GraphML-based Representation 100

5.7 Chapter Summary . 101

6 A Taxonomical Classification and Definition of Architecture Change Operations 103

6.1 Chapter Overview . 103

6.2 A Taxonomy of Architecture Change Operationalisation 104

6.2.1 The Needs for Operational Taxonomy of Architectural Evolution 104

6.2.2 Types, Representation and Dependencies of Change Operations 105

6.3 Types of Architectural Changes . 106

6.3.1 Running Example of Architectural Changes 106

6.3.2 Atomic Change Operations . 108

6.3.3 Composite Change Operations . 109

6.4 Architecture Change Sequences . 114

6.4.1 Order of Change Sequences . 114

6.5 Dependencies of Change Operations . 119

6.5.1 Commutative Change Operations . 119

6.5.2 Dependent Change Operations . 120

6.6 Chapter Summary . 121

ix

7 Graph-based Discovery and Specification of Architecture Change Patterns 122

7.1 Chapter Overview . 122

7.2 A Meta-model of Pattern-based Architecture Evolution 124

7.2.1 Specifying the Architecture Model . 125

7.2.2 Specifying the Change Operations . 126

7.2.3 Specifying Constraints on Architecture Model 126

7.2.4 Specifying Change Patterns . 126

7.3 Algorithms for Change Pattern Discovery from Logs 127

7.3.1 Algorithm I - Candidate Generation . 129

7.3.2 Algorithm II - Candidate Validation . 131

7.3.3 Algorithm III - Candidate Pattern Matching 133

7.4 Complexity of Change Pattern Discovery . 135

7.4.1 Performance Trade-offs - Accuracy vs Efficiency of Pattern Discovery 137

7.5 Discovered Change Patterns from Logs . 138

7.5.1 Discovering and Generalising the Pre/Post-conditions of Change Patterns . 140

7.6 Template-based Specification of Architecture Change Patterns 142

7.6.1 Mapping Elements of Template for Graph-based Pattern Specification 143

7.6.2 Semi-automated Specification of Change Patterns in the Template 145

7.7 Chapter Summary . 146

8 Composition and Application of a Change Pattern Language for Architecture Evolution 147

8.1 Chapter Overview . 148

8.2 Overview of Pattern Language Composition and Application 149

8.2.1 Architecture Change Mining for Pattern Language Composition 150

8.2.2 Architecture Change Execution for Pattern Language Application 152

8.3 Pattern Relations as the basis for Language Composition 153

8.3.1 Establishing the Pattern Relations . 153

8.3.2 Static Sequence of Patterns . 154

8.3.3 Dynamic Sequence of Patterns . 154

8.3.4 Pattern Variants . 156

8.4 Application Domain of Change Pattern Language . 158

8.4.1 Evolution in Component-based Software Architecture 158

8.5 Graph Transformation for Architecture Evolution . 159

8.5.1 Graph-based Architecture Models . 160

8.5.2 Constraints on Graph Model . 161

8.5.3 Graph Transformation Rule . 162

8.6 Application of Change Pattern Language . 163

8.6.1 Pattern Selection with Design Space Analysis 164

8.6.2 Architecture Evolution guided by Change Patterns 165

8.7 A Prototype for Pattern-based Architecture Evolution 170

8.8 Chapter Summary . 171

x

9 Evaluation of the PatEvol Framework 172

9.1 Chapter Overview . 173

9.1.1 Context, Objectives and Methodology of Evaluation 173

9.2 Qualitative Analysis and Comparison of the PatEvol Framework 174

9.2.1 Reuse-Driven Evolution in Software Architecture 175

9.2.2 Pattern Languages for Architecture Change Management 176

9.3 Methodology for Evaluating the PatEvol Framework 176

9.3.1 ISO/IEC 9126 Model for Quality Evaluation 176

9.3.2 Evaluation Strategy - Experiments and Participant’s Feedback 177

9.4 Evaluating the Efficiency and Suitability of the Log Graph 179

9.4.1 Suitability of the Change Log Representation 180

9.4.2 Summary of the User Feedback for Suitability of Change Log Graph 182

9.4.3 Efficiency of the Graph-based Retrieval of Log Data 182

9.4.4 Summary of Results for Efficiency of Log-based Data Retrieval 183

9.5 Evaluating Accuracy and Efficiency of Pattern Discovery 184

9.5.1 Interpretation of Results - Automated vs Manual Discovery of Patterns . . . 185

9.5.2 Discussion and Conclusions . 189

9.6 Evaluating the Accuracy of Pattern Selection . 190

9.6.1 Accuracy of Pattern Selection - Precision and Recall Measure 190

9.6.2 Effects of Pattern Classification on Selection Precision 192

9.6.3 Implications of a Small Search Space for Pattern Selection Precision 194

9.7 Evaluating the Efficiency and Reusability of Pattern-based Architecture Evolution . 195

9.7.1 Pattern-based Evolution of a Client Server Architecture 196

9.7.2 Summary of Comparison for Primitive vs Pattern-based Changes 199

9.7.3 Granularity vs Reusability of Changes . 201

9.8 Threats to Validity of Research . 203

9.9 Chapter Summary . 205

10 Conclusions and Future Research 207

10.1 Research Focus and Implications of the PatEvol Framework 207

10.1.1 Practical Implementation of the PatEvol Framework 208

10.2 Summary of Research Contributions . 209

10.3 Dimensions of Future Research . 211

10.3.1 Pattern-driven Plans for Architecture Evolution 211

10.3.2 Post-mortem Analysis of Architecture Evolution Histories of Evolving Software211

10.3.3 The Notion of Architecture Change Anti-Patterns 213

Bibliography 214

A Protocol and Auxiliary Information for Systematic Review 223

A.1 Scope of Systematic Literature Review . 223

A.2 Definition and Evaluation of the Review Protocol . 224

A.3 Conducting the Review . 224

A.4 Literature Search Strategies . 225

xi

A.4.1 Executing Literature Search . 225

A.5 Inclusion or Exclusion of Studies . 226

A.6 Qualitative Assessment of Included Studies . 227

A.6.1 A Mapping of Research Themes to Activities in REVOLVE Framework . . . 228

A.7 Threats to Validity of SLR . 229

A.7.1 Threats to the Identification of Primary Studies 229

A.7.2 Threats to Selection and Data extraction Consistency 229

A.7.3 Threats to Data Synthesis and Results . 230

B Case Studies for Architecture Change Mining and Change Execution Processes 231

B.1 Architecture Evolution Case Studies . 231

B.1.1 Case Studies Selection . 231

B.2 Case Studies for Architecture Change Mining Process 233

B.2.1 Case Study I - Architectural View for EBPP Case Study 233

B.2.2 Case Study II - Architectural View for 3-in-1 Telephonic System Case Study 235

B.2.3 Capturing Architectural Changes for EBPP in Log 235

B.3 Case Study for Architecture Change Execution Process 237

B.3.1 Architectural Description and Evolution Scenario 237

C Change Log Graph for Pattern Discovery 239

C.1 Architecture Change Log Data . 239

C.2 Converting Log Data into a Change Log Graph . 241

C.3 Sample Log Graph for Change Pattern Discovery . 242

D Source Code and Discovered Change Patterns from Log 245

D.1 Source Code for Pattern Discovery from Logs . 245

D.2 Pattern, Pattern Instance and Pattern Variant . 253

D.3 Prototype Support for Change Pattern Discovery . 255

D.3.1 Overview of the Prototype for Pattern Discovery 255

D.3.2 User Interface for Pattern Discovery Prototype 256

D.4 Prototype Support for Change Pattern Specification 257

D.5 A Catalogue of Architecture Change Patterns . 259

D.5.1 Component Mediation Pattern . 260

D.5.2 Functional Slicing Pattern . 261

D.5.3 Functional Unification Pattern . 261

D.5.4 Active Displacement Pattern . 263

D.5.5 Child Creation Pattern . 263

D.5.6 Child Adoption Pattern . 264

D.5.7 Child Swapping Pattern . 265

E Experimental Setup and Questionnaire for Evaluation of the PatEvol Framework 270

E.1 Quality Characteristics of ISO/IEC 9126 Model for Evaluation 271

E.1.1 Quality Characteristic II - Usability . 272

E.1.2 Quality Characteristic III - Efficiency . 272

E.2 Experimental Setup for the Framework Evaluation 273

xii

E.2.1 Identification of Evaluation Methods . 273

E.2.2 Activity I - Selected Case Studies for Architecture Evolution 274

E.2.3 Activity II - Collection of Change Log Data for Evaluation 274

E.2.4 Activity III - ALMA-based Selection of Evolution Scenarios 277

E.2.5 Step IV - Selection of Participants for Experimental Feedback 277

E.3 Evolution Scenarios for Pattern Discovery . 279

E.3.1 User Interfaces for Architecture Evolution Prototype 282

E.4 Questionnaire for Participant’s Feedback . 285

E.5 Part I - Suitability of Change Log Graph . 288

E.5.1 Instructions for the Participants . 288

E.5.2 Questions to the Participants . 288

E.6 Part II - Accuracy and Efficiency of Log Graph . 289

E.6.1 Instructions for the Participants’ . 289

E.6.2 Questions to the Participants . 289

E.6.3 Filled By Coordinator . 290

E.7 Efficiency and Reusability of Architecture Evolution 291

E.7.1 Instructions for the Participants . 291

E.7.2 Questions to the Participants . 291

xiii

List of Figures

1.1 Overview of the Architecture Change Mining and Change Execution Processes. . . 11
1.2 An Overview of the Thesis Organisation . 15

2.1 Overview of Knowledge Management in Software Engineering and Architecture . . 20
2.2 Overview of a Cyclic Process for Change Patterns in Architecture Evolution 22
2.3 Overview of Different Graph Types . 29
2.4 An Overview of a) Attributed Typed Graph and b) Attributed Graph - abstract view. 31
2.5 Attributed Typed Graph for Architecture Modelling 37

3.1 SLR Process for Classification and Comparison of Reuse-Knowledge in ACSE. . . . 46
3.2 REVOLVE - Integrated Views of Architecture Change Mining and Change Execution. 49
3.3 A Taxonomical Classification of Architecture Evolution-Reuse Knowledge. 51
3.4 Study Percentage Distribution - Time Constraints of Evolution. 53
3.5 A Comparison Map of Research Trends - based on Time and Types of Changes. . . 59
3.6 Temporal distribution of the primary studies (1999 - 2012). 65

4.1 Overview of the Architecture Change Mining and Change Execution Processes. . . 73
4.2 Overview of the PatEvol Framework. 75

5.1 Capturing Architectural Change Instances during Evolution. 84
5.2 A Metamodel Representation of the Architecture Change Logs. 87
5.3 Representation of Auxiliary Data and Change Data in Logs. 90
5.4 Representation and Classification of the Change Log Data. 92
5.5 Sequential Representation of Architecture Change Instances in Logs. 94
5.6 Attributed Typed Graph Model to Formalise Architecture Change Log Data. 95
5.7 Change Instances as an Attributed Graph (typed over ATG in Figure 5.6). 97
5.8 Overview of Sequential vs Hierarchical Representation of Log Data. 99

6.1 Overview of the Taxonomical Classification of Architecture Change Operationalisation.105
6.2 Classification of Architecture Change Types (Layered Overview). 106
6.3 Architecture Change Session Graph (endTime - startTime). 107
6.4 A Summary of Syntactical Representation of Atomic Change Operations. 114
6.5 An Overview of the Operation Matching for Change Sequences. 116
6.6 Type Comparison of the Change Operations. 117

7.1 Process Overview for Log-based Change Pattern Discovery. 124
7.2 Meta-model for Composition of Architecture Change Pattern. 125
7.3 Overview of 3-Step Graph-based Pattern Discovery Process. 129
7.4 Overview of the Elimination of Non-recurring Pattern Candidates. 131

xiv

7.5 List of Discovered Architecture Change Patterns. 139
7.6 An Overview of Pattern Constraints Discovery and Generalisation Process. 141

8.1 A Layered Overview of the Proposed Solution. 149
8.2 An Overview of the Relation between Change Patterns. 151
8.3 Overview of the QOC Methodology for Dynamic Selection of Patterns. 155
8.4 An Overview of Change Pattern Language. 157
8.5 Overview of Double Push Out Graph Transformation System. 160
8.6 An Overview of Mapping Evolution Problems to Available Patterns (Solutions). . . 163
8.7 QOC Methodology for Pattern Selection. 165
8.8 Pattern-Driven Architecture Evolution Using Graph-Transformation (DPO) Approach.168
8.9 Overview of Prototype to Support Pattern-based Architecture Evolution. 170

9.1 Overview of the Evaluation for PatEvol Framework. 177
9.2 Comparison Overview of Log Graph and Log File. 181
9.3 Comparative Analysis of Time Taken (Log-based Retrieval vs Graph-based Traversal).183
9.4 Overview of the Pattern Overlap. 186
9.5 Ordering of the Operations in Change Patterns. 187
9.6 Overview of the Pattern Selection Precision and Recall. 188
9.7 Precision and Recall for Pattern Selection. 192
9.8 An Overview of Change Pattern Classification. 193
9.9 Accuracy of Pattern Selection based on Pattern Classification. 194
9.10 Source and Evolved Architecture Model with Architecture Evolution Scenarios. . . 197
9.11 A Comparison of TCO for Pattern vs Primitive Changes. 201
9.12 An Overview of Time Taken for Primitive vs Pattern-based Changes. 202

A.1 A Summary of the Primary Search Process. 226
A.2 Study Mapping for Research Themes, REVOLVE Activities and Publication Fora. . 228

B.1 Architectural View for EBPP (before Evolution). 234
B.2 Architectural Overview for 3-in-1 Phone System. 235
B.3 An Overview of Capturing architectural Changes in the Log. 236
B.4 An Overview of the Architecture for Peer 2 Peer Appointment System. 237
B.5 An Architecture Evolution Scenario for Peer 2 Peer Appointment System. 238

C.1 Graph-based Representation of the Change Log Data. 241

D.1 An Overview of the Pattern, Pattern Instance and Pattern Variant 254
D.2 An Overview of the Prototype for Change Pattern Discovery. 255
D.3 Screen-shot of the Prototype for Change Pattern Discovery. 257
D.4 Screen-shot of Prototype for Change Pattern Specification. 258
D.5 Example of Active Displacement Pattern . 259
D.6 Overview of the Component Mediation Pattern . 261
D.7 Overview of the Functional Slicing Pattern . 262
D.8 Overview of the Functional Unification Pattern . 262
D.9 Overview of the Active Displacement Pattern . 263
D.10 Overview of the Child Creation Pattern . 264
D.11 Overview of the Child Adoption Pattern . 265
D.12 Overview of the Child Swapping Pattern . 266

E.1 Activity-based Representation of Experimental Setup. 276
E.2 Overview of Scenario I as Presented to participants for Discovery in Sample Log File.281
E.3 Overview of Scenario II as Presented to Participants for Discovery in Sample Log File.282
E.4 User Interface to Import the Source Architecture Model. 283
E.5 User Interface to Specify Architectural Changes. 284

xv

E.6 User Interface to Select Change Patterns. 284
E.7 User Interface for Description of Evolved Architecture Model. 285

xvi

List of Tables

1.1 A Summary of the Benefits and Efforts Required for Reuse of Architecture Evolution. 7
1.2 A Mapping of the Related Publications to the Individual Chapters in the Thesis. . . 16

2.1 Template-based Specification of Architecture Change Patterns 24
2.2 Comparison of UML 2.0 and Graph-based Formalism to Model Activities 28
2.3 Mapping Graph Elements to the Architecture Model 38

3.1 A Summary of the Secondary Studies on ACSE. 43
3.2 A Summary of the Extracted Data and Comparison Attributes. 48
3.3 Processes, Activities and Repositories of Framework to Classify Reviewed Studies. . 49
3.4 Methods and Techniques to Enable Reuse knowledge for Evolution and Adaptation. 56
3.5 A Comparison Summary for Research State-of-the-Art on Application of AERK. . . 58
3.6 A Summary of Methods and Techniques to Support Reuse knowledge Discovery. . 62
3.7 A Summary of Comparison for Research State-of-the-Art on Acquisition of AERK. 62
3.8 Methods and Techniques for Reuse Knowledge Application. 65
3.9 Methods and Techniques for Reuse Knowledge Acquisition. 67

4.1 Summary of the Processes, Activities and Repositories in the PatEvol Framework. . 73

5.1 Summary of Different types of Architecture Change Sessions. 93

6.1 Syntax of Atomic Change Operations. 108
6.2 Retrieving Composite Changes (partial results of query in Listing 6.1). 111
6.3 A List of Composite Change Operations on Architecture Model. 111

7.1 Parameters for Graph-based Pattern Discovery process. 128
7.2 A List of Utility Methods for Pattern Discovery. 128
7.3 Invariant Lookup Table . 133
7.4 Graph-based Representation of Change Patterns Template. 144

8.1 Selection, Evaluation and Interpretation of Architecture Evolution Scenarios. 159
8.2 QOC Criteria for Selecting an Appropriate Pattern. 165

9.1 Comparison of the PatEvol Framework with Research State-of-the-Art. 175
9.2 A Summary of Step and Actions by Participants for Evaluating Log Graph Suitability.180
9.3 Questionnaire for Participant’s Feedback on Suitability of Log Graph. 181
9.4 Summary of Comparison between Manual vs. Automated Pattern Discovery. 186
9.5 A Summary of Evolution Scenarios, Change Primitives and Change Patterns. 198
9.6 A Summary of Efforts for Change Primitives and Change Patterns. 200

xvii

A.1 PICOC Criteria to define Scope and Goals of SLR. 224
A.2 A Summary of the Step in Literature Search. 225
A.3 Summary of the 2 Step Study Selection Process. 227
A.4 Summary of Quality Assessment Checklist. 227

B.1 Selected Case Studies along with the Intent of Case-study based Investigation. . . . 232

D.1 Example of Pattern 1 - Component Mediation Pattern. 267

E.1 Overview of Research Challenges, their Solutions and Evaluation Methods. 274
E.2 Total Change Operations on Architecture Model Recorded from Change Log. 275
E.3 Professional Affiliations, Role, Experience and Expertise of Participants for Feedback.278

xviii

Chapter 1
Introduction

Contents
1.1 Architecture-Centric Software Evolution . 1

1.1.1 Software Evolution . 1

1.1.2 Software Architecture . 2

1.1.3 Evolution of Software Architecture . 3

1.1.4 Reuse in Evolution of Software Architectures 3

1.2 Implication of Change Reuse on Architectural Evolution 4

1.2.1 Practical Benefits for Reuse-driven Architecture Evolution 5

1.2.2 Change Reuse from Practitioners’ Point-of-View 6

1.2.3 Efficiency of Architecture Evolution Process Relative to Change Reuse 6

1.3 Overview of the Research Challenges . 7

1.3.1 Identification of Knowledge Discovery Sources 8

1.3.2 Discovery of Evolution-Reuse Knowledge . 8

1.3.3 Representation and Specification of Evolution-Reuse Knowledge 8

1.3.4 Application of Evolution-Reuse Knowledge 8

1.4 Research Problems and Proposed Solution . 9

1.4.1 Central Hypothesis . 9

1.4.2 Research Questions for the Thesis . 10

1.4.3 Solution Framework . 11

1.5 Research Contributions and Assumptions . 12

1.6 Overview of the Thesis Chapters . 15

1.7 Chapter Summary . 17

1.1 Architecture-Centric Software Evolution

1.1.1 Software Evolution

Software evolution as per ACM/IEEE software engineering curricula is defined as: ’a sub-domain

of software engineering that aims to investigate and support methods and techniques to adapt existing soft-

ware to evolving requirements’ [Mens 2008, Lehman 2003]. As a consequence of frequently chang-

ing requirements, modern software systems are prone to a continuous evolution [Lehman 1996,

1

Breivold 2012]. The primary causes of software evolution1 could be categorised as changes in

stakeholders’ needs, business and technical requirements and operating environments [Mens 2008,

Yskout 2012]. Such changing requirements trigger a continuous evolution in software structure

and behaviour [Sadou 2005] that needs to be addressed while maintaining a global-view-of-

system to resolve evolution-centric trade-offs [Breivold 2012, Garlan 2009]. However, the problem

of software evolution is strengthened primarily due to: a) recurring nature of change [Lehman 1996,

Garlan 2009] and b) selection of an appropriate abstraction [Williams 2010, Sadou 2005] to implement

such change. The recurring nature of change requires a continuous accommodation of evolving

requirements in existing software to prolong its productive life and economic value [Mens 2008].

Lehman’s law of ‘continuing change’ [Lehman 1996] poses a direct challenge for research

and practices that aim to support long-living and continuously evolving software [Garlan 2009,

Le Goaer 2008], under frequently varying requirements [Yskout 2012]. The law states that “. . . sys-

tems must be continually adapted or they become progressively less satisfactory”. In addition, software is

composed of multiple layers of abstraction that includes its source code [Moghadam 2012], design

and architecture [Medvidovic 1999] along with application specific configurations [Sadou 2005].

Therefore the selection of an appropriate abstraction is also critical to facilitate modelling, analysis

and execution of software changes in a systematic, efficient and cost-effective manner. The chal-

lenge lies with supporting a continuous change, with change implementation at an appropriate

abstraction-level to manage evolution during software life-cycle [Williams 2010].

1.1.2 Software Architecture

Software architecture as per the ISO/IEC/IEEE 42010 standard is defined as: ’fundamental con-

cepts or properties of a (software) system in its environment embodied in its elements, relationships, and in

the principles of its design and evolution’ [ISO-IEC-IEEE42010 2011, Perry 1992]. During the design,

development, and evolution of software systems, the role of an architecture as a blue-print of

software is central to map the changes in requirements [Yskout 2012] and their implementation

in source code [Moghadam 2012]. Architecture abstracts the implementation specific details of a

software by modelling (low-level) lines-of-code to (high-level) architectural components and their

interconnections [Medvidovic 1999, Bengtsson 1999]. Architectural models proved successful in

representing modules-of-code and their interconnections as high-level components and connec-

1Please note that in existing literature the terms software evolution and software change are virtually synonymous and
often used interchangeably [Lehman 2003, Williams 2010, Buckley 2005]. However, in this thesis a technical distinction
must be maintained among the two. Implementation of a collection of changes on existing software leads to its evolution.

2

tors that facilitate planning, modelling and executing software evolution at higher abstractions

[Le Goaer 2008]. A systematic classification and comparison of architecture-centric software evo-

lution research [Breivold 2012, Jamshidi 2013b] highlights the role of architecture models as sys-

tem abstractions to facilitate analysis, planning, modelling, and execution of architectural changes.

Once, the decision is made about exploiting architectural abstractions to address software evo-

lution, the implications of continuing change [Lehman 1996] demand frequent evolution to avoid

architectural degradation [Williams 2010] (a.k.a. architectural erosion [Bengtsson 1999, Lassing 2003]).

Research state-of-the-art [Zhang 2012] highlights the potential for solutions that enable acquisition

and application of reuse knowledge to guide architectural evolution.

1.1.3 Evolution of Software Architecture

Architecture-centric Software Evolution (ACSE) is defined as: ’a technique to support evolution

of a software system at its architectural level of abstractions’ [Garlan 2009, Breivold 2012]. Any at-

tempts that aim to systematically address ACSE must rely on empirically discovered knowl-

edge that can be shared and reused to manage evolution [Li 2012]. Our claim is based on

a consolidated evidence of existing research gathered by conducting the systematic literature

reviews [Jamshidi 2013b] on ACSE. We systematically analysed the collective impact, possible

limitations and future potential of existing research on architecture evolution and architecture

evolution-reuse knowledge 2. Our findings based on a literature review highlight change patterns

[Côté 2007, Yskout 2012] and evolution styles 3 [Garlan 2009, Tamzalit 2010] as the predominant

solutions to facilitate architecture evolution reuse.

1.1.4 Reuse in Evolution of Software Architectures

In existing research, the reuse of change implementation is supported with Architecture Evolution-

Reuse Knowledge (AERK). It could be argued that AERK is classified as a sub-domain of Architec-

ture Knowledge (AK) [Zhang 2012]. However, a systematic mapping of architecture knowledge

research [Li 2012] suggests minimal evidence of reuse-driven maintenance and evolution. This

leads us to believe that in a general context of AK there is a need to explicitly focus on exploit-

ing the potential, limitations and future trends for reuse knowledge and expertise to systemati-

2Please note that we use the terms Architecture Evolution-Reuse Knowledge and Evolution-Reuse Knowledge and Reuse
Knowledge are used interchangeably - all referring to the same concept.

3In literature the terminologies and concepts of style and pattern are often used interchangeably referring to reusable
artefacts for software design and development. In this thesis, we maintain a distinction between styles and patterns. A
style represent a reusable vocabulary of architectural elements (component and connectors) and a set of constraints on
them to express an architectural style. Patterns represents a generic, repeatable solution to recurring problems.

3

cally address recurring evolution in architectures. Moreover, a recent emergence of architecture

evolution styles [Garlan 2009, Le Goaer 2008] and change patterns [Yskout 2012, Côté 2007] pro-

moted the needs for research on the development of processes, patterns and frameworks that

enable knowledge-driven evolution [Ulrich 2010] and adaptation [Ganek 2003] of architectures.

Considering the general context of AK and specifically focusing on architecture evolution-reuse

knowledge, we propose an integration of: a) knowledge acquisition and b) knowledge application

processes to discover and apply evolution-reuse knowledge for architectural change implementa-

tion. In the context of ACSE, we define architecture evolution-reuse knowledge as: domain specific

problem-solution mapping that enables utilisation of reusable expertise to address frequent evolution prob-

lems. The needs for reusable knowledge that supports architectural maintenance and evolution

are acknowledge by the practitioners (software architects) [Clerc 2007, Mohagheghi 2004] and a

recent industrial study [Cámara 2013] that rely on application of reusable changes to (i) minimise

the efforts and (ii) maximise the efficiency of architectural evolution process. In recent years, the

research state-of-the-art (in terms of patterns and styles) have mainly focused on the application

of reuse knowledge to evolve architectures [Yskout 2012, Barnes 2014] with a clear lack of research

on a systematic or empirical acquisition of such evolution-centric knowledge. The recent reviews

of the research-state-of-the art [Breivold 2012, Williams 2010] suggest that the development of any

solution that aims to enable knowledge-driven evolution must integrate the processes of knowl-

edge acquisition and knowledge application in a unified framework that is lacking in the existing

research.

In this research, we provide such an integrated framework called PatEvol - Pattern-driven

Architecture Evolution. The first part of the proposed solution framework (or knowledge acquisi-

tion process) relies on post-mortem analysis of architecture evolution histories to discover change

patterns to derive a pattern language for architecture evolution. The second part of the solution

(or knowledge application process) aims at searching and selecting the appropriate patterns to

promote pattern-based and reuse-driven architecture change implementation.

1.2 Implication of Change Reuse on Research and Practices for

Architectural Evolution

To analyse the significance of reusability, we highlight the implications of change reuse on re-

search and practices for ACSE. We refer to research on architecture evolution as academic initia-

4

tives proposing theories or innovative solutions to address ACSE with results evaluated usually

in a (controlled experimentation using) lab-based environment [Cámara 2013]. In contrast, the

practices for architecture evolution refer to maintenance, evolution and adaptation of architectures

for industrial software reflecting real-world challenges and solutions to enable or enhance ACSE

[Slyngstad 2008, Mohagheghi 2004]. In terms of academic research, we provide an in-depth anal-

ysis of research state-of-the-art for architectural evolution and adaptation in Chapter 3. In the

remainder of this section, first we highlight the impacts and needs for change reuse in support-

ing evolution of industrial-scale software systems [Slyngstad 2008, Cámara 2013]. Secondly, some

survey-based [Slyngstad 2008] and empirical studies [Clerc 2007] of architecture evolution reflects

an insight about practitioners’ (software designers’ and architects’) view on the role of reuse in

ACSE. We also highlight a lack of generalisation for results across different projects and provide a

general overview of the efficiency of architecture evolution process relative to the degree of reuse.

In the context of a traditional software development life-cycle, software design (blue-print be-

fore implementation) and evolution (changes after implementation) are regarded as two distinct

phases [Fayad 1997, Garlan 2004]. However, an alternative interpretation of the software devel-

opment process promotes maintenance and evolution as reuse-oriented software development

[Basili 1990]. Such view implies that knowledge and expertise acquired by an organisation (or

individuals) during a continuous maintenance and evolution can be extended and reused across

different projects and for the future development of software systems. To the best of our knowl-

edge, there is no evidence of any industrial research that supports architecture evolution-reuse in

an industrial scale software or its architecture. There are only a few initiatives representing aca-

demic solutions and surveys based on analysis of industrial data for architecture evolution that

are highlighted as below.

1.2.1 Practical Benefits for Reuse-driven Architecture Evolution

In [Cámara 2013], the authors supported reuse of adaptation policies to support dynamic adap-

tation of the architecture for an industrial system called Data Acquisition and Control Service

(DCAS). The DCAS system is used to monitor and manage highly populated networks of devices

in renewable energy production plants. This research demonstrates that reuse of recurring adap-

tation strategies and policies saves about 40% of the efforts for architecture evolution compared

to an ad-hoc and once-off implementation of adaptive changes. Also compared to the ad-hoc

changes, reusable adaptation policies required less time for execution of architectural changes.

5

In other research [Mohagheghi 2004], the authors analysed change requests from four different

releases of a large telecom system architecture developed by Ericsson over a period of three years.

The research highlights that change reuse have resulted in a) an increased maintainability evaluated

in cost of implementing architectural change scenarios, b) improved testability, c) easier upgrades, and

also d) increased performance. In addition, the impact of software reuse; especially exploiting COTS

(Commercial Off-The-Shelf) components is essential to enhance reuse of architectural components.

1.2.2 Change Reuse from Practitioners’ Point-of-View

The subjective influence of an architect on software architecting process cannot be eliminated

[Li 2012]. Therefore, it is vital to consider the practitioners’ view on the role of reuse in ACSE

through survey-based studies in industrial context. In an interesting study (The Architect’s Mind-

set) [Clerc 2007] the authors performed a survey-based analysis in the industry. The authors

collected feedback on the importance of architectural knowledge that can be shared and reused to

design, develop and evolve software architectures.

In another industrial survey [Slyngstad 2008], the authors investigate the risk management in

software architecture evolution process based on feedback from 82 practitioners. The feedback

suggest that a lack of reuse patterns during design and maintenance of architectures results in poor in-

tegration of architecture changes into implementation process affecting architecture design negatively. In

contrast, the use of architectural patterns and styles [Gamma 2001, Shaw 2006] provide proven

architectural solutions to enhance reusability and quality of architectural design.

1.2.3 Efficiency of Architecture Evolution Process Relative to Change Reuse

To generalise the efficiency measure associated with architecture evolution process (based on dis-

cussion in Section 1.2.1, 1.2.2), we utilise the ISO/IEC 9126 - 1 quality model [Jung 2004], an inter-

national standard for the evaluation of quality characteristics of a software product and solution

[Jung 2004]. More specifically, based on ISO/IEC 9126 - 1; we analyse the quality characteristics

of evolution process with factors including: efficiency, performance, maintainability (modifiability

and testability).

Some empirical studies on analysing software change [Mohagheghi 2004] and more specifically

architectural change [Slyngstad 2008] highlight that Efficiency (E) of architecture evolution process

is directly proportional to a) factor of Reuse (R) in evolution and inversely proportional to the b)

factors of Efforts (F) and c) Time (T) required to enable evolution as:

6

E = R
Fϕ+T

The factor F is a measure of the effort required to support maintainability, testability, modifi-

ability and increased performance. Please note that ϕ represents a constant as an initial upfront

increase in effort (required for acquisition of reuse knowledge and expertise) that are used for fu-

ture evolution to decrease effort [Clerc 2007]. The relation of evolution process efficiency in regard

to the required efforts and time from [Slyngstad 2008, Mohagheghi 2004] is also confirmed with

the findings in [Cámara 2013]. More specifically, the results in [Cámara 2013] suggest that in order

to acquire reuse knowledge and expertise of dynamic adaptation there is a need for development

of an adaptation knowledge-base that can reduce future efforts of change implementation based

on reusable adaptation.

We present this finding from the industrial studies in Table 1.1 that highlight the associated

benefits as well as necessary requirements to achieve evolution reuse. In Table 1.1, the symbols

denote (– denotes a decrease), (++ denotes an increase). For example, in [Cámara 2013] the rel-

ative values are represented as a) adaptation efforts (–), are decreased, while b) testability (++)

is increased. In this thesis, we focus on increasing the efficiency and reusability of architecture

evolution by integrating reuse knowledge and expertise in the evolution process.

(–) A decrease of factor, (++) An increase of factor
Research Reference Benefits of Evolution Reuse Efforts to Achieve Reuse

Reuse of Evolution and [Cámara 2013] Adaptation Efforts (–), Time (–) Adaptation Reuse Knowledge
Adaptation in [Mohagheghi 2004] Time (–), Cost (–), Maintainability (++) Use of COTS to Achieve

Industrial Software Testability (++), Upgrades (++) Architecture Evolution-Reuse
Survey-based Studies on [Clerc 2007] Quality (++) N/A

Evolution Reuse in [Slyngstad 2008] Quality (++), Maintainability(++), Pattern and Style-based
Industry Time(++) Development of Architectures

Table 1.1: A Summary of the Benefits and Efforts Required for Reuse of Architecture Evolution.

1.3 Overview of the Research Challenges

In this section, we provide a brief overview of the relevant research challenges that also helps to

outline the contributions of the proposed solution. We outline the central research challenge as:

How to enable a continuous acquisition of evolution-centric knowledge that can be reused to promote

generic, off-the-shelf architecture evolution

The challenge also highlights that reuse knowledge for evolution is not limited to utilising the

change patterns. Although the role of patterns in reuse is vital, knowledge represents a more

7

diverse collection such as processes and activities that support evolution. Knowledge acquisition

or extraction activities include: a) analysing architecture change representation to investigate re-

curring changes, b) discover change patterns, c) build-up a system-of-patterns as a formalised

knowledge collection.

1.3.1 Identification of Knowledge Discovery Sources

A critical challenge of knowledge discovery lies with identification of knowledge sources. Knowl-

edge source represents a transparent and centrally manageable repository of evolution traces that

helps in investigating the historical view of evolution [Zimmermann 2005, Kagdi 2007]. In the

PatEvol framework - as the proposed solution - we are primarily concerned with exploiting archi-

tecture change logs [ROS-Distributions 2010] as a sequential collection of changes that accumulate

in the log over time.

1.3.2 Discovery of Evolution-Reuse Knowledge

The challenge concerns with a systematic and experimental analysis of the change logs to discover

an implicit knowledge that is represented as architectural change instances. Knowledge discovery

involves a multi-step change mining of logs that includes analysing change instances from logs to

discover reusable and usage-determined operations and patterns. Knowledge discovery process

must be automated with appropriate customisation to ensure the scalability of solution when the

type and size of log data are complex and large for any manual analysis.

1.3.3 Representation and Specification of Evolution-Reuse Knowledge

After identification, we must provide a consistent representation of knowledge in order to facilitate

knowledge reuse. In order to achieve this, at least we must support flexible storage, searching,

selection and retrieval of knowledge during evolution. This requires to leverage the existing data

storage methods to enable the development of a reuse knowledge collection.

1.3.4 Application of Evolution-Reuse Knowledge

Finally, we must support knowledge-driven evolution strategies that refer to a systematic map-

ping between the problem-solution views and to derive a change implementation mechanism

[Le Goaer 2008]. As opposed to utilising ad-hoc and once-off change execution, the challenge

8

lies with application of reusable change operationalisation and patterns to address architecture

evolution.

1.4 Research Problems and Proposed Solution

The primary objective of this research is to enable reuse of evolution-centric knowledge and exper-

tise to tackle recurring evolution in Component-Based Software Architecture (CBSA) [Szyperski 2002,

van der Aalst 2002]. Research motivation (cf. Section 1.2) and an overview of relevant challenges

(cf. Section 1.3) highlight the needs for a process-centric approach to enable ACSE. We outline the

central hypothesis and research questions below.

1.4.1 Central Hypothesis

We formulate the central hypothesis for this research as:

A continuous investigation of architecture evolution histories enables the discovery of evolution-centric

knowledge that can be applied to enable reuse of architectural changes and enhance the efficiency of

architecture evolution process.

We propose a continuous discovery of evolution-reuse knowledge. Therefore, we aim to ex-

ploit architecture change logs [ROS-Distributions 2010, Yu 2009] - representing evolution histories

[Zimmermann 2005, Kagdi 2007] - that provide a sequential collection of architectural changes that

have been aggregating over time. A systematic investigation of change logs helps us to discover

change operation types, operation dependencies and change patterns. The discovered patterns

can be combined to derive a pattern language for architecture evolution. A formalised collection

of change patterns in the language represents a structured knowledge about problem-solution

mappings in a specific domain that is the evolution of CBSAs.

Analysis of the hypothesis suggests that the research problem that we aim to address can be

sub-divided:

• How to conduct ‘post-mortem’ analysis of architecture evolution histories in order to dis-

cover architecture evolution-reuse knowledge.

• How discovered knowledge could be exploited to support reuse in architecture-centric soft-

ware evolution.

9

1.4.2 Research Questions for the Thesis

In order to divide the central hypothesis into a set of related research problems, we outline the

research questions as follows. Each of these research questions outline a central challenge and an

individual aspect of the proposed solution.

• Research Question 1 - How to model evolution histories that enable an experimental investi-

gation of architecture change representation and its operationalisation?

Primary Objective of this research question is the selection of an adequate notation or model

representation for architectural changes from evolution histories [Kagdi 2007] (i.e., change

logs.). Architecture evolution modelling is fundamental to investigating change logs in a

formal and automated way. This question allows us to evaluate suitability and efficiency of

the proposed modelling notation to discover evolution-reuse knowledge.

• Research Question 2 - What methods and techniques could be exploited to discover reuse

knowledge from architecture evolution histories?

Primary Objective is the analysis and selection of available methodologies that allow a formal

foundations for modelling, analysing and discovering evolution-centric information from

architecture evolution histories. This questions allows us to evaluate the accuracy and ef-

ficiency of solution to discover reuse-knowledge from evolution histories in a (semi-) auto-

mated fashion.

• Research Question 3 - How can discovered knowledge be represented and selected from

evolution knowledge-base to facilitate its reuse?

Primary Objective aims at representation of the discovered knowledge that enables its sharing

and potential reuse whenever needs for architectural evolution arise. This questions allows

us to evaluate the suitability of representation for discovered knowledge. Another important

criteria is accuracy of selecting most appropriate knowledge artefacts during ACSE process.

• Research Question 4 - What methods and techniques could be exploited to apply reuse

knowledge to evolve software architectures?

Primary Objective is focused on knowledge application. It requires utilising discovered

knowledge from knowledge collection that facilitates knowledge reuse to guide evolution.

This question allows us to evaluate the extent to which proposed methods and techniques

support reuse of architecture evolution to enhance efficiency of evolution process.

10

Please note that RQ1 - RQ3 specifically focus on the knowledge acquisition process by identi-

fying knowledge sources, knowledge discovery and its representation for reuse. RQ4 specifically

aims at knowledge application process by utilising the discovered knowledge to address frequent

problems of architectural evolution.

1.4.3 Solution Framework

Based on the hypothesis and questions, an overview of the proposed contribution as an integra-

tion of architecture change mining and change execution processes is illustrated in Figure 1.1.

The solution aims to integrate evolution knowledge in architecture evolution process to enhance

reusable change implementation in ACSE.

Framework Processes

The solution in Figure 1.1 is represented as an integration of two processes. These processes in-

clude architecture change mining to enable evolution history analysis (i.e., mining for reuse knowl-

edge discovery). The second process highlights architecture change execution to implement changes

in architectures (i.e., change execution for knowledge-driven evolution).

Evolution Histories

Knowledge Collection

Architecture
Change Mining

Architecture
Change Execution

Identify Knowledge

Specify Knowledge Reuse Knowledge

Capture Knowledge

1

2
3

4

 - Change Specification

 - Change Pattern Selection

 - Pattern-based Evolution

 - Operational Classification

 - Operational Dependencies

 - Change Patterns

Formalism

Tool Support

Processes

Collections

Activities

Figure 1.1: Overview of the Architecture Change Mining and Change Execution Processes.

Framework Activities

The framework activities consists of knowledge identification, knowledge specification, knowledge reuse

and finally knowledge capturing to close the loop. The framework represents a cyclic approach to

11

continuously discover and apply evolution-centric knowledge. Activities support the integration

among the processes and highlights individual elements of the proposed solution framework.

Collections in the Framework

Collections are of two types with evolution histories [Zimmermann 2003, Kagdi 2007] representing

the source of evolution-reuse knowledge. In addition, knowledge collection represents the repository

that contains the identified knowledge that could reused. The role of formalism and tool support

is complementary to ensure the scalability and customisation of the solution.

1.5 Research Contributions and Assumptions

We summarise the primary contributions as well as the assumptions for this research. Our re-

search lies at the intersection of two distinct domains: i) software repository mining [Kagdi 2007]

for architecture change analysis and ii) software evolution [Mens 2008] for architecture change ex-

ecution. Based on an overview of the solution, first we introduce the proposed contributions

(Contribution 1 - Contribution 4) and discuss the relevant assumptions (Assumption 1 - Assump-

tion 3):

• Contribution 1 - Evolution-centric Knowledge Discovery from Change Logs: in order

to discover evolution-reuse knowledge, we investigate architecture change representation

from logs. More specifically, the evolution-centric knowledge from change logs is discov-

ered in terms of different types of architecture a) change operations and b) change patterns. A

change pattern provides a generic, first class abstraction - that could be operationalised and

parametrised - to resolve recurring evolution problems in a specific domain (i.e., evolving

architecture models). Change patterns follow the conventional philosophy behind the fa-

mous Gang-of-Four (GOF) design patterns [Gamma 2001]. However, in contrast to design

aspects of software considered by GOF patterns, the proposed change patterns extend the

reuse rationale to specifically address architecture evolution.

• Contribution 2 - Algorithms for Mining Architecture Change Patterns from Logs: we in-

troduce the pattern discovery problem from change logs as a modular solution and present

pattern discovery algorithms. Pattern discovery algorithms executed on architecture change

logs enable automation along with appropriate user intervention and customisation of the

pattern discovery process. Automation of pattern discovery process supports efficiency and

12

accuracy for pattern mining from logs. Also, the scalability of pattern-discovery process

beyond manual analysis is supported with a prototype G-Pride (Graph-based Pattern Iden-

tification) that enables automation and parametrised user intervention for pattern mining. In

the context of patterns [Côté 2007, Yskout 2012] and style-based [Garlan 2009, Tamzalit 2010]

evolution, the solution promotes a continuous discovery of new architecture change patterns

from change logs over time[Yu 2009].

• Assumption 1 - Availability of Log Data: in order to discover the change patterns or the

support for architecture change mining process in the PatEvol framework we need architec-

ture change logs. Therefore, we assume that a change log must be available to investigate

architectural changes and to discover patterns. Our assumption is based on the research that

support post-mortem analysis of evolution histories to discover evolutionary knowledge that

can be shared and reused to guide architectural evolution [Kagdi 2007, Zimmermann 2005].

Moreover, according to the classification of change types (sequential vs parallel change

[Buckley 2005]); the change log data consists of architectural changes that are captured as

a sequence. We have assumed that parallel change operations (if any in the log) are repre-

sented as a sequence, where each of the change operations is executed one after the other

(i.e., sequenced change log) [Williams 2010].

• Contribution 3 - A Pattern Language for Architecture Evolution: once we discover patterns,

we go beyond the impact of individual patterns on architecture evolution to derive a change

pattern language 4 that provides an interconnected system of patterns that enable reuse-

driven and consistent evolution in Component-based Software Architectures (CBSAs). In

a language context, interconnections represent possible relationships among patterns (such

as variants or related patterns) in the language. We express evolution-reuse knowledge

as a collection of interconnected patterns in the language with a vocabulary, grammar and

pattern sequencing. We believe that by exploiting the vocabulary and grammar of a language

as discussed in [Porter 2005], individual patterns can be formalised and interconnected to

support reusable, off-the-shelf evolution expertise.

• Assumption 2 - Existing Patterns in the Language: the language development relies on

the availability of a sufficient number of available patterns. Therefore, we assume that the

4In literature the terms Pattern Language, Pattern Catalogue or Pattern Collection are often used interchangeably
[Zdun 2007]. However, we must maintain the technical distinction. A Pattern Catalogue or Pattern Collection may specify
patterns formally or informally with no explicit relationships among patterns. A Pattern language must specify patterns
formally and must support explicit relationships among patterns.

13

patterns in the language are sufficient (although not necessarily exhaustive) to support pattern-based

evolution. New patterns can be discovered and continuously accommodated in the language.

Our assumption is based on the fact that pattern discovery is a continuous process (by

investigating change logs). As we acquire new data from different log sources we can execute

the pattern discovery algorithms (on logs) to discover new patterns. If a pattern is needed

that does not exist in the pattern language, then pattern-based architecture evolution is

not supported. Instead of reusable patterns, more primitive changes as individual change

operations are still supported.

• Contribution 4 - Pattern Selection and Reuse in Evolution of Component-Based Software

Architecture: in order to promote reuse knowledge-driven evolution in CBSAs, we exploit

pattern sequences from the language to support architecture change execution. It is vital to

mention the pattern selection problem because it is a significant challenge for inexperienced

developers or architects to search for and select the appropriate patterns from large collec-

tions [Kampffmeyer 2007]. With language-based formalism we exploit the Question-Option-

Criteria (QOC) methodology [MacLean 1991] to address the pattern selection problem. The

QOC methodology is adopted from design space analysis [Zdun 2007] to select the most

appropriate pattern from the language collection by evaluating the forces and consequences

of given patterns [MacLean 1995]. The patterns from the language could be selected and

applied in a sequential fashion to support evolution.

• Assumption 3: Application Domain of the Pattern Language in the software architec-

ture community, three of the well-established paradigms for architecture representation are

object-oriented [Tu 2002], component-based [Szyperski 2002] and service-oriented [Erl 2009a]

architectures. Structural evolution of component-based (also service component) architec-

tural models is supported with the proposed pattern language. The patterns represent a

generic and repeatable solution to recurring problems in a specific domain. Therefore, the

application domain of the proposed pattern language is CBSAs and their evolution. The pos-

sibility of extending the proposed pattern language to other types of (non component-based)

architectural models and their evolution is detailed in sub-sequent chapters.

14

1.6 Overview of the Thesis Chapters

The structural organisation of the thesis is presented in Figure 1.2. In the remainder of this section,

we provide an overview of the role of each chapter and its outcome for in Table 1.2.

Chapter 2: Background

Chapter 1: Introduction

Chapter 3: Classification and Comparison of
Architecture Evolution Reuse Knowledge - A

Systematic Literature Review

Chapter 4: PatEvol - A Framework for Integration of
Architecture Change Mining and Change Execution

Processes

Chapter 5: Change Logs as a Source of
Architecture-centric Evolution Knowledge and

Pattern Discovery

Chapter 6: A Taxonomical Classification and
Composition of Architecture Change Operations

Chapter 7: Graph-based Discovery and
Specification of Architecture Change Patterns

Chapter 8: Composition and Application of Pattern
Language to support Evolution Reuse in

Component-based Software Architectures

Chapter 10: Conclusions and Future Research

Thesis Contribution

Framework Evaluations based on User
Feedback

Case Study-based Evaluation of Pattern
Application

Chapter 9: Research Evaluation

Case Study-based Evaluation of Pattern
Discovery

ISO/IEC 9126 - 1 Quality Model Chapter 4

Chapter 6, 7

Chapter 8

Literature Review

Figure 1.2: An Overview of the Thesis Organisation

• Chapter 2: after an overview of the research problems and proposed solution, we explain

some of the fundamental concepts that provide background details on the role architecture

evolution-reuse knowledge in the context of a) architecture knowledge and b) knowledge

management in software engineering.

• Chapter 3: presents a critical review of research state-of-the-art in evolution-reuse knowl-

edge for software architectures based on the finding of a systematic review. We present a

systematic review of research supporting a) acquisition of b) application of reuse knowledge.

• Chapter 4: provides the solution overview in terms of a conceptual framework called Pat-

Evol. The framework integrates architecture change mining and change execution to provide

an iterative and process-centric approach to achieve evolution reuse.

• Chapter 5: discusses the role of architecture change logs as a transparent and centrally

15

manageable repository consisting of a collection of change instances. We represent change

instances from logs as an attributed graph for analysing change operationalisation and dis-

covering change patterns.

• Chapter 6: is focused on analysing a taxonomy of architecture changes as represented in the

logs. More specifically, we investigate change logs to analyse and classify change represen-

tation as a foundation for change pattern discovery.

• Chapter 7: details the discovery of change patterns from architecture change logs. We ex-

ploit the concepts of sequential pattern mining [Agrawal 1995] to identify recurring change

instances from logs as change patterns. The discovered patterns are documented in a change

pattern template to promote pattern-based reuse.

• Chapter 8: is the final chapter about the thesis contributions and details the composition and

application of a change pattern language. The pattern language comprises of the pattern

vocabulary, grammar and an interconnected sequence of patterns to support evolution.

• Chapter 9: is aimed at the evaluation of individual research activities and overall validation

of the research hypothesis. We utilise the ISO/IEC 9126 - 1 [Jung 2004] model to evaluate

the various aspects of the proposed solution. A case-study based evaluation is also comple-

mented with prototype evaluation to measure process efficiency and adequacy of results.

• Chapter 10: concludes our research contribution in the context of identified research gaps.

We overview the contributions, discuss potential limitations and validity threats along with

the potential for future research.

Chapter Related Publication(s) Outcome

1 [Ahmad 2010] Hypothesis and Solution
2 [Ahmad 2011] Thesis Background
3 [Ahmad 2014d] Systematic Review Document
4 [Ahmad 2013b, Ahmad 2012e] PatEvol Framework
5 [Ahmad 2012b, Ahmad 2012c] Change Log Graph
6 [Ahmad 2012b] Operational Classification
7 [Ahmad 2012b, Ahmad 2013a] Architecture Change Patterns
8 [Ahmad 2012a, Ahmad 2014c] Change Pattern Language
9 N/A Research Validation
10 [Ahmad 2012a, Ahmad 2012d] Conclusions and Outlook

Table 1.2: A Mapping of the Related Publications to the Individual Chapters in the Thesis.

16

1.7 Chapter Summary

In summary, Chapter 1 provided the research motivation based on a quick overview of existing

research and its limitations. Based on an overview of the needs for evolution reuse and identifi-

cation of the research challenges, we outlined the central hypothesis that allowed us to identify

the research questions. The role of individual research questions is vital in highlighting the re-

quirements for the solution regarding research contributions and assumptions. A summary of

the objectives and the outcome for the individual chapters in this thesis is presented in Table 1.2

that allows us discuss the literature review, research contributions and evaluation in subsequent

chapters. The concepts and terminologies used in this chapter are used throughout the thesis.

17

Chapter 2
Background

Contents

2.1 Chapter Overview . 19

2.2 Reuse Knowledge Management in Software Architectures 19

2.2.1 Architecture Knowledge Activities . 19

2.2.2 Architecture Evolution-Reuse Knowledge . 20

2.2.3 The Notion of Architecture Change Logs . 21

2.3 Change Patterns as Elements of Architecture Evolution Reuse 22

2.3.1 A 3-step Process for Pattern-based Architecture Evolution 22

2.3.2 Composition of an Architecture Change Pattern Language 24

2.3.3 Modelling of Pattern-based Architecture Evolution Activities 25

2.3.4 UML vs Graph-based Modelling of Architecture Evolution Activities 28

2.4 Graph Modelling for Change Mining and Change Execution 29

2.4.1 Types of Graph Models . 29

2.4.2 Attributed Graphs to Model Activities of Architecture Evolution 30

2.4.3 Graph-based Modelling of Architectural Changes from Logs 32

2.4.4 Graph-based Modelling and Transformation of Architecture Models 32

2.5 Component-based Architectures and their Evolution 33

2.5.1 Modelling and Architecting with Component-based Models 34

2.5.2 Graph-based Modelling of Component-based Software Architectures 36

2.5.3 Configuration of Architecture Model . 37

2.5.4 Architecture Descriptions with Graph Modeling Language 38

18

2.6 Chapter Summary . 40

2.1 Chapter Overview

The aim of this chapter is to provide background details about the foundational concepts and

topics before the discussion of the technical contributions in subsequent chapters of the thesis.

Therefore, the concepts and topics presented in this chapter are used throughout the remainder

of this thesis and need an upfront explanation before technical details. We mainly focus on a

theoretical background, however if a concept is of a practical relevance we also provide details

about its (conceptual) modelling and necessary explanation about its implementation. For exam-

ple, modelling software architecture as a graph we need to explain a) What are graph theoretical

foundations to model architectures, b) How an architecture model is expressed as a graph and c)

Why architectural descriptions are provided using graph modeling language [Brandes 2002a]. We

use some running examples from case studies to clarify technical details in this chapter. Architec-

ture evolution case studies [EBPPCaseStudy , 3-in-1 Phone System 1999, Rosa 2004] are presented

in Appendix B.

2.2 Reuse Knowledge Management in Software Architectures

Knowledge management approaches [Bjørnson 2008] have been exploited across different dimen-

sions in software engineering domain including requirements engineering [Hudlicka 1996], soft-

ware architectures [Li 2012, Babar 2009], software testing [Wei 2007] and software documentation

[Kiwelekar 2010] as illustrated in Figure 2.1. In software architectures, knowledge management

represents discovering, representing and reusing knowledge and expertise to improve the archi-

tecting process [Li 2012]. In a general context of software engineering, first we highlight activities

in software architecture knowledge that allows us to specifically focus on architecture evolution-reuse

knowledge in Figure 2.1.

2.2.1 Architecture Knowledge Activities

Architecting a software system involves an extensive knowledge including but not limited to

architectural design [Babar 2009], trade-off analysis [Garlan 2009], architectural documentation

[Kiwelekar 2010] and evaluation [Li 2012]. This means, software architecting itself is a knowledge-

19

Knowledge Management in
Software Engineering

Knowledge in
Requirement Engineering

Knowledge in Software
Testing

Knowledge in Software
Documentation

Software Architecture
Knowledge

Architecture Evolution
Reuse Knowledge

Generalisation Specialisation

Figure 2.1: Overview of Knowledge Management in Software Engineering and Architecture

intensive process that comprises of many sub-processes also known as architecture knowledge

activities. A systematic mapping study of architecture knowledge [Li 2012] presents five generic

architecting activities including: i) Analysis, ii) Synthesis, iii) Evaluation, iv) Implementation and

finally v) Maintenance and Evolution of architectures.

In recent years, research [Breivold 2012] and practices [Cámara 2013] proposed solutions that

specifically focused on applying reuse knowledge to guide architecture evolution process. Also,

based on the findings of a systematic review in [Li 2012] and an overview of the architecting activi-

ties above, we conclude that architectural knowledge enables the application of concepts borrowed

from knowledge management in software engineering [Bjørnson 2008] to specifically focus on

guiding the software architecting process [Babar 2009] as illustrated in Figure 2.1. When consider-

ing the various activities in architecture knowledge, we are specifically interested in reuse of archi-

tecture evolution knowledge (Activity V). We position the concept of architecture evolution-reuse

knowledge in the context of a) knowledge management in software engineering [Bjørnson 2008]

and b) specifically as an activity of the architectural knowledge [Babar 2009].

2.2.2 Architecture Evolution-Reuse Knowledge

A systematic mapping of architecture knowledge research [Li 2012] suggests minimal evidence

on application of reuse knowledge in maintenance and evolution of software architectures. Also,

in Chapter 1 we discussed how evolution-reuse knowledge supports increasing efficiency and de-

creasing efforts of change implementation in ACSE process. Therefore, we believe that in a general

20

context of architecture knowledge, there is a need to explicitly focus on classification and com-

parison of the existing body-of-research [Garlan 2009, Le Goaer 2008, Breivold 2012] that focuses

on reuse knowledge to address recurring evolution problems in architectures. Also, the findings

of our review (in Chapter 3) confirm the needs for: a) methodologies to discover evolution-reuse

knowledge (also knowledge acquisition) that can be shared and reused and b)techniques that can

exploit the discovered knowledge to promote reusable evolution (also knowledge application).

2.2.3 The Notion of Architecture Change Logs

In software evolution, the concept of change logs - maintaining a history of source-code level

changes- is well established and have been exploited for an empirical investigation of source-code

changes that have been implemented over-time [Kemerer 1999]. In comparison, there is a lack

of research on maintaining and mining architecture change logs that abstract source code level

changes with details of software architectural evolution (as addition or removal of architectural

components and their connectors). In recent years, there is some research on analysing reposi-

tories (release histories [Wermelinger 2011] and change logs [ROS 2010]) that primarily focus on

maintaining and analysing architecture-centric evolution of a software system.

Listing 2.1: An Example of the ROS Change Log

1 ^^^^^^^^^^^^^^^^^^^^^^^^^^

2 Changelog f o r package foo

3 ^^^^^^^^^^^^^^^^^^^^^^^^^^

4 0 . 3 . 4 (2013−04−09 1 6 : 3 6 : 5 5 −0700)

5 Released by : S a l l y <sally@example . com>

6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 − Added thread s a f e t y node

8 − Replaced custom XML message with `TinyXML <http : //www. g r i n n i n g l i z a r d . com/tinyxml />`_ .

ROS (Robot Operating System) change logs captures each individual change applied on ROS

architectural elements with nodes (representing architectural components) and messaging (repre-

senting architectural connectors) among nodes. Therefore, the core architectural elements subject

to change implementation are nodes and messages. Moreover, the change log also maintains the

information about the person who applied the change as well as the date and time of change im-

plementation. Listing 2.1 is an illustrative example of the ROS change log (partial representation)

as below. Another example of architecture change logs is the release history of Eclipse plugins

and their dependencies to analyse the structural evolution of the Eclipse [Wermelinger 2011]. The

21

study analyses release histories by abstracting the source code files as Eclipse plugins (architec-

tural components) and plugin dependencies (architectural connectors).

Based on the examples above, when we consider software architecture and architecture change

log, different approaches may use different terminologies referring to the same concept. For

example, in ROS the components are called nodes, whereas the connectors are referred to as

messaging. In comparison, the Eclipse release history represent components plugins and their

connectors as plugin dependencies. Also, in the examples above the repositories that capture

and represent architectural changes are referred to as release history and change log. In our

research, we use more well-known and widely used terminologies as architectural components

and connectors whose changes are captured in architecture change logs.

2.3 Change Patterns as Elements of Architecture Evolution Reuse

In this section, first we highlight the role of architecture change patterns to enable evolution reuse.

We also present a three-phase process that includes pattern identification, pattern specification

and pattern instantiation activities during evolution. Finally, we discuss about architecture change

pattern language [Alexander 1979, Goedicke 2002] that represents interconnected change patterns.

Identification

Specification Instantiation

<<discovery>>

<<representation>> <<application>>

Figure 2.2: Overview of a Cyclic Process for Change Patterns in Architecture Evolution

2.3.1 A 3-step Process for Pattern-based Architecture Evolution

In the context of software architectures, change patterns [Yskout 2012, Côté 2007] promote reuse of

change expertise with corrective, adaptive and perfective type changes [Williams 2010] to support

22

design-time evolution [Côté 2007] and run-time adaptation [Gomaa 2010]. We further investigate

the role of change patterns to enable evolution reuse through literature review in Chapter 3. Here

we propose a cyclic process and present change patterns as a generic solution that can be a)

identified as recurrent, b) specified once and c) instantiated multiple times to support change

execution as in Figure 2.2.

Activity I - Pattern Identification

It aims at investigating the history of architectural changes to identify recurring change sequences

as patterns that occur frequently over-time. The identification activity also refers to the pat-

tern discovery that depends on the availability of established sources that facilitate an experi-

mental discovery. In the context of architecture evolution analysis, available sources of pattern

discovery are architecture change logs [ROS-Distributions 2010] and version controls [Tu 2002] that

represent a transparent and centrally manageable repositories of architecture evolution history

[Kagdi 2007, Gîrba 2006]. Change logs and version controls contain fine-grained traces of evolu-

tion data-sets that can be queried and searched for post-mortem analysis of evolution histories

and to ultimately discover architecture change patterns [Javed 2013]. Details about pattern identi-

fication from architecture change logs are presented in Chapter 7.

Activity II - Pattern Specification

After identification, it is vital to provide a consistent (once-off) specification for a collection of iden-

tified change patterns that represent reuse knowledge about change implementation [Tamzalit 2010,

Yskout 2012]. In pattern specification context, a pattern template [Harrison 2007] provides a struc-

tured document to promote patterns as a solution that can be retrieved from the template when-

ever the needs for pattern usage arises. The guidelines in [Clements 2003, Harrison 2007] provide

comprehensive details to develop template for change patterns specification as presented in Table

7.4. We utilise the template in Table 7.4 for change pattern specification in Chapter 7.

Activity III - Pattern Instantiation

Finally instantiation utilises abstract specification of a pattern (from template) to instantiate mul-

tiple concrete instances of architecture change patterns. It promotes the concept of ‘specify-once’,

‘instantiate-often’ approach during architecture evolution. In a technical context, pattern instan-

tiation enables mapping among the evolution problem to an appropriate pattern from template

23

Template Element Description of Element

Pattern Description
Name Descriptive name to identify a given change patterns.
Intent Primary intent of change pattern in the context of a given evolution scenario.
Problem Details about the specific evolution problem that pattern solve.
Solution Example Exemplified details and the context in which the pattern can be applied.

Context and Forces
Constraints Preconditions and post-conditions on source and evolved architecture model.
Change Operations Required change operationalisation in order to apply changes using given pattern.
Architecture Model Architectural descriptions before and after the application of change patterns.

Variants and Relations
Variants Variations in existing implementation of a given pattern.
Related Patterns Relationships of the given pattern to other patterns in a pattern collection

Table 2.1: Template-based Specification of Architecture Change Patterns

to offer a generic reusable solution. The instantiated patterns and their corresponding change

operations could again be captured in knowledge source that provide a continuously updated

evolution-centric data for post-mortem analysis of architectural changes. We present pattern in-

stantiation for architecture evolution in Chapter 8.

2.3.2 Composition of an Architecture Change Pattern Language

In software architecture research, the concept of pattern language is borrowed from theory of nat-

ural languages and the architecting experience (real-world buildings) by Christopher Alexander

[Porter 2005, Alexander 1999]. Alexander’s work also draws an explicit analogy between a pat-

tern language to a natural language in the real world as both share the concepts of a vocabulary,

grammar and language sequencing. Moreover, Porter’s work on pattern language composition

[Porter 2005] suggests that a pattern language provides the dynamics for generating (pattern) se-

quences, similar to the grammar of a natural language that provides the dynamics for generating

sentences. For example, the target or application domain of a natural language is communication

in real world, whereas change pattern language aims to solve recurring problems of architecture

evolution. In the natural language, repeated words refer to patterns that are governed by language

vocabulary and the sequencing of words. In addition, a natural language evolves over time by ac-

commodating new words in the language. Therefore, we can exploit the foundational concepts of

natural language in terms of its vocabulary and grammar to compose and evolve change pattern

language by incorporating newly discovered patterns over time.

Pattern language vocabulary refers to the collection of identified instances of change patterns and

their possible variants. Pattern language grammar specifies the structural composition of individual

patterns and the rules that govern relationships among patterns in the language. Finally, pattern

24

language sequencing defines an ordered sequence (following Alexander’s theory[Alexander 1999,

Alexander 1979]) of application among change patterns in the language. The growing research

needs for pattern-languages are also highlighted with a dedicated series of conferences such as

PLoP 1 and EuroPLoP 2. In summary, the theory of pattern languages allows us to compose pat-

terns that support an incremental change management [Goedicke 2002]. By incremental change

management we mean: decomposing evolution process into a manageable set of evolution sce-

narios that can be addressed in a step-wise manner. We discuss composition and application of

pattern language in Chapter 8.

2.3.3 Modelling of Pattern-based Architecture Evolution Activities

The process of pattern-driven architecture evolution requires modelling of the primary activities

(from Section 2.3.1) that include Pattern Identification, Pattern Specification and Pattern Instantiation

presented in Table 2.2. The identified objectives of modelling in Table 2.2 for each activity are

quite distinct. For example, pattern identification aims at modelling architecture change instances

to formalise change log analysis. In contrast, pattern specification requires meta-modelling of

pattern language, while pattern instantiation requires pattern-driven architecture evolution. Such

diverse modelling objectives for different activities makes it challenging to select the most appro-

priate formalism or notation that supports pattern-based architecture evolution. In the following

we discuss some of the relevant formal approaches and then discuss our preferred approach to

formalise pattern identification and pattern application alongside its benefits and limitations.

The Needs for Graph-based Mining of Sequential Patterns

Sequential patterns mining is viewed as a sub-domain of data mining to discover sequences of

events or interests (e.g: sequence of web page traversals, sequences of chemical compounds) that

occur frequently in a given data set. For example, one of the pioneering work on mining sequen-

tial patterns focused on discovery of frequent transactions by matching sequences of records in a

customer transaction database [Agrawal 1995]. Since then there is tremendous growth of research

with various approaches and algorithms to tackle the arising problems of sequential pattern min-

ing in various domains [Mooney 2013]. This work also motivates our approach to mining patterns

from sequence of architectural changes from architecture change logs. We select graph as a for-

malised model to represent the architecture change log and prefer a graph-based approach to

1PLoP - Conference on Pattern Languages of Programs: http://www.hillside.net/plop
2EuroPLoP - European Conference on Pattern Languages of Programs: http://www.europlop.net/

25

http://www.hillside.net/plop
http://www.europlop.net/

mining the sequential change patterns [Huang 2003].

Over the years, some other notable approaches to pattern discovery included database record

matching [Kum 2006], XML-based template matching [Leung 2005], matrix [Dong 2006] and graph

mining approaches [Geng 2008, H. Tong 2007]. A detailed discussion of these approaches is beyond

the scope here. Moreover, a comprehensive survey on the theoretical foundations, approaches and

their algorithms for mining sequential patterns is presented in [Mooney 2013]. In comparison to

other formalism for pattern mining such as XML or transaction matching [Leung 2005, Kum 2006],

we prefer graph-based formalism for pattern discovery based on its well established theory and

algorithms with more than three decade of research [Conte 2004]. We also highlight the benefits

and limitations of graph-based formalism when compared to some other well-known techniques

of pattern discovery. It is vital to mention that pattern discovery by means of analysing and

matching database records [Kum 2006] is also considered an established approach for mining se-

quential patterns [Agrawal 1995]. Our preference for a graph-based approach is determined as

graph theory provides support for both pattern discovery (graph mining) and pattern applica-

tion for architecture evolution (graph transformation) - also discussed later in this Chapter. In

summary, compared to other available approaches as discussed above graph theoretic approach

provides the necessary theory, formalism and algorithmic support for both the architecture change

mining and architecture change execution processes.

Benefits of Graph-based Pattern Discovery

• Application of Sub-graph Mining Approaches for Pattern Identification - An inherent beneïňĄt of

graph based modelling of change log lies with the exploitation of well-established mathe-

matical and algorithmic foundations for pattern discovery. More specifically, if architectural

change could be modelled as a graph, sub-graph mining could be employed for pattern

discovery in the change log graph. We utilise graph matching to investigate change repre-

sentation and operational dependencies formulating foundations and to discover recurrent

change sequences in the log. Analysing sequential operational compositions, we apply sub-

graph mining [Jiang 2012] a formalised knowledge discovery technique - to identify recur-

ring operationalisation that represent reusable, usage- determined change patterns.

• Flexible Querying and Analysis - Graph-based modelling also helps us with a flexible querying

and ultimately the analysis of the log data when represented as a graph. Specifically, with

a graph we could easily query (the graph nodes) for the scenarios such as ’retrieving all

changes that remove architectural elements’ by simply scanning all the nodes (change oper-

26

ations) while by passing other data. Our evaluations (later in the thesis) show graph-based

traversal of log data is more efïňĄcient than traditional ïňĄle-based retrieval [Leung 2005].

• Formal Representation of Architecture Changes - In order to analyse and evaluate the evolution-

centric information, a graph-based structure provide an appropriate data structure for mod-

elling change instances as first class entities. More specifically, in the context of attributed

graphs [Jiang 2012, Ehrig 2004] a graph node represents change operationalisation, while a

node attribute represents the auxiliary data that represent the semantics (i.e.; what and why)

of change. In graph-based representation, graph edges allow us to maintain a sequencing of

change by means of interconnection among the graph nodes (change operations).

Limitations of Graph-based Pattern Discovery

After highlighting the benefits, we must also discuss the challenges or limitations of graph-

based pattern mining approach. These limitations if not minimised or addressed properly could

become threats to the validity of research.

• Complexity of Pattern Mining - One of the primary concerns with graph-based pattern mining

lies with algorithmic efficiency of the process. Specifically, the graph-based modelling of

change log data allows us to utilise the frequent sub-graph mining approach to discover

recurring sequences (sub-graphs) as change patterns. By means of sub-graph mining, the

nodes of sub- graph(s) (a.k.a. candidates) are iteratively matched to the nodes of a log

graph to discover recurring sub-graphs (a.k.a. patterns). However, discovering patterns by

matching and mining sub-graph is a complex problem that is known to be NP-complete

[Conte 2004] and it is not known whether pattern discovery using graph mining is possible

in a polynomial time. If the issue is not addressed it can lead to a significant and often

exponential increase of computation time for pattern discovery.

• Pre-processing of Log Data for Pattern Discovery - In order to enable graph-based modelling,

additional overhead that involves creation of change log also considered as a pre-processing

for graph-based pattern discovery. In this pre-processing, the change operations and their

sequence from log file are mapped to their corresponding nodes and edges in a change log

graph. When the change log size is significant the manual efforts are impractical, error prone

and time consuming, while there is a need for an automated creation of change log graph

from log file.

27

2.3.4 UML vs Graph-based Modelling of Architecture Evolution Activities

It is also worth mentioning about the Unified Modelling Language 2.0 (UML) [Kandé 2000] that

provides a standard and flexible modelling notation in terms of structural and behavioural dia-

grams. The UML 2.0 meta-model is defined with Meta Object Facility (MOF) 3 - an international

standard ISO/IEC 19502:2005 - with four layers of abstraction to define structure and semantics

of UML models. In addition, a summary of our comparative analysis (in Table 2.2) about formal

notations to specify architectural description also suggests UML as one of the most prominent

notations to represent architectural specifications and to evolve them using model transformation

[Graaf 2007]. We analyse that UML 2.0 despite its flexibility, is not a suitable modelling nota-

tion for flexible representation of change instances from logs and to discover change patterns. In

this scenario, we view graph-based models [Baresi 2006a, Carrière 1999, Bhattacharya 2012] as an

alternative notation to represent distinct activities in evolution process.

Activity Modelling UML 2.0 Graph Models

Activity 1 - Pattern No explicit notation to model change instances Model Change Logs as an Attributed Graph
Identification No explicit support to identify change patterns Graph Mining to Identify Change Patterns
Activity 2 - Pattern Profile Diagram for Language Grammar Language Grammar as Attributed Graph
Specification Composite Structure for Pattern Template Graph-based Pattern Template
Activity 3 - Pattern Architecture Model as Component Diagrams Architecture as Attributed Graph
Instantiation Architecture Evolution as Model Transformation Evolution as Graph Transformation

Table 2.2: Comparison of UML 2.0 and Graph-based Formalism to Model Activities

Graph-based modelling has been successfully applied to perform analysis of software evolu-

tion [Bhattacharya 2012] and enabling architecture transformations [Baresi 2006a, Carrière 1999].

Therefore, in contrast to UML 2.0 modelling we believe graph-based models despite their gen-

eral structure provide us with established formal foundations to specify all the activities of the

framework in a flexible way. Therefore, in the context of overall evolution-centric activities and

comparative analysis in Table 2.2, we claim that graph-based models provide an overall flexibility

to represent all the activities in framework. In addition, we can exploit well established graph

theoretical foundations - facilitating a) architecture change mining with graph mining algorithms

[Jiang 2012] and b) architecture change execution with graph transformation [Baresi 2006a].

3OMG Meta Object Facility (MOF) Specification: http://www.omg.org/mof/

28

http://www.omg.org/mof/

2.4 Graph Modelling for Change Mining and Change Execution

Based on the details of activity modelling and the comparison of UML 2.0 vs graph-based models,

we overview different types of graph models following the basic notation from [Baresi 2002]. We

explain graph-based modelling of architecture change mining and change execution processes.

2.4.1 Types of Graph Models

A graph G contain nodes N and edges E as a relation G :=< N, E > based on graph models from

[Baresi 2002]). The nodes in a graph represent the core entities of a graph that are inter-connected

using edges. For example, an edge E connects two nodes N1, N2 as E(N1 → N2), where N1

(source) and N2 (target) are determined by the direction of the arrow in G. There exist a single or

multiple edges between two graph nodes - determined by the type of the graph. Any node N in a

graph G without any edge E (linked to N) is called an orphaned node. Therefore, each edge must

have a source and a target node attached to it otherwise it is an orphan edge. In the following,

using Figure 2.3, we summarise different types of graph models that help us to select the most

appropriate type of graph-modelling for change mining and change execution processes.

Node 1
Node 2

Edge

Graph

N1

N2

N1

N2

Directed Undirected

E E

N1

N2

E1
E2

Multi Edge

N1

Loop edge
N1

N2

E

attribute

attribute

attribute

Graph
Node

Graph Edge

Directed

Undirected

Graph
Attribute

Node
Attribute Edge

a) Directed and Undirected b) Multi Graph c) Labled Graph d) Attributed Graph

Generic Notation of Graphs

Nlabel

Nlabel

Elabel

E1

Figure 2.3: Overview of Different Graph Types

Directed and Undirected Graphs

As explained earlier, nodes of a graph are interconnected using edges. Graph edges can either

be directed or undirected that represent a graph type as directed and undirected as presented

29

in Figure 2.3 a). In an undirected graph the edges do not show any direction (from source to

target node), for example edge E(N1, N2) ≡ E(N2, N1), where ≡ defines logical equivalence. On

the contrary, we define a graph as directed when edges represent direction from source to target

nodes. For example E(N1 → N2) 6≡ E(N2 → N1), where → represent source to target direction

and 6≡ defines logical non-equivalence. In case of a directed graph edge E(N1 → N2) is considered

directed from N1 (source node) to N2 (target node). In a mixed graph G (directed and undirected)

some edges may be directed and some may be undirected.

Multi Graphs

In a graph G, there may exist multiple edges between two nodes of a graph G :=< N1, E1, E2, N2 >,

such that E1(N1 → N2) and E2(N1 → N2) in Figure 2.3 b). In some other cases, it is possible for an

edge to start and end on the same graph node E1(N1 → N1) that is called a loop edge. A loop edge

may be directed or it could also be undirected. A multi-graph is a special type of graph that allows

multiple edges and loops among its nodes, not supported with normal graph types. However, the

loops or multi-edges may or may not be permitted determined by the requirements/constraints

explicitly specified on a graph.

Labelled Graphs

In a graph G it is common to have nodes and edges with some defined labels that represent

(node-labelled, edge-labelled) graph as: Glabelled :=< N1label , Elabel , N2label > in Figure 2.3 c).

In general, the term labelled graph only refers to a graph whose nodes are labelled, unless

edge labelling is explicitly mentioned. Node and edge labelling enables embedding of extra

information in a graph. For example, representing a country as a graph nodes contain la-

bels as names of cities, while edge labelling represents the distance among two (nodes) cities

Gcountry := (Ncity1, Edistance(city1,city2)
, Ncity2).

2.4.2 Attributed Graphs to Model Activities of Architecture Evolution

In a graph G, attributes can be associated to both the nodes and edges of a graph. In attributed

graphs, nodes can be categorised among two types as graph nodes and the attribute nodes. Sim-

ilarly, edges can be categorised as graph edges and the attribute edges. The attributes on nodes

and edges can represent some property, data type etc. about the content represented by a graph

node/edge. We expressed an attributed typed graph as: G :=< GA, NG, EG, NA, ENA
, EEA >.

30

G ∈ Graph and GA is graph attribute; (NG, NA) ∈ Nodes, where NG is a graph node, NA is an

attribute node; (EG, ENA
, EEA

) ∈ Edges, EG is a graph edge, ENA
is the edge of an attributed node,

and EEA
is edge of an attributed edge that is generalised in Figure 2.3 d).

We exploit attributed graphs [Ehrig 2004] to enable a formalised modelling of pattern-based

evolution process activities. For illustrative purpose, in Figure 2.4 we provide an abstract view of

an a) attributed typed graph and an b) attributed graph. More specifically, in Figure 2.4 a) the

attributed type graph (ATG) represents graph-based meta-model with its instance model repre-

sented as an attributed graph (AG) that is typed over ATG in Figure 2.4 b). Nodes and edges

in attributed graphs are typed over an attributed typed graph with attributed graph morphism:

AM : ATG
TypedOver
←−−−−−− AG.

Attributed Typed Graph

EdgeNode

Graph Attributes

Node Attributes Edge Attributes

a) Attributed Typed Graph b) Attributed Graph

typedOver

G1

Node 1

Node 2

N1

N2

E1
E

dg
e

1

Figure 2.4: An Overview of a) Attributed Typed Graph and b) Attributed Graph - abstract view.

Attributed graph-based models have been proved successful for an effective modelling of the

structure and behaviour of software architecture and their evolution [Baresi 2006b, Baresi 2002].

The benefits and limitations associated with the graph-based models (cf. Section 2.3.3) are also

relevant to attributed graphs. In the following we discuss the primary motive for selecting the

attributed graphs for change representation and pattern mining.

• Benefit - Granularity of Representation for Change Log and Architecture Model - Our motivation

for exploiting attributed graph-based representation of the change log and also architecture

model is based on a fine-granular representation of the data being analysed or transformed.

By granularity of data we mean a detailed representation of the various type of information

such as (i) the change operations, (ii) architecture model, as well as (iii) data about the date/-

time, intent and scope of the architectural change. In comparison to the traditional graph

models represented in Figure 2.3, the change log representation with an attributed graph

31

in Figure 2.4 enables us to capture an individual change as a graph node while auxiliary

information such as the source, date/time, intent and person who committed the change are

also encapsulated in the attributes of the node. This means by utilising the attributed graphs

we are able to distinguish between change operationalisation (nodes) and other auxiliary in-

formation (node attributes) not possible with ordinary graph models. Moreover, the graph

edge represents a sequence among consecutive changes and can also contain extra informa-

tion (if needed) in terms of the edge attribute. Further details about attributed graph-based

representation of log data are provided in later in subsequent chapter once the change log

data itself has been explained.

In the remainder of this section we focus on explaining how graph-based modelling from

Figure 2.4 can be exploited to support the three activities for pattern-based architecture evolution

process in Section 2.4.

2.4.3 Graph-based Modelling of Architectural Changes from Logs

In order to analyse representation of architecture changes from logs, we formalise individual

change instances from log as a typed attributed to represent change operations on architecture

elements - supporting change mining. Graph-based models have been successfully utilised for

analysing software evolution [Bhattacharya 2012] and change investigation. A Change log is rep-

resented as an attributed graph with each graph node capturing an individual change and each

graph edge represents a sequence among consecutive changes. Technical details about graph-

based representation of architecture change logs are detailed in Chapter 5. We discuss the graph-

based investigation of architecture change logs for change operation classification and pattern

discovery in Chapter 6 and Chapter 7 respectively.

2.4.4 Graph-based Modelling and Transformation of Architecture Models

Finally, this section discusses the relevance of graph-based representation of the architecture

model and exploiting graph transformation to support architecture evolution - supporting change

execution. Specifically, we model the architectural structure as an attributed graph that provides

formal representation with its node and edge attribution to express the hierarchical composition of

architectural elements. By modelling architecture as a graph, an inherent benefit lies with exploit-

ing graph-transformation to enable architecture evolution. It is logical to think that: if graphs define

32

the structure of architecture models, then graph transformation can be exploited to achieve transformation-

driven architecture evolution in a formal way [Baresi 2006b, Fahmy 2000, Baresi 2002]. In our solution,

graph transformation of an architecture graph G allows us to utilise the graph-based formalism

to create a modified or a target graph GT out of an original graph GS : GS
trans f orm
−−−−−→ GT , where

GS, GT ∈ G. In addition, we also discuss preserving the structural integrity of architecture model

during evolution. Technical details about graph-based architecture evolution in Chapter 8.

2.5 Component-based Architectures and their Evolution

In 1992, Perry and Wolff proposed to build the foundations to study software architectures

[Perry 1992] that entered its golden age almost a decade later as described by Shaw and Clements

[Shaw 2006, Kruchten 2006]. In this era formal foundations, descriptions and modeling nota-

tions for architectural representations emerged that included but not limited to object-oriented,

component-based and service-driven models [Erl 2009b, Stojanović 2005, Szyperski 2002] to develop

and evolve software at higher abstraction levels. Traditionally, Object-oriented Software Engi-

neering (OOSE); and more recently Component-based Software Engineering (CBSE) and Service-

oriented Software Engineering (SOSE) promoted reuse of existing artifacts and entities to develop

new software systems [Garlan 2009, Szyperski 2002, Erl 2009b]. The OOSE has established the

foundations for CBSE as the component oriented technologies inherit the characteristics of object

oriented technologies such as a collection of reusable objects that are modeled and utilised as

software components.

Specifically, in CBSE the reuse of existing software artifacts - exploiting components - enable

the development of new applications. The component-based engineering draws its inspiration

from the success attained by other engineering disciplines that utilise the pre-built and standard-

ised, off-the-shelf components. CBSE in general and CBSA in particular focus on componentising

software representation, its development and evolution by incorporating various independent yet

well-defined software pieces or artifacts as so-called components. Our preference for component-

based architecture models and their evolution support in this thesis is based upon the facts that:

• We investigate change logs that represent architectural changes of CBSA (changes from

object-oriented systems are investigated elsewhere [Tu 2002]). Therefore, architecture change

analysis and discovered patterns could only be applied to a similar architecture that uses

the component-connector notations for architectural modelling and evolution. Specifically

33

speaking, the application domain of the discovered patterns is CBSAs and their evolution.

• In comparison to OOSE and SOSE, recently a comprehensive set of research and practices

exploit component-based models for system development and evolution. We believe that

that the theory and methodology of our approach is beneficial to support reusable evolution

for software systems that exploits the notion of architectural components.

2.5.1 Modelling and Architecting with Component-based Models

The review of empirical research on CBSE [Tekumalla 2012] highlights that the research and

practices using CBSA to model software systems can be categorised among two distinct di-

mensions: (i) formal foundations for architectural descriptions and (ii) frameworks or infrastruc-

ture for architecture-based implementations [Medvidovic 2000, Kandé 2000, van der Aalst 2002].

In case of formal foundations for CBSA, the prominent examples include Architecture Descrip-

tion Languages (ADLs) [Medvidovic 2000] and extensions in Unified Modeling Language (UML)

[Kandé 2000] to specify architectural components their ports, connectors, and protocols to model

software. In contrast, the solutions offering infrastructure for CBSA representation and its imple-

mentations included the commercial solutions in terms of middle-ware technologies and frame-

works such as Common Request Broker Architecture (CORBA) from the Object Management Group

(OMG), Enterprise JavaBeans from Sun Microsystem and the Component Object Model (COM) from

Microsoft. In both these approaches the common objective remains same to exploit the architec-

tural components their interfaces/ports and the coordination between components to represent

the overall system and later concentrate on internal construction and workings of components.

This means, CBSA provides abstraction on software models to shift the architects’ and devel-

opers’ focus from lines-of-code to components and their interconnection (with box and arrow)

structure. Based on the discussion above and in the context of this thesis, we focus on the formal

foundations and modelling of architectural components and their evolution.

The representation of our architecture model (Figure 2.5) and its formal specification (Table

2.3) is consistent with the definition of a component-based model in [Szyperski 2002] - having

components as the computational units in the architecture that communicate with each other

using component ports and are interconnected using the connectors. Once specified, we also

discuss and exemplify some of the vital properties of CBSA that include but are not limited

to component specification, their composition, interconnection and evolution. Earlier, we have

detailed (in Section 2.3.3) that why in the context of the overall solution (change mining and

34

change execution), we prefer graph-based modelling comparing to other available solution such

as UML 2.0. Here, we only highlight why and how the graph-based modeling of CBSA is similar

or distinct to component models in UML 2.0 (the component diagrams). It is vital to mention

the role of the ADLs to formally specify and analyse the architecture models [Medvidovic 1997].

However, a recent survey of professionals on the industrial needs of the ADLs [Malavolta 2013]

suggests that the ADLs emerging from academic research seem not to fulfill the industrial needs,

even though they might have inspired the development of industrial ADLs in some ways. In

contrast, the UML models and profiles have proved to be more effective means for modelling

and analysing the architectures in a formal way. We must mention that any difference(s) between

the graph-based model in Figure 2.5 and UML 2.0 components diagrams do not relate to the

fundamental aspects, i.e; what is a component or a connector? Instead the difference lies with the

preferred representation, i.e; how to specify the component or a connector.

• Component Specification - one of the primary limitation of our component-based model in

Figure 2.5 is that it supports a limited type of components in an architecture that include

the atomic and composite components (detailed later). In contrast, the UML 2.0 compo-

nent diagram can exploit the UML stereotypes (represented with « ») to specify a number

of customised components such as service, process, or implementation type of components.

Such stereotype based specification allows more flexibility and customisation of components

that is lacking in our architecture model. For example, the notation «service» can represent

a stateless component and «process» represents a transaction-based component. The UML

2.0 represent the composite components as a «subsystem» while the atomic components that

compose them are represented simply as «component». In contrast, we use the nesting princi-

ple (or specifically graph node nesting) to specify an arbitrary number of atomic components

nested inside a composite component. Such representation allows component composition

by means of nesting atomic ones in the composite and component decomposition by remov-

ing the nesting among the atomic and composite components.

• Connector Specification - the UML 2.0 component diagram support two distinct types of con-

nector namely the delegate and assembly connectors. Our graph-based model support both

the delegation type interconnections. For example, in Figure 2.5 the component named

Server delegates the functionality on its port to the port of its internal component named

ClientRegister and ClientMesaging. In a concrete instance of architectural model the compo-

nents are interconnected to each other as represented in Figure 2.5 b) that results in associa-

35

tion and/or composition type interconnections among the components.

– Component Association represents the association type interconnection among two or

more components. This means a provider component (on its ”out” port) provides some

functionality to a requester component (on its ”in” port) via some component binding

through connectors. The connector endpoint connected to the provider port is called

the source, while endpoint to the requester port is called the target or the sink. For

example, in Figure 2.5 b) the composite connector ClientServerMessage represents the

association type interconnection between Client and Server.

– Component Composition represents the assembly or composition of one or more atomic

components into a composite component. This is different to the association-type

interconnection, the composite component contains sub-architecture (conïňĄguration

among components and connectors) in itself. In addition, a mapping must exist among

the ports of internal component to their composite component that allows external

communication. For example, in Figure 2.5 b) the component Server is a compos-

ite that contains sub-architecture (in terms of architectural conïňĄguration ClientData)

with a mapping among the composite Server and its child components ClientRegister

and ClientMessaging.

The UML 2.0 component diagram only supports systems representation, whereas our graph-

based modeling solution (cf. Section 2.3.3, Table 2.2) supports the analysis of architectural

changes (graph mining) and implementation of architectural changes (graph-transformation).

2.5.2 Graph-based Modelling of Component-based Software Architectures

In component-based architectures, core architectural elements include Configurations among a set

of Components and Connectors. A component is composed of one or more Ports to expose its

functionality. The connector is composed of Endpoints that enable binding among the component

port thus enabling component level inter-connections. In Figure 2.5, we introduce graph-based

modelling to represent the structure of a component-based architecture model. We represent

the architecture meta-model as an attributed typed graph (ATG) [Ehrig 2004, Brandes 2002b] in

Figure 2.5 a). Architectural instances of a generic client server architecture is represented as an

attributed graph (AG) that is typed over ATG in Figure 2.5 b). In this case, an attributed typed

graph represents the architecture meta-model (Figure 2.5 a), while an attributed graph represents

36

an instance model (Figure 2.5 b). Please note that the architectural description in Figure 2.5 b) is a

partial representation of the architecture evolution case study from [Rosa 2004] that is detailed in

Appendix B.

���������	���� ��
���
���
��� �����	 ����������

�������	
����

�����	���������������
���
�����

�

����
��� !"#$%& '&()*+,-+./0��1�2�������33����44

��	�
��2����������	

56��0�������� 7��89:
7��0;<
7��=>�������	

?@ABCD@EF��0���������

����33����447��0;<
<���7 ��6� G�������� H
I� <���7 =62� J����K��� =62�33L���M6��� 44���������	
�	��330��������44 330��1�2�������44330��������44 338���������44

Server

ClientRegister

ClientMessaging

ClientData

Message
ProtocolClient

ClientServer
Message

register

message

ClientServerModel

instanceOf

Composite Component

Atomic
Component

Port

out
<<source>>

in
<<sink>>

connector

Message
Protocolatomic

composite

Configuration

a) Typed Attributed Graph b) Architecture Model (AG instanceOf ATG)

Figure 2.5: Attributed Typed Graph for Architecture Modelling

The nodes and edges of the attributed graph are typed over an attributed typed graph with

the attributed graph morphism AM : AG → ATG. ATG provides a formalised approach with its

node and edge attribution for modelling architectural elements as a hierarchical directed graph

and preserves architectural composition relationships.

In this thesis, we only support structural evolution of the architecture and specify the struc-

tural descriptions of CBSA using the graph model as presented in Figure 2.5 and Table 2.3. In

addition to the structural representation of architecture model in Figure 2.5 and its mapping to

graph elements in Table 2.3, it is vital to discuss the fundamental characteristics based on the

configuration of architecture models [Szyperski 2002, Medvidovic 2000].

2.5.3 Configuration of Architecture Model

As per the classification and comparison of architectural descriptions in [Medvidovic 2000], a

configuration is a specific instance of the architecture model. More specifically, the architecture

37

Graph Architecture Model Description of Graph-based Architecture Model

Typed attributed graph that represents the architectural configuration as a
ArchG Configurations topology of components (attributed nodes) and connectors (attributed edges).

Examples - ClientData, ClientServerModel
Component Attributed graph node that represents the computational element and data

store in terms of atomic and composite components in the architecture
Atomic A component with no internal configuration/sub-architecture.

NG Component Example - Client, ClientRegister, ClientMessaging
Composite A component that has internal configuration/sub-architecture. It is represented
Component as a nested graph inside the node.

Example - Server with child components ClientRegister, Client Messaging
Connector Attributed graph edge as atomic or composite connector among components.

Atomic A connector with no internal configurations/sub-architectures
EG Connector Example - register, message

Composite A connector that has internal configurations/sub-architecture. It represents
Connector a nested graph inside the edge. Example - ClientServerMessage

(Node-Edge) Attribute Attributes corresponding to the nodes (NG) and edges (EG) in (ArchG).
Meta-data Data labelling and additional information for graph nodes and edges

NA Attribute Example - Component Name, Description, Id, isComposite etc.
Element Attribute Attribute representing Component Ports and Connector Endpoints
Component Port Inward (“in′′) or Outward (“out′′) points for Component inter-connections

Connector Endpoint Provide connector bindings among particular “in′′ port to a particular “out′′ port
ENA Component Attribute Edge Node attribute edge that connects the graph nodes to its attributed nodes.
EEA Connector Attribute Edge Edge attribute edge that connects the graph edges to its attributed nodes.

Table 2.3: Mapping Graph Elements to the Architecture Model

model represents an abstract description of the necessary elements in terms of the architectural

components and connectors. In contrast, a configuration is a concrete instance of the architecture

model that addresses: what is the role of an individual component and how a collection of the

components are interconnected to realise the architecture. Moreover, the configuration determines

that necessary components and connectors exist, the component ports match, connector endpoint

bind components, and the combined model results in a desired architectural structure.

2.5.4 Architecture Descriptions with Graph Modeling Language

In order to provide concrete description for the architectural graph ArchG in Table 2.3 we utilise

the Graph Modeling Language (GraphML) [Brandes 2002a] that provides us with a comprehensive

and easy-to-use file format for XML-based graph representation. In Listing 2.2, we represent the

architecture elements from Figure 2.5 as a GraphML document. GML notations support:

1. Header in terms of an XML Schema reference that provides means to validate the topology

of graph elements that are represented as a graphml (.GML) format (Line 02 - 06 Listing 2.2).

2. Topology a graph is represented in GraphML < graphml > (Line 02 - 43) format by a

< graph > (Line 07 - 42) element. The < graphml > element can contain any number of

< graph >s. The nodes of a graph are represented by a list of < node > (Line 11 - 41)

38

elements. Each node must have an id attribute. The edge (Line 35 - 40) set is represented by

a list of < edge > elements. Details on graphml format are presented in [Brandes 2002b].

Possible Extensions

We model the necessary set of first-class constructs for architecture elements including configura-

tions among a set of components that have ports and connectors that have endpoints. GraphML

provides extensions in the graph model through attributed tags or schema extensions. For exam-

ple in the case of adding a set of operations on component ports, the new attribute < operation >

can be added as < key id = “operation′′, f or = “port′′, attr.name = “operationr′′, attr.type =

“string′′ >< /key >. Similarly the attributes like < returntype > and < paramlist > for corre-

sponding operations can be added, the scope of which is beyond this work.

Listing 2.2: GraphML-based Model for Client Server System from Figure 2.5 (partial architecture)

1 <?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>

2 <graphml xmlns = " ht tp :// graphml . graphdrawing . org/xmlns "

3 xmlns : x s i =" ht tp ://www. w3 . org /2001/XMLSchema−i n s t a n c e "

4 x s i : schemaLocation=" ht tp :// graphml . graphdrawing . org/xmlns

5 http :// graphml . graphdrawing . org/xmlns /1.0/ graphml . xsd ">

6 <!−− . . . Outer Graph as Configurat ion . . . −−>

7 <graph id=" ClientServerModel " edgedefault=" d i r e c t e d ">

8 <data key=" ID "> Configuration_CS </data >

9 <data key=" Descr ipt ion "> Configurat ion of Server Components </data >

10 <!−− . . . Out Graph Node as Composite Component . . . −−>

11 <node id=" 1 ">

12 <data key="Name">Server </data >

13 <!−− . . . Component Port . . . −−>

14 <port name = " p o r t _ R e g i s t e r C l i e n t ">

15 <data key=" D i r e c t i o n "> " out " </data >

16 </port >

17 <port name = " port_ClientMessaging ">

18 <data key=" D i r e c t i o n "> " out " </data >

19 </port >

20 <data key=" isComposite "> true </data >

21 <!−− . . . Inner Graph as I n t e r n a l Configurat ion of Composite . . . −−>

22 <graph id=" Cl ientData " edgedefault=" d i r e c t e d ">

23 <data key=" ID ">Configuration_CD </data >

24 <data key=" Descr ipt ion "> I n t e r n a l Configurat ion </data >

25 <!−− . . . Atomic Component (C l i e n t R e g i s t e r) in Composite Comonent (Server) . . . −−>

26 <node id=" 2 ">

27 <data key="Name"> C l i e n t R e g i s t e r </data >

28 <port name = " p o r t _ g e t C l i e n t R e g i s t e r ">

39

29 <data key=" D i r e c t i o n "> " in " </data >

30 </port >

31 <data key=" isComposite "> f a l s e </data >

32 </node>

33 </graph>

34 <!−− . . . Component Connector . . . −−>

35 <hyperedge>

36 <data key="Name">Connector </data >

37 <!−− . . . Connector Endpoints . . . −−>

38 <endpoint node=" 2 " port=" p o r t _ g e t C l i e n t R e g i s t e r "/>

39 <endpoint node=" 1 " port=" p o r t _ R e g i s t e r C l i e n t ">

40 </hyperedge>

41 </node>

42 </graph>

43 </graphml>

2.6 Chapter Summary

In this chapter, we provide the background details about some of the fundamental concepts and

terminologies that are used in the remainder of this thesis. First of all, we explain knowledge

management in software architectures that allow us to discuss architectural knowledge and the

needs for acquisition and application of architecture evolution-reuse knowledge.

We highlight the role of change patterns as a generic, reusable solution to recurring architecture

evolution problems. During evolution, change patterns can be identified as recurrent solutions

that can be specified once and instantiated multiple times to enable reusable change execution.

We prefer attributed graph based modelling for different activities in pattern-based evolution.

We propose to represent architectural change instances from logs as a graph with graph mining

for pattern discovery (identification activity) and represent the discovered patterns in a pattern

template (specification activity). Finally, we model a component-based architecture model as an

attributed graph. Graph-based modelling of architecture allows us to exploit graph transformation

on architecture model to enable pattern-driven architecture evolution (instantiation activity).

40

Chapter 3
Classification and Comparison of

Architecture Evolution-Reuse

Knowledge - A Systematic Review

Contents

3.1 Overview of Systematic Literature Review . 42

3.2 Secondary Studies on Software Architecture Evolution 43

3.2.1 Systematic Literature Reviews of Software Architecture Evolution 43

3.2.2 Survey-based and Taxonomic Studies on Architecture Evolution 44

3.2.3 A Systematic Review of Architecture Evolution Reuse Knowledge 44

3.3 Research Methodology for Systematic Literature Review 45

3.3.1 Research Questions for Systematic Review . 46

3.3.2 Extracting and Synthesising Review Data . 47

3.3.3 Classifying and Documenting the Results . 47

3.3.4 A Framework to Classify Evolution Reuse Knowledge Research 47

3.4 Results Categorisation and Reuse Knowledge Taxonomy 49

3.4.1 A Taxonomical Classification of Evolution Reuse Knowledge 50

3.4.2 Definition of Architecture Evolution Reuse Knowledge 52

3.5 Application of Evolution Reuse Knowledge . 54

3.5.1 Methods and Techniques for Application of Reuse Knowledge 55

41

3.5.2 Comparison of Methods and Techniques for Evolution Reuse 55

3.6 Acquisition of Architecture Evolution Reuse Knowledge 61

3.6.1 Methods and Techniques for Acquisition of Reuse Knowledge 61

3.6.2 Comparison of Methods and Techniques for Acquisition of Reuse Knowledge 62

3.7 Implications of Systematic Literature Review . 64

3.7.1 Research Trends and Future Directions . 64

3.8 Summary of Chapter . 68

3.1 Overview of Systematic Literature Review

After presenting the research challenges and thesis background, in this chapter we provide a crit-

ical review of the existing research that addresses methods and techniques to support application

and acquisition of architecture evolution reuse knowledge. In this review, we aim to identify,

taxonomically classify and systematically compare the existing research focused on enabling or

enhancing change reuse in architecture-centric software evolution. We conducted a Systematic

Literature Review (SLR) [Brereton 2007] of 30 qualitatively selected studies, published from 1999

to 2012. The progress of architecture-centric evolution reuse research [S9, S7]1, [S2, S1] is reflected

over more than a decade starting in 2001 [van der Hoek 2001]. However, we did not find any

evidence that systematically synthesises the collective impact of existing literature on evolution

reuse. As highlighted in Chapter 2, in the general context of architecture knowledge (AK) there

is a need to explicitly classify and compare research on reuse knowledge to address recurring

evolution in software architectures [S1, S2, S9, S17]. To carry out this review, we followed the

guidelines in [Brereton 2007] to conduct a systematic literature review of evolution reuse in soft-

ware architectures. The objective of this review is to:

Systematically identify and classify the available evidence about evolution-reuse in software architectures

and provide a holistic comparison to analyse the potential and limitations of existing research.

In addition to the review results in this chapter, we present a) methodological details, b) qual-

itative analysis of the selected literature and c) threats to the internal and external validity of the

SLR in Appendix A.

1Please note that, in this chapter only the notation [SN] (N is a number) represents a reference to studies included in
the SLR. The notation also maintains a distinction between the bibliography and list of selected studies for SLR provided
at the end of this chapter as: List of Studies Selected for Systematic Review.

42

3.2 Secondary Studies on Software Architecture Evolution

In this section, we summarise the existing SLRs (in Section 3.2.1) and survey-based studies (in

Section 3.2.2) addressing architecture evolution in Table 3.1 to justify the needs and scope for this

review. In recent years, SLRs [Brereton 2007] have focused on evolvability analysis [Breivold 2012],

change characterisation [Williams 2010], classification and comparison [Breivold 2012] of ACSE. In

contrasts to the existing systematic reviews on ACSE [Williams 2010, Breivold 2012, Li 2012], this

SLR specifically focuses on a taxonomical classification and comparison of research that supports

evolution reuse in architectures.

3.2.1 Systematic Literature Reviews of Software Architecture Evolution

Review of Architecture Change Characterisation

The systematic review (study reference [Williams 2010] in Table 3.1) investigated a total of 130

peer-reviewed studies - published from 1976 to 2008 - to characterise design-time and runtime

evolution as corrective, perfective, adaptive and preventive type changes in architectures. The

SLR [Williams 2010] proposed a comprehensive change characterisation scheme to distinguish

and characterise software architecture changes and change impact analysis. The scheme works as

a decision tree to provide support for system developers to assess the impact and feasibility of

desired changes.

Review of Architecture Evolvability Analysis

The systematic review ([Breivold 2012] in Table 3.1) investigated 82 peer-reviewed studies - pub-

lished from 1992 to 2012 - focused on design-time evolution of software architectures. The SLR

[Breivold 2012] is focused on analysing the evolvability of a software architecture. The primary ob-

jective of this review is to provide an overview of existing approaches for analysing and improving

software architecture evolution and to identify factors influencing architectural evolvability.

Study Type Study Reference Study Focus Publication Year Total Reviewed Years
Systematic [Williams 2010] Change Characterisation 2010 130 1976 - 2008
Literature [Breivold 2012] Evolvability Analysis. 2011 82 1992 - 2010

Review in this Thesis Reuse-Driven Evolution 2014 30 1999 - 2012
Surveys [Bradbury 2004] Dynamic Evolution 2004 14 1992 - 2002

Mapping Studies [Li 2012] Architecture Knowledge 2013 55 2000 - 2011

Table 3.1: A Summary of the Secondary Studies on ACSE.

43

3.2.2 Survey-based and Taxonomic Studies on Architecture Evolution

Survey of Self-Management in Dynamic Software

A survey-based study ([Bradbury 2004] in Table 3.1) reviews a total of 14 studies - published from

1992 to 2002 - focused on runtime evolution of software architectures. This survey synthesises

formal specifications for dynamic adaptation of software architectures. The authors present a set

of classification criteria for the comparison of dynamic software architectures based on the types,

processes and infrastructure for dynamic adaptation of software architectures.

Mapping Study on Knowledge-based Approaches in Software Architectures

A mapping study ([Li 2012] in Table 3.1) provides a systematic map of research on knowledge-

based approaches in software architecture based on 55 peer reviewed studies - published from

2000 to 2011. The mapping study [Li 2012] identifies gaps in the application of knowledge-based

approaches to five architecting activities that include architectural analysis, synthesis, evaluation,

implementation, along with maintenance and evolution. The study shows an increasing interest

in the application of knowledge-based approaches in software architecture with only 5/55 studies

on architectural knowledge for maintenance and evolution.

Industrial Survey and Taxonomic Study on Architecture Evolution

In [Stammel 2011], the authors provide an overview of various approaches evaluated based on

real-world industrial scenarios on the evolution of sustainable systems. This study targets practi-

tioners because it is more general and is a live document based on a growing number of experience

reports. Slyngstad et al. [Slyngstad 2008] performed a survey among software architects from

software industry in order to capture a more complete picture of risk and management issues

in software architecture evolution. Although not directly related to the ACSE, some taxonomies

of software change [Buckley 2005, Chapin 2001] try to answer the questions like why, how, what,

when and where aspects of software evolution that have acted as a guideline for us to define the

comparison attributes in this review discussed in subsequent sections of the chapter.

3.2.3 A Systematic Review of Architecture Evolution Reuse Knowledge

Our review in this chapter of the thesis (as highlighted in Table 3.1) is focused on a systematic

identification, classification and comparison of the existing research that supports application

44

and acquisition of reuse knowledge to support ACSE. In contrast to the mapping study on AK

[Li 2012] that identifies only 5 studies supporting design-time maintenance and evolution, our

SLR is comprised of 30 studies published from 1999 to 2012 and is focused on both design-time

and runtime evolution. As presented in Table 3.1, the proposed SLR complements the existing

body of secondary studies on ACSE [Williams 2010, Breivold 2012, Jamshidi 2013b]. Given the

importance of reuse in ACSE, it exclusively focuses on classification and comparison of evolution

reuse knowledge.

In order ensure that a similar review has not been performed, we searched the Compendex,

IEEE Xplore, ACM and Google Scholar digital libraries (on 23/10/2012) with the search string

provided in Appendix A. None of the retrieved publications were related to any of our research

questions detailed (Section 3.3). Considering the importance of reuse in ACSE [Breivold 2012] and

the relative maturity of architecture knowledge (AK) research [Babar 2009, Li 2012], a consolida-

tion of existing evidence about application and acquisition of reuse knowledge to support ACSE

is timely.

3.3 Research Methodology for Systematic Literature Review

In contrast to a non-structured review process, a systematic literature review reduces bias and

follows a precise and rigorous sequence of methodological steps [Zhang 2012, Brereton 2007].

More specifically, an SLR relies on a well-defined and evaluated review protocol to extract, analyse

and document the results as illustrated in Figure 3.1. We adopted the guidelines in [Brereton 2007]

for SLRs with a three step review process that includes: Planning, Conducting and Documenting.

The review is complemented by an external evaluation of the outcome of each step, as illustrated

in Figure 3.1. We also provide an explicit taxonomical classification of the reviewed studies. This

is the foundation for a comparative analysis of studies based on our defined comparison attributes

that are also subject to external evaluation prior to results reporting in this chapter.

Based on a three step process in Figure 3.1, the extended details of the definition and evaluation

of the protocol (steps for planning, conducting and documenting) of systematic review are presented

in Appendix A. In the reminder of this section, first we outline the systematic review questions

that drive literature search followed by the extraction and synthesis of the results and finally

classifying and documenting the results as in Figure 3.1.

45

1. Planning 2. Conducting 3. Documenting
Identify Needs for SLRNOPQRST UPVPWXQY Z[PV\R]^V
Define Review Protocol

Select Primary Studies

Assess Study Quality_W\W `a\XWQ\R]^ b NT \̂YPVRV Draw Conclusions

Analyse Threats

Report Results

Search Strategy Inclusion & Exclusion Classification & Comparison

Review Protocol Comparison Attributes Report Evaluation

Review Protocol Evaluation

Figure 3.1: SLR Process for Classification and Comparison of Reuse-Knowledge in ACSE.

3.3.1 Research Questions for Systematic Review

The systematic questions are based on our motivation to conduct the SLR, i.e., the answers provide

us with an evidence-based overview of the definition, application and acquisition of reuse knowl-

edge to support ACSE methods and techniques. We define three systematic review questions that

represent the foundation for deriving the search strategy for literature extraction. The motivation

outlines the primary objective of investigation for each question. A comparative analysis allows

us to analyse the collective impact of research, represented in terms of comparison attributes (in

Table 3.2) for Systematic Review Questions (SR-Q) as below.

• Systematic Review Question 1 - How evolution reuse knowledge is defined, classified and ex-

pressed in existing literature to enable architecture-based software change management?

Motivation: To understand the existing classification and representation of architecture evo-

lution reuse knowledge and a detailed comparison of solutions to enable ACSE.

• Systematic Review Question 2 - What are the existing methodologies and techniques that support

application of reuse knowledge to evolve software architectures?

Motivation: To identify and compare existing solutions that support an explicit reuse of

change implementation mechanisms to enable design-time evolution and run-time adapta-

tions in architectures.

• Systematic Review Question 3 - What empirical approaches are employed to discover evolution

reuse knowledge?

46

Motivation: To investigate and compare the available support for empirical acquisition/dis-

covery of reuse knowledge and expertise that can be shared to guide architecture evolution.

In the remainder of this chapter, we refer to the systematic review questions simply as research

questions or SR-Q.

3.3.2 Extracting and Synthesising Review Data

In order to record the extracted data from selected studies, we followed [Zhang 2012, Brereton 2007]

and designed a structured format as presented in Table 3.2. The format in Table 3.2 records the re-

sults as: a) generic and documentation specific data items, and b) comparison attributes for a collective

and comparative analysis of research and to answer SR-Q1 - SR-Q3.

Comparison attributes (CA1 - CA12 in Table 3.2) are the smallest unit of data that we extracted

from the literature for comparison purposes and shared for external evaluation. These attributes

provide the base for follow up syntheses, that is mainly classification and comparison of claims

and their supporting evidence of evolution reuse detailed in this chapter. Due to time constraints

of external reviewers, instead of reading through detailed results (in Section 3.4, 3.5, 3.6), they

examined a summary of results and comparative analysis to suggest appropriate adjustments and

refinements for documentation of results. These data were extracted by locating the evidences of

each item in selected studies.

3.3.3 Classifying and Documenting the Results

To discuss the results, first we need to provide a conceptual framework to systematically present

the existing literature and to identify the required steps that enable ACSE. With the help of a

framework we can organise the reviewed studies in terms of framework processes and activities

that support application and acquisition of evolution reuse knowledge.

3.3.4 A Framework to Classify Evolution Reuse Knowledge Research

Method engineering [Brinkkemper 1996] enables us to reuse the existing concepts from existing

methods (frameworks, models or solutions) to develop new methods by reusing existing method-

ologies with reduced efforts and time to derive or develop new solutions. More specifically,

during the architecture change mining process in the REVOLVE framework we exploit the knowl-

edge discovery concepts from the ADM (Architecture Driven Modernization) [Ulrich 2010] model

47

ID ID Objective

Generic and Documentation Specific Data

1 Study ID Unique Identity of Study
List of Authors

2 Bibliography Year of Publication
Source of Publication
[Book or Journal of Conference or Workshop or Other]

3 Focus of Study Theme, Concepts, Motivation clearly presented? [Yes or No]
4 Research Method [Design and Evaluation or Case Study or Survey or Experiments or Other]
5 Research Problem Research Challenges or Problems Reported
6 Proposed Solution Solution to Address Research Challenges or Problems
7 Application Context Context and application domain:

[Academic or Industrial or Both or Other]
8 Limitations Constraints, Limitations, Future research clearly stated? [Yes or No]
9 Related Research Positioning and Novelty of the research
10 Future Dimensions Implications on Future Research or Ideas clearly stated? [Yes or No]

Comparison Attributes for SR-Q1 and SR-Q2

CA1 Knowledge Support Solutions to support reuse-knowledge in ACSE.
CA2 Type of Change [Adaptive or Perfective or Corrective or Preventive]
CA3 Time of Change [Design-time or Runtime]
CA4 Means of Change Type of Operational Support to implement change
CA5 Formalism Support Application of a specific formal approaches in modelling,
CA6 Architecture Descriptions [UML or ADL or Graph Models or State Transition or Other]

Comparison Attributes for SR-Q1 and SR-Q3

CA7 Knowledge Source The type of collection - real data set for change instances
CA8 Type of Analysis Type of analysis to discover evolutionary knowledge
CA9 Type of Formalism Type of formalised methods and for empirical discovery
CA10 Time of Discovery [Run-time Extraction or Off-line Mining or Other]

Comparison Attributes for both SR-Q1, SR-Q2 and SR-Q3

CA11 Tool Support Automation support for reuse-driven evolution [Yes or No]
CA12 Evaluation Method [Design and Evaluation or Case Study or Survey or Experiments]

Table 3.2: A Summary of the Extracted Data and Comparison Attributes.

for acquisition of evolutionary knowledge from architecture evolution histories. Moreover, the

discovered knowledge can be shared and reused as in the MAPE-K (Model Analyze Plan Execute-

Knowledge) [Ganek 2003] framework to analyse, plan and execute architectural evolution and

adaptation.

The REVOLVE framework in Figure 3.2 along with the presentation of its processes, activities

and their corresponding studies in Table 3.3 is beneficial for ACSE researchers and practitioners.

The framework assist ACSE researchers with quick identification of relevant studies. A systematic

presentation of existing research provides a foundational body of knowledge to develop theory

and solutions, analyse research implications and to establish future dimensions. In addition, the

framework can be beneficial for practitioners interested in understanding the methods and so-

lutions with formalism and tool support to model, analyse, and implement evolution reuse in

software architectures. The framework provides an aggregated representation of existing litera-

ture. The results will later highlight a lack of solutions that integrate the concept of empirical

knowledge acquisition to guide evolution with reuse knowledge application.

48

Identify
Knowledge

Share
Knowledge Reuse

Knowledge

Capture
Knowledge

Knowledge Collection
Analyse Knowledge

Evolution History

Architecture
Change
Mining

Architecture
Change
Execution

Software Architect

REVOLVE Framework
1

2

3

4

5

Formalism
Tool Support

Processes Activities Repositories

Figure 3.2: REVOLVE - Integrated Views of Architecture Change Mining and Change Execution.

Process Activity Repository Evidences

Architecture Change Identify Reuse Knowledge Evolution History [S7, S9, S10, S17]
Mining Share Evolution Knowledge Knowledge Collection [S8, S9, S10, S17]

Analyse Reuse Knowledge Knowledge Collection [S9, S10, S17]
[S1, S2, S3, S4, S5, S6, S8, S11, S12, S13,

Architecture Change Reuse Evolution Knowledge Knowledge Collection S14, S15, S16, S18, S19, S20, S21, S22,
Execution S23, S24, S25, S26, S27, S28, S29, S30]

Capture Reuse Knowledge Evolution History [S7]

Table 3.3: Processes, Activities and Repositories of Framework to Classify Reviewed Studies.

3.4 Results Categorisation and Reuse Knowledge Taxonomy

Our discussion of results uses the classification framework for reuse knowledge from Section 3.3.3.

Central to the REVOLVE framework are a set of processes, activities and repositories (in Table 3.3.

The processes encompass architecture change mining as a complementary and integrated phase

to change execution - a concept partially realised in only one of the reviewed studies [S7]. We also

present the relative distribution of the five activities of the REVOLVE framework.

Please note that some of the studies cover different activities of the REVOLVE framework.

For example studies [S9, S10, S17, S13] both represent research on identifying and sharing reuse

knowledge. Similarly the study [S7] represent capturing and identifying reuse knowledge. Table 3.3

summarises the involved processes, their corresponding activities and associated repositories as

well as identified studies as concrete evidence of the claims. In Figure 3.2, it is vital to highlight

49

the complementary role of tool support and formalism in ACSE. For example in Figure 3.2, to

support automation of the activity for reuse knowledge identification the solution must provide

a tool or a prototype to analyse architecture evolution histories that contain evolutionary data of

significant size and complexity. A lack of tool support increases the complexity of architecture

evolution process, process scalability (changes from small to large systems), error proneness in

change implementation.

3.4.1 A Taxonomical Classification of Evolution Reuse Knowledge

The taxonomy defines a systematic identification, naming and organisation of reuse approaches

into groups which share, overlap or are distinguished by various attributes. A taxonomical clas-

sification provides an insight into the commonality or distinction of research themes as denoted

in Figure 3.3. We explicitly discuss two distinct classification types of evolution reuse research

as generic and thematic classification of literature. A solution-specific classification will be intro-

duced in Sections 3.5 and 3.6.

1. Generic Classification is derived based on a review of studies and the guidelines from [Medvidovic 2000]

that helped us to refine classification attributes based on studies for analysing the role of

reuse knowledge in architecture evolution. In Figure 3.3, the literature suggests the role of

reuse knowledge in ACSE is classified into methods and techniques that enable change reuse in

ACSE (26 studies, i.e., 87% approx) and empirical discovery (4 studies, i.e., 13% approx) of

reuse knowledge and expertise by exploiting evolution histories.

2. Thematic Classification provides details about the predominant research themes based on

time and type of evolution. In the following, we focus on a taxonomy of identified research

themes based on the classification in Figure 3.3.

• Evolution Styles [S1, S5, S8, S11, S13, S21, S23] are inspired by a conventional concept of

architecture styles that represent a reusable vocabulary of architectural elements (component

or connectors) and a set of constraints on them to express a style [Pahl 2009]. Evolution styles

focus on defining, classifying, representing and reusing frequent evolution plans [S1, S11]

and architecture change expertise [S5, S8, S13, S21]. Style-based approaches represent 22% of

the reviewed studies addressing corrective and perfective changes implemented as design-time

evolution. In the style-driven approaches, we observed a trend towards structural evolution-

50

Classification of AERK

Methods and Techniques for Application of AERK Methods and Techniques for Acquisition of AERK

Evolution
Styles

Change
Patterns

Adaptation Strategies
and Policies

Evolution and
Maintenance Prediction

Generic
Classification

Research
Themes

26 Studies 04 Studies

07 Studies

13 Studies

06 Studies

Configuration
Analysis

Pattern
Discovery

02 Studies01 Study

01 Study

1

2

3 4

5

6

Figure 3.3: A Taxonomical Classification of Architecture Evolution-Reuse Knowledge.

off-the-shelf [S13, S21] and evolution planning [S1, S8] with time, cost and risk analysis to

derive evolution plans.

• Change Patterns [S2, S6, S12, S14, S15, S16, S17, S20, S21, S24, S27, S29] exploit the same

idea as design patterns [Gamma 2001] that aims at providing a generic, repeatable solution

to recurring design problems. In contrast, change patterns follow reuse-driven methods

and techniques to offer a generic solution to frequent evolution problems. Pattern-based

solutions focused on corrective, adaptive and perfective changes supporting both design-time as

well as run-time evolution. Adaptation and reconfiguration patterns [S16, S19] are the run-time

evolution solutions. The solutions also address the co-evolution of processes [S29], requirements

[S2] and underlying architecture models. In addition, a number of studies proposed language-

based formalism [S6, S12, S14, S15] to enable reuse in architectural migration and integration.

Unlike styles that only use model-driven evolution, pattern-based changes are expressed as

different techniques using model transformations [S2, S29], state transitions [S16, S19] and

change operationalisation [S27].

• Adaptation Strategies and Policies [S3, S4, S25, S26, S28, S30] focus on reuse and cus-

tomisation of adaptation policies [S3, S4], reusable and knowledge-driven strategies [S25, S26,

S30] and aspects [S28] to support the reuse of policies in self-adaptive architectures. With a

recent emphasis on autonomic computing, and growing demand for highly available archi-

tectures, reuse-driven strategies aim to provide knowledge-driven reuse at run-time. Run-

time reconfigurations of architectures are also highlighted in the MAPE-K reference model

[Ganek 2003].

• Pattern Discovery [S19] represent methods and techniques for post-mortem analysis of evo-

51

lution history (version control [S19] systems) to discover recurring changes as pattern in-

stances. Pattern-based knowledge discovery mechanisms is presented in a single study of

this review.

• Evolution and Maintenance Prediction [S9, S10] focuses on prediction of maintenance and

evolution efforts for software architectures. We included two studies in which [S9] repre-

sents a set of change scenarios for predicting perfective and adaptive maintenance tasks in

architectures. In [S10], based on an architectural evaluation and maintenance prediction, the

required maintenance and evolution effort for a software system can be estimated [S10].

• Architecture Configuration Analysis [S7] exploits configuration management techniques to

analyse architectural configurations [S7]. It focuses on mining architecture revision histories

to capture evolution and variability in order to represent cross-cutting relationships among

evolving architecture elements.

3.4.2 Definition of Architecture Evolution Reuse Knowledge

The systematic review question SR-Q1 addresses how architecture evolution reuse knowledge is

defined and expressed in the context of ACSE and is answered in this section. After we have de-

fined architecture evolution reuse knowledge here, we answer SR-Q2 (application of reuse knowl-

edge in Section 3.5) and SR-Q3 (acquisition of reuse knowledge in Section 3.6).

In the reviewed studies, we observed that interpreting and assessing individual studies as

isolated solutions to a specific research problem lacks consistency in representing what exactly

defines reuse knowledge and how it is classified and expressed in literature. More specifically,

the taxonomical classification (cf. Section 3.4.1) suggests a lack of consensus and definition for

AERK is primarily due to a) different types and time constraints of architectural evolution and b)

solution specific interpretation of the evolution reuse. We discuss both of these below.

Architecture Evolution

In the reviewed literature, architecture evolution refers to design-time changes [S1, S2, S6, S13,

S20] or run-time reconfigurations [S3, S4, S16, S25] as perfection, adaptation or corrections in

architectural structure and behaviour [Williams 2010]. While analysing the titles, keywords and

abstracts of included studies, we observed that the term evolution (also including evolving, evolve,

co-evolution) has six variations as change (also including changing), Reconfiguration, Adaptation,

Restructuring, Update, Transformation and Migration. The reasons for distinctive terminologies are:

52

• Types of Architecture Changes as Corrective, Adaptive (also Reconfigurative [S16, S19]), Per-

fective (also Updative [S23], Restructurive [S21], Transformative [S5], Migrative [S6]). With a

more conventional interpretation of ISO ISO/IEC 14764 and architectural change character-

isation in [Williams 2010], we did not find any study to support preventive changes. This

indicates that existing work lacks support for reuse in pre-emptive and pro-active evolution

of architectures [Mens 1999].

• Time Constraints of Changes as highlighted in Figure 3.4 refers to Evolution, Change, Up-

date and Restructure for design-time evolution [Medvidovic 1999], while Reconfiguration and

Adaptation refer to run-time evolution [Ganek 2003]. In Figure 3.4, there is a clear inclination

towards style-driven approaches, evolutionary plans and model co-evolution for design-time

(a.k.a. static evolution). In contrast, run-time (a.k.a. dynamic evolution) is focused on self-

adaptation and runtime reconfigurations reflected by studies published in 2004 and 2009.

- Evolution Paths [S1, S11]
- Evolution Styles [S5, S21, S23, S8]
- Model Co-evolution [S2, S29]
- Pattern-to-Pattern Evolution [27]
- Pattern-language based Formalism
 [S6, S12, S14, S15]
- Evolution Patterns and Rules [S20, S22]
- Evolution Shelf [S13]

Reuse@Design-time
16/30 Studies

(53%)

Reuse@Runtime
9/30 Studies

(30%)

- Adaptation Patterns [S16, S19]
- Self-adaptation Strategies [S3]
- Self-repair Strategies [S4]
- Reusable Adaptation Aspects [S18, S28]
- Policies for Self-adaptive Behaviour
 [S25, S26, S30]

Figure 3.4: Study Percentage Distribution - Time Constraints of Evolution.

This suggests that evolution is an unclear term in the context of types and time of architectural

changes, thus making it hard to implicitly derive a unified or aggregated definition for evolution

reuse knowledge. Due to a characterisation of architectural change types [Williams 2010] and

times of evolution [Buckley 2005], a clear consensus or unified definition is not possible. In fact, it

would only limit the acceptance of the concept with a narrow view based on available evidence.

However, an aggregated definition of evolution reuse knowledge is important to classify and

compare the existing research, see Figure 3.3.

53

Architecture Evolution Reuse

In the reviewed studies, evolution reuse is expressed as evolution styles, change patterns, and

adaptation strategies and policies in Figure 3.3. An interesting observation is that although novel

as methodical approaches, both evolution styles and change patterns conceptually extend the

more conventional concepts of architecture styles [Pahl 2009] and design patterns [Gamma 2001]

to represent evolution expertise. Evolution styles [S1, S13, S21] primarily aim at defining, classify-

ing, representing and reusing frequent corrective and perfective changes as a design-time activity.

In contrast, change patterns [S2, S16, S19] promote the ‘build-once, use often’ philosophy of to offer

a generic, repeatable solution to frequent adaptive, corrective and perfective changes as design-

time and run-time-time evolution. The concept of reusable adaptation strategies and policies is

only represented in the context of reuse plans [S3, S4, S25] and aspects [S28] for self-adaptive

architectures.

Once we have identified the relative representation and expression of evolution and reuse, we

provide a consolidated view of architecture evolution reuse knowledge in the context of ACSE.

We provide an aggregated definition of Architecture Evolution-Reuse Knowledge (AERK) as

a collection and integrated representation (problem-solution mapping) of empirically discovered generic

and repeatable change implementation expertise that can be shared and reused as a solution to frequent

(architecture) evolution problems.

In the existing literature, the generic and repetitive solutions are predominantly expressed

as evolution styles and patterns. In addition, frequent evolution operations represent addition,

removal or modification of architecture elements as design-time change or runtime adaptation.

Some studies [S1, S11, S13, S20] implicitly denoted reuse as a first-class abstraction - by opera-

tionalising and parametrising changes - to resolve recurring evolution tasks.

3.5 Application of Evolution Reuse Knowledge

Based on the generic and thematic classification in Section 3.4, we now investigate the existing

methods and techniques that enable reuse-driven evolution and adaptation in software architec-

tures, i.e., those that apply AERK (SR-Q2). A systematic identification and comparison is partic-

ularly beneficial to gain an insight into aspects of problem-solution mapping, architecture evolution

characterisation, or to assess formalisms and tool support. The comparative analysis is presented as a

number of structured tables (Table 3.4, Table3.5). In this section, a thematic coding process has

54

been employed to identify the comparison attributes (cf. Table 3.2) and to provide an answer

to the SR-Q2, i.e., What are the existing methodologies and techniques that support application of reuse

knowledge to evolve software architectures? (in Section 3.5.1). We also compare the methodologies

and techniques to analyse a collective impact of existing research that enhance evolution reuse (in

Section 3.5.2).

3.5.1 Methods and Techniques for Application of Reuse Knowledge

For each of the reviewed study, the problem and solution views are explicitly captured (cf. Table

3.2) and represented as generic and documentation specific items (ID = 5 is Research Problem and

ID = 6 Proposed Solution). We also combine the problem and solution views that are related in

Table 3.4.

For example, the studies [S1, S11] address the problems of evolution planning and trade-off

analysis by applying reusable evolution strategies. While the comparison view is represented with

a set of comparison attributes in Table 3.2. Based on the classification of research themes, we focus

on answering SR-Q2 with Table 3.4. It has three columns associated with the following aspects:

• Problem View - Why is there a need for reuse knowledge to address recurring evolution

problems?

• Solution View - How do solutions provide methods and techniques to address these research

problems?

• Comparison View - What are the trends, type, means and time of evolution, formalism and

tool support, architectural description notations and evaluation methods? See Table 3.5 for

details.

Note that due to the classification scheme (styles vs. patterns vs. strategies and policies), we

denote adaptation patterns [S16, S19] as a sub-theme of change patterns [S2, S17].

3.5.2 Comparison of Methods and Techniques for Evolution Reuse

In order to go beyond an analysis for individual studies, a holistic comparison of existing research

based on comparison attributes including their objective and concrete evidence is provided in

Table 3.5. We compare available methods and techniques based on comparison attributes CA1

to CA12 (cf. Table 3.2). The comparison of research methodologies for reuse knowledge-driven

55

Research Problem Solutions (Methods and Techniques) Studies

Evolution Styles
How to enable evolution Planning and trade-off Evolution Paths - to plan and apply reusable evolution [S1,
analysis? strategies. S11]
How to achieve recurring structural evolution of Evolution Shelf - library of reusable and reliable evolution [S13]
architecture? expertise
How to enhance change reusability and architecture Update Styles - reuse expertise for restructuring and [S21,
consistency? updating architectures. S23]
How to exploit architecture knowledge as an asset for AK-driven evolution styles| - use of AK as evolution styles [S8]
architecture evolution? styles to constrain and trigger evolution
How to reuse in transformation and refinement of Style-based Transformations - to achieve migration from [S5]
component-model to service-driven architectures? components to business-driven service architecture.

Change Patterns
How to Co-evolve process, requirements with Co-Evolving Models - reusable patterns to enable co-evolution [S2,
architectures? in process and requirements to their underlying architectures. S29]
How to enable a continuous runtime adaptation Patterns - reuse @ runtime to support architectural [S16,
of architectures? reconfigurations and self-adaptations. S19]
How to exploit the reuse of design methods, Pattern-to-Pattern Evolution and Integration - evolution [S27,
documents and process for architecture operators and design documents to tackle requirement and S12,
migration and evolution ? architecture changes [S27]. Model-based migration and S15]

integration of process-centric architecture models [S12, S15].
How to enable an incremental migration of Pattern Language-based Formalism - to facilitate a piecemeal [S6,
legacy architecture by means of reusable migration of architecture models. S14]

decision models?
How to effectively manage evolution at Evolution Patterns and Rules - to model, analyse and execute [S20,
different architectural abstractions? architectural transformations at different abstraction levels. S22]

Adaptation Strategies and Policies
How to provide mechanisms for architecture Strategies for Self-adaptation - supported with stylised [S3,
to adapt at run time to accommodate varying architectural design models for automatically monitoring system S4]
resources, system errors, and changing requirements behaviour falling outside of acceptable ranges, then a high-level
requirements? repair strategy is selected.

How to utilise reusable aspects to develop Reusable Adaptation Aspects - to reusable aspects [S28]
self-adaptive architectures? and policies to develop self-adaptive architectures.

Composable Adaptation Planning - that provides a
How to efficiently construct system global systematic coordination mechanism to achieve effective and
adaptation behaviour according to the correct composition. It also allows prototyping, testing, [S18]
dynamic adaptation requirements? evaluation and injection of new adaptation behaviours for

component-based adaptable architectures.
How to specifying and enact architectural Knowledge-Based Adaptation Management - for reasoning [S25,
adaptation policies that drive self-adaptive behaviour? and decision-making about the timing and nature of specific [S26,

adaptations grounded on knowledge-based adaptation policies. S30]

Table 3.4: Methods and Techniques to Enable Reuse knowledge for Evolution and Adaptation.

evolution is based on eight distinct comparison attributes CA1-CA6, CA11, CA12 from the full list

(the remaining ones will be covered in the next section). CA 1: What are the identified research trends

for reuse in architecture-based evolution and adaptation?

Objective: The aim is to identify available solutions that support reuse-driven knowledge for

ACSE. In addition, an overview of research builds the foundation for a comparative analysis of

individual methodologies as discussed below and mapped out later in Figure 3.5.

1. Evolution-off-the-Shelf - we observed a trend following evolution styles for structural evolu-

tion [S1, S11, S13] in component-based architectures and evolution planning [S1, S11] based

on time, cost and risk of changes to define alternative evolution strategies. An interesting

observation is a recent emergence of evolution styles [S8] that exploit architecture knowledge

56

as an asset to drive evolution-off-the-shelf [S13]. In Figure 3.5, our comparison suggests

that evolution style-based approaches only focus on corrective and perfective type changes

[Williams 2010]. We could not find any evidence to support adaptive or preventive type

evolution.

2. Pattern and Language-based Formalisms - pattern-based solutions address the co-evolution of

business processes [S29] and requirements [S2] along with their underlying architecture models.

Adaptation [S19] and reconfiguration patterns [S16] support dynamic adaptation as well.

Pattern language-based solutions aims at building a system-of-patterns to support migration

[S6], integration [S12, S15] and evolution [S14] of component-based architectures. Based on

the comparison map in Figure 3.5, we can conclude that pattern-based techniques enable

corrective, adaptive and perfective type changes, but do not address preventive change.

1. Reuse Knowledge for Self-adaptation and Self-repair - in particular self-adaptive and self-repair

techniques reflect the recent emphasis on autonomic computing and growing demands for

high-availability architectures. Reuse-driven self-adaptation enables dynamic evolution re-

flected as reusable adaptation strategies for adaptive architectures [S3, S25]. In addition,

knowledge-based adaptation policies [S4, S26, S30] enhance self-organisation and repair of

dynamic adaptive architectures. Self-adaptation strategies are the key to supporting dy-

namic and high-availability architectures. Unlike styles and patterns, reusable adaptation

strategies focus on run-time reuse of adaptation expertise. Moreover, self-repair [S4, S26]

policies promise to tackle preventive type changes.

CA 2: What types of architectural changes are supported to achieve evolution reuse?

Objectives: The aim is to investigate the type of change support offered by existing ACSE

solutions: corrective, perfective, adaptive and preventive changes. This change typology is based

on the ISO/IEC 14764 standard and architecture change characterisation in [Williams 2010].

Style-driven approaches focus on corrective and perfective changes (also reported as updative

[S23], restructurive [S21], transformative [S5] and migrative [S6]). Pattern-based solutions support

corrective [S27], perfective [S12, S15, S6, S14] and adaptive change support (also called reconfig-

urative [S16, S19]). Adaptation strategies and policies, as the name indicates; primarily focus on

runtime adaptive [S3, S4, S28] changes.

57

– represents an attribute not discussed in the reviewed study

++ represents an implicit discussion of the attribute, the remaining is all explicit in literature

Application of Research Trends Type of Change Time of Change Means of Change Evolution Formalism Architecture Description Tool Support Evaluation Method
AERK CA1 CA2 CA3 CA4 CA5 CA6 CA11 CA12

Evolution Style
Evolution Paths Evolution Plans Corrective, Design-time Change Operations, QVT-based Acme ADL, AEvol Case Study

[S1, S11] Perfective Model Transformation++ Model Evolution UML 2.0++
Evolution Shelf Evolution Styles Corrective++ , Design-time Model QVT-based Acme ADL, – Case Study

[S13] Perfective Transformation Model Evolution++ UML 2.0++
Update Styles Updating Styles [S11], Corrective++ , Design-time Model Graph ADL++, AGG [S11] Case Study

[S21, S23] Architecture Style [S10] Perfective Transformation Transformation Rules++ UML 2.0 USE[S10]
AK-driven Corrective++ , Model QVT-based

Evolution Styles AKdES Perfective Design-time Transformation Model Evolution ATRIUM Meta-model ATRIUM Case Study
[S8]

Style-based Style-based evolution Corrective++ , Model Graph Transformation UML Profile for SOA Poseidon,
Transformations and refinement Perfective Design-time Transformation Rules Graph Model GTXL Case Study

[S5]

Change Patterns
Model Requirements [S2], Adaptive, Model UML 2.0 [S2], VIATRA[S2] Industrial

Co-evolution Business Process [S29] Corrective Design-time Transformation – Graph Model [S15] N/A [S15] Validation [S2]
[S2, S29] Case Study [S2]

Adaptation Adaptation Adaptive, Run-time Reconfiguration State Transition XTEAM, xADL, REPLUSSE [S6], Case Study
Patterns [S16, S19] State-machines Perfective Operations++ UML 2.0 SASSY [S9]
Pattern-to-Pattern Pattern-based Evolution Corrective Design-time Jackson’s Framework Context Diagram – Case Study

Evolution and Integration Perfective++ [S27]
Pattern Language- Pattern Migration [S6] Corrective Change – [6], Model-driven IDL [6], UML 2.0, – [6], MDSD Tool Migration of
based Formalism Integration [S12, S15] Perfective Design-time Operations++ Development [S12, S15] XMI [S12, S15] Chain [S12, S15] Archival System [S6],
[S6, S12, S15, S14] Evolution [S14] Adaptive RADM [S14] – [S14] ArchPad [S14] Case Study [S14]
Evolution Patterns SAEV [S20], Corrective – [S6, S14] SAEV, ECA [S20] ADL [20] – [S20]

and Rules TranSAT [S22] Perfective Design-time Model Transformation AOSD [S22] AgroUML [S22] SafArchie [S22] Case Study
[S20, S22] [S12, S15]

Adaptation Strategies and Policies
Strategies for Rainbow Adaptive,

Self-adaptation and Framework [S3], Perfective Run-time Adaptation operators [S3] – ADL [S3]++ Rainbow, Case study
and Self-repair Style-based Corrective++ Repair Strategies [S4] ACME [S4] Stitch Language [S3]

[S3, S4] Adaptation [S4]
Reusable and Aspect-orinted Aspect generation and

Composable Adaptation Architecture [S28] Adaptive, Run-time weaving [S28]++ CaesarJ AO-Programming – [S28], – Case study
Aspects Composable Adaptation Corrective++ Composable Language [S28], Component Architecture

[S28, S18] Palnning [S18] Adaptation Plans [S18] – [S18] Model [S18]
Adaptation Policies Knowledge-based Adaptive, Knowledge-based Architectural Adaptation xADL KBAAM Case study

for Self-adaptive Adaptation Corrective++ Run-time Adaptation Policies Manager
Behaviour [S25, S26, S30] Management

Table 3.5: A Comparison Summary for Research State-of-the-Art on Application of AERK.

58

Corrective Perfective Adaptive Preventive

ES

CP

AS

Reuse@RuntimeReuse@Designtime

S1, S11,
S13, S21,
S23, S8

S2, S29,
S27, S12,
S15, S20

S16, S19,
S27, S14,
S20, S22

S3, S28,
S18, S30

S3, S4,
S28, S18,
S26, S25

S4

S5, S21,
S23, S8

X

X

XX
S1, S5,

S11, S13,
S21, S23,

S8

S16, S19

S2, S29,
S27, S12,
S15, S20,
S27, S14,

S22

X
S3, S4,

S28, S18,
S26, S25,

S30

ES = Evolution Styles
CP = Change Patterns
AS = Adaptation Strategies

Time Constraints of Change Types of Changes

S6, S16,
S19,

X

Figure 3.5: A Comparison Map of Research Trends - based on Time and Types of Changes.

CA 3: How do time aspects affect change implementation during architecture evolution?

Objectives: The aim is to analyse the temporal aspects [Buckley 2005] in terms of the time (or

stage) associated to architecture evolution. The existing evidence suggests:

• Reuse@Runtime enables application of reuse knowledge at run-time to achieve dynamic

adaptation. Reconfiguration patterns reflect reusable strategies as a consequence of growing

demands for autonomic and self-adaptive architectures for run-time evolution [S2, S4, S25,

S26, S27]. We could not find any evidence of style-based approaches that facilitate runtime

reuse.

• Reuse@Design-time enables application of reuse knowledge at design-time to achieve evo-

lution. Style-driven approaches [S1, S13, S8] are heavily oriented towards design-time evo-

lution. In contrast, pattern-driven reuse is aimed primarily at design-time changes [S2, S29,

S27] but also support run-time reconfigurations [S16, S19].

CA 4: What are the existing means of architectural change to achieve evolution reuse?

Objectives: The aim is to study and compare the change implementation mechanisms and to

analyse if there exist any recurring themes among them. We only present the predominant means

of change as (at least indicated in five or more studies) as individual methods and techniques are

already summarised in Table 3.5.

59

Evolution operators as the most utilised means of change that could be further classified as

change [S1, S11, S20, S22, S27], adaptation [S19] and reconfiguration operators [S16]. Model transfor-

mation enables design-time evolution as discussed in [S1, S13, S21, S23, S5, S2, S29]. Furthermore,

adaptation plans exploit repair strategies and aspect weaving mechanism [S4, S18, S26, S28, S30] for

run-time adaptation.

CA 5: What types of formal methodologies are exploited to support ACSE?

Objectives: The aim is to analyse the extent to which formal techniques facilitate the modelling,

analysing and execution of reuse-driven evolution and adaptation. We only present predominant

formal methods (at least indicated in three or more studies).

We observed an overwhelming bias towards model-based architecture evolution that is pri-

marily achieved through model transformation with QVT [S1, S11, S13] and also graph-based spec-

ifications [S11, S10, S5, S12, S15]. This observation is also reported in [Jamshidi 2013b]. The only

exceptions are adaptation patterns [S16, S19, S12, S27] that exploit state-transition and pattern-to-

pattern integration using Jacksons framework for architecture evolution.

CA 6: What are the notations used for architectural descriptions in evolving architecture models?

Objectives: The aim is to identify the modelling notation used to support architecture evolution.

We primarily focus on investigating the role of architecture descriptions in enabling and enhancing

architecture evolution (at least three studies).

Three commonly used architectural description notation are UML 2.0 [S11, S13, S23, S2, S19,

S12], Architecture Description Languages (ADLs) [S11, S13, S21, S16, S20, S3, S25, S26] and UML

Profiles [S5, S22, S18]. The primary motive to use ADLs or UML is the availability of extensive

research literature and tool support to specify architecture models with model-based verification

and transformation to support evolution. Most notable ADLs are ACME and xADL.

CA 11: What is the available tool support to enable or enhance reuse in architectural evolution and

adaptation?

Objectives: The aim is to analyse the role of automation and tool support in enabling the

architect to model, analyse and execute reuse-driven ACSE.

Tool support is significant to assist the architects in decision making and automating complex

tasks, especially where there is a need to model and choose among alternative evolution paths [S1,

S11]. In the reviewed studies, tool support is generally provided in terms of research prototypes.

Automation allows an architect to model [S1, S21], analyse and execute generic, reusable strategies

for evolution [S2, S1, S21]. However, there is a mandatory user intervention through appropriate

parametrisation and customisation of evolution process to accommodate the human perspective

60

before and after evolution [S6, S9, S11, S12]. Some practical issues and lessons learned regarding

tool support for architecture evolution reuse has been reported in [Barnes 2013].

CA 12: What is the context of evaluation methods to validate research hypotheses or results?

Objectives: The aim is to analyse the context of evaluation, where evaluation context defines

the research environment in which the results are evaluated.

The comparative analysis suggest that validation of the proposed solutions or generated results

are heavily based on surveys, controlled experimentation with case studies [S1, S21, S8] or evaluation

in an industrial context [S2, S6, S14]. It is evident that solutions are heavily oriented towards case-

study based evaluation, usually in a lab-experimentation context. The only exceptions are [S2, S6,

S14] that focus on co-evolution of requirements and architectures evaluated in industrial settings.

3.6 Acquisition of Architecture Evolution Reuse Knowledge

In order to complement the methods and techniques that support application of reuse knowledge

and expertise to guide ACSE (SR-Q2 in Section 3.5), we now investigate the discovery of evolution-

centric reuse knowledge to answer SR-Q3, i.e., What empirical approaches are employed to discover

evolution reuse knowledge? (in Section 3.6.1). We also compare these methods and techniques to

analyse the impact of research for reuse knowledge discovery (in Section 3.6.2).

3.6.1 Methods and Techniques for Acquisition of Reuse Knowledge

We identified change pattern discovery [S17], evolution and maintenance prediction [S9, S10] and archi-

tecture configuration analysis [S7] as the three existing means to discover knowledge.

• Change Pattern Discovery techniques focus on investigating evolution histories for an experi-

mental identification of recurring change sequences as potential change patterns.

• Evolution and Maintenance Prediction methods focus on maintenance profiles [S9] and scenario-

based [S10] prediction of maintenance efforts to enhance or enable architecture evolution.

• Architecture Configuration Analysis is centred on an architectural system model that tightly

integrates architectural concepts with concepts from configuration management [S7].

These solutions primarily focus on the post-mortem analysis of architecture evolution histories

to discover evolution reuse knowledge. In Table 3.6, we summarise the problem-solution map-

ping to highlight research on knowledge discovery. We can observe a relative lack of focus on

61

establishing and exploiting experimental foundation for a continuous and incremental acquisition

of reuse knowledge.

Research Problem Solutions - Knowledge Discovery Techniques Studies

Change Pattern Discovery
How to empirically discover reusable Evolution History Analysis - post-mortem analysis of architecture [S17]
change operators and patterns evolution logs and version histories to identify change patterns.

Maintenance and Evolution Prediction
Maintenance Profiling - the architecture is evaluated using so-called
scenario scripting and the expected maintenance effort for each change [S9]

How to predict efforts of architecture scenario is evaluated for perfective and adaptive changes.
maintenance and evolution? Scenario-based Change Prediction - of complex changes during

initial analysis of existing architecture, and how and to what extent the [S10]
process to elicit and assess the impact of such changes might be improved.

Configuration Analysis
Revision History Mining - captures evolution and variability to [S7]

How to capture and relate changes represent cross-cutting relationships among evolving architecture elements.
for architecture configurations?

Table 3.6: A Summary of Methods and Techniques to Support Reuse knowledge Discovery.

We have identified only a relatively limited number of studies (4/30 of included studies, i.e.,

13% approximately), not allowing us any stronger judgments. However, we believe that highlight-

ing the existing literature based on a problem-solution mapping helps us to analyse the existing

research and possible future directions as detailed in Table 3.6. In addition, the summarised re-

sults in Table 3.6 allow us to assess methodologies for a collective impact of existing research on

discovery of evolution-centric reuse knowledge.

3.6.2 Comparison of Methods and Techniques for Acquisition of Reuse Knowl-

edge

We provide the comparison of existing techniques in Table 3.7 that enable reuse knowledge dis-

covery based on six comparison attributes CA7 - CA12 from Table 3.2. The comparative analysis

highlights the sources of knowledge, the adoption of empirical approaches and the role of for-

malisms and tool support, type of knowledge discovery along with evaluation methods.

Knowledge Type of Type of Time of Tool Evaluation
Source Analysis Formalism Discovery Support Method

CA7 CA8 CA9 CA10 CA11 CA12

Pattern
Discovery Version Control [17] Architecture Snapshots Version Snapshots HEAT

Evolution and Maintenance Profiles Change Scenario
Maintenance [S9] Evaluation of N/A Design N/A Case

Prediction Change Scenarios [S10] Evolution Time Study
Configuration Revision Histories [S7] Configuration Management N/A Mae

Analysis

Table 3.7: A Summary of Comparison for Research State-of-the-Art on Acquisition of AERK.

62

We now describe the comparison attributes in detail including their objective and concrete

evidence as comparison options used in the cells of Table 3.7.

CA 7: What types of knowledge sources are investigated to discover evolution reuse knowledge?

Objective: In order to discover reuse knowledge, existing knowledge sources need to be con-

sidered. A source knowledge repository maintains historical ACSE data for knowledge discovery.

• Pattern Discovery Techniques exploit version controls [S17]) as centrally managed reposito-

ries of evolution history. Version controls contain fine-grained traces of evolution data-sets

that can be queried and searched to analyse architecture-centric evolution history overtime.

• Evolution and Maintenance Prediction utilise maintenance profiles [S9] that represent a set

of change scenarios for perfective and adaptive maintenance tasks. More specifically, by ex-

ploiting maintenance profile, the architecture is evaluated using so-called scenario scripting

and the expected maintenance effort for each change scenario is assessed. Based on architec-

tural evaluation and maintenance prediction, the required maintenance and evolution effort

for a software system can be estimated.

• Architecture Configuration Analysis investigates architecture revision histories [S7]. Revi-

sion histories contain datasets for architectural configuration analysis, reflecting evolution

and variability of architectures. These are necessary to represent cross-cutting relationships

among evolving architectural elements [S7].

CA 8: What types of analyses are performed on knowledge sources to identify reuse knowledge?

Objective: to analyse the application of knowledge-discovery mechanisms on knowledge sources.

In the context of architecture evolution prediction, version control snapshots [S17] techniques are

employed to discover change patterns.

CA 9: What type of formal methods and techniques are utilised for knowledge discovery?

Objective: is to identify the types of formal methods used for knowledge discovery.

Snapshots of architecture versions are used to discover patterns and possible drifts in architec-

ture from one version to another [S17].

CA 10: Is knowledge discovered at design-time or run-time?

Objective: is to distinguish between the techniques for run-time and/or design-time discovery

reuse knowledge.

In all of the reviewed studies, evolution reuse knowledge discovery is performed as a design-

time activity. We did not find any evidence that highlights maintaining and analysing traces of

63

run-time architectural adaptations.

CA 11: How are knowledge discovery techniques evaluated?

Objective: is to compare the type of evaluation methodologies used to validate the knowledge

discovery techniques.

The evaluation of knowledge acquisition techniques are primarily based on surveys, controlled

experimentation with case studies or evaluation in an industrial context. Existing solutions mainly

use case study-based evaluation, usually in a lab-experimentation context.

CA12: What is the tool support for analysing and discovering reuse knowledge from evolution knowl-

edge sources?

Objective: is to investigate the extent to which the existing research supports automation and

customisation of the knowledge discovery process with support by prototypes and tools.

Tool support is critical, especially where the amount of data or the complexity of the knowl-

edge source is substantial. It is difficult, time consuming and error prone to perform analyses

manually.

3.7 Implications of Systematic Literature Review

In this chapter, we presented the results of a systematic review to analyse the collective cov-

erage and impact of existing research that enable or enhance architecture evolution with reuse

knowledge. We classified the existing work (Section 3.4) and provided a comparative analysis for

methods and technique enabling application (Section 3.5) and acquisition (Section 3.6) of reuse

knowledge to guide architecture evolution. We now present a summary of research progress and

principle findings to highlight trends and possible future research - also formulating our solution

in Chapter 4. A yearly distribution of reviewed studies (research progression to-date) and asso-

ciated research trends are presented in Figure 3.6. The year 1999 was chosen as the preliminary

search found no earlier results related to any of the research questions.

3.7.1 Research Trends and Future Directions

In the context of software evolution, research on reuse-driven architecture evolution is continu-

ously growing over more than a decade (as observed in the reviewed studies from 1999 to 2012).

As indicated in Figure 3.6, we did not set a lower boundary for the year of publication in the

search process, yet the time-frame of identified studies reflects also the timeframe of emergence

64

cdefdg h
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

1

2

3

4

5 ijkklmnojnpqjplr
stjnplijkklmnruvwxqkywnzk{xlr ijkklmn|yr}wvlm{~�j�kjkywnzkmjklpylr

sw�lvwxqkywnijkklmnr
stjnpliml�y}kywn

�lrljm}t �mln�r wvlm ktl {ljmr
~�j�kjkywnijkklmnr uvwxqkywnztlx�

Figure 3.6: Temporal distribution of the primary studies (1999 - 2012).

and maturation of solutions. The trend curve starts in 1999 with a study on predicting architecture

maintenance and evolution [S9]. Since 2004, an interesting observation (cf. Table 3.4) is a contin-

uous exploitation of the concept ‘evolution styles’ to support planning [S1, S11], operationalising

[S21] and fostering [S13] of reuse knowledge.

A reflection on research trends and possible future directions is presented in Table 3.8 and

Table 3.9 along the aspects of methods and techniques to enable reuse-driven evolution and discovery of

reuse knowledge and expertise.

Classification Methods and Techniques for to Apply AERK

Solutions Evolution Styles Change Patterns Adaptation Strategies
Evolution Planning Model Co-evolution Self-Adaptation and Repair

Identified [S1, S11, S8] [S2, S29] [S3, S4]
Research Evolution Paths Adaptation Patterns Composable Adaptations
Trends [S21, S23] [S16, S19] [S18, S28]

Evolution Shelf Pattern Languages Adaptation Knowledge
[S13, S21] [S6, S12, S15] [S25, S26, S30]

Reuse@Designtime Reuse@Runtime
Potential for Knowledge-driven Migration Reconfiguration Patterns

Future Integration and Evolution Adaptation Plans and
Dimensions Model Co-evolution Reusable Infrastructure

Table 3.8: Methods and Techniques for Reuse Knowledge Application.

Research Trends in Reuse Knowledge Application

The identified research themes to express reuse knowledge in architecture evolution are primarily

classified as evolution styles, change patterns and adaptation strategies. Evolution styles [S1] are pri-

marily focused on deriving generic evolution plans [S11, S8, S21] to support design-time evolution

of architectures. In contrast, adaptation strategies [S3] aim to support reusable adaptation strate-

65

gies [S18, S28] to support runtime evolution. Only change patterns [S2, S16] could support both

design-time and run-time evolution in architectures. More specifically, pattern languages [S6, S12]

and architecture co-evolution [S2, S29] are the most notable trends for enabling pattern-driven

reusable evolution. Although we only identified 2 studies, adaptation patterns promote reuse in

runtime evolution [S16, S19].

Future Research Dimensions for Reuse Knowledge Application

We can identify the need for future research based on time aspects of evolution reuse that include:

• Reuse@run-time refers to application of reuse to support reuse-driven dynamic adaptation

in software architectures (a.k.a. on-line evolution). In an architectural context for high

availability, there is an obvious need to capitalise on generic and off-the-shelf expertise to

support reuse-driven self-adaptation [S3, S4, S18, S25]. The IBM autonomic framework

[Ganek 2003] - Monitor-Analyse-Plan-Execute (MAPE) loop - embodies the topology, policy and

problem determination knowledge to derive configuration plans and to enforce adaptation poli-

cies to monitor and execute software adaptations. In contrast to studies [S4, S25, S30], we

argue that augmenting the conventional MAPE loop with explicit change reuse knowledge

can systematically address frequent adaptation tasks. The existing solutions either allow

customisation of reusable infrastructure [S3], self-repair [S4] or adaptation aspects [S28] to

existing software. However, they lack support for evolution reuse to guide dynamic adapta-

tions. We conclude that when addressing recurring evolution, the potential lies with fostering

and reusing off-the-shelf dynamic adaptations to enable evolution reuse at runtime.

• Reuse@design-time refers to application of reuse to support generic and reusable evolution

in software architectures (a.k.a. off-line evolution). Existing research clearly focuses on

styles and patterns for the reuse of generic evolution plans, change operationalisation and

model-based architecture co-evolution. With the REVOLVE framework, our review suggests

the need to augment styles [S1, S11, S13, S21] and pattern-driven solutions [S2, S29] with

repository mining techniques [S17] to discover reusable evolution strategies.

Research Trends in Reuse Knowledge Acquisition

In contrast to reuse knowledge application, we can observe a clear lack of research on knowledge

discovery techniques (only 4 studies) despite an acknowledged need. The primary themes for

66

evolution-centric knowledge discovery represent pattern discovery, evolution prediction and architec-

ture configuration analysis. Change pattern discovery aims at investigating version control [S17]

systems for post-mortem analysis of evolution histories. Frequent change instances from evolu-

tion histories are identified and represented as patterns. Architecture-based prediction of software

evolution aims to exploit scenario-based analysis to estimate the efforts of software evolution [S9,

S10]. Configuration analysis techniques aim to investigate the evolution-centric dependencies for

software architectures [S7].

Classification Methods and Techniques for Acquisition of AERK

Solutions Pattern Discovery Evolution Prediction Configuration Analysis
Identified N/A Evolution Scenario Change Configuration
Research Analysis [S10] Analysis [S7]

Trends Evolution Paths Change Version Maintenance Profile
[S21, S23] Mining [17] Analysis [S9]

Potential for Evolution Mining
Future Analysing Evolution-centric Couplings

Dimensions Evolution Dependency Analysis

Table 3.9: Methods and Techniques for Reuse Knowledge Acquisition.

Future Research Dimensions for Reuse Knowledge Acquisition

The comparative analysis for knowledge discovery techniques suggest an investigation of evolution-

centric dependencies. In particular, we propose Evolution Mining that aims at analysing, discovering

and sharing explicit knowledge to be reused to anticipate and guide architecture change manage-

ment. In the reviewed studies, there is little evidence of architecture change mining. Our review

suggests the needs for empirically derived evolution plans and also the need to analyse evolution

dependencies. Such dependency analysis is significant to identify the commutative and dependent

changes in order to investigate parallelisation of evolution operations.

The classification framework provides a holistic view of different evolution reuse aspects to be

considered in the context of the REVOLVE framework (Figure 3.2). The trends in Table 3.8 and

Table 3.9 reiterate the fact that among prominent concerns to tackle are time aspects of evolution.

It reflects on the role of formalisms and tool support that can be exploited to leverage conventional

data mining techniques for post-mortem analysis of architecture evolution histories. We also iden-

tified the needs for a tool chain that could automate the REVOLVE framework with appropriate

and minimal user intervention only.

67

3.8 Summary of Chapter

This chapter as a systematic review complements the concepts introduced in earlier chapters in the

context of architecture evolution reuse knowledge (AERK), i.e., knowledge specific to reuse in the

evolution of software architecture. Based on a qualitative selection of 30 studies, we investigated

the coverage and concerns of reuse knowledge in architecture-centric software evolution (ACSE).

We define what exactly constitutes reuse knowledge in the context of architecture evolution

based on the review. We derived a taxonomy that classifies existing and future approaches for

reuse-driven evolution that reflects a continuous progression of research over the last decade.

The reported results provide us the foundation to develop the solution framework in Chapter

4. Based on the proposed conceptual framework, we distinguish between research efforts on

architecture change discovery and mining (4/30 studies, i.e., 13% of the reviewed literature) and

architecture change execution (26/30, 87%). A relative lack of focus on empirical identification of

reuse knowledge suggests the need of solutions with architecture change mining as a complementary

and integrated phase for architecture change execution.

68

List of Studies Selected for Systematic Review

• [S1] J. M. Barnes, D. Garlan and B. Schmerl. Evolution Styles: Foundations and Models for Software Architecture

Evolution. In Journal of Software and Systems Modeling, 2012.

• [S2] K. Yskout, R. Scandariato, W. Joosen. Change Patterns: Co-evolving Requirements and Architecture. In Journal of

Software and Systems Modeling, 2012.

• [S3] D. Garlan, S. Cheng, A. Huang, B. Schmerl, P. Steenkiste. Rainbow: Architecture-Based Self-Adaptation with

Reusable Infrastructure. In IEEE Computer, 2004.

• [S4] D. Garlan, S.W. Cheng, B. Schmerl. Increasing System Dependability through Architecture-Based Self-Repair. In

Architecting Dependable Systems, 2008.

• [S5] L. Baresi, R. Heckel, S. Thöne and D. Varró. Style-based Modeling and Refinement of Service-oriented Architectures.

In Journal of Software and Systems Modeling, 2006.

• [S6] M. Goedicke and U. Zdun. Piecemeal Legacy Migrating with an Architectural Pattern Language. In Journal of

Software Maintenance: Research and Practice, 2002.

• [S7] A. Hoek, M. Rakic, R. Roshandel and N. Medvidovic. Taming Architectural Evolution. In Joint 8th European

Software Engineering Conference and 9th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2001.

• [S8] C. E. Cuesta, E. Navarro, D. E. Perry, C. Roda. Evolution Styles: Using Architectural Knowledge as an Evolution

Driver. In Journal of Software: Evolution and Process, 2012.

• [S9] P. Bengtsson and Jan Bosch. Architecture Level Prediction of Software Maintenance. In 3rd European Conference

on Software Maintenance and Reengineering, 1999.

• [S10] N. Lassing, D. Rijsenbrij, H. Vliet. How Well can We Predict Changes at Architecture Design Time. In Journal of

Systems and Software, 2003.

• [S11] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku. Evolution Styles: Foundations and Tool Support for Software

Architecture Evolution. In Joint Working IEEE/IFIP Conference on Software Architecture 2009 & European Conference

on Software Architecture, 2009.

• [S12] C. Hentrich and U. Zdun. Patterns for Process-Oriented Integration in Service-Oriented Architectures. In 11th

European Conference on Pattern Languages of Programs, 2006.

• [S13] O. L. Goaer. D. Tamzalit, M. Oussalah, A. D. Seriai. Evolution Shelf: Reusing Evolution Expertise within

Component-Based Software Architectures. In IEEE International Computer Software and Applications Conference, 2008.

• [S14] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann. Combining Pattern Languages and Reusable Architectural

Decision Models into a Comprehensive and Comprehensible Design Method. In 7th Working IEEE/IFIP Conference on

Software Architecture, 2008.

• [S15] U. Zdun and S. Dustdar. Model-Driven and Pattern-Based Integration of Process-Driven SOA Models. In Interna-

tional Journal Business Process Integration and Management, 2007.

69

• [S16] H. Gomaa, M. Hussein. Software Reconfiguration Patterns for Dynamic Evolution of Software Architectures. In 4th

Working IEEE/IFIP Conference on Software Architecture, 2004.

• [S17] X. Dong, M. W. Godfrey. Identifying Architectural Change Patterns in Object-Oriented Systems. In 16th IEEE

International Conference on Program Comprehension, 2008.

• [S18] N. Gui and V. De. Florio. Towards Meta-Adaptation Support with Reusable and Composable Adaptation Components.

In IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems, 2012.

• [S19] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D. A. Menascé. Software Adaptation Patterns for Service-oriented

Architectures. In ACM Symposium on Applied Computing, 2010.

• [S20] N. Sadou, D. Tamzalit, M. Oussalah. How to Manage Uniformly Software Architecture at Different Abstraction

Levels. In 24th International Conference on Conceptual Modeling, 2005.

• [S21] D. Tamzalit, T. Mens. Guiding Architectural Restructuring through Architectural Styles. In 17th IEEE International

Conference and Workshops on Engineering of Computer-Based Systems, 2010.

• [S22] O. Barais, L. Duchien, A. Le Meu. A Framework to Specify Incremental Software Architecture Transformations. In

31st EUROMICRO Conference on Software Engineering and Advanced Applications, 2005.

• [S23] D. Tamzalit, M. Oussalah, O. L. Goaer, A. d. Seriai. Updating Software Architectures: A Style-based Approach.

In International Conference on Software Engineering Research and Practice, 2006.

• [S24] Le. Goaer, M. Oussalah, D. Tamzalit. Reusing Evolution Practices onto Object-Oriented Designs: An Experiment

with Evolution Styles. In 19th International Conference on Software Engineering and Data Engineering, 2010.

• [S25] J. C. Georgas R. N. Taylor. Towards a Knowledge-Based Approach to Architectural Adaptation Management. In 1st

ACM SIGSOFT Workshop on Self-managed Systems, 2004.

• [S26] J. C. Georgas , A. v.d. Hoek , R. N. Taylor. Architectural Runtime Configuration Management in Support of

Dependable Self-Adaptive Software. In Workshop on Architecting Dependable Systems, 2005.

• [S27] I. Côté , M. Heisel , I. Wentzlaff. Pattern-Based Evolution of Software Architectures. In European Conference on

Software Architecture, 2007.

• [S28] E. Truyen and W. Joosen. Towards an Aspect-oriented Architecture for Self-adaptive Frameworks. In Workshop on

Aspects, Components, and Patterns for Infrastructure Software, 2008.

• [S29] P. Jamshidi, C. Pahl. Business Process and Software Architecture Model Co-evolution Patterns. In Workshop on

Modeling in Software Engineering, 2012.

• [S30] J. C. Georgas R. N. Taylor. An Architectural Style Perspective on Dynamic Robotic Architectures. In IEEE 2nd

International Workshop on Software Development and Integration in Robotics, 2007.

70

Chapter 4
PatEvol - A Framework for Integration

of Architecture Change Mining and

Change Execution Processes

Contents

4.1 Chapter Overview . 71

4.2 PatEvol - Pattern-driven Architecture Evolution Framework 72

4.2.1 Elements of the PatEvol Framework . 73

4.3 Processes and Activities in the PatEvol Framework 74

4.3.1 Process I - Architecture Change Mining . 74

4.3.2 Process II - Architecture Change Execution . 78

4.3.3 Types of Collection in the Framework . 79

4.4 A Summary of Comparison for Research on Architecture Evolution Reuse 81

4.1 Chapter Overview

The classification and comparison of architecture evolution reuse knowledge suggests the needs

for an incremental process to continuously gather and reuse evolution-centric knowledge (cf.

Chapter 3). Moreover, we have organised these research activities as a conceptual model RE-

VOLVE that reflects a theoretical reference to the body of existing research that enables reuse of

71

architecture evolution. In order combine different activities for reuse knowledge discovery and

its application we need to provide a concrete framework that comprises of a set of processes and

activities to enable acquisition and application of architecture evolution reuse knowledge. RE-

VOLVE is a conceptual reference to the research state-of-the-art on evolution reuse (cf. Chapter 3),

while the PatEvol framework in this chapter represents a set of concrete processes and activities to

support the acquisition and application of reuse knowledge. In order to develop this framework,

we propose that reuse knowledge-driven evolution in software architectures can be achieved by

following a two-step process - a solution that is lacking in the existing research.

• Step 1 - includes a continuous acquisition of reuse knowledge.

• Step 2 - relies on application of discovered knowledge to facilitate the execution of frequent

architecture changes.

Recent research has demonstrated that reuse of recurring adaptation strategies and policies

saves about 40% of the effort for architecture evolution compared to an ad-hoc and once-off im-

plementation of adaptive changes [Cámara 2013]. In this chapter, we present the PatEvol frame-

work that provides an integration of architecture change mining and change execution processes

to facilitate evolution reuse. We also explain the underlying processes and activities (framework

elements) of the PatEvol framework to enable acquisition and application of reuse knowledge. By

process integration, we mean that change mining process enables a continuous acquisition of evolution-

centric knowledge by analysing architecture evolution histories, and then discovered knowledge can then be

reused to support architecture change execution. Knowledge acquisition enables a continuous and

incremental discovery of an explicit evolution-centric knowledge from established knowledge

sources. Knowledge application refers to utilising the discovered knowledge to enable reuse in

architecture evolution as presented in Figure 4.1.

4.2 PatEvol - Pattern-driven Architecture Evolution Framework

We propose that evolution-centric reuse-knowledge acquisition requires a continuous investiga-

tion of the sources of evolution knowledge to identify reusable evolution expertise [Gall 1997,

Zimmermann 2005]. In order to achieve this, we propose architecture change mining as a comple-

mentary and integrated phase to architecture change execution, as illustrated in Figure 4.2 - Pat-

Evol framework. More specifically, change mining as a sub-domain of data mining [Bengtsson 1999,

Lassing 2003] and more specifically software repository mining [Gîrba 2006, Kagdi 2007] entails the

72

1. Knowledge
 Source

Knowledge
Acquisition

Knowledge
Application

Traces of Evolution History

reuse Source
Architecture

Evolved
Architecture2. Change Mining and Change Execution

3 Reuse Knowledge
Collection

C
1

C
2

C
3

C
4

<<Mining>> <<Execution>>

Figure 4.1: Overview of the Architecture Change Mining and Change Execution Processes.

(automated) extraction of hidden and predictive information from large data sets regarded as soft-

ware evolution histories [Zimmermann 2005, Kagdi 2007]. In contrast, change execution as a sub-

domain of software evolution [Lehman 2003] and more specifically architecture-driven change man-

agement [Williams 2010, Medvidovic 1999] refers to a systematic mapping the problem-solution

views and the application of the discovered solutions to address recurring evolution problems

[Garlan 2009, Le Goaer 2008].

4.2.1 Elements of the PatEvol Framework

In the following, we provide a systematic presentation of the main building blocks of the frame-

work, so called concrete elements of the PatEvol framework. Each of the element is presented

along with its role in the framework as summarised in Table 4.1 and illustrated in Figure 4.2. We

propose PatEvol, as an overall framework that outlines a set of process and activities to enable dis-

covering and reusing evolution-centric knowledge. The processes in the framework define what

needs to be done and the activities in a process demonstrate how it is done [Fayad 1997].

Framework Processes Process Activities Repositories

Architecture Classification of Change Operations and Dependencies Architecture
Change Discovery of Architecture Change Patterns Change
Mining Composition of Change Patterns Language Logs

Architecture Specification of Architecture Changes Change
Change Selection of Architecture Change Patterns Patterns

Execution Pattern-based Evolution of Architecture Language

Table 4.1: Summary of the Processes, Activities and Repositories in the PatEvol Framework.

• Processes in the Framework: The processes (indicated as a white square - Figure 4.2) repre-

73

sent two distinct phases of the framework as architecture-centric change mining and archi-

tecture change execution processes as outlined in Table 4.1.

• Activities inside Processes: Each process comprises of a set of underlying activities (indi-

cated as blue rectangle - Figure 4.2) that highlight the distinct phases for knowledge dis-

covery and its application in evolution. Each of the change mining and change execution

processes are comprised of three activities listed in Table 4.1.

• Role of Repositories in the Framework: In addition to the core processes and activi-

ties, the role of the repositories (a.k.a. knowledge collections) to contain evolution-centric

knowledge. More specifically, the knowledge source or architecture change logs [Yu 2009,

Wermelinger 2011, ROS-Distributions 2010] represent a central repository that contains fine-

grained instances of architecture change and provides a foundation for change mining. We

propose a pattern language as a collection of inter-connected change patterns with a for-

malised vocabulary and grammar [Alexander 1999, Goedicke 2002] with patterns that build

on each other to provide a solution to recurring evolution problems.

4.3 Processes and Activities in the PatEvol Framework

In this section, a discussion of the framework processes and activities allow us to highlight the

thesis contribution, processes and activities are detailed in dedicated chapters of the thesis.

4.3.1 Process I - Architecture Change Mining

The role of change mining is fundamental in enabling a systematic investigation into the history of

sequential architecture changes to analyse recurring change operationalisation that represent the

potential change patterns. Our objective of change mining is identical to that of software evolution

analysis [Zimmermann 2005, Lassing 2003] that exploits the history of a software system to anal-

yse its present state and to predict its future [Zimmermann 2003]. However, architecture change

mining is aimed at employing a set of (automated) techniques for extraction of hidden predictive

information in terms of investigating architecture changes instances from change logs as evolution

history that have been aggregating over time [Kagdi 2007]. In order to obtain an accurate insight

into history of architecture evolution, change mining process relies on the availability of an explicit

knowledge source that can be systematically investigated to extract evolution-centric knowledge.

74

Architecture Change Mining Architecture Change Execution

Classification of Change
Operations and Dependencies

Discovery of Architecture Change
Patterns

Composition of Change Patterns
Language

Pattern-based Evolution of
Architectures

Selection of Architecture Change
Patterns

Specification of Architecture
Changes

Architecture Change Logs

Change Patterns Language

Tool Support

Activity

Process

Activity
Transition

Process
Transition

Modeling Architecture
Change Instances

Formalising Pattern
Language Grammar

Capturing Change
Instances in Logs

Pattern Sequencing
in the Language

Repository

Figure 4.2: Overview of the PatEvol Framework.

Therefore, we exploit architecture change logs that provide us with fine-grained details about ar-

chitecture change instances that vary from a simple change like adding a port to a component

to a complex change like integrating, replacing or decomposing the components in existing ar-

chitecture. In a collaborative environment for architectural development and evolution, a change

log represents a source of evolution knowledge to facilitate with ‘post-mortem’ analysis for archi-

tectural change instances. A change log in the PatEvol framework consists of individual change

instances from architecture evolution case studies [EBPPCaseStudy , 3-in-1 Phone System 1999].

Automation and User Intervention in Change Mining Process - Considering architecture

change analysis in [Barnes 2013], in addition to automation; user intervention is also required -

human-centric feedback and supervision - for the change mining process. More specifically, dur-

ing change mining, the complex operational tasks such as change operation analysis and pattern

discovery are semi-automated as some user intervention is also required. The user intervention

is supported with some pattern discovery parameters that enable the customisation of the discov-

ery process. The scalability of pattern-discovery process is supported with a prototype G-Pride

75

(Graph-based Pattern Identification) that enable automation and parametrised user intervention

of pattern discovery process.

Modelling Architecture Change Instances from Logs

In order to systematically investigate change logs, we need to formalise individual change in-

stances captured in the log that also refers to pre-processing of change logs data for change

mining. The need for a formal and structured representation is driven by the fact that raw rep-

resentation of log data is complex (mainly due to dependencies and sequences of changes), and

therefore its analysis are time consuming and error prone. Based on graph-theoretic details in

Chapter 2, we exploit graph-based notation to formalise change instances in the log as a graph

[Ehrig 2004]. The nodes and edges of change log graph represent change operations and their

sequencing respectively on architecture elements. Graph-based representation of the log data is

beneficial for a formal semi-automated and efficient analysis of fine granular change instances

in the logs. In addition, modelling architecture changes as a graph, a significant benefit lies in

utilising the graph matching and sub-graph mining [Jiang 2012] techniques to investigate change

representation and operational dependencies that enables discovery of recurrent change sequences

in the log. The goal of this activity is to formalise the change log data that is represented as an

architecture change log graph detailed in Chapter 5.

In the following we introduce the activities of the framework that are focused on log-based

classification of architecture change operations and operational dependencies. The ultimate outcome of the

change mining process is pattern discovery that provides us with the foundation for the composition

of a change pattern language for evolution in software architectures.

• Activity I - Classification of Change Operations and Dependencies - Once log data is for-

malised as a graph, a more intuitive approach to gain a systematic insight into architectural

changes is to analyse how changes are represented on architecture elements over a period of

time. Here a graph-based formalism provides us with an option to exploit graph-matching

- comparing change instances - to analyse the operational composition and characterisation

of changes [Jiang 2012]. Such an analysis requires details about the composition of architec-

ture changes and the possible operational representation of change instances. The outcome

of this activity is a taxonomical classification of change instances as atomic, composite and

sequential change operations. In addition, a fine-granular change operational classification is

vital to distinguish between commutative and dependent changes in the log detailed in Chap-

76

ter 6. Change dependency analysis helps to analyse the extent to which architectural change

operations are dependent or independent of each other (if architecture change operations could be

parallelised).

• Activity II - Discovery of Architecture Change Patterns - The outcome of Activity I is a tax-

onomical classification of architecture change operationalisation. The frequency of a change

determines if a certain type of change occurs repeatedly over time (as captured in the change

logs). This motivates us to exploit change sequence abstraction to determine frequently oc-

curring changes that represent potential change patterns discovered from change logs. A

change pattern represents a generic and potentially reusable operationalisation that could

be a) identified as a recurrent solution, could be b) specified once and c) instantiated mul-

tiple times to support potential reuse in architecture evolution [Tamzalit 2010, Yskout 2012].

Again, we aim to exploit graph-based formalism and utilise sub-graph mining [Jiang 2012]

as a knowledge discovery technique to discover recurrent change sequences in the log. The

intent and the impact of the discovered change patterns are visualised that helps a pattern

author to specify them in a pattern template. The outcome of the pattern discovery activ-

ity is a collection of discovered patterns from logs that allow us to derive a change pattern

language detailed in Chapter 7.

• Activity III - Composition of Change Patterns Language - The pattern language is formally

composed of a) a classified composition of discovered patterns and their variants (language

Vocabulary) along with a b) set of rules that govern the relations among pattern elements

(language Grammar) to create an c) interconnection-of-patterns (pattern Sequencing in the lan-

guage). The proposed pattern language provides a collection of change patterns that support

reusable solutions to recurring evolution problems. Reuse-knowledge in the proposed pat-

tern language is expressed as a formalised collection of interconnected-patterns detailed in

Chapter 8. Patterns as a generic and solution-specific knowledge to resolve recurring evo-

lution problems could not be invented. Patterns along with their possible variants must

be discovered by analysing the problem space and the solution context. We summarise the

outcome architecture change mining process as:

1. Enabling ‘post-mortem’ analysis of architecture evolution histories to discover opera-

tionalisation and patterns that could be reused to guide change management.

2. Language as a system of pattern allows a mapping of patterns as reusable solutions to

77

recurring architecture evolution problems. The role of a pattern language is central in

promoting patterns to achieve reuse and consistency in evolution of architectures.

4.3.2 Process II - Architecture Change Execution

As a consequence of frequent business and technical change cycles, software systems and ulti-

mately their architecture becomes prone to a continuous maintenance and evolution. This moti-

vates the need to unify the concepts of software repository mining [Gîrba 2006, Zimmermann 2005]

and software evolution [Lehman 2003, Mens 2008] in a way that change mining provides dis-

covered knowledge to complement and guide change execution. The research state-of-the-art

[Breivold 2012] on ACSE lacks such an integrated approach that exploits architectural change

mining to guide architecture change execution process. Such an integrated solution can relieve an

architect of routine evolution tasks with reuse to support a systematic change execution whenever

the needs for architectural evolution arises [Williams 2010]. The needs for taming architectural

changes for their future reuse during evolution is also highlighted in [van der Hoek 2001]. In the

context of change execution in Figure 4.2, language provides a reuse knowledge base for pattern-

driven architecture evolution. During evolution, change instances are captured in the log for

an incremental update of evolution history to establish the loop for knowledge acquisition and

knowledge application.

• Activity I - Specification of Architecture Changes - Change specification allows repre-

senting the changes on a source architecture that leads to its evolution. In this context, a

declarative specification enables an architect to represent the context of architectural change

that contains the a) source architecture, b) any constraints on the architecture model (to pre-

serve specific architecture elements during evolution) and c) architecture elements that need

to be added, removed or modified to achieve architecture evolution. Change specification

allows representing the intent and scope of individual changes explicitly in the source ar-

chitecture model. During change specification an architect may want to specify architectural

constraints to protect the specific architectural elements from consequences of change before

and after evolution. In order to enable evolution, change specification is the first step to

represent a transition of source architecture towards an evolved architecture. We discuss

details of architecture change specification in Chapter 8.

• Activity II - Selection of Architecture Change Patterns - Once architectural changes are

specified, the pattern language provides an interconnected collection of patterns as a problem-

78

solution mapping based on a given context of evolution (from change specification). How-

ever, pattern selection is a complex problem [Kampffmeyer 2007] and in order to query the

language the user must know at least the structural composition of the language as well as

a detailed knowledge about existing patterns in the language. We adopt the design space

analysis [MacLean 1991, MacLean 1995] for a systematic pattern selection from language

collection with guidelines in [Zdun 2007]. Design space analysis is a methodology to ad-

dress design-related problems in Human Computer Interaction (HCI). However, it has been

applied for pattern selection [Zdun 2007] and provides us with a three step selection pro-

cess. For example, following design-space analysis, change specification enables querying

the language using the Question-Option-Criteria (QOC) methodology [MacLean 1991] to re-

trieve the appropriate pattern that provides the potential reuse of change operationalisation

to enable architectural evolution. More specifically, in QOC Question refers to specification

of architecture change, Option represents the available patterns in a given evolution scenario

(provided with change specification), and Criteria represents the consequences of applying

the given pattern - details provided in Chapter 8.

• Activity III - Pattern-based Evolution of Architectures - The retrieved pattern(s) can be

applied and they abstract the operational execution details and provide a generic, reusable

solution to architectural change execution. We present details of pattern-based architecture

evolution in Chapter 8. The outcome of change execution is:

1. A declarative specification of the change request by enabling selection of appropriate

pattern sequences for deriving reusable evolution based on given evolution scenarios.

2. Pattern language provides a method of systematic reuse based on an incremental ap-

plication (by selecting and applying a sequence) of patterns from a collection.

4.3.3 Types of Collection in the Framework

In the PatEvol framework, the role of repositories is central as the collection of knowledge in terms

of extracting and maintaining reusable operationalisation and patterns during change execution.

Collection I - Change Log as a Source of Architecture-centric Evolution Knowledge

In order to ensure an incremental discovery of evolution reuse-knowledge, it is required to capture

and maintain the traces of evolution by means of a transparent and centrally manageable collection

79

of change instances [Kagdi 2007, Zimmermann 2005]. A careful selection is required in terms

of utilising and establishing the collection as an active repository infrastructure that facilitates a

flexible storage and retrieval of architectural changes. In comparison to the version control systems

that focus on capturing (implementation-level) source code changes, change logs trace evolution

when changes (at design-level) are applied to software components and connectors [Robbes 2005].

The survey of versioning systems for software evolution research [Robbes 2005] suggests that the

granularity of information contained in versioning systems is not complete enough to perform

higher quality evolution research. In versioning systems, source code changes are captured using

the source code commits by developers that may impose the following limitations:

1. The time between two commits varies widely - often as much as several hours or days - to

maintain the changes between two source files. What changes happen between two commits

is most often not stored in the versioning system. This results in a coarse-grained and usually

degraded information as far as capturing details of architecture evolution is concerned.

2. The commits are done usually at the developer’s will, therefore several independent changes

(on source files) can be introduced in one single commit, making it hard to distinguish

between the individual changes and maintaining change granularity.

Since the past evolution of a software system is not a primary concern for most developers, it is

not an important requirement when designing versioning systems [Zimmermann 2005, Gall 1997].

However, the details of information stored in a change log can be exploited to capture fine grained

instances of change operations over individual architecture elements. In order to provide an ex-

perimental foundation for evolution analysis, architecture change log provides source of evolu-

tion knowledge that can be extracted with change mining. We discuss the role of change logs

in maintaining a history of architecture evolution and a source repository for architecture change

investigation in Chapter 5.

Collection II - Language as a Collection of Change Patterns

The potential beyond individual patterns is realised as a collection of change patterns that repre-

sent a generic and potentially reusable solution to a set of evolution problems. A language-based

approach [Goedicke 2002] provides a vocabulary and grammar that focuses on the pattern rela-

tionships that build on each other to formalise a generic problem-solution view to enable reusable

evolution. As an integrated solution, in Figure 4.2 we propose change mining to empirically de-

80

rive an explicit reusable knowledge as the pattern language that represents a formalised collection

of change patterns. We discuss a pattern language as a pattern collection in Chapter 8.

4.4 A Comparison Summary of Existing and Proposed Solution

Before conclusions, we now provide a comparison of the overall proposed solution to the most rel-

evant research on architecture evolution reuse. The studies [Barnes 2013, Yskout 2012, Goedicke 2002]

are considered most relevant (based on the systematic review, cf. chapter 3) as they are specifically

focused on pattern-based evolution of architectures. In software architecture community, pattern

oriented software architecture [Buschmann 1999] represents one of the foundational literature on

patterns and pattern languages for architecture design. In contrast to patterns of architectural

design in [Buschmann 1999], our solution is the first attempt towards promoting an empirically

derived pattern language to enable reuse in architectural evolution.

1. Reusable Evolution Plans and Patterns - in [Barnes 2013, Yskout 2012] the research has fo-

cused on exploiting reusable plans and patterns to evolve software architecture. More specif-

ically, [Barnes 2013] highlights a plan-based method to derive various evolution paths for an

architecture that can be reused. Moreover, [Yskout 2012] presents patterns for co-evolution of

the requirements and the architecture. These solution rely on plans and patterns that are

derived based on individual experiences rather than an empirical and continuous discovery.

In contrast [Yskout 2012]our solution is limited to supporting architectural evolution and do

not support co-changes in requirements and their corresponding architecture model. With

our solution illustrated in Figure 4.2, our solution is not limited to pattern-based change

execution, it also supports change mining for pattern discovery.

2. Pattern Language for Architectural Migration - in [Goedicke 2002] the authors propose an

incremental migration of document archival legacy software to a more flexible architecture

using migration patterns. The solution offers a pattern language for migrating C language

implementations to components in an object system. Our solution is not focused on migra-

tion of legacy code to components, instead it supports reuse of architecture evolution. We

propose that change patterns as generic reusable abstractions must be empirically identified

as recurring, specified once, and instantiated multiple times to benefit evolving architectures.

With pattern-based change management, our solution promotes a semi-automated selection

of appropriate patterns with necessary user intervention [Goedicke 2002].

81

Chapter 5
Change Logs as a Source of

Architecture-centric Evolution

Knowledge and Pattern Discovery

Contents

5.1 Chapter Overview . 83

5.2 Change Logs as Source of Evolution Knowledge . 83

5.2.1 Architecture Change Instance vs Architecture Change Operation 84

5.3 Recording Architecture Changes in Logs . 85

5.3.1 A Meta-model for Architecture Change Logs 85

5.3.2 Log-based Representation of Architecture Change Instances 88

5.4 Preserving Evolution History in Change Logs . 92

5.4.1 Maintaining Architecture Change Sessions . 93

5.5 Graph-based Modelling of Architecture Change Log Data 95

5.5.1 Creating Change Log Graph . 95

5.5.2 Creating Architecture Change Session Graph 96

5.5.3 Sequential vs Hierarchical Representation of Log Data 98

5.6 Mapping Log Data to GraphML-based Representation 100

5.7 Chapter Summary . 101

82

5.1 Chapter Overview

Considering the role of collections in the PatEvol framework (Chapter 4), this chapter is focused on

exploiting change logs as a repository infrastructure for maintaining and analysing architectural

changes. The primary intent of this chapter is to define architecture change logs as a source of

evolution-centric knowledge and a repository infrastructure for architecture change mining.

A change log represents ’an explicit source of evolution-centric knowledge that maintains and pro-

vides a sequential collection of architecture change history that has been aggregating over-time’ [Yu 2009,

Lassing 2003]. This chapter focuses on:

• Capturing Architecture Change Instances in the Log - The first step towards architecture evolu-

tion analysis includes capturing the architecture change instances in the log.

• Classifications of Architecture Change Log Data - Once we capture the change instances in the

log, it is vital to distinguish between different types of data in the log. The data in the change

log is classified as change data and auxiliary data.

• Identification of Architecture Change Sessions - The identification of change sessions is vital in

order to create the subsets of change log data. Change sessions in a log allow us to analyse

changes from a different point-of-view (e.g: time, type, and user of change, etc.).

• Creating a Change Log Graph - The final step includes the representation of change log data as

a graph. Based on graph-theoretic details in Chapter 2, we exploit attributed typed graphs

for log data representation.

The outcome of this chapter is a formalised graph-based modelling of architecture change

representation that results in a change log graph. In this chapter, we aim to address RQ 1 (cf.

Chapter 1) that highlight the needs for a modelling notation that supports a formal representation

and analysis of architecture evolution histories.

5.2 Change Logs as Source of Evolution Knowledge

Change logs provide an explicit source of evolution-centric knowledge as a structured collec-

tion of architecture change sequences. These change sequences represent addition, removal

or modification of architecture elements that causes architecture evolution. Therefore, an in-

dividual architecture change represents the most fundamental unit of architecture evolution.

83

Evolution-centric knowledge in the change logs is represented as a sequential history of archi-

tecture changes as presented in Figure 5.1. For example, in Figure 5.1 Source to Target archi-

tecture evolution includes a number of intermediate architectural changes (ACN) expressed as

Source
Evolution
−−−−−→ Target :< AC1, AC2, AC3, . . . , ACN > , where Source

Evolution
−−−−−→ Target represents

the path of evolution as detailed in [Garlan 2009].

Source Architecture Target Architecture

AC
1

AC
2

AC
3

AC
n

Change Instances

X
X X

Architecture Change
Log

Loss of Change-centric
Information

Knowledge Evaporation

Knowledge Absorption

Figure 5.1: Capturing Architectural Change Instances during Evolution.

Once a sequential collection of architectural changes is maintained, we could perform the

post-mortem analysis on the architectural evolution history [Gîrba 2006] to perform fine-grained

history analysis [Bengtsson 1999]. This evolution-centric knowledge is represented in the form

of a taxonomical classification of change operations, operational dependenciesand architecture change pat-

terns. In the context of Figure 5.1, if change instances are not explicitly captured this results in the

loss of change-centric information that we refer to as the evolution-centric knowledge evaporation. In

contrast, capturing each individual architectural change enables maintenance of a fine-granular

representation of architecture evolution history in a repository infrastructure we refer to as knowl-

edge absorption. Such an absorbed knowledge from architecture evolution process or an evolution

path [Garlan 2009] provides us with an experimental foundation to maintain and analyse a his-

torical view of architecture evolution.

5.2.1 Architecture Change Instance vs Architecture Change Operation

In literature, the terminologies a) architecture change instance(s) and b) architecture change op-

eration(s) are often used interchangeably as both refer to architectural changes [Williams 2010,

Tamzalit 2010]. However, for the sake of a technical clarification we must distinguish between the

84

following:

• Architecture Change Instance - is a general reference to an individual change applied to an

architecture model. For example, add an element C of type component refers to an instance

of architectural change.

• Architecture Change Operation - provides operational details for a formal representation of a

change instance. For example, an operational representation of a change instance includes

the name of change operation (Add()) and its parameters representing the architecture el-

ement and its type (C hasType Component). Adding an element C of type component is

operationally expressed as: Add(C ∈ CMP).

5.3 Recording Architecture Changes in Logs

During the change mining process, representation of architecture changes (cf. Figure 5.1) in a

log is fundamental to performing any analysis on change log data. To capture change log data,

first we present a meta-model of the change log. The meta-level information is vital to identify

a structural representation of change log data in Section 5.3.1. In addition, log meta-model also

helps us to determine the structural representation of a change log graph (what defines a node,

what are the edges, etc.). We discuss representation and classification of log data in Section 5.3.2.

5.3.1 A Meta-model for Architecture Change Logs

The meta-model for an architecture change logs is derived based on the representation of changes

in a log as a constrained composition of the change operationalisation on architecture elements

in Figure 5.2. The details of information stored in a change log depend on the granularity of

change itself that may vary from a simple change like adding a port to a component that involves

a single change operation. In contrast, a sequential combination of individual change operations

may result in a more complex change like integrating a new component in existing architecture

that involves multiple change operations and their cascading effect on architecture composition

[Tu 2002, Bengtsson 1999]. A change log meta-model is composed of:

• Entities that represent a core element of log data. An example of a log entity is a Change

Operator that is applied to another entity Architecture Model.

85

• Entity Group that organises a set of related entities into a logical grouping. This grouping

is represented as auxiliary data and change data.

• Entity Relations refer to three types of relations as composition, generalisation, association

among elements of log data.

– Composition type relation - refers to the part-whole relation based on the atomic and

composite entities. More specifically, a composite entity is composed of one or more

atomic entities. For example, in the architecture model in Figure 5.2 the configuration

is a composite entity that is composed of a component(s) that itself is composed of

port(s). Extended details about architectural composition are provided in Chapter 2.

– Generalisation type relation - refers to the generic-specialised relation among two or more

entities in the log model. For example, in Figure 5.2 a change operator is a generalised

concept of the more specific operations (e.g: Add, Remove and Modify).

– Association type relation - refers to a possible association among two or more entities

in the log meta-model. For example, an association relation is expressed as a change

operator is appliedTo architecture model as presented in Figure 5.2.

It is of central importance to provide a mechanism that enables capturing fine-grained change

representation along with flexible mechanism to store and retrieve the change information. In

Figure 5.2, based on the internal structure of change log (entities and their grouping), log data

can be classified as change data and auxiliary data in Figure 5.2. The change data in Figure 5.2

represents the core of evolution-centric information in terms of change operations on the archi-

tecture model and constraints on change operations. These constraints ensure structural integrity

of the architecture model before and after architecture evolution. In addition, the auxiliary data

in Figure 5.2 captures the intent, scope, time and user (person) who applied the change. The

auxiliary data represent User ID, Time Stamp, Change Intent and System ID. We further explain

the classification of change log data in next section after clarifying the log meta-model.

Architecture Model (ARCH)

We borrow the architectural modelling from Chapter 2 with an architecture model consisting of

Con f igurations that are composed of Components and Connectors containing Ports and Endpoints

respectively as presented in Figure 5.2. More specifically, we represent a component-based archi-

tecture model as topological configurations based on a set of architectural components (containing

86

1..*hasOperations

appliedTo

constrainedBy

ChangeData

Change Operator

changeID: String

Remove Modify
Add

ArchitectureModel

systemID: String1..*

ConnectorComponent

1..*hasComposition

Configuration

Constraints

Preconditions PostconditionsInvariants

1..*

UserID : String TimeStamp : DateTime ChangeIntent : String systemID : String

supports 1..1

AuxiliaryData

Log Entity
Entity Group

Port Endpoint

source

target

Figure 5.2: A Metamodel Representation of the Architecture Change Logs.

ports) as the computational entities that are linked through connectors (that connect component

ports using endpoints) [Medvidovic 1999, Garlan 2009] in Figure 5.2. This description of an archi-

tecture model can be extended to add further elements. For example a possible extension could

involve specifications of components operations exposed on a given port, while an endpoint can

have binding among operations (if required but currently out of scope for this research). The log

meta-model only captures architectural changes that conform to architecture model in Figure 5.2.

This means, more traditional object-based architectures - inheritance and aggregation relations -

needs some modifications in the log structures for representation addressed in [Tu 2002].

The inheritance and aggregation type relations are typical to object-oriented systems in order

to promote generalisation-specialisation type classes and their objects. However, a comparison of

the object vs component based systems [Erl 2009b] suggests that these relations also introduce a

tight coupling between the generalised and specialised (also called parent and child) type objects.

In contrast, one of the main characteristic of component-based development is to minimise (or ide-

ally eliminate) such tighter coupling [Szyperski 2002, van der Aalst 2002] for developing reusable

off-the-shelf components. This is achieved by exploiting the concept of component composition

(avoiding any inherited properties of a component). Therefore, if we consider capturing changes

for object-oriented systems; the concerns for such (inheritance and aggregation) relations must be

explicitly addressed for change implementation and change analysis [Tu 2002].

87

Change Operator (OPR)

Architecture change operators represent addition, removal, and modification type changes on ar-

chitecture models such that Change Operator is AppliedTo Architecture Model in Figure 5.2. A

change operator provides an operational - operator name and its parameters - representation

and abstraction for architectural changes. We provide details about the syntax and composi-

tion change operations later in the thesis. However, for the sake of clarification an operation

Add(Pm ∈ PORT : Cn ∈ CMP) represents addition of a port (Pm) to an existing component (Cn),

∈ represents element type relation (Cn is of type CMP).

Constraints (CNS)

The constraints represent a set of conditions on architecture change operations expressed as Pre-

conditions, Invariants and Post-conditions. During change operationalisation pre-conditions repre-

sent the structural composition of architectural model as well as individual elements before change

execution. It represents a complete or partial source architecture model that is evolved towards

a target model. Continuing with our previous example of adding a port Pm in component Cn,

preconditions ensures a) a component Cn already exists in the architecture model and b) a port

Pm does not currently exist in the component. After change operationalisation the post-conditions

represent the evolved architecture model or an individual element as a consequence of applying

change operationalisation. For example, postconditions ensure that a port has been successfully

added into the component such that Cn contains a new port Pm.

5.3.2 Log-based Representation of Architecture Change Instances

We explain recording of the individual architectural changes in the log with the help of the

Electronic Bill Presentment and Payment architecture evolution case study [EBPPCaseStudy].

Architectural representation for EBPP and details about the selection of its evolution scenarios

are presented in Appendix B. We adopt the Architecture Level Modifiability Analysis (ALMA)

[Bengtsson 1999] method for evolution scenario elicitation and analysis of EBPP architecture evo-

lution. We follow the ALMA method for selection, evaluation and interpretation of the evolution

scenario in Figure 5.3.

88

Evolution Scenario Selection - Component Integration

We present the evolution scenario of component integration in the EBPP case study. More specif-

ically, in the existing functional scope of the case study the company charges its customer with

full payment of customer bills in advance to deliver the requested services. Now, the company

plans to facilitate existing customers with either direct debit or credit-based payments of their

bills represented in Figure 5.3. In Figure 5.3, this evolution scenario is represented as: integration

of a mediator component PaymentType that facilitates the selection of a payment type (direct debit, credit

payment) mechanism among the directly connected components BillerCRM and CustPayment.

Evolution Scenario Evaluation - Analysing Architectural Changes

Once the evolution scenario is selected, we are interested in analysing the architectural change

operations that are applied to architecture elements to execute this scenario. Furthermore, the

change operations are captured in the change log for post-mortem analysis of architecture evolu-

tion scenarios. In the case of component integration, the EBPP architecture is modified with an

addition of new components PaymentType and two connectors getBill and selectType to mediate

customer billing and payments, represented in Figure 5.3.

Results Interpretation - Impacts of Change of Architecture

We interpret the results of a given evolution scenario based on the impact of architecture changes

on an existing architecture as illustrated in Figure 5.3. This is represented as the source architec-

ture (as preconditions of evolution), the architectural changes (as change operations) applied to a

source architecture to obtain the evolved architecture (as post-conditions of evolution).

1. Change preconditions: The existing configuration consists of a direct interconnection make-

Payment between the components CustPayment and BillerCRM that are represented as a

change preconditions in Figure 5.3 a).

2. Change Operations: In order to integrate the new functionality that enables the selection of a

payment type option for customer payments, this change is represented in Figure 5.3 b) as

the addition of a PaymentType component in the Payment configuration. This results in five

changes as recorded in the change log and illustrated in Figure 5.3. These changes include

the addition of the component (opr1), its ports (opr2, opr3) and removal of the old connector

makePayment (opr4).

89

PaymentType

BillerCRMCustPayment

getBill selectType

(Source Architecture)

<<postconditions>><<preconditions>>

CustPayment

BilllerCRM

makePayment

PaymentType������� ����������Addition

+

������ ��������������Removal

+���� ����¡�x

Payment Payment
(Evolved Architecture)

PayBillSendBill

 - userID := aakash_ADM1
 - changeID := 257
 - changeDateTime := 2012-02-17::10:37:52
 - changeIntent := to integrate a component in ebpp
 - systemID:= ebpp

Change Log Data

opr1:= Add(PaymentType CMP, Payment CFG)

opr2:=Add(PayBill("out") POR, PaymentType CMP)

opr3:=Add(SendBill("out") POR, PaymentType CMP)

opr4:=Remove(makePayment CON, Payment CFG)

oprn:=

∈ ∈

∈ ∈
∈ ∈

∈ ∈
Change Data

Auxiliary Data

a) b) c)

Figure 5.3: Representation of Auxiliary Data and Change Data in Logs.

3. Change post-conditions: The application of the changes results in an integration of the Pay-

mentType component that mediates the selection of payment type among CustPayment and

BillerCRM components, presented as the change post-conditions in Figure 5.3 c).

The role of preconditions is to ensure that elements to be added do not already exist in the log.

Post-conditions ensure elements have been successfully added to the change log.

Definition 5.1. Architecture Change Log - Let OPRi represent an individual change operation.

An architecture change log (ACL) is a sequential collection of change operations expressed as a

tuple ACL =< OPR1 ≺ OPR2 ≺ . . . ≺ OPRN >. ≺ is a sequencing operation between change

operations (OPR1 to OPRN).

A change log represents a sequential collection of individual change operations on architecture

elements. For example, in Figure 5.3, change operations (opr1, opr2, . . . , oprn) are represented as

a sequential collection of architectural changes (Add, Remove, Modify) on architecture elements

(components, connectors, configurations).

Once sequential architectural changes are represented and recorded in change log (Definition

5.1), change log data is classified as Change Data (CD) and Auxiliary Data (AD) in Figure 5.4.

90

1. Auxiliary Data (AD): provides the additional details about individual change instances in

the log. This is expressed as AD :=< userID, changeID, DateTime, changeIntent, sytemID >

and is captured automatically along with some user input in Figure 5.4 as detailed below.

2. Change Data (CD): contains the core information about individual change instances in the

log. This is expressed as CD =:< cID, Opr, ArchElem, ElemType > representing change id

(opr1, opr2, . . . , oprn), along with change operations (Opr) on architecture elements (ArchElem)

that has a type (ElemType) from Definition 5.1.

• Capturing the Auxiliary and Change Data in the Log: in Figure 5.3, we illustrated a scenario-

driven approach (guided by ALMA [Bengtsson 1999]) to represent the architectural changes

in the log. After presenting the types of data in the log, we briefly discuss the process for

capturing data in the log.

– Capturing Auxiliary Data - the elements of the auxiliary data that include user id (Aakash-

ADM1), change id (257), date-time (10:37:52/17/02/2012) and the system identifier

(EBPP) are captured automatically as soon as a change is applied (cf. Figure 5.3). How-

ever, the intent of the change (e.g: to integrate a component in EBPP) must be specified

by the user to explicitly represent what was the need for this change? Different users may

have different intents of a change, for example the removal of a component from the

architecture is permanent or it has been removed due to a replacement. The auxiliary

data is particularly useful for architectural change analysis based on the source, intent,

time of change and facilitates in extracting specific (time/user-based etc.) architecture

change sessions from log - detailed in Section 5.4.

– Capturing Change Data - in contrast to the auxiliary data, capturing change data is auto-

matic and no user intervention is required. For example, in Figure 5.3, op1 represents

addition of a new component PaymentType inside the Payment configuration that is

recorded as an individual change in the log. Change Data helps us to create the change

log graph that is detailed in Section 5.5.

To maintain a fine granular representation of architectural changes, we investigate six aspects

in change log data as presented in Figure 5.4:

• Who performed a specific change in existing architecture model (Person/Architect respon-

sible for changes)

91

• When a specific change is performed (Time-Date of a specific change),

• Why the change was performed (Intent and Rationale for change provided by the architect)

• What is effect of change on architecture elements (Change Operations on Architecture Ele-

ments),

• Where a particular change is applied in an existing architecture model (Parameters of

Change Operations)

• How to locate a particular change in a collection of changes (log) (Maintaining Change

Session and Change Id)

opr1: = Add(PaymentType CMP, Payment CFG)

Change Data

ChangeID ChangeOperation

∈ ∈

ArchitectureElement ElementType

Auxiliary Data

aakash_ADM1, 2012-02-17::10:37:52, 'to integrate,,, ', ebpp

User ID TimeStamp Change Intent System ID

WHO WHEN WHY WHAT WHEREHOW

Figure 5.4: Representation and Classification of the Change Log Data.

5.4 Preserving Evolution History in Change Logs

Architecture change logs are characterised as a sequential collection of changes that represent a

history of architectural changes [Yu 2009]. In the history-centred approaches for change mining,

change history represents an ordered set of change versions with added information about the

time of change [Zimmermann 2003, Gîrba 2006]. In preserving evolution history, the primary

intent is to enable future analysis focused on when some change happened and also to analyse what

was the change impact along with its scope and intent [Gîrba 2006]. The main idea behind the

maintenance of history is to analyse architecture evolution according to a particular point of

analysis that is also referred to as an architecture change session.

The intent and example for each of the session is detailed as below. Specifically, the Change-

based session is used by us to analyse different types of change operations (detailed later in the

thesis). The other two types of session are not used in this thesis, however; they represent a

customisation for future needs, if required to investigate changes in terms of specific time interval

or specific person responsible for the change. Therefore, a brief discussion of these change sessions

92

exemplify as well as highlight possible variations, customisation or future extensions based on the

type of required change analysis.

5.4.1 Maintaining Architecture Change Sessions

A change session represents a predefined (time, user, change based) subset of all the changes that

are recorded in the change log. Session-based analysis of change representation is particularly

beneficial to analyse the time, intent, scope and operationalisation of changes.

Definition 5.2. Architecture Change Sessions - An architecture change session CS in the log

(Definition 5.1), is represented as tuple: CS =< User, Time, OPR >:

• User represents a change session based on all the changes performed by a specific userID.

• Time represents a change session based on all the changes within a specific time interval

(TN - T0).

• OPR represents a change session based on the type of a specific change operation (Add or

Remove or Modify).

A summary of the different types of change session functions is provided in Table 5.1 with

explanation as follows. The three types of sessions are provided to support the customisation for

the analysis of architectural changes (if and whenever required) by means of parameters for each

of the session function in Table 5.1.

Change Session Function Parameter(s) Return Values

userSession(userID) A unique user identification All change operations performed by specific userID
timeSession(strTime, endTime) Time interval as start and end time. All change sessions between interval (endTime - strTime)
changeTypeSession(Opr) Predefined change operators All change with a specific change operation (Opr).

Table 5.1: Summary of Different types of Architecture Change Sessions.

1. User-based Session All the changes in the log that are performed by a specific user that is

identified by unique user identification. It facilitates with analysing the changes based on

an individual’s intent of architecture change. For example, in Figure 5.5 the usage-based

session reflects only those changes that have been performed by userID: aakash-ADM1. In

other examples, all the changes that have been scattered across the change log (performed

by aakash-ADM1) can be collected and analysed as a change session that is dynamically

created.

93

2. Time-based Session All the changes in the log that are performed between a given time

interval (endTime − startTime). It facilitates analysing the changes by adding the tempo-

ral context. For example, in Figure 5.5 the time-based session reflects only those changes

that have been performed in a given interval of time (approx. 27 minutes from 17-02-

2012::11:09:22 to 17-02-2012::10:42:13).

3. Change-based Session All the changes in the log that are performed by a given change oper-

ation (Add or Remove or Modify). It facilitates with analysing the intent, impact and scope

of change with a similar kind of operationalisation (inclusion or exclusion of architecture

elements). For example, in Figure 5.5 the change-based session reflects only those changes

that result in an addition of architecture elements (Add()). This projects only those changes

which resulted in an inclusion of architecture elements in the existing architecture model.

DirectDebit

PaymentType

PaymentType

payBill ("out") : PORT DebitPay ("in") : PORT

PaymentType

DirectDebit

DirectDebit

getType (payBill , DebitPay) : CON

opr1:= Add (
DirectDebit CMP,
PaymentType CMP

)

∈
∈

opr2:= Add (
DebitPay PORT,
DirectDebit CMP

)

∈
∈

opr3:= Add (
getType CON,

 <PayBill("out"),
DebitPay("in")> PORT

)

∈
∈

Change Operations on Architecture Model Change Data Auxiliary Data

userID:= aakash_ADM1

changeID:= 258
changeDateTime:= 17-02-2012::10:42:13
changeIntent:= "add a child component..."
syetemID:= ebpp

userID:= aakash_ADM1

changeID:= 259
changeDateTime:= 17-02-2012::10:57:38
changeIntent:= "add a component port..."
syetemID:= ebpp

userID:= aakash_ADM1

changeID:= 260
changeDateTime:= 17-02-2012::11:09:22
changeIntent:= "add a connector to ports..."
syetemID:= ebpp

payBill ("out") : PORT

PaymentType : CMP
PaymentType

DirectDebit

getType (payBill , DebitPay) : CON

DebitPay ("in") : PORT

DirectDebit : CMP

PaymentType

payBill ("out") : PORT PaymentType : CMP

Preconditions

Postconditions

1

2

3

T
1

T
2

T
3

C
1

C
2

C
3

T
im

e

C
ha

ng
e

T
0

T
N

C
0

C
N

4

5

Figure 5.5: Sequential Representation of Architecture Change Instances in Logs.

In Figure 5.5 we provide a sample change session from an architecture change log. The session

is extracted randomly based on total change instances that have been recorded over a period of

1 day (07-08-2011). A simplified example illustrates the effect of changes on architecture model

over time. The example highlights the life-cycle of a component PaymentType that is added to an

architecture model at time interval T0 and modified by adding its child component DirectDebit at

interval T1. Furthermore, at interval T2 a port is added to the child component that follows an

94

addition of a connector to map ports of a child component and its parent at interval T3.

5.5 Graph-based Modelling of Architecture Change Log Data

In previous sections, we focused on the anatomy of change log data and its classification. How-

ever, in order to systematically investigate architecture change representation; we need a for-

malised representation for an experimental analysis of change log data. We utilise a graph-based

formalism [Jiang 2012, Ehrig 2004] in order to exploit graph-theoretical foundation for represen-

tation of change log data (cf. Chapter 2 - graph-based modelling for architecture change mining).

Our preference for graph-based modelling of log data over UML 2.0 based notations is already

explained in Chapter 2.

5.5.1 Creating Change Log Graph

In this section, we focus on formalising change instances in the log as an attributed graph (AG)

with nodes and edges typed over an attributed typed graph (ATG) [Ehrig 2004]. Please note, an

ATG in Figure 5.6 represents a meta-graph to model change log data as an AG that represents an

instance-graph in Figure 5.7.

ChangeOperation

DateTime

TimeStampuserID changeID Intent SystemID

String

order Integer

Graph Edge -- Operator Composition Node Attribute Ed ge Edge Attribute Edge

Attribute Node -- MetadataGraph Node -- Change Operations Attribute Node -- {Operation, ArchElement}

ArchitectureModel

CFGCMP CON

EndPointPort

Add() Rem() Mod()

OperationType

orderInteger

Figure 5.6: Attributed Typed Graph Model to Formalise Architecture Change Log Data.

Definition 5.3. Architecture Change Log Graph - A collection of change operations from log

ACL (Definition 5.1) are expressed as an attributed change log graph GACL:

GACL =
〈

NG, NA, EG, ENA
, EEA

〉

95

• Graph Nodes represent change operations on architecture model: NG, NA ∈ Nodes,

• Graph Edges represents a sequencing of nodes (operations): EG, ENA
, EEA

∈ Edges.

The attributed graph morphism M from an instance graph AG (Figure 5.7) to its meta-graph

ATG (Figure 5.6) is expressed as M : AG → ATG. We formalise log data as attributed nodes and

edges below and exemplify a possible instance of change log graph in Section 4.2 in the context

of Figure 5.7

1. NG =
〈

ni
g|i = 1, . . . , m

〉

represents a set of graph nodes. Each graph node (ng ∈ NG)

represents a single change log entry (i.e., a single change operation) - introduced in Figure

5.3. The sequence i = 1, . . . , m refers to the total number of change operations that exist in

the log. The notation m is an upper bound (starting from 1 (first node) and leading to m

(final node)) in the sequence.

2. NA =
〈

ni
a|i = 1, . . . , m

〉

represents a set of attribute nodes for graph nodes (NG). At-

tribute nodes are of two types, a) attribute nodes that represent auxiliary data (e.g. userID,

changeID, TimeStamp etc.) and b) attribute nodes that represent change data and its sub-

types (e.g. operation type, architecture model). The sequence i = 1, . . . , m refers to the total

number of attribute nodes in change log graph.

3. EG =
〈

ni
g|i = 1, . . . , m− 1

〉

represents a set of graph edges that connect two graph nodes

NG. The graph edges (eg ∈ EG) represent the applied sequence of change operations (OPR)

on the architecture model (ARCH). The term i = 1, . . . , m − 1 represents the total graph

edges in the log graph.

4. ENA
=

〈

ei
na|i = 1, . . . , p

〉

represents the set of node attribute edges that join an attribute node

(na ∈ NA) to a graph node (ng ∈ NG). The sequence i = 1, . . . , p refers to the total number

of node attribute edges in an architecture change log graph.

5. EEA
=

〈

ei
ea|i = 1, . . . , q

〉

is the set of edge attribute edges that join an attribute node (na ∈ NA)

to an attributed edge (ena). The sequence i = 1, . . . , q refers to the total number of edge

attribute edges in a log graph.

5.5.2 Creating Architecture Change Session Graph

The change session graph enables the extraction of a subset of all the change instances in the

log based on intent, scope or time of architectural changes. Continuing with the earlier example

96

(addition of a PaymentType component, cf. Figure 5.4), in Figure 5.7 we present a partial view

of the change session graph that is an instance of the change log graph (a.k.a. AG) in Figure 5.6.

The architecture change session is calculated based on an interval (endTime - start Time) as all

the changes that occurred between time stamp endTime(17-02-2012::10:41:35) and startTime(17-

02-2012::10:37:52). Session-based change mining is helpful in analysing a subset of all the changes

from logs (time-interval of architectural change defines change subset in this example).

Add()

PaymentType

CMP

sendBill

POR

TimeStamp

Add() Add()

getpayment

EPT

ChangeID TimeStampChangeID TimeStamp

258 17-02-2012::10:39:13 263

ChangeID TimeStamp

26417-02-2012::10:40:08

hasType hasType hasType

17-02-2012::10:37:52257

1 1 1
hasParameter hasParameter hasParameter

order order order

Add()

PaymentType, custPayment

CMP

hasType

2
hasParameter

order

getBill

CON

hasType

1
hasParameter

order

Start of Change
Session

End of Change
SessionSequential Collection of Change Instances

Change DataAuxiliary Data Parameters
Change Sequence Change Composition

PaymentType sendBill custPayment
getBill

ChangeID = 257
Add a Component

ChangeID = 258
Add a Port

ChangeID = 263
Add a Connector

ChangeID = 264
Add an Endpoint

a) Change Instance as Represented in the Change Log

b) Change Instance Represented as a Session Graph

userID

aakash_ADM1

ChangeID

17-02-2012::10:41:35

Figure 5.7: Change Instances as an Attributed Graph (typed over ATG in Figure 5.6).

In Figure 5.7, an attributed graph morphism t : AG → ATG is defined over graph nodes with

t(ATG) = AG that results in t(ChangeOperation) = Add(), t(ArchitectureElement) = Payment-

Type, custPayment sendBill, getBill, getPayment and t(hasType) = CMP, CON, POR, EPT where

(PaymentType, custPayment) hasType CMP, (sendBill) hasType POR, (getBill) hasType CON, (get-

Payment) hasType EPT. The graph nodes are linked to each other using graph edges for source

and target nodes (257, 258, 263, 264) representing the applied sequence of change operations.

The partial view of time-based change session from a log is represented as: ChangeID = 257

representing the addition of a Component expressed as: Add(PaymentType ∈ CMP), ChangeID =

97

258 representing the addition of a Port expressed as: Add(sendBill ∈ POR), ChangeID = 263 repre-

senting the addition of a Connector expressed as: Rem(getBill ∈ CON, (PaymentType, custPayment) ∈

CMP) and ChangeID = 264 representing the addition of an Endpoint Rem(getPayment ∈ EPT).

5.5.3 Sequential vs Hierarchical Representation of Log Data

We have represented the log data as a sequential graph. When compared to a hierarchical or

parallel representation, our preference for a sequential graph (Figure 5.8) is determined by: i)

the type of architectural changes in the log (i.e., data representation), ii) the complexity of graph

matching (i.e., data processing) - both discussed below.

Representation: Sequential vs Parallel Architecture Changes

In the taxonomy of software evolution [Buckley 2005] and also in a characterisation of architectural

changes [Williams 2010] two major types of change are classified as sequential or parallel (a.k.a.

hierarchical) changes. The sequential changes are common in an environment where a single team

is responsible for change execution and management. Sequential change restricts more than one

person to apply changes to the same architecture at the same time. In contrast, parallel changes

are applied in a collaborative development environment where multiple teams are working on

the same architecture. Therefore, multiple persons can apply changes to the same architecture at

the same time. Another approach is to enforce the concurrency control (e.g, priority based change

implementation), such that all parallel changes are converted into a sequence based on the priority

or criticality of the change.

Assumptions and change type transformation - the process of log-based change mining for pattern

discovery in this thesis is focused on analysing the sequence of architectural changes [Lehnert 2012,

Sun 2010] illustrated with a (sequential) change log graph in Figure 5.7. We have assumed that

parallel change operations (if any in the log) are represented as a sequence (parallel to sequential

conversion [Buckley 2005]), where each of the change operations is executed one after the other

(i.e., sequenced change log). Such a restriction is also inherent in our change capturing process,

where only one person can apply the change on the same architecture element at a given time. In

situations where parallel changes are present, the meta-model for a change log graph (Figure 5.6)

must be extended to support parallelism. The assumption for sequential change analysis is also

based on the work on mining sequential patterns [Agrawal 1995].

98

Add()

Add()

Rem()

CMP1

POR1

POR2

CMP
1

POR1 POR2

Add() Rem()

a) Sequential Graph of Changes b) Hierarchical Graph of Changes

Graph
Node

Graph
Edge Node

Attribute
Attribute
Edge

Transformation

 ID Operation Element
 1 Add() CMP
 2 Add() POR
 3 Rem() POR

Figure 5.8: Overview of Sequential vs Hierarchical Representation of Log Data.

Processing: Sequential vs Hierarchical Graph Matching

In the context of change analysis (with graph matching), Figure 5.8 provides a high-level view of

the alternative representations of log data as a) a sequential graph and b) a hierarchical graph. In

the sequential representation (Figure 5.8 a)), a change log graph is constructed such as graph nodes

are change operations, node attributes are architecture elements encapsulated as a parameter to

the operation and graph edges represent the sequence among change operations. Alternatively,

with a hierarchical representation (Figure 5.8 b)), graph nodes represent the architecture element,

graph edges represent a change operations, while the hierarchy of nodes represent the composite

element. The conversion of a hierarchical structure to a sequential one [Leung 2005] enables

a sequential processing of data to minimise the complexity of graph matching [Agrawal 1995,

Geng 2008]. Hierarchical to sequential conversion is also referred to as transformation - (also

parallel to sequential conversion [Buckley 2005]) in Figure 5.8.

Minimising Complexity of Graph Matching - graph-based modelling of change log data allows us

to utilise the frequent sub-graph mining approach to discover recurring sequences (sub-graphs) as

change patterns. However, discovering patterns by matching and mining sub-graph is a complex

problem that is known to be NP-complete [Conte 2004] and it is not known whether pattern dis-

covery using graph mining is possible in a polynomial time. Therefore, a simplified representation

99

of the change log graph (without compromising the log data representation) helps in minimising

this complexity. Specifically, considering the context of Figure 5.8 b), if an architecture element

is represented as a node and a change operation as an edge, we need to match both the nodes

and edges to analyse i) what architecture element is affected (e.g., component and connector, etc.),

and ii) what was the change (e.g., add or remove, etc.). This results in a significant increase of the

complexity of even simpler cases, since both node and edge matching is required to interpret an

individual change. In contrast, Figure 5.8 illustrates a sequential graph in which an edge is simply

a sequence between two change operations (nodes) for graph traversal and the matching of edges

is not required.

In a sequential graph only nodes (operations) needs to be matched. In case of hierarchical

graph, matching both nodes and edges of a graph (graph isomorphism) increases the complexity

of even simpler cases, where both nodes and edges need to be matched. In comparison to the

hierarchical graph matching, the algorithmic solutions to discover sequential patterns offer better

performance (with reduced complexity and faster matching) [Huang 2003, Conte 2004]. In our

case, in addition to the design simplicity of pattern discovery algorithms, sequential graphs helps

with the reduction of graph matching complexity.

5.6 Mapping Log Data to GraphML-based Representation

A change log graph in Figure 5.7 only represents a conceptual model that needs a concrete descrip-

tion to automate graph-based pattern discovery. Listing 5.1 shows a GML-based representation

[Brandes 2002a] of an architecture change log graph describing the addition of a new component

(PaymentType : node id 257) that is connected to an existing component with addition of a new

connector (getBill : node id 258) from Figure 5.7. In order to represent an explicit intent of change,

we need to define the meta-level attributes (as ATG represented in Lines 7 and 12 in Listing 5.1,

for space reasons extra attributes omitted). Auxiliary data attributes capture the intent, time, user

of change along with id of the system (EBPP [EBPPCaseStudy] in this case) to which the change

is applied (Line 14 - 18). Change data attributes capture change operationalisation on architecture

elements that is needed to define the meta-level attributes (as ATG represented in Lines 19 - 23).

Listing 5.1: GraphML-based Representation of Change Log Data

1 <?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>

2 <graphml xmlns=" ht tp :// graphml . graphdrawing . org/xmlns "

100

3 xmlns : x s i =" ht tp ://www. w3 . org /2001/XMLSchema−i n s t a n c e

4 " x s i : schemaLocation=" ht tp :// graphml . graphdrawing . org/

5 xmlnshttp :// graphml . graphdrawing . org/xmlns /1.0/ graphml . xsd ">

6

7 <!−− Graph generated by sones GraphAPI GraphMLWriter −−>

8 <key id = " I n t e n t " f o r = " node " a t t r . name = " Desc " a t t r . type = " s t r i n g "> </key>

9 <key id = " TimeStamp " f o r = " node " a t t r . name = " TimeStamp " a t t r . type = " s t r i n g "> </key>

10 <key id = " userIDr " f o r = " node " a t t r . name = " Committer " a t t r . type = " s t r i n g "> </key>

11 <key id = " systemID " f o r = " node " a t t r . name = " sysID " a t t r . type = " s t r i n g "> </key>

12 <key id = "Opr" f o r = " node " a t t r . name = " opr " a t t r . type = " s t r i n g "> </key>

13 <key id = " hasParam1 " f o r = " node " a t t r . name = " hasParam1 " a t t r . type = " s t r i n g "> </key>

14 <key id = " Param1Type " f o r = " node " a t t r . name = " Param1Type " a t t r . type = " s t r i n g "> </key>

15 <key id = " hasParam2 " f o r = " node " a t t r . name = " hasParam2 " a t t r . type = " s t r i n g "> </key>

16 <key id = " Param2Type " f o r = " node " a t t r . name = " Param2Type " a t t r . type = " s t r i n g "> </key>

17 <key id = " Seq " f o r = " edge " a t t r . name = " type " a t t r . type = " composition "> </key>

18

19 <graph id=" ChangeGraph " edgedefault=" d i r e c t e d "> <!−− Log Graph D e f i n i t i o n −−>

20

21 <node id = " 257 "> <!−− Change O p e r a t i o n a l i s a t i o n − Attr ibuted Nodes −−>

22 <data key=" I n t e n t "> Add a Component </data >

23 <data key=" TimeStamp "> 17−02−2012: :10:37:52 </data >

24 <data key=" userID "> aakash_ADM1 </data >

25 <data key=" systemID "> EBPP </data >

26 <data key="Opr"> ADD </data >

27 <data key=" hasParam1 "> PaymentType </data >

28 <data key=" Param1Type "> CMP </data >

29 <data key=" hasParam2 "> </data >

30 <data key=" Param2Type "> </data >

31 </node>

32

33 <node id = " 2 "> <!−− Change O p e r a t i o n a l i s a t i o n − Attr ibuted Nodes −−>

34 <data key=" Desc "> Add a Port </data >

35 <data key=" TimeStamp "> 17−02−2012: :10:39:13 </data >

36 <data key=" UserID "> aakash_ADM1 </data >

37 <data key=" systemID "> EBPP </data >

38 <data key=" opr "> ADD </data >

39 <data key=" hasParam1 "> s e n d B i l l </data >

40 <data key=" Param1Type "> POR </data >

41 <data key=" hasParam2 "> </data >

42 <data key=" Param2Type "> </data >

43 </node>

44

45 <edge id =" e256 " source = " 257 " t a r g e t = " 258 "> !−− Change Sequencing − Attr ibuted Edge −−>

46 </edge>

47

48 </graph >

49

50 </graphml>

5.7 Chapter Summary

The primary contribution of this chapter is to introduce the architecture change logs [Yu 2009,

ROS-Distributions 2010] as a sequential collection (history) of architectural changes that can be

analysed and represented in a formal way using graph models [Brandes 2002a, Ehrig 2004]. This

chapter addresses RQ 1 (cf. chapter 1) that highlights the needs for a modelling notation that

supports representation and analysis of architecture evolution histories.

101

This chapter provides a foundation to exploit repository mining techniques on change logs to

discover explicit evolution-centric knowledge as part of the architecture change mining process.

We claim that if change logs represent a source of evolution-centric knowledge, we can system-

atically investigate logs to discover such evolution-centric knowledge that can be reused to guide

future architecture evolution. We conclude this chapter by modelling change log instances as an

architecture change log graph that is represented using the graph modelling language (.GML nota-

tion). Graph-based modelling [Bhattacharya 2012] is particularly beneficial to model and analyse

significantly large data-sets in an efficient manner.

102

Chapter 6
A Taxonomical Classification and
Definition of Architecture Change
Operations

Contents
6.1 Chapter Overview . 103

6.2 A Taxonomy of Architecture Change Operationalisation 104

6.2.1 The Needs for Operational Taxonomy of Architectural Evolution 104

6.2.2 Types, Representation and Dependencies of Change Operations 105

6.3 Types of Architectural Changes . 106

6.3.1 Running Example of Architectural Changes 106

6.3.2 Atomic Change Operations . 108

6.3.3 Composite Change Operations . 109

6.4 Architecture Change Sequences . 114

6.4.1 Order of Change Sequences . 114

6.5 Dependencies of Change Operations . 119

6.5.1 Commutative Change Operations . 119

6.5.2 Dependent Change Operations . 120

6.6 Chapter Summary . 121

6.1 Chapter Overview

Change operations are fundamental to the evolution of a software system and its underlying

architecture models [Williams 2010]. An individual change operation (cf. Chapter 5) repre-

sents the most fundamental unit of evolution in terms of addition, removal or modification of

functionality in various software artefacts including source code and architectural components

[Buckley 2005, Lehnert 2012, Van der Westhuizen 2002, Ducasse 2009]. The change characterisa-

tion scheme [Williams 2010] systematically classifies different types of architectural changes. The

103

proposed characterisation works as a decision tree to provide support for system developers to as-

sess the feasibility of desired changes. To analyse architectural evolution we need a fine-granular

representation of architecture change operationalisation that is currently missing. In this chap-

ter, a systematic analysis of architecture change representation (with change log graph) and its

operationalisation is presented that provides a foundation to discover recurring sequences as ar-

chitecture change patterns. This chapter along with Chapter 7 aims to answer RQ 2 (cf. Chapter

1) that highlights the needs for analysing evolution histories to discover reuse knowledge.

6.2 A Taxonomy of Architecture Change Operationalisation

In order to study change representation from logs and to ultimately discover change patterns,

we taxonomically classify architecture change operations as illustrated in Figure 6.1. Before a

discussion of the operational taxonomy, it is vital to discuss a) what are the needs for a taxonomy and

b) how the taxonomy is developed and utilised to support architecture evolution knowledge.

6.2.1 The Needs for Operational Taxonomy of Architectural Evolution

In recent years, the studies and reviews of architectural evolution research focused on evolvability

analysis [Breivold 2012] and change characterisation [Williams 2010]. These and other studies like

[Buckley 2005] identified that, in order to support a systematic identification and investigation of

evolution, different types of changes and their impact on architecture should be classified. Classi-

fication of the individual changes provides a systematic analysis of evolution. More specifically, in

comparison to analysing a classified representation of source code changes [Lehnert 2012], there

does not exist any work that distinguishes different types of architecture change operations and

their role in architecture evolution. The existing research has supported a taxonomy of architectural

maintenance [Ducasse 2009], and characterisation of architecture changes [Williams 2010]. However,

based on the guidelines to classify software changes [Buckley 2005] in general and architectural

maintenance and evolution [Ducasse 2009] in particular, we derive a taxonomy of change opera-

tions.

The taxonomy provides a systematic representation of the different types of architectural

changes to investigate architecture evolution. Our systematic review of the research on archi-

tecture evolution (cf. Chapter 3) highlights that: the elements of a fine-granular representation of

architecture-centric changes include but are not limited to: a) types of architectural changes, b) syn-

104

tactical descriptions to represent these changes, and c) various types of dependencies among these changes.

We have defined the change operation taxonomy as: a systematic identification and organisation of

different change operations into groups which share, overlap or are distinguished by various attributes such

as operational composition, their representation and dependencies.

Classification of Architecture Changes

Atomic Change

Composite Change

Change
Representation

 Change
Types

Change Syntax

Change Composition

Change
Dependencies

Commutative Change

Dependent Change

has
Representation

has
Dependencies

Figure 6.1: Overview of the Taxonomical Classification of Architecture Change Operationalisation.

6.2.2 Types, Representation and Dependencies of Change Operations

Based on the analysis of change log graph data (detailed in subsequent sections), we present

different types of architectural changes as in Figure 6.1. The change taxonomy in Figure 6.1 also

guides the discussion of the composition, representation and dependencies of change operations

that is the focus of this chapter.

• What types of change operations exist in a change log during architecture evolution?

We analyse the different types of operations based on the composition of the architectural

evolution in terms of the atomic and composite types of changes.

• What is the necessary syntax and composition to represent different types of change operations?

After distinguishing the types of changes, we need to represent these changes in a consistent

manner. Therefore, a systematic representation of architectural changes requires the analysis

of syntax and the composition of the change operations.

• What are the dependencies that exist between different types of change operations?

Once the changes are classified and represented, we also need to analyse the types of depen-

dencies that exist among different operations. These operational dependencies are classified

as commutative and dependent type change operations.

105

6.3 Types of Architectural Changes

In the change logs, architecture changes are classified into three distinct types. This classification

includes 1) Atomic Changes, 2) Composite Changes and 3) Sequential Changes as presented in Fig-

ure 6.2. In Figure 6.2, we present a bottom-up (layered overview) of architectural change types

expressed as OprName(ArchElement) also presented in [Javed 2009]. It is vital to mention that

the evolution styles proposed by [Garlan 2009] classify addition, removal and modification of

component and connectors as primitive changes, while higher order changes like component com-

position are represented as style/pattern-based changes - patterns as recurring sequential change

[Agrawal 1995]. In Figure 6.2, atomic and composite operations (primitive changes) can be ab-

stracted into pattern-based architecture change execution.

Mod (Connector)

Mod (Component)

Mod (Configuration)Rem (Configuration)Rem (Configuration)

Rem (Connector)

Rem (Component)

Add(Configuration)

Add (Connector)

Add (Component)

Atomic

Composite

Sequential
Move() Swap() Compose() Decompose()

....

....

....

Addition

Merge() Split()Replace()Integrate()

Rem (Port)

Rem (Endpoint)

Removal

Add (Endpoint)

Add (Port)

Modification

Mod (Endpoint)

Mod (Port)

Primitive
Changes

Pattern-based
Changes

1

2

Figure 6.2: Classification of Architecture Change Types (Layered Overview).

The distinction between atomic and composite change types is determined by the composition

hierarchy of the CBSA model [van der Aalst 2002, Medvidovic 2000]. Atomic change refers to

changes on atomic architecture elements such as ports and endpoints. Composite change refers

to changes on composite architecture elements including components (composed of ports) and

connectors (composed of endpoints). Composite changes differ from the atomic ones based on

explicit constraints that preserve architectural composition during architecture evolution.

6.3.1 Running Example of Architectural Changes

The example is continued from Chapter 5. We use the extracted change sequence from the change

log represented as a change log graph in Figure 6.3. In Figure 6.3 a) we illustrate individual

changes on the architecture model as recorded in the change log, while its corresponding log

graph representation is provided in Figure 6.3 b). In Figure 6.3, we create the change session

106

graph based on architectural changes with a time interval (startTime [17-02-2012::10:37:52] to

endTime [17-02-2012::11:34:56]) as timeSession(startTime, endTime). Please note that for illustra-

tive reasons, the change log graph in Figure 6.3 represents only necessary graph elements instead

of a full representation. We only present the change id, change operators and their parameters

(architecture model being changed) along with the cascading impact of change operations on the

architecture model.

Add()

Payment : CFG

Add() Add()Rem() Add()

PaymentType sendBill selectTypegetBillmakePaymentpayBill

CMP POR CONCONCONPOR

PaymentType : CMP
custPayment, BillerCRM

: CMP
custPayment, PaymentType

: CMP
PaymentType, BillerCRM

: CMP

Add()

257 258 259 260 261 262 ChangeID

Operation

Arch Elem

Impact

Graph Node Attribute Node
Graph Edge Attribute Edge

custPayment BillerCRM

PaymentType

x
makePayment

257: Add
Component

258: Add
Port

259: Add
Port

sendBill payBill

getBill selectType

260: Remove
Connector

262:Add
Connector

261:Add
Connector

17-02-2012::10:37:52 17-02-2012::11:44:56

startTime endTime
timeSession (startTime, endTime)

a) Architectural Change Instances in the Log

b) Architectural Change Session Graph

custPayment

BillerCRM

makePayment

<<Preconditions>>

custPayment

BillerCRM

PaymentType

sendBill

payBill

getBill

selectType

<<Postconditions>>

Figure 6.3: Architecture Change Session Graph (endTime - startTime).

In the change session graph, architectural changes denote the integration of a mediator com-

ponent PaymentType with directly connected components CustPayment and BillerCRM. The pre-

conditions of change represent components CustPayment and BillerCRM that are inter-connected

using makePayment connector. The change operationalisation on architecture elements is repre-

sented as an application of the following change operations that include:

• ChangeID = 257: Add a new component PaymentType inside a configuration Payment.

• ChangeID = 258, 259: Add the corresponding ports sendBill and payBill to the newly added

107

component PaymentType. In this case, ChangeID (258, 259) can be applied in parallel refer-

ring to a commutative change, while ChangeID (257) precedes port addition that refers to a

dependent change and specified as ChangeID{257 ≺ (258 ‖ 259)}. This can be interpreted

such that ChangeID 257 must be executed first, while the ’sequence of application’ with

ChangeID 258 and ChangeID 259 does not matter (further details in Section 6.5).

• ChangeID = 260: Remove the connector makePayment that connects CustPayment and Biller-

CRM components.

• ChangeID = 261, 262: Addition of two new connectors i) getBill to interconnect CustPayment

and PaymentType and ii) selectType to connect PaymentType and BillerCRM.

6.3.2 Atomic Change Operations

An atomic change operation represents the most fundamental unit of architecture evolution that affects an

individual architecture element. We provide the syntax for atomic change operations in Table 6.1

with a formal definition as:

Definition 6.1. Let OPRatomic represent a collection of six atomic change operations that are ex-

pressed as: OPRatomic :=< Addpor, Rempor, Modpor, Addept, Remept, Modept > as addition (Add),

removal (Rem) and modification (Mod) of ports (por) and endpoints (ept).

Change operations in Definition 6.1 are overloaded depending on the type of parameter (an

endpoint or a port). An atomic change builds is fundamental to architecture change implementa-

tion.

ID Operation Syntax

1 Addpor ADD(por ∈ POR, cmp ∈ CMP)
- Add a new Port (por) to an existing Component (cmp).

2 Rempor REM(por ∈ POR, cmp ∈ CMP)
- Remove an existing Port (por) from an existing Component (cmp)

3 Modpor Mod(por ∈ POR, cmp ∈ CMP)
- Modify an existing Port (por) from an existing Component (cmp)

4 Addept ADD(ept ∈ EPT, con ∈ CON)
- Add a new Binding (bin) to an existing Connector (con).

5 Remept REM(ept ∈ EPT, con ∈ CON)
- Remove an existing Binding (bin) from existing Connector (con)

6 Modept ADD(ept ∈ EPT, con ∈ CON)
- Modify an existing Endpoint (ept) in an existing Connector (con)

Table 6.1: Syntax of Atomic Change Operations.

108

Syntax for Atomic Change

The syntax for atomic change operations is presented in Table 6.1, where OPR represents a given

change operation applied to the given architecture element (parameter for change operation) and

its cascaded impact on other elements. For example, in Table 6.1 the atomic operation with ID =

1 specifies an atomic change as: Add(sendBill ∈ POR, PaymentType ∈ CMP).

The syntax above represents the addition of a port sendBill to an existing component Payment-

Type. We identified a total of six atomic change operations presented in Table 6.1. An atomic

change enables a parameterised procedural abstraction that is fundamental to architecture change

execution and provides the foundation for architectural change composition [Ducasse 2009].

6.3.3 Composite Change Operations

A composite change operation applies to composite architecture elements causing their evolution based on a

set of pre-defined constraints that ensure architectural composition.

• Syntax for composite change operations is presented in 6.3 with a formal definition as below

for addition (Add), removal (Rem) and modification (Mod) of components (cmp), connectors

(con) and configurations (cfg).

• Constraints represent a set of predefined conditions (pre/post-conditions) that ensure the

completeness of the construction of a composite architecture element from atomic ones. An

explicit enforcement of constraints on the composite type changes distinguishes them from

atomic ones. From an operational perspective, change ID 257 is identified as composite type

change that enables the addition of a composite element by explicitly enforcing constraints

- that combine atomic and composite type changes together - to maintain architectural con-

sistency. The consequences of violating these constraints are orphan architecture elements

(i.e.; component(s) without ports, connector(s) without endpoints).

Definition 6.2. Let OPRcomposite represents a collection of nine composite changes:

OPRcomposite :=< Addcmp, Remcmp, Modcmp, Addcon, Remcon, Modcon, Addc f g, Remc f g, Modc f g >

Change operations in Definition 6.2 are overloaded depending on the type of parameter (com-

ponent, connector or configurations). In order to analyse architectural changes, we query the

change session graph in Figure 6.3 based on the type of change operation (OPR) and the correla-

tion among its parameters (ARCH). An abstract syntax of the graph query is presented in Listing

6.1.

109

Listing 6.1: Abstract Syntax of Change Log Graph Query.

1 SET S t a r t ← 1

2 SET End ← Graph . Length ()

3 SET ChangeID ← S t a r t

4 SET Opr ← " "

5 SET Arch ← " "

6 While (ChangeID ← (ChangeID + 1) ≤ End)

7 Opr ← Graph . Node . getOPR ()

8 Arch ← Graph . Node . getARCH ()

9 I f (Opr == "Add () " < OR > Opr == "Rem() " < OR > Opr == "Mod() ")

10 I f (Arch == "CMP.POR" < OR > Arch == "CON. EPT")

11 END While

The Listing 6.1 provides an abstract syntax for querying the change log graph. Instead of a

concrete syntax of the query - expressing specific programming language statements to retrieve

and manipulate the GraphML structure - we prefer an abstract and language independent repre-

sentation in Listing 6.1. The abstract syntax helps us to hide the complexities of programming

language-based representation focus and represent the necessary logic of the query that can be

translated to some concrete syntax. The intent of this query is to retrieve the architectural changes

containing only Add() or the Remove() or Modify() operation such that its parameter elements are

co-related in the architectural model. The correlation among architecture elements is deïňĄned

such that components and ports are co-related, connectors and endpoints are co-related. The

main purpose of such a correlation is to enforce the structural integrity in terms of architectural

composition with individual elements.

Therefore, in order to retrieve the specific change operations and architecture elements Line 1

to Line 5 in Listing 6.1 assigns specific. For example, the initial two lines represent the start and

end (node) of the change log graph structure. Line 6 to Line 11 represents an iterative retrieval of

each individual node in the change log graph (from start to the ending node). More specifically,

in Line 07 and Line 08 the change operations and the associated architecture element from each

node is retrieved. Finally, Line 09 and Line 10 ensures that all the change operations that support

addition, removal or modification of the component ports and connector endpoints.

A partial result of the query is represented as the extracted sequence in Table 6.2. In Table

6.2 the sequence ChangeID < 257, 258, 259 > represents the addition (257) of a new component

PaymentType inside the configuration Payment. The addition of a component is followed by the

addition (258, 259) of corresponding ports sendBill and payBill.

110

ChangeID Operation Architecture Element Cascaded Impact

257 Add() PaymentType ∈ CMP Payment ∈ CFG
258 Add() sendBill ∈ POR PaymentType ∈ CMP
259 Add() payBill ∈ POR PaymentType ∈ CMP

Table 6.2: Retrieving Composite Changes (partial results of query in Listing 6.1).

Change composition also highlights the cascading impact of the change operationalisation that

is propagated from top to bottom of the architectural hierarchy (configurations to components and

components to ports). We identified a total of nine composite type changes as follows that are

summarised in Table 6.3.

ADD(PaymentType ∈ CMP, Payment ∈ CFG) ≺ ADD(sendBill ∈ POR, PaymentType ∈ CMP)

ID Syntax Operation

1 ADD(cmp ∈ CMP, c f g ∈ CFG) ≺ ADD(por ∈ POR, cmp ∈ CMP) Addcmp

- Add a new Component cmp with addition of a Port por.
2 REM(cmp ∈ CMP, c f g ∈ CFG) ≺ REM(por ∈ POR, cmp ∈ CMP) Remcmp

- Remove a Component cmp with removal of its Port por.
3 MOD(cmp ∈ CMP, c f g ∈ CFG) ≺ MOD(por ∈ POR, cmp ∈ CMP) Modcmp

- Modify a a Component cmp with modification of its Port por
4 ADD(con ∈ CON, c f g ∈ CFG) ≺ ADD(ept ∈ EPT, con ∈ CON) Addcon

- Add a new Connector con with addition of an Endpoint ept.
5 REM(con ∈ CON, c f g ∈ CFG) ≺ ADD(ept ∈ EPT, con ∈ CON) Remcon

- Remove a Connector con with removal of its Endpoint ept.
6 MOD(con ∈ CON, c f g ∈ CFG) ≺ ADD(ept ∈ EPT, con ∈ CON) Modcon

- Modify a Connector con with modification of its Endpoint ept.
7 ADD(O× Addcmp ≺ P× Addcon) Addc f g

- Add a Configuration that contains O Components and P Connectors
8 REM(O× Remcmp ≺ P× Remcon) Remc f g

- Remove a Configuration containing O Components and P Connectors
9 MOD(O×Modcmp ≺ P×Modcon) Modc f g

- Modify a Configuration that contains O Components and P Connectors

Table 6.3: A List of Composite Change Operations on Architecture Model.

Syntax for Composite Change

The syntactical representation for composite change is identical to the atomic change. However, a

composite architectural change is applied to a composite architecture element. It requires a pre-

defined sequencing of change operations to be followed based on pre-defined constrains detailed

below. For example, in Table 6.3 the composite change operation with ID = 1 represents the

addition of a new component (cmp) that must follow the addition of a port (por) as follows.

Addcmp =: ADD(cmp ∈ CMP, c f g ∈ CFG) ≺ ADD(por ∈ POR, cmp ∈ CMP)

111

Constraints on Composite Changes

In addition to the operational syntax, composite changes require preserving the operational con-

straints to ensure consistency of individual architectural elements and their composition relation-

ships in the architecture. Composite change is specified as a set of constraints that are defined

and expressed as below and also exemplified in the context of running example (cf. Figure 6.3):

Let ai be the instance of an atomic elements that belong to a type A as ai ∈ A and cx an

instance of composite element C as cx ∈ C - where ai contained-by cx as: ai ⊲ cx. ⊲ represents a

contained-by relation and the constraints are:

CNS =











PRE : ∀ai ∈ A,∄ai ⊲ Cx, where cx ∈ C

POST : ∀cx ∈ C, ∃ai ⊲ Cx, where ai ∈ A

1. Example - preconditions for component addition - For example, to apply the addition opera-

tion, the port payBill must not already exist in the PaymentType component - in Figure 6.3,

expressed as:

PRE : ∀payBill ∈ POR,∄payBill ⊲ PaymentType, where PaymentType ∈ CMP.

2. Example - post-condition of component addition For example, after change implementation the

component PaymentType with a port payBill is successfully added:

POST : ∀PaymentType ∈ CMP, ∃payBill ⊲ PaymentType, where payBill ∈ POR.

The distinction between the atomic and composite change types have emerged from solu-

tions for refactoring of object-oriented design/source-code. For example, the addition or removal

of a class is a composite operation dependent on a number of individual changes that add or

remove the attributes and operations to the newly added class [Lehnert 2012] based on the pre-

defined constraints. In recent years, the distinction between atomic and composite change types is

adopted from code refactoring solutions and utilised for architectural maintenance and evolution

[Williams 2010]. Specifically, during architectural evolution the change type classification ensures

that a correct composition hierarchy of the architecture model is preserved. To ensure the correct

architectural composition there is a need to i) enable change composition (change execution), and

ii) enforce constraints (preconditions and post-conditions) on composite changes both detailed

below.

112

• Composition of Architectural Changes - We utilise the running example from Figure 6.3.

For example, in Figure 6.3 the addition of a component PaymentType must follow the ad-

dition of two ports sendBill and payBill. This restriction is imposed by the composition

hierarchy of component-based architecture model (cf. Chapter 2) and ensured by a set of

constraints in terms of preconditions and post-conditions. The atomic (△A) changes are

combined with composite change (△C) by enforcing the constraints (R is precondition and

O is postcondition), R
△A1,△A2,...,△An
−−−−−−−−−−→ O is a transition from R to O.

△C := R
△A1,△A2,...,△An
−−−−−−−−−−→ O

1. Composite change operations evolve the composite element (components and connec-

tors) with atomic changes to reflect changes on ports of components and endpoints of

operations.

2. If a composite operation do not contain atomic changes it has three types of conse-

quence on the architecture model as below.

– Orphan Component(s) - refers to a component that cannot be interconnected to other

components in the architecture model. More specifically, any architectural com-

ponents that do not have at-least one port (either provider or requester) is unable

to communicate to other components. Therefore, change composition must ensure

that the composite architecture elements (e.g: component) contains the required

sub-elements (e.g: port) to maintain the structural integrity of the architecture

model.

– Orphan Connectors(s) - refers to a connector that cannot interconnect two compo-

nents in the architecture model. Any connector that do not have the endpoints

(both source and target) cannot bind the provider and requester ports of the com-

ponents.

– Comprising Structural Integrity - when there are orphan components and connectors.

For example, in order to avoid orphan components in the architecture model we

must i) add at least one new port to the component, ii) move a port from another

component to the newly added component, or iii) remove the component from the

architecture model. The same applies to the orphaned connectors in terms of their

endpoints.

113

6.4 Architecture Change Sequences

An architecture change sequence represents a sequential collection of change operations to perform higher-

level change operations in terms of integration, composition, replacement etc. of components and connectors

in architectural configurations

In Figure 6.4, we illustrate atomic changes and composite changes that can be combined as

change sequences. For example, in Figure 6.4 an atomic change is limited to addition of a new

port (Por1). The composite change enable architectural composition that specify addition of a

new component (Cmp1) and its corresponding port (Por1). However, the composite change is

limited to addition of co-related elements (cf. Listing 6.2) in architecture model. More specifically,

a components and its port are co-related, similarly a connector and its binding are also cor-elated

architecture elements. Therefore, composite operations could not be executed when we combine

architectural changes that affect both the components and connectors. In such situations, we can

exploit changes sequences that allow us to evolve the components and connectors. For example,

in Figure 6.4 the change sequence represents the addition of two components (Cmp1, Cmp2) and

their corresponding ports (Por1, Por2) that is followed by the addition of a connector Con1 to

interconnect Cmp1, Cmp2.

Por1

Add(Por1 : POR, Cmp1 : CMP)

Cmp1

Add(Cmp1 : CMP, cfg1 : CFG)

Add(Por1 : POR, Cmp1 : CMP)

Cmp1

Add(Cmp1 : CMP, cfg1 : CFG)

Cmp2

Por1

Por1

Por2

Add(Con1 : CON, Cmp1, Cmp2 : CMP, cfg1 : CFG)

con1(Cmp1, cmp2)

Atomic
Composite

Sequential

Add(Cmp2 : CMP, cfg1 : CFG)

Add(Por1: POR, Cmp1 : CMP)
Add(Por2: POR, Cmp2 : CMP)

Figure 6.4: A Summary of Syntactical Representation of Atomic Change Operations.

6.4.1 Order of Change Sequences

The order of change operations in a sequence can be applied and represented in the log in different

ways [Zimmermann 2005]. In Figure 6.5, we present two distinct change sequences (S1 and S2)

as extracted from change logs. The impact of change operations on the architecture model is

presented on left while change representation in the log is represented on the right side in Figure

114

6.5. The intent for both these sequences is to introduce a new component in the architecture model

and provide its interconnection to other components. However, a step-by-step comparison of both

sequences based on matching the individual change operations in Figure 6.5 highlights that the

user performed the identical changes but using a different order of change operations. First, we

represent the intent of each change sequence and analyse the ordering of change operations.

• Intent of Sequence (S1) is to integrate a new component PaymentType with its correspond-

ing ports sendBill and payBill inside the configuration Payment. The newly added compo-

nent is interconnected to CustPayment and BillerCRM components. This is represented as a

sequence of six change operations (ChangeID 257 to 262).

• Intent of Sequence (S2) is to add the component CustConsumption with ports billingData

and payData in Billing configuration. The CustConsumption component provides details of

the service consumption by the customer to CustBilling and CustPayment.

In Figure 6.5, a step by step match of the change operations reflects that the ordering of change

operationalisation is irrelevant in sequential composition as long as the impact and definition of

change remains same. When the intent and impact of change operations for S1 and S2 is identical,

then we refer to this as the semantic equivalence (≡) among change sequences. However, if the

order of change operations and their impact in S1 and S2 is distinct we refer to this as semantic

non-equivalence (6≡) of change instances.

Definition 6.3. Equivalent Change Sequences - Let ≡ defines some equivalence relation of two

change instances Sj, Sk ∈ S : Sj ≡ Sk if and only if Sj and Sk are considered to be equivalent based

on the following comparison properties:

1. Property I - Type Comparison: determines equivalence among two change operations in

sequences Sj, Sk as TypeCompare(Oprm, Oprn), where Oprm, Oprn are individual change op-

eration in sequences Sj, Sk, respectively.

2. Property II - Length Comparison: performs length (total change operations) comparison

among two sequences as LengthCompare(Sj, Sk).

3. Property III - Order Comparison: determines the equivalence in ordering of change opera-

tions in two matching sequences OrderCompare(Sj, Sk).

115

CustPayment BillerCRM

PaymentType

x
makePayment

257: Add
Component

258: Add
Port

259: Add
Port

sendBill payBill

getBill selectType

260: Remove
Connector

262:Add
Connector

261:Add
Connector

257: Add(PaymentType : CMP, Payment : CFG)

258: Add(sendBill : POR, PaymentType : CMP)

259: Add(payBill : POR, PaymentType : CMP)

260: Rem(makePayment : CON, (CustPayment, BillerCRM) : CMP)

261: Add(getBill : CON, (CustPayment, PaymentType) : C MP)

262: Add(selectType : CON, (PaymentType, BillerCRM) : C MP)

425: Add(CustConsumption : CMP, Billing : CFG)

426: Add(billData : POR, CustConsumption : CMP)

428: Add(payBill : POR, PaymentType : CMP)

427: Add(getCustBill : CON, (CustBilling, CustConsump tion) : CMP)

429: Add(payData : CON, (CustConsumption, CustPayment) : CMP)

CustConsumption
425: Add

Component

428: Add
Port

426: Add
Port

CustBilling

CustPayment

billData

payDatabi
llP

ay
m

en
t

427: Add
Connector

429: Add
Connector

getCustBill

getCustPay

Sequence (S1)

Sequence (S2)

Match 1

Match 2

Match 3

Match 4

Match 5

Integration of PaymentType Component

Addition of CustConsumption Component

Figure 6.5: An Overview of the Operation Matching for Change Sequences.

Property I - Type Comparison (TypeCompare()) of Change Operations

It provides a comparison of the types of two change operations that is specified using a utility

function TypeComparison(OPRx(archj ∈ ARCH), OPRy(archk ∈ ARCH)) : returns < boolean >.

In Algorithm 6.1, OPRx and OPRy are compared (Line 03). Type equivalence depends on the

type of change operation and the architecture element for a change operation to be categorised as

type equivalent (return TRUE Line 04) or type distinct (returns FALSE Line 07). In Figure 6.6, we

compare three change operations:

• Type Equivalent Operations the comparison of ChangeID (258, 259) returns TRUE as the

type of change operation (OPR.OprType : Add()) and its parameter type (OPR.ParamType :

ARCH).

• Type Distinct Operations the comparison of ChangeID (258, 257) returns FALSE as the

type of the change operation (Add()) is identical, but operation parameter types are distinct

(architecture elements).

We conclude that if both the change operation and its parameter among two change instances

match we call the matching operations as type equivalent, or type distinct otherwise.

116

258: Add(sendBill : POR PaymentType : CMP)

257: Add(PaymentType : CMP, Payment : CFG)

TRUE FALSE FALSE
FALSE

259: Add(payBill : POR PaymentType : CMP)

TRUE TRUE TRUE
TRUE

Figure 6.6: Type Comparison of the Change Operations.

Algorithm 6.1 : TypeCompare(OPRx , OPRy) to determine operational type equivalence

Input: Two Change Operations OPRx, OPRy

Output: Boolean [TRUE/FALSE] to indicates if operations are type equivalent or type distinct

1: OPR1_Type← OPRx .Type ∧OPR1_Param← OPRx.Param
2: OPR2_Type← OPRy.Type ∧OPR2_Param← OPRy.Param
3: if (OPR1_Type ≡ OPR2_Type ∧OPR1_Param ≡ OPR2_Param) then
4: return (TRUE)
5: end if
6: else
7: return (FALSE)

Property II - Length Comparison (LengthCompare()) of Change Sequences

It refers to comparing the length of two change sequences where length of a change sequence is de-

fined by the number of change operation contained in it. It is given by the function LengthCompare(Sx, Sy) :

returns < integer > that is presented in Algorithm 6.2. First of all the length for both the sequences

is identified individually (Line 02 - 04 and Line 05 - 07, respectively). Afterwards, the length

equivalence of two change sequences Sx and Sy is determined by the following three conditions:

• If, Sequence Sx is equal in length to Sequence Sy represented as 0 that implies Sx ≡ Sy (Line

08 - Line 10).

• If, Sequence Sx is smaller in Length to Sequence Sy represented as -N that implies Sx < Sy

by N operations (Line 11 - Line 13).

• If, Sequence Sx is greater in length to Sequence Sy represented as +N that implies Sx > Sy

by N operations (Line 14 - Line 16).

A numerical value (N) is returned as a result of the comparison (Line 17). For example,

applying the LengthCompare(S1, S2) function on Sequences S1 and S2 in Figure 6.5 returns 1, S1

has six change operations compared to five operations in S2.

117

Algorithm 6.2 : LengthCompare(Sx , Sy) to determine length equivalence among sequences

Input: Two Change Sequences Sx, Sy

Output: Number N that indicates variation among length of change sequences

1: Sx.Length, Sy.Length ← 0
2: while Sx.Opr 6= NULL do
3: Sx.Length ← Sx.Length + 1
4: end while
5: while Sy.Opr 6= NULL do
6: Sy.Length ← Sy.Length + 1
7: end while
8: if Sx.Length ≡ Sy.Length then
9: N← 0

10: end if
11: if Sx.Length < Sy.Length then
12: N← Sx.Length - Sy.Length
13: end if
14: if Sx.Length > Sy.Length then
15: N← Sx.Length - Sy.Length
16: end if
17: return (N)

Property III - Order Comparison (Ordercompare()) of Change Sequences

It enables the comparison of the ordering of change operations of two sequences. It is given by the

function OrderCompare(Sx, Sy) : returns < boolean > as presented in Algorithm 6.3. It is normal

for same user to perform similar changes using different sequencing of change operations also

illustrated in Figure 6.5 (S1, S2). We distinguish between the following two types of sequences:

• Exact Sequence: Two given sequences are exact sub-sequences if they match on operational

types, length equivalence and the ordering of the change operations.

• Inexact Sequence: Two given sequences are inexact matching sequences if their operational

types and lengths are equivalent, but order of change operation varies.

First, we calculate the equivalence of the length of two sequences (Line 01), if the length are not

equivalent further comparison is not performed (Line 03 - 05) - since the number of change

operation varies. However,

• if the length and the order of change operation (calculated based on TypeCompare, Algo-

rithm 6.1) iteratively matches (Line 06 - 08): a boolean value TRUE is returned (Line 10) to

represent the exact sequences, otherwise:

• otherwise the length did matched but the order of change operations did not match (Line

11 - 12): a boolean value FALSE is returned

118

Algorithm 6.3 : OrdCompar(Sx , Sy) to determine order equivalence among sequences

Input: Two Change Sequences Sx, Sy

Output: Boolean [TRUE/FALSE] indicating if change sequences have a similar or distinct order

1: LengthEqu← LenEquv(Sx, Sy)
2: compareCount← 0
3: if LengthEqu 6= 0 then
4: return (FALSE)
5: end if
6: while TypeCompare(SxOPR , SyOPR) do
7: compareCount← compareCount + 1
8: end while
9: if compareCount ≡ LengthEqu then

10: return(TRUE)
11: else
12: return (FALSE)
13: end if

Once the different types of architecture change sequences have been identified, the last step

involves the classification of the different types of dependencies among change operations.

6.5 Dependencies of Change Operations

Abstracting atomic and composite change into a sequence of change operations (adjacent graph

nodes) allow us to discover the types of dependencies that exist among change operations. We dis-

tinguish operational dependencies based on commutative and dependent change operations. Analy-

sis of operational dependencies is vital to investigate the extent to which architectural change operations

are dependent or independent of each other.

6.5.1 Commutative Change Operations

The concept of change commutativity is an effective mechanism to determine whether there exists

a causal relation between consecutive change operations in a sequence. A causal relation refers

to a sequential representation of change operations that can be applied in an arbitrary fashion

without following a strict order of application (cf. Algorithm 6.3).

Operational Commutativity

We formally define the commutativity of architecture change operations as:

Definition 6.4. Let archx be an instance of architecture model ARCH and Sx(OPRi, OPRj) and

Sy(OPRj, OPRi) be two change sequences, then the operations OPRi, OPRj in sequences Sx and

119

Sy are commutative if and only if:

OPRi(archx) ≺ OPRj(archx)⇒ arch′x ∧OPRj(archx) ≺ OPRi(archx)⇒ arch′x.

The two change sequences Sx, Sy contain an equal number of change operations (cf. type and

length comparison), while their order varies. The application of operations either in Sx or Sy on

archi results in an identical change to arch′i

To illustrate the operational commutativity, we continue with change sequence S1 in Figure

6.5, the component interconnection for PaymentType is achieved by following the sequence addi-

tion of component ports sendBill (changeID = 358) and payBill (changeID = 359) and connectors

getBill (CustPayment, PaymentType) (changeID = 361) and selectType (PaymentType, BillerCRM)

(changeID = 362). The above change sequence is represented as: ChangeID = (358, 359, 361,

362). However, the change sequence could also be applied using the sequences ChangeID =

{(358, 361, 359, 362)or(359, 362, 358, 361)}, the impact of change remains exactly same. Such varia-

tions in operational ordering complicate the selection of a given sequence that executes a specific

pre-defined change. Therefore, we utilise the concept of operational commutativity to determine

if there exists a causal relation between consecutive change operations and the resultant impact of

change.

6.5.2 Dependent Change Operations

If change operations are not commutative, we regard them as operationally dependent, i.e., the

effect of the later change depends on its preceding change operation. Architecture change op-

erations in a sequence are dependent if there exists a pre-defined order of application among

change operations. Operational dependency is vital to preserve the compositional hierarchy of

architecture elements - a component must be added before adding a port to it.

Operational Dependence

We formally define the dependency of architecture change operations as:

Definition 6.5. Let Sx and Sy be two change sequences applied on archi ∈ ARCH, we regards Sx

and Sy as dependent if and only if Sx and Sy are non-commutative (following Definition6.4), and

Sx ≺ Sy or Sy ≺ Sx, either Sx precedes Sy or Sy precedes Sx in the order of their application (such

an order cannot be altered).

120

For example, contrary to Definition 6.4, in Figure 6.5 the sequence S1 of change operations must

follow a predefined change sequence as an addition of a component PaymentType (ChangeID =

257), addition of a port sendBill (ChangeID = 258) and a connector getBill(PaymentType, CustPay-

ment) (ChangeID = 261). More specifically, the addition of a component (257) must be followed by

the addition of the corresponding port (258) and it is a connector (261) and this order of change

operations cannot be altered.

6.6 Chapter Summary

In this chapter we focused on a taxonomical classification of architecture change operationalisa-

tion. A taxonomy of architecture change is essential to distinguish among the types of architecture

change operations and dependencies that exist among operations. In addition, the definition of

the syntax and composition of change operations enable a parametrise operational abstraction for

change execution. In this and next chapter, we aim to answer RQ 2 that highlights the needs

for methods and techniques to discover evolutionary knowledge from change logs. This chapter

provides a foundation to apply sub-graph mining [Agrawal 1995] - a formalised knowledge dis-

covery technique - to discovery recurring change operationalisation and sequences that represent

reusable, usage-determined architecture change patterns.

121

Chapter 7
Graph-based Discovery and
Template-based Specification of
Architecture Change Patterns

Contents
7.1 Chapter Overview . 122

7.2 A Meta-model of Pattern-based Architecture Evolution 124

7.2.1 Specifying the Architecture Model . 125

7.2.2 Specifying the Change Operations . 126

7.2.3 Specifying Constraints on Architecture Model 126

7.2.4 Specifying Change Patterns . 126

7.3 Algorithms for Change Pattern Discovery from Logs 127

7.3.1 Algorithm I - Candidate Generation . 129

7.3.2 Algorithm II - Candidate Validation . 131

7.3.3 Algorithm III - Candidate Pattern Matching 133

7.4 Complexity of Change Pattern Discovery . 135

7.4.1 Performance Trade-offs - Accuracy vs Efficiency of Pattern Discovery 137

7.5 Discovered Change Patterns from Logs . 138

7.5.1 Discovering and Generalising the Pre/Post-conditions of Change Patterns . 140

7.6 Template-based Specification of Architecture Change Patterns 142

7.6.1 Mapping Elements of Template for Graph-based Pattern Specification 143

7.6.2 Semi-automated Specification of Change Patterns in the Template 145

7.7 Chapter Summary . 146

7.1 Chapter Overview

In this chapter, we focus on utilising the change log data - modelled as a sequential graph of ar-

chitecture changes - to discover change patterns and specify them in a pattern template. We focus

122

on architecture change mining that aims at exploiting repository mining concepts to investigate his-

tories of architecture evolution for the discovery of architecture change patterns. As presented in

Chapter 3 - acquisition of evolution reuse knowledge - the only notable work refers to the identifi-

cation of architectural change patterns from object-oriented software [Tu 2002]. The fundamental

distinction between [Tu 2002] and our solution is the level of discovery that represents a different

software abstraction in terms of pattern discovery from source codes changes in [Tu 2002] and

architecture evolution presented in this chapter.

Based on change log graphs (cf. Chapter 5) and a taxonomical classification of architecture

change operationalisation (cf. Chapter 6), in this chapter we focus on the discovery of change

patterns [Agrawal 1995] from sequential change log graph (cf. Chapter 5). In addition, we also

provide a template-based specification of the discovered change patterns. We present pattern

discovery as a continuous process for mining new patterns by investigating the history of archi-

tecture evolution over time. The newly discovered patterns represent the vocabulary of a pattern

language that continuously evolves. In this chapter, we aim to answer RQ 2 that focuses on meth-

ods and techniques to discover and represent evolution-reuse knowledge in terms of reusable

change operationaisation and patterns. This chapter can be seen as a reference to establishing

and enhancing architecture change mining (pattern discovery) as a complementary and integrated

phase to architecture change execution (pattern application). We present a 4-step process for pattern

discovery from change log graph in Figure 7.1 as below.

• Step I - The change log data is formalised as an attributed graph [Ehrig 2004] and repre-

sented using Graph Modelling Language (.GML) [Brandes 2002a] format - as a pre-processing

to the pattern discovery process, detailed in Chapter 5.

• Step II - Based on investigating architectural changes and change taxonomy in Chapter

6, we derive a meta-model of pattern-based architecture evolution. This meta-model helps

us to represent the structural composition of elements and their relationships to support

pattern-based architecture evolution in Section 7.2.

• Step III - We present algorithms for graph-based pattern discovery [Agrawal 1995, H. Tong 2007]

that include i) Pattern Candidate Generation, ii) Pattern Candidate Validation and iii) Pattern Can-

didate Matching. These algorithms are executed on change log graphs to discover architecture

change patterns. Algorithmic details for pattern discovery are presented in Section 7.3.

• Step IV - We present discovered pattern instances and their specification in a change pattern

123

Pattern Meta-model

2

Pattern Specification
4

Pattern TemplateCandidate Generation

Candidate Validation

Pattern Matching

Pattern Discovery
3

Attributed
Graph

GraphML
File

Change Log Graph
1

Figure 7.1: Process Overview for Log-based Change Pattern Discovery.

template [Harrison 2007] in Section 7.6.

Patterns discovered in this chapter are fundamental to composition of a change pattern lan-

guage. In the context of a pattern language discovered pattern instances and their possible vari-

ants represent a pattern language vocabulary [Zdun 2007, Porter 2005, Goedicke 2002] discussed

in this chapter. Therefore, a pattern language vocabulary continuously evolves by discovering

new change patterns from different logs over time.

7.2 A Meta-model of Pattern-based Architecture Evolution

In software architecture change logs, we observed that architectural changes can be operationalised

and parametrised to support architecture evolution. More specifically, architecture elements that

are added, removed, or modified are specified as parameters of change operations. The recurring

architectural changes represent a change pattern as “a generic, first class abstraction to support poten-

tially reusable architectural change operationalisation”. A typical example of a change pattern is the

replacement of a legacy component C1 with a new component C2 represented as Replace (C1,

C2).

Composition of a Change Pattern - represents an abstraction of architectural changes as pattern

composition, illustrated in Figure 7.2 a). Figure 7.2 a) represents the generalised structure for pat-

tern composition while its concrete representation is illustrated in Figure 7.2 b) - using UML com-

position relations. For example, in Figure 7.2 a) at the top-level, the change pattern is a composition

of various participants (change operations, constraints, architecture model) that are at a level below.

The participants have their child also called specialised elements. This means to enable pattern-based

evolution we need to specify architecture model (ARCH), change operations (OPR), constraints on

architecture model (CNS) for composition of change patterns (PAT). The binary composition rela-

tionships among meta-model elements are expressed as: {isComposedO f , isAppliedTo, isConstrainedBy}.

124

For example, in Figure 7.2 the possible relation among a change pattern and change operators is

expressed as: Pattern
isComposedO f
←−−−−−−−− Operators, a change pattern is composed of change operations.

Before discussing change pattern discovery, we discuss individual elements of pattern-based ar-

chitecture evolution in the context of meta-model.

Add(arch: ARCH)

Mod(arch: ARCH)

Rem(arch: ARCH)

isComposedOf

 - name : String

 - intent : String

 - id : Integer

ChangePattern : PAT

ChangeOperators : OPR

1..*

isConstrainedBy

1..*

Component Connector

Port Endpoint

isApplieTo

1..1

source

target

Pattern Element Composition Relation Specialisation Relation

Configuration

ArchitectureModel : ARCHConstraints : CNS

InvPRE POST

Composition

Participant A Participant B

a) Overview of Composition Relation

b) Composite Structure of Change Pattern

Figure 7.2: Meta-model for Composition of Architecture Change Pattern.

7.2.1 Specifying the Architecture Model

To support architectural evolution, the descriptions for component-based software architectures

(CBSA) [Medvidovic 1999, van der Aalst 2002] needs to be defined and constrained to achieve de-

sired structure and semantics of source (before evolution) and target (after evolution) architecture

models. We borrow architectural descriptions from Chapter 2 where we presented architecture

meta-model as topological configurations (CFG) based on a set of architectural components (CMP)

as the computational entities that are linked through connectors (CON) [Szyperski 2002]. Further-

more, architectural components are composed of component ports (POR), while connectors are

composed of endpoints (EPT) to bind component ports. Both the source architecture and the target

architecture must confirm to architectural meta-model as presented above and detailed in Chap-

125

ter 2. The consistency of pattern-based change and structural integrity of architecture elements

beyond component-based architecture model is undefined.

7.2.2 Specifying the Change Operations

Change operations represent a procedural abstraction to parametrise architectural changes that

are fundamental to operationalising evolution. Our analysis of the change log goes beyond ba-

sic types in [Buckley 2005] to specify a set of atomic and composite operations (cf. Chapter 6)

to enable structural evolution by adding (Add()), removing (Rem()) and modifying (Mod()) ele-

ments in architecture model. Atomic and composite change operators represent primitive changes

[Barnes 2013] that are composed into pattern-based changes [Côté 2007] that abstract addition,

removal and modification of components and connectors to facilitate frequent composition, de-

composition, replacement type changes in an architecture model.

In the PatEvol framework, we specify change operations by means of graph transformation

rules [Baresi 2002, Graaf 2007]. If architecture model is represented as a graph, graph transforma-

tion can be exploited to support its evolution.

7.2.3 Specifying Constraints on Architecture Model

To ensure that the structural integrity of individual architecture elements as well as the overall

architecture model is preserved during and after architecture evolution, as set of constraints must

be specified on the architecture model. We have presented constraints on architecture model

as a set of preconditions (PRE), postconditions (POST) and architectural invariants in Chapter 5

(change log meta-model). Also, during the change operationalisation (Chapter 6) pre-conditions

represented the context of architectural model before change execution. It represents complete or

partial source architecture model that is evolved towards a target model. In addition, any change

in the architectural structure must maintain the correctness of architectural invariant. Any viola-

tion of the architectural invariant results in an invalid instance of an architecture element. Finally,

post-conditions represents evolved architecture model as a consequence of change operationalisa-

tion on architecture elements.

7.2.4 Specifying Change Patterns

We need to specify change pattern as a first-class abstraction that can be operationalised and

parametrised to support potentially reusable architectural change execution defines as:

126

Definition 7.1. Change Pattern - Let a Pattern (PAT) represents a recurring, constrained (CNS)

composition of change operationalisation (OPR) on architecture model (ARCH) expressed as:

PAT<name, intent> : PRE[arch ∈ ARCH]
INV[OPR(arch∈ARCH)]
−−−−−−−−−−−−−−→ POST[arch′ ∈ ARCH]

A pattern enables a process-oriented approach to architecture change management describing

the situation before and after the change (cf. Section 7.2.3 - constraints: PRE, INV, POST), along

with the steps needed to implement the change (cf. Section 7.2.2 - change operations: Add(),

Rem(), Mod()). The elements of the source architecture (cf. Section 7.2.1 - architecture model)

arch is evolved to arch′, where arch, arch′ ∈ ARCH. In addition a pattern’s name and its intent

introduce pattern vocabulary. Pattern vocabulary provides an abstract view of problem-solution

map (change operations, their impact on architecture model) captured by pattern name and intent.

In Chapter 2, we highlight pattern-based architecture evolution as a 3-step process including

i) pattern identification, ii) pattern specification and iii) pattern instantiation. To support this,

once change patterns are identified a collection or repository of pattern is required to support the

i) specification (also pattern storage) and ii) instantiation (also pattern retrieval) steps. A pattern

collection is essentially a repository infrastructure that facilitates an automated storage in terms of

once-off specification and retrieval for multiple instantiation of discovered change patterns. This

collection also supports pattern classification for a logical grouping of related patterns based on

the types of architectural changes they support.

We also specify architecture change patterns in a change pattern template. We follow the

guidelines in [Harrison 2007, Clements 2003] to develop an architecture change pattern template

that provides a structured document to represent the name, intent to promote pattern as a solution

that can be queried and retrieved. Template-based specification of architecture change patterns

provide the foundation to derive sequencing among change patterns in a pattern language.

7.3 Algorithms for Change Pattern Discovery from Logs

Once change log data is formalised as an attributed graph [Ehrig 2004], the solution to pattern dis-

covery problem lies with application of sub-graph mining approaches [H. Tong 2007] on change

log graph. More specifically, our solution to graph-based pattern discovery lies with mining recur-

rent sequences (cf. Chapter 6) of change operations that is equivalent to discovering sub-graphs

which occur frequently in a change log graph1 GACL. In this section, we introduce the pattern

1Please note that the terminology Change Log Graph or Log Graph are used interchangeably that refer to a graph created
from change log and is represented as GACL.

127

discovery problem as a modular solution and present pattern discovery algorithms. Pattern dis-

covery algorithms2 enable automation along with appropriate user intervention and customisation

with algorithmic parametrisation of the pattern discovery process.

In Table 7.1, we provide a list of variables that facilitate parametrisation of algorithms for

pattern discovery process. In Table 7.2, we outline a number of utility functions that are frequently

used to maintain the modularity of the pattern discovery process in Figure 7.3.

Parameter Description
GACL Architecture change log graph created from change Log.
PC Pattern Candidate sequences generated from change log graph: PC ⊆ GACL

PAT Discovered Pattern from change log graph: PAT ⊆ GACL

Len(PC) Candidate length - number of change operations in pattern candidate PC

Len(PAT) Pattern length - number of change operations in change pattern PAT
minLen(PC) Minimum candidate length by user: minLen(PC) ≤ Len(pc) :pc ∈ PC

maxLen(PC) Maximum candidate length by user: Len(pc) ≥ maxLen(PC) : pc ∈ PC
Freq(PC) Frequency threshold by user for PC to be identified as a pattern PAT.
List(param ∈ GACL) The list of candidates PC or patterns PAT param ⊆ GACL

Table 7.1: Parameters for Graph-based Pattern Discovery process.

Function(param) Return Description

GACL.size() Integer Get total number of nodes in log graph GACL

lookUp(PC) Boolean Candidate PC validation look-up in the invariant table
nodeMatching(nj; nk) Boolean Bijective node matching based on TypeEquv() (Section 5.1)
exactMatch(ni; nj) Boolean Determine Exact match from candidate PC to graph GACL

inexactMatch(ni; nj) Boolean Determine Inexact match from candidate PC graph GACL

Table 7.2: A List of Utility Methods for Pattern Discovery.

1. Candidate Generation: A pattern candidate (PC) is a sequence of change operations in the

change log graph (GACL) that represents a potential change pattern (PAT) depending on its

occurrence frequency Freq(PC) in change log graph, such that PC, PAT ⊆ GACL illustrated in

Figure 7.3a - Algorithm I.

2. Candidate Validation: The candidate validation is a significant step to eliminate the false

positives, i.e., candidates that represent potential patterns but their application as change

pattern may result in violating the invariants of the architecture model, illustrated in Figure

7.3b - Algorithm II.

3. Pattern Matching: Once the candidates are validated, we utilise graph matching (that com-

pares graph nodes as change operations) to match recurring sequences and discover recur-

ring sequences (PC) as patterns (PAT), in Figure7.3 c - Algorithm III.

2The Java source code for pattern discovery is provided in Appendix D.

128

Add() Add() Add() Add()

OPR
1 OPR

2
OPR

3
OPR

4

1 2 3 2 3 4

321 ,, OPROPROPR 432 ,, OPROPROPR

1 2 2 3 3 4

21,OPROPR 32,OPROPR 43,OPROPR

a) Candidate Generation

PaymentType send
getBill

[Invalid Candidate]

1 2 3

[Valid Candidate]
getBill

PaymentTypecustPayment

1 2 3 4

b) Candidate Validation

Log GraphCandidate (P
Cj

)

E
xa

ct
 M

at
ch

1

2

3

1

2

3

4

3

2

1

m
1

m
2

m
3

m
1

m
2

m
3 In

-E
xa

ct
 M

at
ch

Candidate (P
Ck

)

c) Candidate Pattern Matching

Add() Add() Add() Add()

PaymentType CMP∈ sendBill POR∈ getBill CON∈ getPayment EPT∈

1 2 3 4

Iteration 1

Iteration 2

PCj

P
Ck

Figure 7.3: Overview of 3-Step Graph-based Pattern Discovery Process.

7.3.1 Algorithm I - Candidate Generation

As the initial step of the pattern discovery process, candidate generation aims at generating a set

of pattern candidates PC from an architecture change log graph GACL, as illustrated in Figure 7.3a.

Each of the generated pattern candidate pci
∈ PC represents a sub-graph of GACL as PC ⊆ GACL.

As presented in Table 7.1, the difference between a pattern candidate and a pattern is that the

candidate must satisfy a specific occurrence frequency to be identified as a pattern. Therefore, a

pattern candidate represents a change sequence (collection of graph nodes as change operations)

as a potential pattern depending on its frequency Freq(PC) in GACL. We apply graph clustering

approach [Brandes Ulrick 2007] on GACL to create graph clusters representing sub-graphs as pat-

tern candidates in Figure 7.3a. Graph clusters from GACL are created based on the minimum and

maximum length specified by the user as minLen(PC) ≤ Len(PC) ≤ maxLen(PC) as in Table 7.1.

The size Len(PC) of a cluster (PC) represents the total number of nodes in a cluster that ultimately

represents the number of change operations in PC. For example, in Figure 7.3a the user specifies

minLen(PC) : 2 and maxLen(PC) : 3. In the first iteration candidates are generated such that the

length of each candidate is two nodes with next iteration each candidate having three nodes. The

generation of pattern candidates PC1, . . . , PCN (each representing an individual pattern candidate

(PC)) based on graph clustering [Brandes Ulrick 2007] is expressed as follows.

Specifically, the notation GACL(node + root) (Line 7) represents an incremental generation of pat-

tern candidates (Figure 7.3 a)), such that with each iteration the root element for each candidate

is incremented by one node. This results in candidates having root as OPR1 in first iteration and

129

OPR2 in the next, until the maximum length of the candidates is reached (Line 6).

PatternCandidates =















































PC1 = 〈(OPR1, OPR2), (OPR2, OPR3), (OPR3, OPR4)〉

PC2 = 〈(OPR1, OPR2, OPR3), (OPR2, OPR3, OPR4)〉

PCN =
〈

(OPRj, OPRk, . . . , OPRn), (OPRj+1, OPRk+1, . . . , OPRn+1)
〉















































(7.1)

1. Input: is a user specified change log graph GACL along with minimum minLen(PC) and

maximum maxLen(PC) candidate lengths minLen(PC): 2 and maxLen(PC) : 3 in Figure 7.3 a.

Algorithm 7.4 : candidateGeneration()

Input: GACL, minLen(PC), maxLen(PC)
Output: List(PC)

1: buff(PC) ← φ {buffer to hold temporary candidates}
2: root← GACL.getRoot()
3: for candLength← minLen(PC) candLength ≤ maxLen(PC) do
4: maxCandidates← GACL.size() - candLength
5: end for
6: while root ≤ maxCandidates do
7: buff(PC)node ← GACL(node + root)

8: node← node + 1
9: root← root + 1

10: candLength← candLength + 1
11: end while
12: List(PC) ← φ {List of final candidates}
13: for tempCand← 0 tempCand ≤ buff(PC).Length() do
14: if buff(PC)tempCand.Length() == buff(PC)Cand.Length() then

15: if nodeMatching(tempCand, cand) == true and candidateValidation(cand) == true then
List(PC)tempCand ← buff(PC)cand

16: end if
17: end if
18: end for
19: return(List(PC))

2. Process: starts at the graph root with the selection of a single node and enumerating the

temporary candidate list with adjacent node concatenation. Based on minLen(PC) and

maxLen(PC), the temporary candidate list bu f f (PC) is generated as follows that is presented

(Line 1 - 13): bu f f (PC) = 〈pc1(OPR1, OPR2), pc2(OPR2, OPR3), . . . , pc5(OPR2, OPR3, OPR4)〉.

To avoid this exhaustive candidate list, the candidates in bu f f (PC) are iteratively matched to

find specific candidates that occur at least more than once in GACL. We use the Breadth First

Search (BFS) strategy [H. Tong 2007] over GACL with our matching function nodeMatching(ni; nj)

130

(Table 7.2) : ni.OPR
match
−−−→ nj.OPR ∧ ni.ARCH

match
−−−→ nj.ARCH to generate the final candi-

date list: List(PC) (Line 14 - 19).

The breadth first strategy is applied to search for the candidates that occur more than once

in the list of generated candidates distinguish with minimum and maximum lengths. For

example, as illustrated in Figure 7.4 (a generalised view), during candidate generation, the

candidates with minimum length (on left) are distinguished from candidates of maximum

length (on right). With the BFS approach, (a) we analyse the individual candidates and (b)

match it to its neighbouring candidates to see if a candidate occurs more than once. The

search (Line 14) and matching process (Line 15) continues from candidates of minimum

length to maximum length until all candidates are analysed (Line 13 - Line 18). The candi-

dates that do not occur more than once are discarded to avoid an exhaustive generation of

non-recurring candidates (Line 15 - Line 16).

1 2 3 2 3 4

Add() Add() Add() Add()

OPR
1 OPR

2
OPR

3
OPR

4

Change Log Graph

1 2 2 3 3 4

Candidates with Minimum Length Candidates with Maxim um Length

1

1B
1A 1C

2

2A

1D 2B

(recurring) Candidates

Figure 7.4: Overview of the Elimination of Non-recurring Pattern Candidates.

In addition, we ensure each candidate pci ∈ List(PC) is validated through candidateValidation(cp :

GACL) (Line 18, detailed in Section 7.3.2).

3. Output: is a list of candidates List(PC) such that minLen(PC) ≤ Len(PC) ≤ maxLen(PC).

7.3.2 Algorithm II - Candidate Validation

During candidate generation, there may exist some false positives in terms of candidates that

violate the structural integrity (invariants) of the architecture model when identified and applied

as patterns. For example, in Figure 7.3 b the candidate PCj
represents three change operations as:

• Operation I adds a component PaymentType

131

• Operation II adds a port sendBill to component PaymentType

• Operation III adds a connector getBill

However, the connector does not provides interconnection among source and target ports (an

orphan connector). Therefore, it is vital to eliminate the candidate pattern PCj
that may violate

architectural integrity (cf. 7.3b, invalid candidate). In contrast, the candidate PCk
represents four

change operations and provides interconnection among component ports in Figure 7.3b is referred

to as a valid candidate. We eliminate invalid candidates through validation for each generated

candidate pc against architectural composition (cf. Table 6.3) before pattern matching with algo-

rithmic details below:

1. Input: is a candidate cpi
∈ PC, PC ⊆ GACL (called from candidateGeneration() - Line 18).

Algorithm 7.5 : candidateValidation()

Input: cp ∈ GACL
Output: boolean[TRUE/FALSE] indicating if a candidate is valid of invalid.

1: isValid← false
2: iteration:
3: for node← 0 node ≤ pc.Length do
4: if lookUp(pc.node.ARCH) == true then
5: isValid← true
6: end if
7: if isValid← true then
8: break iteration
9: end if

10: end for
11: return(isValid)

{definition for lookup() function}
12: Boolean lookUp(pc.node.ARCH ∈ GACL)
13: if pc.node.ARCH ∈ CMP == true and ARCH.∃hasPOR(pro,req) == true then
14: return(true)
15: end if
16: if pc.node.ARCH ∈ CON == true and ARCH.∃hasEPT(src,trg) == true then
17: return(true)
18: end if
19: return(false)

{end lookup() function}

2. Process: includes look-up into the invariant table as Table 7.3 in terms of validating the

architecture elements in the generated pattern candidates (in Line 3). More specifically it

aims at detecting any orphaned components and connectors as a result of associated change

operations. The orphaned component has no associated interconnection, while orphaned

connectors have no associated component, indicated by Boolean value false.

The definition for the invariant lookup() function is provided (Line 13 - Line 19). The archi-

tectural elements are confirmed to preserve the invariants (cf. Chapter 6): a) components

132

containing provider or requester ports (where ARCH.∃hasPOR is an informal representation

for a specific architectural element that must contain a port) and b) connectors containing

source and target endpoint (for binding ports, where ARCH.∃hasEpt is an informal repre-

sentation for a specific architectural element that must contain endpoints).

3. Output: is a Boolean value indicating either valid (true) or invalid (false) candidate cp.

Element Type Element Instance Element Invariant

Component Component Instances (cmpi, . . . , cmpn)
CMP cmpi, . . . , cmpn ∈ CMP porpro ∨ porreq ∈ POR ⊲ cmpi, . . . , cmpn ∈ CMP
Port Port Instances (porpro, porreq)
POR porpro, porreq ∈ POR

Connector Connector Instances (coni, . . . , conn)
CON coni, . . . , conn ∈ CON eptsrc ∨ epttrg ∈ EPT ⊲ coni, . . . , conn ∈ CON

Endpoint Endpoint Instances (eptsrc, epttrg)
EPT eptsrc, epttrg ∈ EPT

Table 7.3: Invariant Lookup Table

7.3.3 Algorithm III - Candidate Pattern Matching

Once the candidates are validated, the last step involves candidate pattern matching constrained

by a user specified frequency threshold Freq(PC) for PC in GC. This means users specify that

if a validated candidate in List(PC) occurs N times (determined by Freq(PC)) a pattern PAT is

discovered in change log graph GACL. We exploit sub-graph isomorphisms to match graph nodes

(change operations) of PC and GACL iteratively.

1. Input: is a list of (validated) candidates List(PC), specified frequency threshold Freq(CP)

and GC.

2. Process: includes retrieving each candidate from List(PC) and finds its exact or possible

inexact instance in GACL. In any given match from PC to GACL the number of nodes must be

equal (Line 13).

We exploit the change sequence properties (cf. Chapter 6) to specify: if and only if all the

nodes in the candidate match the corresponding nodes in change log graph we refer to this

133

as PC is isomorphic to GACL as: nodeMatching(PC, GACL) =























〈

PC1
(OPR1, OPR2)

〉

· · ·
〈

PCn
(OPRi, OPRj, . . . , OPRk)

〉

...
. . .

...

GACL(OPR1, OPR2, . . . , OPRN) GACL(OPR1, OPR2, . . . , OPRN)























(7.2)

Algorithm 7.6 : patternMatch()

Input: List(PC), Freq(PC), GACL
Output: pList(PAT, Freq(PAT))

1: gCand(pc : GACL)← φ {hold extracted nodes from GACL}
2: root← GACL.getRoot()
3: for cand← 0 cand ≤ List(PC). Length do
4: freq← 0 {to count frequency of PC in GACL}
5: end for
6: while root ≤ GACL.getLeaf() do
7: exactMatch← 0
8: inexactMatch← 0
9: end while

10: for node← root node ≤ List(PC)cand .Length() do
11: gCand(node← node + 1)← (root← root + 1)
12: end for
13: if List(PC)cand.Length() == gCand(root).Length() then
14: for node← root node ≤ List(PC)cand .Length() do
15: if match(List(PC)cand.node, gCand(root).node == true) then
16: exactMatch← exactMatch + 1
17: end if
18: if inexactmatch(List(PC)cand.node, gCand(root).node == true) then
19: inexactMatch← inexactMatch + 1
20: end if
21: end for
22: end if
23: if exactMatch == List(PC)cand.Length() OR inexactMatch == List(PC)cand.Length() then
24: freq++
25: end if
26: if freq ≥ Freq(PC) then
27: pList(PAT, Freq(PAT))← (List(PC)cand, freq)
28: end if

- Exact Match : It is based on exact and partial exact sequences in Chapter 6. An exact

match requires that there must exist a bijective mapping among types of change operator

and the type of architecture element in attributed nodes that is given as a utility function (cf.

Table 7.2) exactMatch(nodeMatching(ni; nj))[∀(i, j) = 1 . . . N] (cf.) that utilises the function

(cf. Table 7.2) nodeMatching(ni, nj) method it enables finding an exact match among the

candidate nodes PC (node) to the corresponding nodes in the change log graph GACL (node)

in Figure 7.3 c. In addition the ordering of matching nodes from List(PC) to GACL must be

same (exact change sequences already explained in Chapter 6). If such an exact instance

is found, the candidate’s frequency is incremented and matching is repeated (Line 15, 16),

134

otherwise:

- Inexact Match : It is based on exact and in-exact and partial in-exact sequences in Chap-

ter 6. The order of matching nodes from List(PC) to GACL is not always same. In this case,

inexactMatch(nodeMapping(ni; nj))[∀(i→ j) = 1 . . . N] that utilises the nodeMatching(ni, nj)

method to find an inexact match among the candidate nodes PC (node) to the corresponding

nodes in the change log graph GACL(node) in Figure 7.3 c. The candidate’s frequency is

incremented and matching is repeated until leaf node (Line 18, 19).

3. Output: is a list of identified patterns consisting of the pattern instance PAT and its corre-

sponding frequency Freq(PC). A given candidate is an identified pattern (exact or inexact)

if its frequency is greater or equal to specified threshold: f req(PAT) ≥ Freq(PC).

7.4 Complexity of Change Pattern Discovery

After detailing pattern discovery algorithms, we also highlight some of the algorithmic efficiency

concerns that results in a significant and often exponential increase of computation time for pat-

tern discovery. In this section, we highlight the possible improvements (as a tradeoff between the

Accuracy vs efficiency) of the pattern discovery algorithms - also pinpointing the relative benefits

and limitation of the proposed pattern discovery techniques. Accuracy refers to an accurate dis-

covery of the existing patterns such that no existing patterns in the log may be skipped or remains

undiscovered, whereas efficiency refers to the time taken to discover the existing patterns. In an

ideal situation, we want to discover all or the maximum of the available patterns (high accuracy)

in the shortest time (increased efficiency). We evaluate the accuracy and efficiency of the pattern

discovery process in detail later in the thesis.

Specifically, minimising the complexity of the frequent sub-graph mining (FSM) approach (that

exploits sub-graph isomorphism) is fundamental to the efficiency of pattern discovery process. By

means of sub-graph isomorphism, the nodes of sub-graph(s) (a.k.a. candidates) are iteratively

matched to the nodes of a log graph to discover recurring sub-graphs (a.k.a. patterns). However,

sub-graph isomorphism is a complex problem that is known to be NP-complete [Conte 2004], a

set of problems not known whether these could be solved in polynomial time. For example, con-

sidering Figure 7.3, step 1; central to the operation of FSM for pattern discovery is the generation

of a number of candidates, where the number of generated candidates is proportional to the size

of the log graph (cf. Figure 7.3) and as the size increases, the total time for matching graphs for

135

pattern discovery increases. Relating to this, we have two challenges:

• Generation of potentially large number of pattern candidates - as illustrated in Figure 7.3, even

with a very small graph size (N = 4) and limited number of candidate lengths (min, I = 2,

max J = 3), a total of five distinct candidates are generated based on a generalised relation:

TotalCandidates(I, J) := (N− I + 1) + (N− J + 1) + . . . + (N−N + 0). However, generating

the candidates does not involve matching their corresponding sub-graph with a log graph.

Instead, each candidate is generated simply by appending adjacent nodes iteratively (cf.

Algorithm 7.4, Line 1 - 13).

• Matching of potentially large number of candidate graphs with log graph - as the total number of

candidates are matched each at once. Also as their length grows by one (based on user-

specfied I and J lengths), this can lead to a potentially large number of sub-graphs to be

matched, leading to the complexity of pattern mining [Conte 2004] - for NP-complete cases.

This means that for a graph having a total of 2500 nodes (N = 2500, I = 2, J = 3) a total

of approximately 5000 candidates (sub-graphs are generated). This represents a worst-case

scenario as the smaller the value of I and J, more candidates will be generated. The solution

starts to become impractical as the size of N grows, unless some reduction in the total

number of candidates (sub-graphs to be matched) is performed. Therefore, prior to graph

matching for pattern discovery (cf. Algorithm 7.6), the possible reductions of candidates to

be matched is performed as follows.

The exhaustive list of generated candidates (Algorithm 7.4, Line 1 - 13, Figure 7.3) is refined

by removing the non-recurring candidates (Algorithm 7.4, Line 14 - 19). Specifically, if there is

no recurring sequence; we do not have any pattern in the graph (extreme and nonexistent case

in the context of pattern discovery precision). This means that i) either a candidate is eliminated

if not recurring and from the remaining ii) if a candidate occurs more than once its duplicate

is removed. To illustrate, we extend the original graph (Gorg) in Figure 7.3 that represents a se-

quential collection of four change operations expressed as Gorg := {OPR1; OPR2; OPR3; OPR4}.

Please note that (OPR1 −OPR4) are simplistic representation of their corresponding change op-

erations and (;) is a sequence among operations. The intent of the artificially generated ex-

tended graph (Gext) is to represent the recurring changes in the original graph expressed as

Gorg := {OPR1; OPR2; OPR3; OPR4; OPR1; OPR2; OPR3; OPR4}. Now, when we generate the pat-

tern candidates from Gorg with:

136

• minimum candidate length (I) is 2, we have a total of 7 generated candidates: Cand1 :=

{OPR1; OPR2} Cand2 := {OPR2; OPR3} Cand3 := {OPR3; OPR4}Cand4 := {OPR4; OPR1} Cand5 :=

{OPR1; OPR2} Cand6 := {OPR2; OPR3} Cand7 := {OPR3; OPR4}

• maximum candidate length (J) is 3, we have a total of 6 generated candidates: Cand8 :=

{OPR1; OPR2; OPR3} Cand9 := {OPR2; OPR3; OPR4} Cand10 := {OPR3; OPR4; OPR1} Cand11 :=

OPR4; OPR1; OPR2} Cand12 := {OPR1; OPR2; OPR3} Cand13 := {OPR2; OPR3; OPR4}.

We find all the candidates that occur at least once that are such as Cand1, Cand5 or Cand8

and Cand12, while the non-recurring candidates such as Cand4 and Cand10 are removed (Algo-

rithm 7.4, Line 14 - 19). The recurring candidates are counted only once as Cand1 and Cand4

represents exactly same instance of change operation. Therefore, the candidates are reduced to 5

Cand1, Cand2, Cand3, Cand8 and Cand9. However, based on the varying length of the graph and

the values of the minimium (I) and maximum (J) length of the candidates the candidate reduction

is unpredictable.

7.4.1 Performance Trade-offs - Accuracy vs Efficiency of Pattern Discovery

In the scenario above, the reduction technique (elimination of non-recurring candidates) reduces

the search space. However, considering a graph of N nodes there still is a large number of sub-

graphs that need to be matched. In such case, we need to apply a trade-off between accuracy and

efficiency of the pattern discovery process. Specifically, we select a complete solution that ensures

a high accuracy of pattern discovery while compromising the algorithmic runtime efficiency. Al-

ternatively, we could derive an approximate solution - specifying higher values for minimum and

maximum lengths of pattern candidates - to minimize the pattern candidates while enhancing the

algorithmic runtime efficiency. A known method for such an approximation is heuristic as a tech-

nique to solve problems more quickly by finding an approximate solution when classic methods

fail to find an efficient solution [Desrosiers 2011]. The typical examples for heuristic-based and

graph supported pattern mining are [Ketkar 2005, Ghazizadeh 2002]. Specifically, the approach

named Subdue [Ketkar 2005] focuses on compressing the potential patterns by producing a fewer

number of highly interesting patterns than to generate a large number of patterns from which

interesting patterns need to be identified. The results of Subdue suggest that the solution can

efficiently discover frequent patterns which are fewer in number but can be of higher interest -

approximating the number of pattern candidates. Another example is the algorithm called SEuS

[Ghazizadeh 2002] that uses a data structure called summary to construct a lossy compressed rep-

137

resentation of the input graph. The authors indicate, this summary data-structure is useful only

when the input graph contains a relatively small number of frequent sub-graphs with high fre-

quency, and is not effective if there are a large number of frequent sub-graphs with low frequency.

We choose a complete solution rather than heuristic-based approach (selecting higher values

for the minimum and maximum lengths of candidates) as we have a slightly smaller log graph and

we prefer accuracy over performance. A survey of solutions for graph-based pattern discovery

[Jiang 2012] and sequential pattern mining solution [Agrawal 1995] highlights that parametrisa-

tion is also vital in the reduction process. More specifically, based on parameters (cf. Table 7.1) if

the values for minimum and maximum candidate lengths, pattern frequency threshold are high

there are few matches to be performed (lesser candidate generation). However, by selecting higher

values for minimum and maximum candidate length the risk lies with skipping the potential pat-

terns that have smaller candidate lengths and such a solution is not preferred in this thesis. A

practical demonstration is Figure 7.3 - step 2, where if the user can specify the minimum length

more than 5 a significant number of candidates can be minimised (since 4 or more operations are

required for a candidate to be valid). However, in such a case we may miss out the patterns that

have a length of less than 2.

In some other cases (nested graphs vs sequential graphs) there is a need to validate the so-

lution with potentially ultra-large (often artiïňĄcial) data sets for evaluation purposes that is

not validated in our case. Also, the evolution histories of software [Kagdi 2007] are compara-

tively smaller and less complex when compared to mining chemical structures [Conte 2004] and

business-oriented data [Agrawal 1995].

7.5 Discovered Change Patterns from Logs

We provide a listing of discovered pattern - as a results of executing the pattern discovery algo-

rithms on architecture change log graphs - in Figure 7.5. In Figure 7.5, we only provide a pattern

overview in terms of the following elements.

138

Pattern Name and Parameters Pattern Intent Change Pattern Impact

Component Mediation Integrates
a mediator component (CM)
among two or more directly
connected components (C1, C2)

Component Mediation
 ([C

M
] < C

1
,C

M
,C

2
 >)

Functional Slicing
([C] < C1,C2 >)

Split a component (C) into two
or more components (C1,C2)
for functional decomposition of C.

Functional Unification
(C1,C2 > [C])

Merge two or more components
(C1,C2) into a single component
(C) for functional unification of
(C1,C2)

Active Displacement
(< C1 : C2 >,< C1 : C3 >

[C2 : C3])

Replace an existing component (C2)
with a new component (C3) while
maintaining the interconnection with
existing component (C1, C2).

Child Creation
([C1] < X1 : C1 >)

Create a child component (X1)
inside an atomic component
 (C1), C1 is a composite now.

Child Adoption
(< C1 : X1>,
< C2 : X1>)

Adopt a child component (X1)
from a composite component (C1)
to an atomic component (C2)

Child Swapping
([X1 : C1], [X2 : C2]

< X2 : C1 >,< X1 : C2 >)

Swap the child components (X1,X2)
 from composite components
(X1,X2) from composite

1

2

3

4

5

6

7

ConnectorComponent

Configuration

Pre
conditions

Post
conditions

Transformation

<<PRE>> <POST>>

C2C1

CM
x3x2

x2
C3

++
<<PRE>> <<POST>>

<<PRE>>

<<POST>>

X
1

C
1

X
2

C
2

X
2

C
1

X
1

C
2

C1

x1

C2

<<PRE>> <<POST>>

C

C
1 C

2

+ +

X

C

<<PRE>>

C1

C2

<<POST>>

C
1 C

2

X X

C+

C1

x1

C2

C1

x1

C2

C X1

C

<<PRE>> <<POST>>

+

<<PRE>> <<POST>>

X
1

C
1

C
2

X C
1 X

1

C
2

+

X

X

Change Operations

 - opr1: Add(C M : Component)
 - opr2: Add(X 2 (CM, C1) : Connector)
 - opr3: Add(X 3 (CM, X3) : Connector)
 - opr4: Rem(X 1 (C1, C2) : Connector)

 - opr1: Add(C 1 : Component)
 - opr2: Add(C 2 : Component)
 - opr3: Rem(C : Component)

 - opr1: Rem(C 1 : Component)
 - opr2: Rem(C 2 : Component)
 - opr3: Add(C : Component)

 - opr1: Add(C 3 : Component)
 - opr2: Rem(C 2 : Component)
 - opr3: Add(X 2 (C2, C3) : Connector)
 - opr2: Rem(X 1 (C2, C1) : Connector)

 - opr1: Add(X 1 : Component)
 - opr2: Mov(C(X 1) : Component)

 - opr1: Rem(C1(X 1) : Component)
 - opr2: Add(C 2(X1) : Component)

 - opr1: Rem(C1(X 1) : Component)
 - opr2: Add(C 2(X1) : Component)
 - opr3: Rem(C2(X 2) : Component)
 - opr4: Add(C 1(X2) : Component)

Move (from : A, to : B)

A B+
X

Add (ARCH)

Remove(ARCH)

Figure 7.5: List of Discovered Architecture Change Patterns.

139

1. Pattern Name and Parameters3 - Name provides an identification of a pattern to its user.

Parameters represent the affected architecture elements based on pattern application.

2. Pattern Intent 4 Represents a high-level pattern description in terms of the objective of

pattern usage. In Figure 7.5 the Pattern Name Component Mediation specifies the intent as a

pattern that enables the integration of a mediator component CM with componentS C1, C2.

3. Change Operationalisation It provides an operational execution of architectural changes as

a constrained composition of operators to enable architecture evolution.

4. Pattern-based Change Impact It represents the impact of change pattern on architecture

model represented as the pre-conditions and post-conditions of change pattern.

The details of the prototype for pattern discovery (GPride - Graph-based Pattern Identification)

are provided in Appendix D.

7.5.1 Discovering and Generalising the Pre/Post-conditions of Change Pat-

terns

The preconditions and post-conditions as an integral part of the pattern are being mined as part

of the pattern discovery process. During the pattern mining process, the constraints represent the

essential conditions that must be preserved or satisfied by the given pattern. These constraints

are the restrictions or conditions imposed by the domain to which the pattern is applied. For

example, in [Pei 2002] the pattern mining from a database of medical examination, a pattern

named body fever is valid only if it has constraints such as body temperature (in the range of

100 to 106 Celsius) with headache or cough (lasting on average 4 hours). In this case the domain

(i.e.; medical examination) specify the constraints in terms of specific body temperature, headache

and cough as necessary conditions associated to patterns of body fever. In contrast, with the

architecture change patterns the constraints are represented as preconditions (conditions before

the application of pattern) and post-conditions (conditions after the application of pattern). For

example, in Figure 7.6 (an instance of ComponentMediation pattern from Figure 7.5) the constraints

are associated to the domain of change patterns, i.e.; component-based software architectures and

ensure the structural integrity of architecture model in terms of the required components and

connectors.
3Please note that Pattern Name is vital to maintain the identity of a pattern in a collection [Buschmann 2007]. The

selection of an appropriate name for a pattern is subjective to the choice of pattern author or users of a patterns.
4The term Intent was first used in the GoF book to describe the primary objective of a pattern. However, now a days it

is also common among pattern authors to reflect to it as pattern overview - pattern thumbnails or problem/solution-pairs.

140

It is vital to mention that the constraints are implicitly represented in the change log and

are associated to change operations, i.e., the addition or removal of the architectural elements

(change operations) results in architecture model before and after pattern application (pre/post-

conditions) as in Figure 7.6. More specifically, in the context of Figure 7.6 ComponentMediation

pattern the architectural elements PaymentType as component and selectType, custPayment as con-

nectors are being added (i.e., Add() operation) as part of post-conditions, while the architectural

elements that are removed makePayment as connector (i.e., Rem() operation) represent the part of

preconditions.

The pattern discovery and specification prototype (described in Appendix D) helps with dis-

covery of constraints and then visualise the constraints as conditions before and after pattern

application representing the Change Pattern Impact on the architecture model. We illustrate the

discovery and generalisation of the preconditions and post-conditions as a two-step process with

the help of ComponentMediation below.

Preconditions Post-conditions

BillerCRM
makePayment

CustPayment selectType custPay

BillerCRM CustPayment

PaymentType

CMP1
CON1

CMP2

CMP3

x

CON2 CON3

CMP1
CON1

CMP2

Source Architecture Target Architecture

Opr1:= Add(PaymentType : CMP)

Opr2:= Add(selectType : CON, (BillerCRM, PaymentType) : CMP)

Opr3:= Add(custPay : CON, (PaymentType, CustPayment) : CMP)

Opr4: Rem(makePayment : CON, (BilllerCRM, CustPaymen t) : CMP)

Components

PaymentType

BillerCRM

CustPayment

Connectors

selectType(BillerCRM, PaymentType)

custPay(PaymentType, CustPayment)

Components

BillerCRM

CustPayment

Connectors

makePayment(BillerCRM, CustPayment)

Change Operations

BillerCRM -> CMP1
CustPayment -> CMP2
makepaymentPayment -> CON1

PaymentType -> CMP3

selectType -> CON2
custPay -> CON3

a) Architecture Models

b) Operators and Constraints

b) Generalised Constraints

Figure 7.6: An Overview of Pattern Constraints Discovery and Generalisation Process.

• Discovery of the Pattern Preconditions - the preconditions are simply the architecture el-

ements in the architecture model before any change operation is applied. For example, in

141

Figure 7.6 the source architecture model represents a connector makePayment with existing

components BillerCRM and CustPayment. Any element that is being removed from the ar-

chitecture model is a part of the preconditions.

• Discovery of the Pattern Post-conditions - the post-conditions represent the architecture

elements in the architecture model after any change operation is applied. For example, in

Figure 7.6 Opr1 to Opr3 represent the addition of components that were not part of the

architecture model and therefore part of the evolved architecture.

• Generalisation of the Pre/Post-conditions - once the pre/post-conditions are specified, the

next step involves generalising the constraints that refers to a generic representation of the

names of the architectural elements. These generic names are part of pattern specification

that abstracts the specific names and instances of architecture elements with more generic

representation. In this context, the names of architecture models are simply replaced with

a more appropriate general name. For example in Figure 7.6, the name of the specific

instance of a component BillerCRM is replaced with CMP1 and alternatively the connector

makePayment is renamed to CON1. In case of a concrete instance of a pattern the process

can be reversed, i.e., to replace the generic names with more specific names of the concrete

architecture elements.

7.6 Template-based Specification of Architecture Change Patterns

A change pattern template provides a structured documentation of individual patterns. We pro-

vide a formal template for pattern specification that is based on the meta-model for pattern-

based evolution (Figure 7.2) and the guidelines for documenting patterns and styles presented in

[Harrison 2007, Clements 2003]. As outlined in Chapter 2, we follow a 3-step process to facilitate

acquisition and application of change patterns as i) pattern identification (i.e., pattern discovery), ii)

pattern specification (i.e., pattern documentation) and iii) pattern instantiation (i.e., pattern appli-

cation). Therefore to support the reuse of discovered patterns, a template-based specification for

change patterns is provided. We map each of the elements of pattern meta-model (from Figure

7.2) to the possible relationships among the pattern elements. An overview of the pattern tem-

plate is provided in Table 7.4, we utilised the graph modelling language (.GML) [Brandes 2002a]

for graph-based representation of pattern template. We already explained (cf. Chapter 2) the

rationale behind graph-based specification of architecture change patterns and provide a quick

142

review about our decision as below. We use the syntax:

(PatternElement) <ElementAttributes> [Relationships]

In order to derive a pattern language discovered pattern instances represent pattern language

vocabulary. The structural composition of pattern elements and their relationships (governing

pattern structure and relations - meta-model cf. Figure 7.2) represents a language grammar as

expressed in Listing 7.1 - pattern template. A formal template-based specification of discovered

patterns allow us to specify the relations that exist among patterns in the language.

For an additional discussion of graph vs UML based modelling of the pattern specification

please refer to Chapter 2. We prefer a graph-based template for pattern specification:

• Establishing Static and Dynamic Relationships - in contrast to some predefined relationships

among patterns [Porter 2005, Zdun 2007], a graph-based modelling [Ehrig 2004] allows cap-

turing the semantics of pattern relationships. More specifically, an attributed graph is rep-

resented as pattern language with individual patterns as attributed nodes and pattern rela-

tionships as attributed edges of a graph (Listing 7.1). An individual pattern is represented

as a graph node while the directed edge represents a static or a dynamic relation among the

adjacent nodes (connected patterns).

• Pattern Matching and Selection - if individual patterns are represented as graph nodes, we can

exploit sub-graph isomorphism [Jiang 2012] (based on node matching) to select individual

patterns (i.e., nodes) from templates (i.e., graphs).

• Visualising Pattern Composition and Relations - enables abstracting a complex pattern hierar-

chy. Pattern visualisation greatly facilitates analysing pattern structures to evaluate possible

consequences and alternatives in a given evolution context.

• Graph Network of Patterns - define possible relationships among patterns in the language.

Graph-based structure provides a flexible mechanism to search and retrieve patterns effi-

ciently.

7.6.1 Mapping Elements of Template for Graph-based Pattern Specification

A template-based specification of architecture change patterns as a typed attributed graph is

expressed as 6-tuple: Template =< GTMP, NCLS, GPAT , NCMP, ESEQ, NREL > summarised in Table

7.4.

143

The meta-model for pattern-based architecture evolution only represents a structural compo-

sition of change patterns. In order to enable compositional semantics for pattern elements, we

also explain the binary composition relationships of pattern elements. For example, the rela-

tion Pattern
isComposedO f
←−−−−−−−− Operations represents that a pattern is composed of architecture change

operations.

Graph Element Pattern Element Description

Pattern template (PATTMP) is represented as an outer graph that
Outer Graph GTMP - Pattern Template contains pattern classification, composition and variants as a

nested graph structure.
Node NCLS - Pattern Classification Pattern classification (CLS) is represented as an outer node of the graph

to contain patterns and their possible variants.
Nested Graph GPAT - Pattern Structure Hierarchical composition of pattern (PAT) is represented as a nested graph.
Nested Node NCMP - Pattern Composition Pattern composition elements including the possible variants (PATvar)

are represented as a set of nested nodes in pattern graph.
Edge ESEQ - Pattern Sequence The Outer edge represents a possible interconnection among the different

classifications in the template to create a sequence of patterns (PATseq)
Nested Edge NREL - Pattern Relations Nested edge represents the binary relationships among change patterns

elements (e.g: PAT < Evolves > ARCH)

Table 7.4: Graph-based Representation of Change Patterns Template.

1. [Classifies : CLS
Classi f ies
←−−−−− PAT] - defines the classification of change pattern instances in the

pattern template. Pattern classification therefore defines a logical grouping of change pat-

terns based on their impact of change on architecture model (addition, removal, modification

etc.). It is based on pre-defined categories including =< Inclusion, Exclusion, Replacement >

change with classification id = 1, 2, 3 respectively. Currently this classification is based on

a manual analysis of identified patterns corresponding to their impact on architectural ele-

ments (Line 4 - 34, Listing 7.1).

2. [ComposedOf : PAT
ComposedO f
←−−−−−−− OPR] - defines the change operational composition in a

given pattern instance. Note that a set of change operators perform the architectural changes

when a pattern is applied to a given architecture model (Line 21 - 24, Listing 7.1).

3. [ConstrainedBy : PAT
ConstrainedBy
←−−−−−−−− CNS] - define a set of constraints on change patterns.

The constraints ensure the structural integrity of architecture model before and after change

pattern application (Line 16 - 20, Listing 7.1).

144

4. [Evolves : PAT
Evolves
←−−−− PAT] - defines the application of a change pattern on a given archi-

tecture model. Please note that, CBSAs defines application domain of the discovered change

patterns. Therefore, the applicability of patterns and consistency of pattern-based evolution

beyond architectural descriptions for CBSAs is not guaranteed (Line 11 - 15, Listing 7.1).

5. [hasVariant : PAT
hasVariant
←−−−−−− VAR] - defines the relationship among a pattern and its possible

variants. The variant of a pattern has the same structure and semantics of a pattern, however

a variant represents the variations among the possible implementations of a pattern. It only

requires the identification (PatternID) of possible variants of a given change pattern (Line

26 - 31, Listing 7.1).

6. [follows : PATi
f ollows
←−−−− PATj] - defines the sequence of two change patterns PATi follows

PATj. In order to develop a pattern system, patterns in the language has to be applied in

a specific order defined by one or more pattern sequences. Depending on the context in

which the pattern language is applied, there can be several sequences in a pattern language.

Specifically, the sequence < PATi ≺ PATj ≺ PATk > means: pattern PATi is selected before

pattern PATj, which itself is selected before PATk (Line 35 - 36, Listing 7.1).

7.6.2 Semi-automated Specification of Change Patterns in the Template

The discovered patterns are specified in the pattern template in a semi-automated fashion. By

semi-automated we mean the prototype-based tool support for pattern specification along with

the necessary user intervention to guide the pattern specification process. The details of the

prototype for change pattern specification along with user intervention are provided in Appendix

D. More specifically, the change operations; constraints along with the impact of change pattern on

the architecture model is provided by the prototype. User can view such provided information to

specify an appropriate name the intent of each change pattern.

Listing 7.1: Graph-based Template for Pattern Specification (GraphML notation [Brandes 2002a]).

1 <graphml>

2 <graph id=" PatternTemplate " edgedefault=" d i r e c t e d ">

3 <desc > Graph−based Representat ion of Change Pat tern Template </desc >

4 <node id = " CLS1 ">

5 <desc > The graph node provides p a t te r n c l a s s i f i c a t i o n </desc >

6 <graph id=" ChangePattern " edgedefault=" d i r e c t e d ">

7 <desc > A nested graph to r ep r es ent indiv idu a l p a t te r n </desc >

8 <node id = "PAT1">

9 <desc > Pat tern s p e c i f i c d e t a i l s </desc >

10 </node>

145

11 <node id = "ARCH1">

12 <desc > Represent the a r c h i t e c t u r e elements a f f e c t e d </desc >

13 </node>

14 <edge id = " Evolves " source = "PAT1" t a r g e t ="ARCH1">

15 <desc > Pat tern Evolves A r c h i t e c t u r e </desc >

16 <node id = "CNS1">

17 <desc > S p e c i f i e s the enforced c o n s t r a i n t s </desc >

18 </node>

19 <edge id = " isConstrainedBy " source = "PAT1" t a r g e t ="CNS1">

20 <desc > Pat tern Constrained By Cons t r a in t s </desc >

21 <node id = "OPR1">

22 <desc > Representing the Change O p e r a t i o n a l i s a t i o n </desc >

23 </node>

24 <edge id = " isComposedOf " source = "PAT1" t a r g e t ="OPR1">

25 <desc > Pat tern Composed of Operators </desc >

26 <node id = "VAR1">

27 <desc > P o s s i b l e p a t te r n v a r i a n t s </desc >

28 . . .

29 </node>

30 <edge id = " hasVariant " source = "PAT1" t a r g e t ="VAR1">

31 <desc > Pat tern has a Variant </desc >

32

33 </graph>

34 </node>

35 <edge id = " Follows " source = "PAT1" t a r g e t ="PATN">

36 <desc > Pat tern PAT1 fol lows another p a t te r n PATN </desc >

37

38 </graph>

39 </graphml>

7.7 Chapter Summary

In this chapter, based on the change log graph (Chapter 5) and change operationalisation (Chapter

6) we discovered architecture change patterns. In this chapter, we provide an answer to RQ 2 that

requires the development of methods and techniques for discovering and specifying architecture

evolution-reuse knowledge (operators and patterns) from architecture evolution histories.

We present the architecture change patterns discovery from logs as a modular (each algorithm

representing a module that can be integrated) solution with appropriate parametrisation, user in-

tervention and (semi-) automation for discovery algorithms. The discovered pattern instances and

their variants (in Section 4) represent the vocabulary of pattern language that evolves over time. We

proposed pattern discovery as a continuous process by mining new change patterns from differ-

ent logs. Furthermore, based on a meta-model for pattern-based evolution, we derived the pattern

language grammar that provides the structural composition and relations among pattern elements.

The primary contribution of this chapter are algorithms for change pattern discovery from change

log graphs. This chapter serves as a pre-requisite to Chapter 8, that aims at establishing possible

relations - pattern language sequencing - among discovered patterns to derive a pattern language.

146

Chapter 8
Composition and Application of a
Change Pattern Language for
Architecture Evolution

Contents
8.1 Chapter Overview . 148

8.2 Overview of Pattern Language Composition and Application 149

8.2.1 Architecture Change Mining for Pattern Language Composition 150

8.2.2 Architecture Change Execution for Pattern Language Application 152

8.3 Pattern Relations as the basis for Language Composition 153

8.3.1 Establishing the Pattern Relations . 153

8.3.2 Static Sequence of Patterns . 154

8.3.3 Dynamic Sequence of Patterns . 154

8.3.4 Pattern Variants . 156

8.4 Application Domain of Change Pattern Language 158

8.4.1 Evolution in Component-based Software Architecture 158

8.5 Graph Transformation for Architecture Evolution 159

8.5.1 Graph-based Architecture Models . 160

8.5.2 Constraints on Graph Model . 161

8.5.3 Graph Transformation Rule . 162

8.6 Application of Change Pattern Language . 163

8.6.1 Pattern Selection with Design Space Analysis 164

8.6.2 Architecture Evolution guided by Change Patterns 165

8.7 A Prototype for Pattern-based Architecture Evolution 170

8.8 Chapter Summary . 171

147

8.1 Chapter Overview

We exploited change logs with graph-based modelling and discovery of architecture change pat-

terns that represent generic and reusable solutions to recurring evolution problems in Chapter

7. However, the true potential for individual change patterns can only be achieved; if patterns

are applied in the context of each other - by establishing pattern interconnections - known as a

system or language of patterns [Goedicke 2002, Alexander 1999, Buschmann 2007]. In the soft-

ware engineering domain, there is a growing need to develop a pattern community1,2 to collab-

orate on discovering innovative patterns and deriving pattern languages. The primary aim of a

community-oriented effort is to promote patterns as reusable artefacts to address different phases

of a software life-cycle including architectural design and evolution [Lytra 2012, Goedicke 2002].

The primary contribution of this chapter is to explain the composition and illustrate the appli-

cation of a change pattern language that supports pattern-driven reuse in architectural evolution.

It is vital to mention that: unlike a programming language that provides an executable syntax, a pattern

language provides a generic vocabulary; a grammar as well as a sequence of applications of a collection

of individual patterns [Zdun 2007]. Therefore, the concept of a pattern language is fundamentally

inspired by the composition of a natural language [Porter 2005, Zdun 2007] that has a vocabulary,

grammar and sequences of words to enable communication. In the proposed architecture change

patterns language, the vocabulary is represented as a collection of discovered patterns and their

possible variants (cf. Chapter 7). This means the vocabulary of the proposed pattern language

evolves over time with the discovery of new change patterns. The language grammar governs

the rules and structure of relations of individual patterns in the language. Finally, the pattern

sequencing determines an ordered application of architecture change patterns in the language. The

order of the pattern application determines which patterns have to be applied before or after the

application of other patterns. In this chapter we aim to answer RQ 4 (cf. Chapter 1) that aims to

investigate patterns for reuse in architecture evolution.

Our solution to derive a pattern language with change patterns is also inspired by Alexander’s

seminal theory [Alexander 1999, Alexander 1979] about pattern languages that integrate patterns

as repeatable solution to build complex architectures in real world. A language-based pattern

collection facilitates an iterative pattern selection and their application to enable an incremental

evolution in architectures. By incremental evolution we mean: decomposing evolution process into

a manageable set of evolution scenarios that could be addressed in a step-wise manner - assuming each

1Pattern Languages of Programs www.hillside.net/plop/2013/
2European Conference on Pattern Languages of Programs www.europlop.net/

148

www.hillside.net/plop/2013/
www.europlop.net/

pattern provides a (reusable) solution to a given evolution scenario [Goedicke 2002]. As detailed in

Chapter 3, evolution-reuse knowledge [Zhang 2012] in the proposed pattern language is expressed

as a formalised collection of interconnected patterns.

8.2 Overview of Pattern Language Composition and Application

In order to support pattern interconnections (a.k.a. system-of-patterns [Buschmann 2007]) and to

derive a pattern language for architecture evolution, an overview of the proposed solution in

presented in Figure 8.1. We present a layered solution to distinguish between the aspects of

composition and application of a change pattern language. In Figure 8.1, we map our proposal of

a pattern language to the generic processes: architecture change mining and architecture change

execution in the PatEvol framework (cf. Chapter 4) and discussed below. We also introduce a

structural representation for pattern language composition.

Pattern Language GrammarPattern Language Vocabulary Pattern Language Sequencing

PatEvolSource Architecture Evolved Architecture

Architecture Change Logs

Pattern Discovery Change Record

¢£¤¤¥¦§ ¨¥©¥ª¤«¬§­®£§¯¥ ¨°¥ª«±«ª£¤«¬§ Change Execution

Evolution Scenario

Network-of-Patterns
Pattern Selection
Pattern Relations

Patterns Instances
Pattern Variants

Pattern Classification
Pattern Composition
Semantic Relations

Pattern Model

²³²´ ²µ¶´ ¶µ ¶³
Pattern Relationships

Change Patterns

Change Request

1 2 3

A CB

Figure 8.1: A Layered Overview of the Proposed Solution.

In the existing literature details about the structure of pattern language for architectural devel-

149

opment and maintenance are presented in [Zdun 2007, Goedicke 2002, Lytra 2012]. We follow the

guidelines for language composition from [Zdun 2007] to derive a change pattern language com-

prising of: a) a classified composition of patterns and their variants (1. Vocabulary : VPatEvol)

along with a b) set of rules that govern the structure and relations among pattern elements

(2. Grammar : GPatEvol) to create a c) sequence-of-patterns (3. Sequencing : NPatEvol). In the

following, the notation ⊲ denotes a containment relation (e.g. a classification contains pat-

terns and their possible variants) and ≺ denotes an order relation (e.g. a pattern PAT1 fol-

lows another pattern PAT2). We formalise the structural composition of the pattern language

as: PatEvol(VPatEvol × GPatEvol × SPatEvol) =



























































VPatEvol = {CLS ⊲ PAT(var1, var2, ... var3)} . . . (1)

GPatEvol = {PAT<Classi f iedBy>CLS,

PAT<ComposedO f>OPR,

PAT<ConstrainedBy>CNS,

PAT<Evolves>ARCH

PAT<hasVariant>VAR} . . . (2)

SPatEvol = {PAT1 < var1, . . . , varn > ≺ . . . ≺ PATn < var1, . . . , varn >)} . . . (3)



























































We now map our proposal of a pattern language in Figure 8.1 to the generic processes of

architecture change mining and architecture change execution in the PatEvol framework. .

8.2.1 Architecture Change Mining for Pattern Language Composition

In Figure 8.1 we exploit architecture change mining to derive reuse knowledge in terms of change

operationalisation, operational dependencies and discovered pattern instances from logs.

1. Vocabulary of the Pattern Language - we investigate architecture change logs to discover a

classified composition of change patterns and possible variants (i.e., vocabulary) in Figure 8.1.

We have already provided the details about discovered change patterns and their variants

in Chapter 7. A pattern language vocabulary continuously evolves with discovery of new

change patterns over time whenever pattern discovery algorithms are executed on change

logs.

150

2. Grammar of the Pattern Language - it express the structural composition of pattern el-

ements that also governs the relationships among pattern elements (i.e., grammar). The

grammar is derived based on the change patterns meta-model and binary composition relation-

ships between pattern model elements from Chapter 7.

3. Pattern Sequencing in the Language - in a language-based collection, the benefits associ-

ated to a set of related patterns are more than the sum of the benefits of each individual

pattern [Goedicke 2002, Porter 2005]. More specifically, in a language context we establish

relationships or an order of application for individual patterns to be applied in a sequential

fashion from a collection [Zdun 2007, Porter 2005]. For illustrative purposes we exemplify a

pattern relation in Figure 8.2 - more concrete examples are provided later in the chapter. In

Figure 8.2 we represent a generic relation (REL1) among two pattern PAT1 and PAT2. The

relation REL1 specifies that PAT1 must be applied before PAT2 during architecture evolution.

If there is a scenario such that a) first a component needs to be integrated in the architecture

as a mediator and b) later it is decomposed into further fine-grained components; we can

specify this pattern relation as ComponentMediation follows FunctionalSlicing as in Figure

8.2.

PAT
1

PAT
2

REL
1

Component
Mediation

Functional
Slicing

<<follows>>

Figure 8.2: An Overview of the Relation between Change Patterns.

Pattern interconnection requires the creation of either static, dynamic or both types of rela-

tions between change patterns. Static or predefined relations express specialised and gen-

eralised type patterns in the language. However, due to an unanticipated nature of archi-

tecture change; static relations are limited when expressing sequential relations between the

patterns in the language. In contrast, sequential or dynamic3 relation determines if a pat-

3Please note that our views about dynamic sequences are consistent with the pattern community’s view on pattern and
pattern languages [Zdun 2007, Porter 2005]: patterns and pattern languages are living documents/artefacts that evolve
over time as new pattern, their variants or dependencies to other patterns emerge. Our solution with architecture change
mining process supports a continuous discovery of new patterns (and ultimately new relations) from logs over time.

151

tern is dependent-on or independent-of other patterns in the language. In an ideal context,

patterns language must support dynamism in creation or destruction of pattern relations

that is driven by the context of evolution. Creating a sequential relationship among change

patterns in the language is discussed in Section 8.3.

8.2.2 Architecture Change Execution for Pattern Language Application

It refers to exploiting the patterns and their relations in a pattern language to address the evolu-

tion scenarios by mapping the problem view with solution view of the domain (i.e., CBSAs and

their evolution). In Figure 8.1, we propose architecture change execution (application of pattern

language) to enable pattern-driven reusable evolution of component-architectures.

1. Pattern Selection from Language Collection - is a significant challenge for inexperienced

developers or architects due to a) searching of required patterns in an ever growing collection

and, b) selecting the appropriate patterns or possible alternatives [Kampffmeyer 2007]. In

this and similar situations of pattern selection, systematically applying patterns requires

a certain amount of expertise from the software architect or designer. More specifically,

the architect/designer has to well understand how a pattern’s solution fits into the overall

architecture and how other patterns can be applied to resolve new or open issues as a

consequence of applying the first pattern [Zdun 2007]. Change patterns require certain

expertise from the architects in terms of mapping the problem-solution for the domain in

which the patterns should be applied. Some typical questions that arise could be:

• Which pattern should I choose first?

• Which variant of the pattern works best?

• Which pattern should be applied next?

2. Pattern Application in Architecture Evolution To support pattern-based architectural evolu-

tion, we propose to specify the architectural changes (as addition, removal, or modification)

of elements in existing CBSA. Our solution follows the idea of a declarative specification

of the changes (guided by [Sadou 2005]) that enables the selection of appropriate pattern

sequences to derive reusable evolution strategy based on given evolution scenarios. Also, a

pattern language provides a method of systematic reuse based on an incremental application

of patterns from a collection [Goedicke 2002].

152

8.3 Pattern Relations as the basis for Language Composition

Once the grammar (pattern composition and binary relations) and vocabulary (patterns and their

variants) are specified, we can establish pattern relationships (a.k.a. sequencing of patterns) pre-

sented in Figure 8.4. More specifically, a pattern language provides a topology to derive se-

quences, similar to the natural language where the grammar provides the structure for generating

sentences. An important question arises: ’why we choose a particular sequence of patterns from the

possible alternatives in the language?’. In the literature, pattern sequencing is derived based on a pat-

tern hierarchy [Porter 2005] (e.g., large patterns must be on top of smaller patterns) or using the

annotated grammar [Zdun 2007] with the Question Option Criteria methodology [MacLean 1991].

8.3.1 Establishing the Pattern Relations

A pattern language provides a topology to derive sequences, similar to the natural language where

the grammar provides the structure for generating sentences. In the context of defining pattern re-

lations, we must determine: ’why we choose or define a particular sequence of patterns (relations

among patterns) from the possible alternatives in the pattern language (available collection)?’ In

the literature, pattern relations are derived based on the analysis or observations of the application

domain of the patterns. For example, in the design and development of a composable software

systems (i.e., application domain) the pattern relations are defined based on a pattern hierarchy

such that the large patterns must be on top of smaller patterns [Porter 2005]. Also, in [Zdun 2007]

architectural design scenarios and their potential solution are analysed to derive relations among

the patterns using Question Option Criteria methodology [MacLean 1991].

In our solution, we define the pattern relations as illustrated in Figure 8.4 based on the ap-

plication domain of the proposed pattern language - evolution of the component-based architec-

tures. Specifically, we have analysed the architectural evolution based on individual architectural

changes and change patterns from logs to define pattern relations. We define the relations man-

ually during change pattern specification in the template. For example, during pattern specifi-

cation we define the relation hasVariant between ComponentMediation and ParallelComponentMedi-

ation as the later pattern is a variant of the former one. It is vital to mention that in existing

[Porter 2005, Goedicke 2002] and our solution the definition of pattern relation is a manual and

subjective process [Zdun 2007], i.e., the pattern author decides âĂŞ based on a number of factors

(such as based on personal experience, domain analysis) âĂŞ about selection of a specific relation

among patterns.

153

8.3.2 Static Sequence of Patterns

In a pattern language context, a static sequence of patterns represents a pre-determined or a fixed

relation among two or more patterns [Porter 2005]. A static sequence is determined with a manual

analysis of the domain (analysis of architecture evolution scenarios) to create a fixed relation

among the patterns. An example of the static sequencing is provided in Figure 8.4. Details about

individual patterns are already provided in Chapter 7 and Appendix D. In Figure 8.4 we derive

a sequence that is interpreted as ComponentMediation < f ollows > ActiveDisplacement: ”if the

replacement of a component is required”. A pattern sequence annotation in the language (Listing

8.1) is given as:

Listing 8.1: Static Pattern Sequence (ComponentMediation < f ollows > ActiveDisplacement).

1 <graphml>

2 <graph id=" ChangePattern " edgedefault=" d i r e c t e d ">

3 <node id = " ComponentMediation ">

4 −− Pat tern Elements Here −−

5 </node>

6 <edge id = " Follows " source = " ComponentMediation " t a r g e t =" ActiveDisplacement ">

7 <node id = " ActiveDisplacement ">

8 −− Pat tern Elements Here −−

9 </node>

10 </graph>

11 </graphml>

Limitations of Static Sequences - A static sequencing is a rigid structure of the pattern language

with a minimal flexibility. This could be particularly limiting in a context where the exact se-

quences of patterns depend on some arbitrary evolution scenario. For example, in many situations

we might need the application of ActiveDisplacement pattern directly preceding ComponentMedi-

ation. In addition, as we discover new patterns and integrate them with existing pattern collection

in the language new relationships among patterns emerge or the older ones evolve. This and

many other similar situations ignore the static sequence, in fact a static-sequence only represents

a specific organisation of patterns that must be dynamically adjusted.

8.3.3 Dynamic Sequence of Patterns

In contrast to static sequencing, a dynamic sequence of patterns represents the dynamic relation-

ships among patterns that evolve based on the context of pattern application [Porter 2005]. This

means, during change execution (runtime) there does not exist any relation among patterns, in-

154

stead patterns are dynamically selected one after another by means of an iterative specification

of the given evolution scenarios. To create dynamic sequencing, we follow a step-wise process

by exploiting design-space analysis for patterns [Zdun 2007, MacLean 1991] that is based on the

Question Option Criteria [MacLean 1995]. For example, in Figure 8.3 the intent of a pattern lan-

guage user is to enable component composition, but he/she is unclear which pattern to select.

By following the QOC method, patterns can be applied in an arbitrary sequence (selecting one

pattern at a time). Moreover, the QOC process is iterative such that after selection of a specific

pattern. A new question (i.e., evolution scenario) can be specified to select the next patterns. For

example, in contrast to a static sequence the selection of the Component Mediation pattern based

on QOC methodology is achieved as follows.

<<hasVariant>>

How to compose an atomic
component into a composite

component

Child Creation pattern is available
for component composition

Application of Child Creation
pattern results in component

composition

1. Question: Evolution Scenario

2. Option: Available Patterns

3. Criteria: Pattern Consequence

None

re
p

ea
t:

 n
ew

 s
ce

na
rio

Figure 8.3: Overview of the QOC Methodology for Dynamic Selection of Patterns.

1. Question - How to compose an atomic component into a composite one?

2. Option - ChildCreation pattern enables component composition.

3. Criteria - The consequence of ChildCreation pattern is the composition of an atomic compo-

nent into a composite component (composed of one or more child/sub component(s)).

We generalise the dynamic sequencing of patterns in the language as follows, where ≺ rep-

resents a sequencing operation, PAT represents a selected pattern instance and var represent the

possible variant(s) of a pattern:

QOC := {PAT1 < var1, . . . , varn >≺ . . . ≺ PATn < var1, . . . , varn >)}

We further clarify and exemplify QOC-based pattern selection in Section 8.6.

155

8.3.4 Pattern Variants

The composition of a given pattern instance may vary depending on possible variations in archi-

tectural changes. This means, there exist variations in the composition of a pattern and that is

expressed as pattern variants. Variants allow to model and evaluate the possible variation that

may exist in the problem-solution space for pattern-based architecture evolution. For example (in

Chapter 7), while discovering change patterns we observed exact and inexact matching among

discovered pattern instances - representing a variation of change patterns. More specifically, we

presented the Component Mediation pattern having two possible variants Parallel Mediation and

Corelated Mediation. In a pattern language context, relation among a pattern PATj and its variant

VARk generalised as VARk
hasVariant
←−−−−−− PATj and is expressed:

Listing 8.2: Pattern Variants of ComponentMediation Pattern.

1 <graphml>

2 <graph id=" ChangePattern " edgedefault=" d i r e c t e d ">

3 <node id = " ComponentMediation ">

4 −− Pat tern Elements Here −−

5 </node>

6 <edge id = " hasVariant " source = " ComponentMediation " t a r g e t =" P a r a l l e l M e d i a t i o n ">

7 <node id = " P a r a l l e l M e d i a t i o n ">

8 −− Pat tern Elements Here −−

9 </node>

10 <edge id = " hasVariant " source = " ComponentMediation " t a r g e t =" CorelatedMediation ">

11 <node id = " CorelatedMediation ">

12 −− Pat tern Elements Here −−

13 </node>

14 </graph>

15 </graphml>

In the work on design patterns [Gamma 2001] (with more than a decade of research and

practice), pattern variants have emerged and become almost a complementary solution to the

original GOF patterns. In contrast, the change patterns discovered in this thesis are comparatively

much less mature. Therefore, we cannot claim (without further validations) that every change

pattern has (an empirically discovered) variant as an integral part of the pattern.

156

C1 C2

C3

C4

C1 C2

C4

<<PRE>> <<POST>>

Child Creation

C X1

C

<<PRE>> <<POST>>

+
<<PRE>> <<POST>>

X
1

C
1

C
2

X C
1 X

1

C
2

+

Child Adoption

Functional
Slicing

<<PRE>> <<POST>>

C

C
1 C

2

+ +

X

C

Component
Mediation

<<PRE>> <POST>>

C2C1

CM
x3x2

C1

x1

C2 x2
C3

++
<<PRE>> <<POST>>

C1

x1

C2

C1

x1

C2

X

X

Active
Displacement

Functional
Unification

<<PRE>>

C1

C2

<<POST>>

C
1 C

2

X X

C+

<<used for component
decomposition>>

<<used for component
 composition>>

<<used for component
replacement>>

<<used for component
integration>>

inverseOf

follows

follows

follows

follows

Child Swap

<<PRE>>

<<POST>>

X
1

C
1

X
2

C
2

X
2

C
1

X
1

C
2

<<used for sub-component
move from parent>>

<<used for sub-component
swapping>>

<<used for sub-component
creation>>

follows

Parallel
Components

Mediation

Co-related
Components

Mediation

has
Variants

Change Patterns

<<PRE>> <POST>>

C2C1

CM
x3x2

C1

x1

C2

<<PRE>>

C1

C2

<<POST>>

C
1 C

2

X X

C+

Pattern Impact

Pattern Variant

Pattern Relations

C1

x1

C2

C1 C2

C3

C4

<<PRE>> <<POST>>

follows

Figure 8.4: An Overview of Change Pattern Language.

157

8.4 Application Domain of Change Pattern Language

The pattern language embodies its knowledge by investigating change representation in evolv-

ing architecture models. Therefore, the applicability (a.k.a. application domain) of the proposed

pattern language is limited to component-based architecture models (CBSA) [Medvidovic 1999,

van der Aalst 2002] and evolution in CBSAs [Garlan 2009, Le Goaer 2008]. We have already de-

tailed graph-based modelling4 of component-based software architectures in Chapter 2. In this

section we clarify the application domain of proposed pattern language. Therefore, we provide

a quick review of graph-based descriptions of CBSAs and also discuss some architecture evolu-

tion scenarios that are used to illustrate pattern-driven evolution. Additional details about the

component-based architecture model are provided in Appendix D.

8.4.1 Evolution in Component-based Software Architecture

We look at two evolution scenarios to demonstrate the desired changes in existing architecture

model for the EBPP case study [EBPPCaseStudy]. We adopt the Architecture Level Modifiability

Analysis (ALMA) [Bengtsson 2004] method for scenario elicitation and analysis of EBPP architec-

ture evolution. Further details about the EBPP case study are presented in Appendix B. Based on

the ALMA methodology, we follow a three step process for selection, evaluation and interpretation

of evolution scenarios.

Two evolution scenarios are presented in Table 8.1. Key characteristics and evolution-centric

aspects of the component-driven architecture are:

• Composite Change Execution that must abstract atomic change operations [Add, RemoveModi f y]

on architecture elements < Component, Connectors > into composite changes that allow

[. . . , Integration, Composition, Replacement, . . .] of a set of architecture elements.

• Evolution Reuse is a key characteristic that must enable a generic, reuse-driven change for re-

curring evolution problems [Garlan 2009, Le Goaer 2008] in component-driven architecture

models.

• Consistency of Evolving Architecture Models ensures that the structural integrity and compo-

sition constraints of an architecture model are preserved before (preconditions) and after

evolution (postconditions).

4Additional details about graph modelling for architecture description [Baresi 2002] is provided in a report
www.computing.dcu.ie\~aaakash\GraphModel.pdf

158

www.computing.dcu.ie\~aaakash\GraphModel.pdf

Evolution Scenario I
A. Scenario Selection B. Scenario Evaluation

ES1 - [. . .] to integrate a mediator component PaymentType Architecture is modified with addition of a new components
that facilitates the selection of a payment type mechanism among and two connectors to mediate customer billing and payments:
the directly connected components BillerCRM and CustPayment. opr1:= Add(PaymentType ∈ CMP)

opr2:= Add(getBill, selectType ∈ CON)
C. Results Interpretation

Change Preconditions Change Postconditions

BillerCRM

CustPayment

makePayment

CustPaymentBillerCRM

PaymentType

selectTypegetBill

++ +

Evolution Scenario II
A. Scenario Selection B. Scenario Evaluation

ES2 - [. . .] To compose the PaymentType component with The internal architecture of PaymentType is modified with addition of
DirectDebit and CreditPayment child components that two child components DirectDebit and CreditPayment
a customer to avail-of flexible options for billing payments. opr1:= Add(DirectDebit ∈ CMP)

opr2:= Add(CreditPayment ∈ CMP)
C. Results Interpretation

Change Preconditions Change Postconditions

PaymentType

+
DirectDebit

CreditPayment
P

ay
m

en
tT

yp
e +

+

Table 8.1: Selection, Evaluation and Interpretation of Architecture Evolution Scenarios.

8.5 Graph Transformation for Architecture Evolution

Graph transformation provides a mathematical foundation to evolve architecture models that are

represented as graphs [Carrière 1999, Baresi 2006b]. Therefore, in this section we focus on present-

ing the foundational concepts of graph transformation before presenting details about architecture

evolution guided by change patterns. The technical details about (graph-) transformation-driven

evolution are presented in [Baresi 2002] with a step-by-step approach to enable graph transforma-

tion for software evolution. More specifically, in the context of architecture evolution the work in

[Carrière 1999] exploits graph transformation for architectural re-engineering and evolution. In

addition considering attributed graph, [Baresi 2006b] focused on attributed graph transformation

for evolution and refinement of service-driven architecture that is similar to our solution.

In contrast to some of the well-known graph transformation solutions for architecture evolu-

tion [Carrière 1999, Baresi 2006b], we focus on architectural transformation that is guided by ar-

chitecture change patterns. In this context, the architecture model is represented as an attributed

159

graph [Ehrig 2004], and we exploit an attributed graph transformation for architecture evolution

[Baresi 2006b]. In order to enable architecture evolution, we follow the double push-out (DPO) as

an algebraic approach for graph-transformation [Loewe 1997]. Technical details about algebraic

graph transformation and mathematical foundations for DPO graph transformation are discussed

in [Ehrig 2006, Loewe 1997] with tool support provided in [Taentzer 2000].

The DPO approach enables specification of a graph transformation system that enables changes

in a graph architecture in the form of pairs of graph morphisms

〈

Source
src
←− Intermediate

trg
−→ Target

〉

as illustrated in Figure 8.5. We utilise a hypothetical example in Figure 8.5 and introduce a DPO-

based approach to architecture evolution that is used to achieve pattern-based architecture evo-

lution later in Section 8.6. In the example Figure 8.5, we want to add a new graph node (Nx)

between connected nodes (N1, N2) such that Nx is an intermediate node between N1 and N2

N1 N2

N3 N4

N1 N2

N3 N4

Nx

c1
c3c2

N1 N2

N3 N4

c3c2

c3c2

c5c4

ARCHsrc

N1 N2

Preconditions

c1 N1 N2

Nx c5c4

<<PRE>> <<POST>>

N1 N2

Invariants

Postconditions

<<INV>>

m1: PRE ARCH src
→

m3: POST ARCHtrg→

m2: INV ARCHinv→

ARCHtrg

ARCHinv

T = ARCHsrc ARCHinv ARCHtrg→←

pushout (1) pushout (2)

Figure 8.5: Overview of Double Push Out Graph Transformation System.

In Figure 8.5, we express a graph transformation system for architecture evolution as follows:

Gtrans =< ARCH, CNS, OPR > consists of an architecture model (ARCH) represented as a typed

graph to define the architectural elements and their relationships, a set of constraints (CNS) to

further restrict the valid architecture models, and a set change operations (OPR) as graph trans-

formation rules.

8.5.1 Graph-based Architecture Models

In a graph transformation system architecture models (ARCH) consists of:

160

〈

ARCHsrc, ARCHinv, ARCHtrg

〉

∈ ARCH

1. Source Architecture Model is represented as ARCHsrc, that is evolved towards

2. Target Architecture Model represented as ARCHtrg, using an

3. Invariant Architecture Model represented as ARCHinv that is preserved during change, ARCHinv

is an intermediate architecture (graph) ARCHsrc
src
←− ARCHinv

trg
−→ ARCHtrg between source

and target.

The architecture graph is specified as five tuple ARCH = (NG, EG, NA, EN A, EE A) (cf. Chapter

2). In this context, NG and NA are called the graph and attribute nodes (for representing architec-

tural components and their attributes), respectively while NA, EN A, and EE A are called the graph,

node attribute, and edge attribute edges, respectively. EG represents graph edges as connectors

in architecture. For example, in Figure 8.5, ARCHsrc represents the configuration of source ar-

chitecture having nodes (components) N1, N2, N3, N4 are connected using the edges (connectors)

c1, c2, c3. The source graph ARCHsrc, invariant graph ARCHinv and the target graph ARCHtrg

represent an instance of ARCH, therefore ARCHsrc, ARCHinv, ARCHtrg ∈ ARCH.

8.5.2 Constraints on Graph Model

The constraints (CNS) on a graph model refer to a set of pre-conditions (PRE) and post-conditions

(POST) to ensure the consistency of graph models during transformation. In addition, the invari-

ants (INV) ensure structural integrity of individual architecture elements during change execution.

We specify transformation constraints as:

1. Transformation Preconditions represent the context of graph elements before transformation.

For example in Figure 8.5, PRE specifies the exact sub-graph c1(N1, N2) that is subject to

change in the original graph ARCHsrc. In order to apply the transformation rule, we must

find a match m1 of the PRE in ARCHsrc, such that m1 : PRE → ARCHsrc provides a

structural matching between PRE and ARCHsrc based on node and edge labels in Figure

8.5.

2. Transformation Postconditions specify the context of a transformed graph as a result of the

change execution. After applying changes on specified elements the overall graph struc-

ture must be preserved. For example, POST specifies the exact sub-graph c4(C1, CX) and

c5(C2, CX) that is added to the original architecture ARCHsrc, in Figure 8.5. In order to

161

include the modified architecture elements POST in the target graph ARCHtrg an exact

structural match m3 of POST in ARCHtrg must exist such that m3 : POST → ARCHtrg.

3. Transformation Invariants expressed as INV and ARCHinv (or the invariant graphs) that pro-

vide the common interface for ARCHsrc and ARCHtrg which is preserved during transfor-

mation, in Figure 8.5. It describes a part of the graph (intersection of ARCHsrc and ARCHtrg)

part which has to exist to apply the transformation rule. This is represented as Figure 8.5,

the invariant graph ARCHinv as m2 : INV → ARCHsrc with Double-Push-Out (DPO) graph

transformations [Loewe 1997].

8.5.3 Graph Transformation Rule

The transformation rules allow a declarative specification of graph transformations (by adding or

removing the specified nodes and edges) on a source graph ARCHsrc resulting in a target graph

ARCHtrg. A transformation rule T is given as: T =

〈

ARCHsrc
src
←− ARCHinv

trg
−→ ARCHtrg

〉

. For

example in Figure 8.5, the application of the graph transformation requires finding a match PRE

in the source graph ARCHsrc with c1(N1, N2) as the common sub-graph in PRE and ARCHsrc.

1. Pushout I - Deletion of an edge - PRE INV represents the architecture element(s) which is to

be deleted from ARCHsrc. For example, in Figure 8.5 the edge c1 is removed from ARCHsrc

among nodes N1 and N2. The invariant graph ARCHinv is obtained from the source graph

ARCHsrc by removing c1 from ARCHsrc.

2. Pushout II - Addition of nodes and edges - POST INV represents the sub-graph which needs to

be added in ARCHsrc to obtain ARCHtrg during change execution. For example in Figure

8.5, the node Nx is added with edges c4 and c5 in ARCHinv to obtain ARCHtrg.

Graph Pattern - a formal graph-based notation for change pattern (PAT) is provided in Chapter

7 with its concrete representation as graph modelling notation [Brandes 2002a]. We express graph

pattern as PAT < name, intent >: PRE(ARCHsrc)
ARCHinv−−−−−→ POST(ARCHtrg) as a constrained

composition of source to target architectural transfromations that can be reused. The application

of graph patterns for transformation requires finding a match PRE in the source graph ARCHsrc

and replacing preconditions with post-conditions POST that leads the target graph ARCHtrg by

application of graph transformation and preserving the invariant structure ARCHinv.

162

8.6 Application of Change Pattern Language

After presenting pattern relations in the language and application domain of pattern language,

we now focus on pattern-language support for evolution in component-based architectures. An

overview of the solution for pattern-based architecture evolution is provided in Figure 8.6 - a

detailed view of the architecture change execution process (from Section 8.2). In the remainder of

this section, first we discuss the design space analysis for change pattern selection in Section 8.6.1.

We provide a three-step process including change specification, pattern selection and change execution

to enable architecture evolution in Section 8.6.2. Change patterns from the language could be

selected and applied in a sequential fashion to support an incremental evolution [Garlan 2009,

Le Goaer 2008] in CBSAs.

X1

X2

C

Child Creation

Evolution Scenario 1 - ES I
Integration of a PaymentType Component

Evolution Scenario 2 - ES II
Composition of PaymentType Component

CM

C1 C2

Component Mediation

Problem-Solution
Map

Solution Space

Problem Space Change Specification

Pattern
Selection

Change Execution

Evolution Scenario Pattern Collection Selected Pattern

1

2

3

A

B

CChange Pattern 1 Change Pattern 2

Evolution Scenario II

Evolution Scenario IPattern 1

Pattern 2

follows

Figure 8.6: An Overview of Mapping Evolution Problems to Available Patterns (Solutions).

As presented in Figure 8.6, in order to enable pattern-driven evolution, we adopt the design

space 5 analysis [MacLean 1995, MacLean 1991] to systematically map the problem-solution views

to derive a solution. Design space analysis is a methodology to address design-related problems

in human-computer-interaction (HCI) [MacLean 1995], however it is generic enough and success-

fully adopted in the pattern selection context [Zdun 2007]. We utilise design space analysis for

an a) explicit representation of alternative change patterns and b) rationale for choosing among

5Throughout the chapter, we utilise the terminology ”design space” that refers to a problem and solution space -
problems of architecture evolution solved with architecture change patterns.

163

available patterns (a.k.a. pattern selection). More specifically, Figure 8.6 illustrates:

1. Problem Space represents the evolution scenarios, which we identified from the EBPP case

study and presented in Table 8.1 (cf. Section 8.4).

2. Problem-Solution Map represents the pattern collection that provides a mapping of evolution

scenarios to their potential solution as pattern instances in Figure 8.4 (cf. Section 8.3).

3. Solution Space represents pattern-driven reuse to guide architecture evolution that is the focus

of this section.

8.6.1 Pattern Selection with Design Space Analysis

In a technical context, the generic problem-solution mapping (Figure 8.6) that addresses a given

evolution scenario by selecting appropriate pattern(s) for language collection. First we exemplify

the Question-Option-Criteria [MacLean 1991] (using design space analysis) that allow us to resolve

the pattern selection problem to enable pattern-driven evolution. We illustrate pattern selection

in Figure 8.7 by illustrating selection of Component Mediation patterns (cf. Section 8.3 - Pattern

1). Figure 8.7 and the check-list6 in Table 8.2 that utilise the 3-step QOC-based pattern selection

process:

1. Question - Evolution Scenario allows the representation of a problem space that allows a

declarative specification for intent of change, e.g: What are the available pattern(s) that allow

integration of a mediator component among two (or more) directly connected components?

2. Option - Available Patterns enables problem-solution mapping with selection of the most

appropriate pattern from language collection, e.g: The available pattern(s) for component

integration is Component Mediation pattern that has two variants Parallel Mediation and

Correlated Mediation patterns, in Figure 8.7.

3. Criteria - Pattern Consequences defines analysing the solution space to allow evolution of archi-

tecture by satisfying the given criteria, e.g: The application of Component Mediation pattern

allows a mediator component to be integrated among two directly connected components.

6Please note that the original check-list for pattern selection is more exhaustive and evaluates all the patterns that exist
in the language. For illustrative reasons, we only present a partial check-list based on selection of closely related patterns

164

Component Mediation CorelatedMediationParallel MediationO1

C1

A Singleton Mediator (CMP med) for
integration of Provider and Requester

C2

CMP
med

 is a requester to CMP
pro

and
 provider to CMP req

C3

pro req
med

pro

med

req

med

pro req

How to Integrate a Mediator among two or more
directly connected Components?

Q

O2 O3

Provider (CMP pro) and Requester (CMP req)
components disconnected

11 CO →

22 CO →

33 CO → 33 CO →

12 CO →

Figure 8.7: QOC Methodology for Pattern Selection.

Question How to Integrate a Mediator among two or more directly connected Components?

Options

Criteria Component Mediation Parallel Mediation Corelated Mediation

Mediator Addition X X X

Singleton Mediator X X ×
Component Disconnection X × ×

Table 8.2: QOC Criteria for Selecting an Appropriate Pattern.

8.6.2 Architecture Evolution guided by Change Patterns

After an overview of pattern-driven evolution process and pattern selection, we now focus on

architecture evolution that is guided by graph transformation [Baresi 2006a, Loewe 1997]. In the

architecture evolution support with a pattern language, we primarily focus on a) enabling change

reuse and b) maintaining the structural consistency of architecture before and after change execution.

We use the Graph Modelling Language (.GML) [Brandes 2002a] for an XML-based represen-

tation of architectural instances. This means specification of architecture models as graph allows us to

exploit graph transformation rules to evolve the architecture in a formal, automated way. More specifi-

cally, during execution change operationalisation is abstracted as declarative graph transformation

rules (in our case GML transformations). We have already detailed the underlying graph-based

formalism for architecture modelling (cf. Section 8.4) and architecture transformation (cf. Section

8.5). It is vital to re-iterate the fact that evolution in the context of composition-based architecture

165

abstracts atomic changes into a set of composite change operations. This means atomic change op-

erations (Add(), Remove(), Modify()) on architectural elements (components and connectors) must

be abstracted into reusable composite and domain specific changes. Composite-domain specific

changes include Integrate (), Replace (), Decompose (), Split (), Merge () etc. of architecture elements.

Architecture Evolution Scenarios

First we present the architecture evolution scenarios, followed by selection and application of

change patterns to address the scenarios. In the existing functional scope of the case study (cf.

Table 8.1), the company charges its customer with full payment of customer bills in advance of

the requested services. Now the company plans to facilitate existing customers with either direct

debit or credit-based payments of their bills. In the following, we illustrate the role of Component

Mediation followed by Child Creation patterns to allow a) integration of a mediated component

PaymentType (ES1) and b) creation of its child components DirectDebit or CreditPayment (ES2).

Evolution Scenario I - to integrate a mediator component PaymentType that facilitates the selection

of a payment type (direct debit, credit payment) mechanism among the directly connected components

BillerCRM and CustPayment.

Pattern-based evolution follows a three step process: Change Specification, Pattern Selection

and Change Execution, as illustrated in Figure 8.6.

1. Step I - Change Specification - Questions: we specify architectural changes along with ar-

chitectural pre-post-conditions using the GraphML notation [Brandes 2002a]. Change spec-

ification essentially provides us with an XML-based notation for intent of the change as

detailed in Listing 8.3. A declarative specification allows an architect to represent syntacti-

cal context of architectural change that contains the a) source architecture model (Source <

ArchitectureModel >: Preconditions) b) typed architecture elements (ArchitectureElement ∈

ElementType) that need to be added, removed or modified, and c) anticipated target ar-

chitecture (Target < ArchitectureModel >: Postconditions). A change specification is for-

mally expressed as follows. Please note that specification of change pre-conditions and

post-conditions is also a part of the architectural change specification that is detailed below

in subsequent steps.

Listing 8.3: A declarative Specification of Architecture Change.

1 <node id = " ChangeRule ">

166

2 <desc > S p e c i f i c a t i o n of Change Rule </desc >

3 <date key=" ChangeRule "> I n t e g r a t i o n </data >

4 <data key=" Operation "> ADD </data >

5 <data key=" Archi tectureEelment "> PaymentType </data >

6 <data key=" ElementType "> Component </data >

7 </node>

2. Step II - Pattern Selection - Options: in order to select an appropriate pattern, we need to query

the pattern language based on pattern-specific conditions. These conditions are expressed as

preconditions and post-conditions that must be satisfied to preserve the structural integrity

of the overall architecture and individual elements during change execution.

- The precondition(s) represent the context of architectural elements before change execution

in Listing 8.4. For example in Figure 8.8 a, the preconditions (pre) specifies the exact sub-

architecture makePayment(BillerCRM, CustPayment) that needs to be changed in the source

architecture (source). In order to apply changes, we must find an exact structural match

ms of preconditions in source architecture (cf. DPO transformation [Loewe 1997]), such that

ms : pre → source as in Figure 8.8 a. The DPO graph transformation allows a) source

architecture (graph) to be transformed into the b) target architecture (graph) by using an

intermediate architecture (graph).

Listing 8.4: Preconditions of Architecture Evolution.

1 <node id = " Precondi t ions ">

2 <desc > S p e c i f i c a t i o n of Precondi t ions </desc >

3 <data key=" Archi tectureElement "> BillerCRM </data >

4 <data key=" ElementType "> CMP </data >

5 <data key=" Archi tectureElement "> CustPayment </data >

6 <data key=" ElementType "> CMP </data >

7 . . .

8 </node>

- The invariants represent the intermediate architectural structure that is never changed

during evolution. This is represented in Figure 8.8 b, the intermediate architecture mi :

inv→ intermediate with Double-Push-Out (DPO) graph transformations.

- The post-condition(s) specify the context of evolved architectural elements as a result of the

change execution in Listing 8.5. After applying changes on specified elements, the overall

architectural structure must be preserved. In order to include the modified architecture

167

CustInvoice

payInvoice

CustBill

billAmount

BillerCRM CustPayment

PaymentType

BillerCRM
makePayment

CustPayment

CustPayment

CustBill

billAmountpayInvoice

BillerCRM

CustInvoice

BillerCRM
makePayment

CustPayment

BillerCRM

CustInvoice

payInvoice

makePayment
CustPayment

CustBill

billAmount

Preconditions (pre)

Source Architecture

Postconditions (post)Invariants (inv)

Target ArchitectureIntermediate Architecture

ms : sourcepre mT : targetpostmI : intermediateinva) b)

A B
c1

A B

c2 M c3

PRE

POST

REM(c1: CON)

ADD(M: CMP)

ADD(c2: CON)

ADD(c3: CON)

ADD(PaymentType: CMP)
ADD(pData: POR)

Pattern Instance

Pattern
 Language

c)

selectType custPay

BillerCRM CustPayment

PaymentType

T = Source Invariant Target→←

Figure 8.8: Pattern-Driven Architecture Evolution Using Graph-Transformation (DPO) Approach.

elements in the target architecture (target) an exact structural match mt of post-conditions in

the target architecture must exist such that mt : post→ target (Figure 8.8) expressed as:

Listing 8.5: Postconditions of Architecture Evolution.

1 <node id = " I n v a r i a n t s ">

2 <desc > Target A r c h i t e c t u r e Model</desc >

3 <data key=" Archi tectureElement "> BillerCRM </data >

4 <data key=" ElementType "> CMP </data >

5 <data key=" Archi tectureElement "> CustPayment </data >

6 <data key=" ElementType "> CMP </data >

7 . . .

8 </node>

3. Step III - Change Execution - Criteria: once an exact instance of preconditions in a source

architecture is identified, the pattern language is queried with pre-conditions and post-

conditions that enables the retrieval of the appropriate pattern that provides the potential

168

reuse of change operationalisation to enable architectural evolution (cf. Figure 8.7). The

query matches the specified change pre-conditions and post-conditions to retrieve the pat-

tern definition. Figure 8.8 illustrates the retrieved instance of Component Mediation pattern.

In addition, pattern instantiation involves labeling of generic elements in specifications with

labels of concrete architecture elements. For example, in Figure 8.8a the connector instance

makePayment that is missing in the change post-conditions is removed from the source ar-

chitecture. The newly added instance(s) of component PaymentType and connector getType,

makePayment are the candidates for addition to the source to obtain target in Figure 8.8c.

Change Operationalisation We provide a brief overview of the change execution that is

facilitated using the DPO construction [Loewe 1997, Baresi 2006b] - expressed in Listing 8.6.

• Pushout I - Deletion Operation In Figure 8.8b, Source/Intermediate describes the archi-

tecture elements to be deleted from the source architecture. For example, the connector

makePayment is removed from the BillerCRM and CustPayment. The intermediate ar-

chitecture is obtained from the source architecture for elements which are a pre-image

in Source, but do not exist in Intermediate.

• Pushout II - Addition Operation In Figure 8.8c, Target/Intermediate describe the part

which needs to be added in Source to obtain Target during change execution. In Figure

8.8c the component PaymentType is added with a connector selectType and custPay in

to the architecture. This is represented as:

Listing 8.6: Change Operationalisation for Architecture Evolution.

1 <node id = " ChangeOperations ">

2 <desc > Change O p e r a t i o n a l i s a t i o n </desc >

3 <data key=" ChangeOperator "> Add </data >

4 <data key=" Archi tectureElement "> PaymentType </data >

5 <data key=" ElementType "> CMP </data >

6 <data key=" ChangeOperator "> Remove </data >

7 <data key=" Archi tectureElement "> makePayment </data >

8 <data key=" ElementType "> Connector </data >

9 . . .

10 </node>

169

8.7 A Prototype for Pattern-based Architecture Evolution

An overview of the prototype to support pattern-based architecture evolution is presented in Fig-

ure 8.9. The list of discovered patterns from Chapter 7 (using the prototype GPride) are provided

as an input to the PatEvol prototype.

• The input to this prototype is change rule (specifying the desired changes) along with source

architecture model and the pre-conditions and post-conditions for architecture evolution -

referred to as change specification. Change specification allows the user to declaratively spec-

ify the intent of change as the change rule (cf. Section 8.6). The change rule explicitly specify

the intent of change, the architecture models to be evolved, i.e., source architecture and pre-

conditions on the architecture model. Evolution rules are specified as an XML description

(using Graph Modelling Language [Brandes 2002a] notation).

GPride

Discovered Pattens
(Pattern Template)

Preconditions Postconditions

Change Rule

PAT1 PAT2 PATN

Source
Architecture

Evolved
Architecture

Interface
Architecture

Evolved Architecture

Change
Specification

Pattern
Selection

Change
Execution

Figure 8.9: Overview of Prototype to Support Pattern-based Architecture Evolution.

• The prototype allows the user to select the most appropriate pattern that can support reuse of

architecture change operationalisation - referred to as pattern selection. Patterns are expressed

in the language as a nested graph (Chapter 7) with GML notation. Pattern selection is

enabled with design space analysis based on the QOC methodology [MacLean 1995].

170

• Finally, the selected pattern guides the architecture evolution with the output as an evolved

architecture model - referred to as change execution. Architectural descriptions are provided

with a graph-based notation using the graph modelling language (cf. Chapter 2, Appendix

B). Architectural descriptions before and after evolution are verified with pre-postconditions

to ensure structural integrity of the architecture model is preserved during evolution.

Details about the prototype and user interfaces for pattern-based architecture evolution are

provided in Appendix E.

8.8 Chapter Summary

In this chapter, we aimed at supporting pattern-language based formalism to enable reuse in evo-

lution of component-based software architectures. We highlighted the role of a pattern language

as an explicit collection of reuse knowledge to support reuse-driven evolution in CBSAs. More

specifically, a pattern language as a system-of-pattern allows problem-solution mapping to reuse

change operationalisation that is abstracted using patterns. In a language context, we aim to derive

a vocabulary, grammar and pattern sequencing to support pattern application during architecture

evolution. The role of pattern language is central in promoting patterns to achieve reuse and con-

sistency in the evolution of CBSAs. We demonstrated that, if an architectural evolution problem

can be specified declaratively, pattern-driven evolution could relieve an architect from underlying

operational concerns for executing routine evolution tasks facilitated with change patterns.

171

Chapter 9
Evaluation of the PatEvol Framework

Contents
9.1 Chapter Overview . 173

9.1.1 Context, Objectives and Methodology of Evaluation 173

9.2 Qualitative Analysis and Comparison of the PatEvol Framework 174

9.2.1 Reuse-Driven Evolution in Software Architecture 175

9.2.2 Pattern Languages for Architecture Change Management 176

9.3 Methodology for Evaluating the PatEvol Framework 176

9.3.1 ISO/IEC 9126 Model for Quality Evaluation 176

9.3.2 Evaluation Strategy - Experiments and Participant’s Feedback 177

9.4 Evaluating the Efficiency and Suitability of the Log Graph 179

9.4.1 Suitability of the Change Log Representation 180

9.4.2 Summary of the User Feedback for Suitability of Change Log Graph 182

9.4.3 Efficiency of the Graph-based Retrieval of Log Data 182

9.4.4 Summary of Results for Efficiency of Log-based Data Retrieval 183

9.5 Evaluating Accuracy and Efficiency of Pattern Discovery 184

9.5.1 Interpretation of Results - Automated vs Manual Discovery of Patterns . . . 185

9.5.2 Discussion and Conclusions . 189

9.6 Evaluating the Accuracy of Pattern Selection . 190

9.6.1 Accuracy of Pattern Selection - Precision and Recall Measure 190

9.6.2 Effects of Pattern Classification on Selection Precision 192

9.6.3 Implications of a Small Search Space for Pattern Selection Precision 194

9.7 Evaluating the Efficiency and Reusability of Pattern-based Architecture Evolution195

9.7.1 Pattern-based Evolution of a Client Server Architecture 196

9.7.2 Summary of Comparison for Primitive vs Pattern-based Changes 199

9.7.3 Granularity vs Reusability of Changes . 201

9.8 Threats to Validity of Research . 203

9.9 Chapter Summary . 205

172

9.1 Chapter Overview

In this chapter we focus on an experimental evaluation of the architecture change mining and

architecture change execution processes in the PatEvol framework. More specifically, in the ar-

chitecture change mining process, we evaluate the log-based investigation of architecture change

representation, change operationalisation and pattern discovery presented in Chapter 5, Chapter 6

and Chapter 7, respectively. In architecture change execution, we evaluate the precision of pattern

selection and efficiency of pattern-based architecture evolution from Chapter 8.

9.1.1 Context, Objectives and Methodology of Evaluation

• Context and Methodology of Evaluation To evaluate the PatEvol framework, the evaluation

methodology is based on ISO/IEC 9126 - 1, an international standard for the evaluation of

quality characteristics of a software product and solution [Jung 2004]. However, ISO/IEC

9126 - 1 is a theoretical model for evaluation that needs to be complemented with a concrete

evaluation strategy. The evaluation strategy aims to investigate the quality characteristics of

PatEvol framework and is based on an experimental investigation with architecture evolu-

tion case studies. We engage the participants in case study based experiments and seek their

feedback for evaluation of the framework processes.

• Objectives of Evaluation The primary objectives of the evaluation are to investigate the

quality characteristics of ISO/IEC 9126 - 1 model including functionality, suitability and ef-

ficiency of the PatEvol framework. An evaluation of these quality characteristics and their

sub-characteristics validate the research hypothesis as outlined in Chapter 1. The hypothesis

is further decomposed to identify the research challenges represented as research questions

focused on a) RQ1 - modelling evolution histories along with b) RQ 2 - discovery, c) RQ3 - selec-

tion and d) RQ 4 - application of architecture evolution-reuse knowledge. More specifically:

1. We evaluate the efficiency and suitability of graph-based modelling of architecture evo-

lution histories (i.e., change logs) - evaluating results corresponding to RQ 1 in Section

9.4.

2. We evaluate the accuracy and efficiency of pattern discovery algorithms - evaluating

results corresponding to RQ 2 in Section 9.5.

173

3. We evaluate the accuracy of pattern selection process - evaluating results correspond-

ing to RQ 3 in in Section 9.6.

4. We evaluate the reusability and efficiency of pattern application - evaluating results

corresponding to RQ 4 in Section 9.7.

Additional details about the quality sub-characteristics of ISO/IEC 9126 - 1 model, experimental

setup, participants and the questionnaire for participant’s feedback to evaluate the framework are

presented in Appendix E.

9.2 Qualitative Analysis and Comparison of the PatEvol Frame-

work

Before the validation of the PatEvol framework, we need to qualitatively analyse and compare the

proposed framework with some relevant solutions that enable reuse of architectural evolution. By

qualitative comparison we mean the definition and evaluation of the qualitative parameters that

allows us to objectively interpret the results. Based on the research state-of-the-art, in Table 9.1 for

comparison purposes we have utilised a total of five parameters that include: (i) Reuse Method, (ii)

Type of Reuse, (iii) Time of Evolution, (iv) Architecture Descriptions, and (v) Tool support.

It is vital to mention that, in the software architecture community, pattern oriented software

architecture [Buschmann 2007] represents one of the earliest literature on patterns and pattern lan-

guages for architecture design. In contrast to patterns of architectural design [Buschmann 2007],

our solution (PatEvol framework) is the first attempt towards promoting a pattern language to en-

able reuse in architectural evolution. Table 9.1 provides the basis for a qualitative and comparative

analysis (potential and limitations) of our solutions in the context of research state-of-the-art. We

are specifically interested to present:

• What are the existing approaches that enable reuse-driven evolution in architectures? And

how are the proposed solutions identical or unique to the existing ones? (See Section 9.2.1)

• What is the role of pattern languages in supporting architecture change management? And

why is there a need for pattern language(s) to evolve software architectures? (See Section

9.2.2)

174

Solution Reuse Type of Time of Architecture Tool
Reference Method Reuse Evolution Descriptions Support

Evolution Styles Style-based Evolution Plans Design-time Component and AEvol
[Barnes 2014, Le Goaer 2008] Reuse Connectors

Change Patterns Pattern-based Co-evolution Design-time Component and VIATRA
[Yskout 2012, Côté 2007] Reuse Patterns Runtime Connectors

Pattern Languages Pattern Migration Design-time Object and MDSD Tool
[Goedicke 2002, Hentrich 2006] Languages Patterns Service-oriented Chain

Proposed Solution Change Pattern Patterns and Design-time Component and
Language Operators Connector PatEvol

Table 9.1: Comparison of the PatEvol Framework with Research State-of-the-Art.

9.2.1 Reuse-Driven Evolution in Software Architecture

In the context of architecture evolution-reuse knowledge, evolution styles [Barnes 2014, Le Goaer 2008,

Tamzalit 2010], and change patterns [Yskout 2012, Côté 2007, Goedicke 2002] emerged as the only

notable solutions to enable reuse of design-time as well as run-time evolution of architectures.

Evolution styles and change patterns build on the conventional concepts of architecture styles and

change patterns to address architectural evolution.

Evolution Styles it is interesting to observe that research in [Barnes 2014, Le Goaer 2008] ex-

ploits the same concept (i.e., evolution styles) but address two distinct problems in architecture

evolution. More specifically, [Barnes 2014] is the pioneering work on style-driven evolution and

is focused on defining, classifying and reusing frequent evolution plans [Barnes 2014]. In contrast

to the solution in [Barnes 2014], the authors in [Le Goaer 2008] exploit styles for reusable architec-

ture refactoring. The existing research lacks a consensus about what exactly defines an evolution

style, and what is a precise role of evolution styles in architectural change management. In style-

driven approaches, notable trends are structural evolution-off-the-shelf and evolution planning

with time, cost, and risk analysis to derive evolution plans.

Change Patterns follow reuse-driven methods and techniques to offer a generic solution to

frequent evolution problems. In an systematic review[Breivold 2012], the findings highlight that

existing solutions overlook the needs for an empirical discovery of evolution patterns. In an-

other systematic reviews of architecture evolution [Jamshidi 2013b], we observed that architecture

change patterns [Yskout 2012, Côté 2007] are mostly a proposed solution (based on individual

experience) that undermines the fact that patterns represents reuse knowledge that must be em-

pirically discovered.

Based on the comparison in Table 9.1, our solution is fundamentally similar to [Le Goaer 2008]

in terms of enabling evolution reuse. However a most notable difference is that instead of invent-

175

ing styles as architecture evolution reuse knowledge, we propose an empirical discovery of change

patterns. During architectural evolution, we also support a (semi-) automated selection of the ap-

propriate change pattern(s) from a collection of the patterns in the language. Considering architec-

ture evolution process, we support a two-step solution for a continuous discovery and application

of patterns. In contrast to adaptation or reconfiguration patterns [Yskout 2012, Gomaa 2010] that

support run-time evolution, our solution is limited to supporting design-time evolution.

9.2.2 Pattern Languages for Architecture Change Management

Pattern languages provide a formal grammar, vocabulary, and pattern sequencing to derive struc-

ture and semantic relationships of patterns in a collection. In the context of architectural change

management, the only notable research is on legacy migration [Goedicke 2002] and process-

oriented integration [Hentrich 2006] of software architectures. In [Goedicke 2002], the authors

propose an incremental migration of legacy software to a flexible architecture using migration

patterns. This solution offers a pattern language for migrating C language implementations to

components in an object-oriented system.

Based on a comparison in Table 9.1, in contrasts to [Goedicke 2002] our solution is not focused

on migration of legacy code to components, instead it supports reuse of architecture evolution.

We propose that change patterns as generic reusable abstractions must be empirically identified as

recurring, specified once, and instantiated multiple times to benefit evolving architectures.

9.3 Methodology for Evaluating the PatEvol Framework

In the following, first we introduce the ISO/IEC 9126 - 1 standard for quality evaluation of the

PatEvol framework in Section 9.3.1 and then present the evaluation strategy in Section 9.3.2. Here,

we use the terminologies PatEvol framework or PatEvol or simply framework interchangeably.

9.3.1 ISO/IEC 9126 Model for Quality Evaluation

In 2001 the International Organisation for Standardisation (ISO) published ISO/IEC 9126 - 1

[Jung 2004] an international standard to evaluate quality characteristics of a software product1.

This standard guides the practical evaluation of a software product or a solution when several

stakeholders need to understand, accept and trust the results of evaluation. The ISO/IEC 9126 - 1

1Please note that, ISO/IEC 9126 quality model was first issued in year 1991; and later on from 2001 - 2004 ISO issued
an international standard (ISO/IEC 9126 - 1) and three technical reports (ISO/IEC 9126 - 2 to ISO/IEC 9126 - 4)

176

quality model determines six quality characteristics that include functionality, reliability, usability,

efficiency, maintainability, and portability to evaluate a software product or solution. Furthermore,

six quality attributes are sub-divided into a total of 27 sub-characteristics of product quality eval-

uation. For example, the quality characteristic for functionality consists of five sub-characteristics

including suitability, accuracy, interoperability, security, and functionality compliance. For more de-

tails about the quality sub-characteristics of ISO/IEC 9126 - 1 model please refer to [Jung 2004].

As presented in Figure 9.1 to evaluate the PatEvol framework, we only consider three quality

characteristics of ISO/IEC 9126 - 1 standard Functionality, Efficiency and Usability and their sub-

characteristics as illustrated in Figure 9.1.

ISO/IEC 9126 - 1

Functionality

Suitability

Accuracy

EfficiencyUsability

Operability

Understandability Time Behaviour

Resource Utilisation

Are the required functions
supported by the solution?

Is the solution of practical
use to its users?

How efficient is the
solution?

} } }

Quality
Model

Quality
Characteristics

Quality
Sub-characteristics

a) Model for Quality Evaluation b) Evaluation Strategy

Architecture Evolution
Case Studies

User Feedback for
Solution

Figure 9.1: Overview of the Evaluation for PatEvol Framework.

9.3.2 Evaluation Strategy - Experiments and Participant’s Feedback

To evaluate the functionality, usability and efficiency characteristics of the framework; the overall

evaluation strategy used in this chapter involves the following two steps also highlighted in Figure

9.1. Details about the experimental set-up for evaluation are provided in Appendix E, Table E.3.

• Experimental Evaluations We use the evolution case studies and architecture level modifia-

bility analysis (ALMA) [Bengtsson 1999] for an experimental evaluation of the change min-

ing and change execution process in the framework. The ALMA method represents a five

step process for a scenario-based evaluation of the architectural modifications and evolution.

We prefer ALMA method over other scenario based methods (e.g SAAM [Kazman 1994],

ATAM [Kazman 1998]) because ALMA primarily focuses on maintainability aspects of soft-

177

ware architectures [Babar 2004] and it can be used at various stages of architectural devel-

opment to analyse architectural maintenance and evolution. Details of the case studies and

ALMA are presented in Appendix B. Architecture evolution scenarios from case studies are

elicited using the ALMA method. The scenarios provide us an experimental foundation to

analyse the sub-quality characteristics of the framework.

• Evaluation and Participants’ Feedback - we seek usability feedback from five expert par-

ticipants (detailed in Appendix E) for evaluating the functional suitability and performance

efficiency of the change mining and change execution processes. More specifically, we en-

gage the framework users in experiments to capture their feedback and to further evaluate

the framework. Details about the participants in terms of their affiliation, professional expe-

rience and expertise are provided in Appendix E, Table E.3.

Possible Limitations of Usability Analysis - in contrast to the more traditional survey-based

research [Clerc 2007, Slyngstad 2008], the participants of the usability evaluation required

some basic training to utilise the prototype as well as an introduction and familiarity with

the change patterns. Due to some time constraints and the availability of users, we could

only engage 5 different users (a.k.a. participants) to evaluate pattern-based evolution. A

comparatively small number of participants limits a more comprehensive evaluation as far

as capturing the user perspective on pattern-based evolution is concerned. Also, pattern

discovery and evaluation of their applicability is a continuous process. The newly discovered

patterns must be incrementally validated with their applications on different architectural

evolution over time. In this thesis, the discovered patterns from two case studies are cross-

validated on a single but different case study. However, to support the generality of the

results and their evaluation, based on the finding from [Nagappan 2013] and the guidelines

of key informant methodology [Gallivan 2001], we tried to address:

1. Sampling of the Participants’ Population - is vital to select the participants (as the repre-

sentative sample) that had an appropriate knowledge about software design, change

implementation and software reuse. The sample had 5 participants with a combined

experience of 11 years in software engineering (software design and development re-

lated work) with an average experience of more than 2 years per participant. In par-

ticular, the participants have a total experience of 8 years with software architecture

related activities including architectural design, maintenance and validation. The average

experience of an individual participant with software architecture related activities is

178

more than 1.5 years.

2. Diversity of the Participants in Sample - ensure participants’ skills and knowledge com-

plement the feedback according to different phases of architecture development and

evolution. The participants in the sample had expertise in software design (using UML

2.0), software development and testing, and software evolution.

The results based on usability feedback are evaluated in the context of quantitative and

qualitative aspects of the ISO/IEC 9126 - 1 quality model.

The developed prototype includes the Graph-based Pattern Identification (GPride) to auto-

mate pattern discovery from architecture change logs. The input to the prototype GPride are

architectural changes from logs. The user can customise the pattern discovery process based

on specifying the minimum and maximum lengths of pattern candidates and frequency

threshold for pattern discovery. The output of the prototype is a list of discovered change

patterns. In addition the prototype Pattern-driven Architecture Evolution (PatEvol) enables

the user/architect to select and apply architecture change patterns for architecture evolution.

The input to PatEvol prototype is a list of discovered patterns and source architecture model.

The output is an evolved architecture model guided by architecture change patterns.

9.4 Evaluating the Efficiency and Suitability of the Log Graph

In Chapter 5, we formalised the change log data as an attributed graph [Ehrig 2004]. Here we aim

to evaluate RQ 1 to analyse if:

• Graph-based modelling provides a suitable representation of change log data?

• In comparison to the more conventional file-based representation of logs, graph-based searching and

traversal of log data is efficient?

This evaluation is also beneficial and a pre-requisite to an efficient graph-based discovery of

change patterns from a change log graph. A graph serves as a data structure to model architec-

tural changes and ultimately change pattern mining. An overview of change log data is already

provided (in Appendix C) to evaluate the sub-characteristics; suitability and efficiency of the

ISO/IEC 9126 - 1 quality model. We evaluate the suitability of graph-based modelling to repre-

sent change log data and the efficiency of processing log data that is of significant size (thousands

179

of architectural changes - number expected to grow over time as the data from new logs becomes

available).

9.4.1 Suitability of the Change Log Representation

In the context of graph-based pattern discovery, change log graph is a suitable representation

as it enables us to exploit sub-graph mining to discover recurrent change sequences as architec-

ture change patterns. In the PatEvol framework graph-based modelling of log data is mandatory,

however; in addition to pattern discovery we also need to evaluate if graph provides a suitable

representation to analyse and interpret architectural changes. Therefore, we evaluate the suitabil-

ity of log-based representation based on the feedback by five different participants (Table E.3 in

Appendix E). We requested these participants to perform the following steps in Table 9.2 to ensure

that they are familiar with the concept of change representation in a log as change log graph.

The steps below in Table 9.2 helps the participants to analyse the change log data and also

to compare a graph-based representation before we obtain their feedback. The results of this

evaluation are gathered by presenting the participants with a questioner to capture their feedback

as presented in Table 9.3. For example, when asked about:

Step Action

Step I Analyse a sample change log file that contains a total of 200 atomic change
operations (from Table E.3, Appendix E) as the sample log graph presented in Figure 9.2

Step II Analyse the sample change log graph that consists of 200 nodes
as change operations (created from the log file) in Figure 9.2

Step III Identify a change operation (both in the log file and log graph) that enables
addition of an architectural component PaymentType

Step IV Convert at-least 3 change operations from change log file into a change log graph.

Addition of change operations in the change log file and repeat Step IV.
A - We requested the users to add a new configuration, a component containing a port in the

Step V configuration as an entry of 3 change operations in the log file.
B - The users then represented these change operations in the log graph file.

Table 9.2: A Summary of Step and Actions by Participants for Evaluating Log Graph Suitability.

• Question Which of the two provides a suitable representation of change operationalisation

on architecture elements?

• Response The participants provided their preference as either a change log file, change log

graph or mention if they are not sure about any of the two. In addition the participants can

also provide some comments or additional details about their feedback.

180

.....
ChangeID = 257, Addition of a Component PaymentType in Payment Configuration
Change Operation = Add a Component, Component Name = PaymentType, isCompoite = false, Configuration Name = Payment

.......

ChangeID = 260, Remove a Connector makePayment from C ustPayment and BillerCRM in Payment Configuration
Change Operation = Remove a Connector, Connector Na me = payBill, Component Name = CustPayment, BillerCRM , Configuration
Name = Payment
.....

.......
<node id = "257">
 <data key="opr"> ADD </data>
 <data key="hasParam1"> PaymentType </data>
 <data key="Param1Type"> CMP </data>
 <data key="hasParam2"> </data>
 <data key="Param2Type"> </data>
 <data key = "isComposite"> false </data>
 <data key = "Configuration"> Payment </data>
</node>
.......
<node id = "258">
 <data key="opr"> REM </data>
 <data key="hasParam1"> makePayment </data>
 <data key="Param1Type"> CON </data>
 <data key="hasParam2"> BillerCRM, CustPayment </dat a>
 <data key="Param2Type"> CMP </data>
 <data key = "Configuration"> Payment </data>
</node>
........

Add()

Payment : CFG

Rem()

PaymentType makePyment

CMP CON

custPayment, BillerCRM
: CMP

257 260

....

Change Log File

Change Log Graph

Graph Modeling Notation Attributed Graph Notation

Figure 9.2: Comparison Overview of Log Graph and Log File.

In Table 9.3, we capture the participant’s feedback to analyse the suitability of representation,

interpretation, visualisation, searching/retrieval and addition of architecture change operations.

Additional details about the questionnaire presented to the participants are provided in Appendix

E.

Please tick the most appropriate option. Also provide comments, if required
Questions from Participants User Feedback

Which of the two provides a/an Log File Log Graph Not Sure Any Comments

Q1 Suitable representation of change operationalisation on
architecture elements

Q2 Easy interpret of the intent of architecture change operations
Q3 Visualisation of changes on architecture elements
Q4 Easy to search and retrieve the log data
Q5 Easy to record change operations

Table 9.3: Questionnaire for Participant’s Feedback on Suitability of Log Graph.

181

9.4.2 Summary of the User Feedback for Suitability of Change Log Graph

We provide a summary of the feedback as the evaluation results and highlights our key findings

as below. Details about the experimental feedback and more specifically participants for the

framework evaluation are provided in Appendix E (Table E.3).

• Based on the feedback a total of 3 out of 5 participants agreed that change log graph provides

a suitable representation and easy interpretation of log data as no key information about

individual change operation is omitted when modelling log data as a graph.

When considering a single change operation at a time there is no such

difference between the interpretation of a log file and change log graph.

However, analysing a sequence of changes - as interconnected nodes -

it is easy to understand nodes as operations than a collection of tuples

in the log file.

• A graph representation (operation as an individual node) helps the user to understand a

collection or sequence of changes more easily.

• It is agreed among all the participants that when a change log is visualised as a graph (Figure

9.2) it is intuitive to see change operations as nodes and directed edges as a sequence among

the change operations. Therefore it is easy to interpret the intent of change operationalisation

and their sequences.

One of the participants was not sure about any significant distinction

between data representation of change log file vs change log graph.

The participant disagreed about the suitability of change log graph as

it requires an extra effort to create the change log graph that is time

consuming and error prone as a manual effort.

• In terms of a manual effort to search and retrieve log data the participant’s feedback do not

suggest any significance of change log graph. All the users agreed that recording change

operations as a graph is more trivial and easy than recording changes in a change log file.

9.4.3 Efficiency of the Graph-based Retrieval of Log Data

Once we have evaluated the suitability of a change log graph, we now focus on analysing the

efficiency of graph-based retrieval of the log data. The primary objective of this evaluation is

182

to analyse the efficiency of graph-based investigation in comparison to the traditional file-based

system for searching and retrieving log data of significant size.

In general, graph-based efficiency in the context of log data refers to a) efficient representation

and b) efficient retrieval of change operations. Here we only focus on time-efficiency, i.e., time (T

in milliseconds (ms): Y-axis) to search and retrieve change instances (per 100 change operations: X-

axis) for traditional file-based retrieval vs graph traversal in Figure 9.3. In Figure 9.3, we illustrate

a relative comparison of the time taken to retrieval log data (log data for evaluation provided in

Appendix E, Table E.2) from change log file at an interval of 400 change operations.

·¸¹ º»¼½¾»¿ÀÁÂ½ÀÃÄÅ ½À¿»½ÆÀÁ
Change Operations (100x changes)

Ç È ÉÊ ÉË ÊÌ ÊÇPro
ces

sin
g T

im
e (

Mil
li-s

eco
nd

s)

Ì
ÉÍÌÌÌ
ÊÍÌÌÌ

4 8 12 16 20 24
Log Retrieval 200 440 635 955 1,047 1,258

GraphTraversal 430 522 667 790 905 1,003

Cut-off Point
(OPR 1200)≥

Figure 9.3: Comparative Analysis of Time Taken (Log-based Retrieval vs Graph-based Traversal).

9.4.4 Summary of Results for Efficiency of Log-based Data Retrieval

We now present a summary of the evaluation of the efficiency of retrieving data from change log

graph.

• Pre-processing of Log Data for Pattern Discovery - in order to enable graph-based modelling, ad-

ditional overhead (on average about 400 ms) involves creation of change log also considered

as a pre-processing for graph-based pattern discovery. In this pre-processing, the change

operations and their sequence from log file are mapped to their corresponding nodes and

edges in change log graph.

• Graph vs File-based Traversal of Log Data - as the size of the log data increases, graph-based

183

traversal starts to outperform file-based retrieval.

Whenever the number of change operation being queried increases (on

average) by more than 1200, graph-traversal and retrieval is always

time efficient. We conclude that although graph-based modelling in-

volves additional pre-processing, however, we found a cut-off point

at Opr > 1200, where graph traversal outperforms file-based retrieval.

We evaluate the solution in the context of RQ 1 that aimed to address a suitable modelling

notation of change log data for an experimental discovery of architecture evolution knowledge.

Based on the evaluations, we generalise the measure of the efficiency (E) of the change log graph

traversal in terms of time it takes (T) to analyse total graph nodes (N). T and N are proportional,

whereas φ represents a constant time required to create the change log graph (approximately 400

milliseconds).

E = N/T + φ

The relation between the time taken to traverse the graph generalises the findings (cf. Figure

9.3) that as the number of graph nodes increases, there is a minor increase of time to traverse

them. For example, when the number of nodes grow from 1200 to 2400 (doubled), there is only

an increase of less then 350 milliseconds approx in Figure 9.3.

A log graph provides a suitable representation and efficient manipulation of log data. However, to achieve

this an initial effort is required to map each individual change from log file to an individual node in the log

graph. It requires a tool support to create change log graph from log file. Once log graph is created, it

provides a faster and efficient data structure for searching and retrieval of log data. Log graph also provides

the foundation for graph-based mining of patterns from change logs.

9.5 Evaluating Accuracy and Efficiency of Pattern Discovery

In Chapter 6 and Chapter 7 we exploited the graph-based formalism to classify change opera-

tionlisation and to discover architecture change patterns using change log graph. Here we aim to

evaluate RQ 2 to analyse if

• Pattern discovery algorithms provide (an automated) solution that ensures accuracy of pattern dis-

covery from change logs?

184

• In contrast to manual discovery, the algorithms provide an efficient solution to discover architecture

change patterns from logs?

We identified architecture evolution scenarios (using the ALMA method in Appendix E). These

evolution scenario are used for an experimental evaluation of pattern discovery algorithms. In the

remainder of this section, we evaluate the sub-characteristics accuracy and efficiency of the ISO/IEC

9126 - 1 quality model, to analyse the performance of pattern discovery algorithms. Algorithmic

performance is measured in terms of the accuracy (correctness and completeness) and efficiency

(time efficiency) of pattern discovery.

We evaluate the accuracy and efficiency of the change pattern discovery algorithms by means

of a comparison between the results of algorithms and the outcome of a manual approach for

pattern discovery. The manual discovery is performed by five different participants. We provide

the participants with a) a sample log file and b) some evolution scenarios along with a verbal

description of the file and the evolution scenarios. Once the user agree that they had a clear

idea about the pattern discovery process, we ask them to discover recurring change sequences as

patterns and compare the results with discovery algorithms.

9.5.1 Interpretation of Results - Automated vs Manual Discovery of Patterns

We now discuss the results of comparison between manual and automated pattern discovery that

is summarised in Table 9.4. The comparison is based on six different comparison criteria (C1 - C6)

in Table 9.4. Four comparison criteria C1 - C4 represent a relative measure of the accuracy of the

pattern discovery mechanism. In addition two criteria C5 - C6 represent the relative measure of

efficiency in Table 9.4.

Comparison of the Accuracy of Pattern Discovery

1. Discovered Pattern Instances - It provides a comparison of the relative accuracy in terms of

discovering the existing patterns in the sample log file. The comparison confirms the accu-

racy of proposed algorithms in terms of the completeness and correctness of our solution.

2. We requested the participants to cross-verify the discovered change patterns to confirm that

algorithms discovered the patterns that were omitted during manual discovery.

185

ID Comparison Manual Discovery Automated Discovery
Criteria Users Algorithms

N/A Log Size (Total Change Operations) 212 Atomic Change Operations

Accuracy Comparisons

C1 Discovered Pattern Instances 2 4
C2 Overlapping Patterns 2 4
C3 Inexact : Inexact Instances 2 : 0 2 : 2
C4 Pattern Discovery Precision 0.5 1.0

Efficiency Comparisons

C5 Time Taken > 25 minute < 6 second
C6 Candidate Identification Required Yes Yes

Table 9.4: Summary of Comparison between Manual vs. Automated Pattern Discovery.

No change pattern is omitted by the algorithm. In contrast, while fol-

lowing a manual approach we were able to discover only two change

patterns where the algorithm discovered four change patterns as pre-

sented in Table 9.4.

3. Discovery of Overlapping Patterns - The experimental analysis suggests that manual discovery

do not support discovery of an overlapping pattern. An overlapping pattern is also referred

to as a partial pattern (cf. partial exact sequence in Chapter 6) as it overlaps (with a part of)

another pattern.

a. Pattern I - Omitted With Manual Analysis

1. Add(CustConsumption : CMP, Billing : CFG)

4. Add(ConsumptionType : CMP, Billing : CFG)

2. Add(getCustBill : CON, (CustBilling, CustConsump tion) : CMP)

3. Add(getCustPay : CON, (CustConsumption, CustPaym ent) : CMP)

5. Add(getConsumptionType : CON, (CustBilling, Cons umptionType) : CMP)

6. Add(getConcumpstionPayment : CON, (ConsumptionTy pe, CustPayment) : CMP)

A B

C

X

D

X1

X2 X3

b. Pattern II - Discovered with Manual Analysis

7. Rem(billPayment : CON, (CustBilling, CustPayment) : CMP)

1. Add(PaymentType : CMP, Payment : CFG)

4. Rem(makePayment(BillerCRM, CustPayment)

2. Add(getBill : CON, (CustPayment, PaymentType) : CMP)

3. Add(selectType : CON, (PaymentType, BillerCRM) : CMP)

A B

C

X
X1

X2 X3

Figure 9.4: Overview of the Pattern Overlap.

For example, in Figure 9.4 the change operations in Pattern I overlaps with change operations

in Pattern II - we refer to this as Pattern I overlaps Pattern II or Pattern I is a part of Pattern

II.

186

• With a manual discovery, the overlapping patterns are not discovered. The primary

reason to omit an overlapping pattern is that once a pattern has been discovered,

manual analysis did not considered analysing the recurrent change operations in that

pattern.

• The process to discover partial exact and partial inexact sequences is already detailed in

Chapter 6. For example Pattern I in Figure 9.4 a is an instance of Component Mediation

pattern with its variant Pattern II represents Parallel Mediation pattern that are detailed

in Chapter 7 and Chapter 8.

The evaluations suggests that manual analysis did not consider that

part of a pattern may also be a pattern. In contrast, the pattern dis-

covery algorithms are able to discover the overlapping patterns that

represent a pattern variant

4. Discovery of Exact and Inexact Sequences - The accuracy of pattern discovery algorithms is

enhanced with their ability to identify the exact as well as an inexact instance of change

patterns. As we detailed in Chapter 6, it is quite common that in a change log that two or

more change sequences may have a distinct order of change operations but their impact of

change is identical.

1. Add(PaymentType : CMP, Payment : CFG)

4. Rem(makePayment(BillerCRM, CustPayment)

2. Add(getBill : CON, (CustPayment, PaymentType) : CMP)

3. Add(selectType : CON, (PaymentType, BillerCRM) : CMP)
Sequence S1

1. Add(PaymentType : CMP, Payment : CFG)

4. Rem(makePayment(BillerCRM, CustPayment)

2. Add(getBill : CON, (CustPayment, PaymentType) : CMP)

3. Add(selectType : CON, (PaymentType, BillerCRM) : CMP)

1. Add(PaymentType : CMP, Payment : CFG)

4. Rem(makePayment(BillerCRM, CustPayment)

2. Add(getBill : CON, (CustPayment, PaymentType) : CMP)

3. Add(selectType : CON, (PaymentType, BillerCRM) : CMP)

Sequence S2

Sequence S3

A C

B

A CX

Pattern Instance

Change Operations

Figure 9.5: Ordering of the Operations in Change Patterns.

For example, in Figure 9.5 the order of change operations in Component Mediation pat-

tern is represented as three distinct sequences S1, S2, and S3. The order of change op-

187

erations is expressed as: S1 = {OP1, OPR2, OPR3, OPR4} that can also be represented

as {OPR1, OPR4, OPR3, OPR2} or {OPR1, OPR3, OPR4, OPR2} and so on (commutative

change operations). For illustrative purposes the Figure 9.5 only represents a minimal ex-

ample where the number of change operations in four, however as the number of change

operations in a sequence grows the number of sequences with different orders also grow.

Manual discovery is error prone in discovering the inexact matches. In

contrast the pattern discovery algorithms in Chapter 7 enables discov-

ery of exact as well as inexact sequences as change patterns.

5. Evaluating the Precision of Pattern Discovery Algorithms - We now discuss the results of evalua-

tion for pattern discovery precision. Pattern discovery precision refers to the accuracy of the

discovery algorithms as a ratio of the discovered patterns to existing patterns. We formally

define the pattern discovery precision as:

Pattern Discovery Precision (P) refers to the total number of patterns discovered from log divided

by the total number of patterns that exist in the log expressed as:

| Discovered Patterns f rom Log |
| Existing Patterns in Log |

For example, Figure 9.6 represents the entire pattern space or ultimately the discovery space

(all changes that exist in the log), existing change patterns are represented as C.

C C

CC C

CC

C

C

CC

C

false negative false positive

true positive

retrievedPattern
Language

not
retrieved

Pattern Instances

CC
relevant irrelevant

Figure 9.6: Overview of the Pattern Selection Precision and Recall.

The log contains a collection of valid and invalid patterns (detailed in Chapter 7, Algorithm

II Candidate Validation) - during the discovery process, we have three scenarios.

188

• The discovered patterns are relevant (a.k.a. true positive)

• The discovered patterns are irrelevant (a.k.a. false positive)

• The relevant patterns have not been discovered (a.k.a. false negative)

The precision is a relative measure of accuracy of the solution to dis-

cover patterns - discovering the exact as well as inexact pattern in-

stances. Based on our experiments, the algorithms have a precision of

1.0 while the manual solution represents a precision of 0.5.

Comparison of the Efficiency of Pattern Discovery

6. Processing Time for Pattern Discovery It refers to the time taken to discovery the change pat-

terns. This result shows that manual discovery is a time-consuming process, whereas our

algorithms are accurate and time-efficient for pattern discovery.

Based on the comparison in Table 9.4, the users took more than 25

minutes to go through a small subset of the change log and to discover

the change patterns in comparison to the algorithms that took less than

a few seconds (log size 200 change operations).

7. Candidate Identification Another comparison is the identification of pattern candidates. A

pattern candidate represent a potential pattern depending on its occurrence frequency in

the logs. The manual discovery process requires that pattern candidates must be identified.

The algorithms also rely on candidates for pattern discovery that is considered to be the

pre-processing for pattern discovery (Chapter 7, Algorithm I Candidate Generation).

9.5.2 Discussion and Conclusions

Discovery of change patterns (in Chapter 7) not only helps in identifying the frequent architectural

changes, but also reduces any manual effort in terms of process accuracy and efficiency. Moreover,

the pattern discovery algorithms also help us to eliminate the false positive patterns that may

violate the structural integrity of an architecture model. In this section, we have evaluated the

discovery algorithms by a comparison with the manual approach in terms of its correctness and

completeness of the algorithmic functionality. Our experimental analysis suggests that:

189

There does not exist any solution(s) for pattern discovery from logs that provides us with a benchmark

evaluations. In comparison to a manual approach the automated approach for architecture change pattern

discovery is beneficial in different ways. More specifically, a manual discovery of change patterns is

impractical when the size of log data is significant. As the size of change log data increases, the processing

time required for manually discovery of patterns increase significantly - automated approach becomes

inevitable.

While the results of the algorithms were accurate, the manual approach failed to manually

identify the inexact pattern instances. The output of the algorithm was verified by taking par-

ticipants feedback (in Table 9.4 and details in Appendix E) to confirm the correctness and the

completeness of the algorithm.

9.6 Evaluating the Accuracy of Pattern Selection

In Chapter 8, we presented the Question Option Criteria (QOC) [MacLean 1991] methodology to

enable a systematic selection of architecture change patterns. Here we aim to evaluate RQ 3.

• Does the solution enables accuracy of the pattern selection from change pattern language?

In the remainder of this section we evaluate the sub-characteristics accuracy of the ISO/IEC

9126 - 1 quality model to evaluate pattern selection process. The accuracy of the pattern selection

is evaluated based on analysing the precision and recall of selection process.

9.6.1 Accuracy of Pattern Selection - Precision and Recall Measure

After evaluating the accuracy and efficiency of pattern discovery, we now focus on analysing the

accuracy of pattern selection. Pattern selection is a critical challenge, especially when the number

of change patterns is large in a pattern collection or the collection is expected to grow overtime.

Moreover, even if we consider a limited number of patterns; still a pattern user must be aware

of all the existing patterns and must understand the internal structure of a pattern collection to

select the most appropriate patterns.

In a similar problem of pattern selection in [Kampffmeyer 2007], the solution assists the users

with selection of design patterns by formalising the intent of 23 patterns from Gang-of-Four (GOF)

pattern collection [Gamma 2001]. Based on the formalisation of the patterns intent, the solution

offers a design pattern wizard that enables a user to follow a step-wise process to select the

190

applicable design patterns based on a description of a design problem. Our solution and its

evaluation are fundamentally different to the research in [Kampffmeyer 2007]. We must enable a

user to select the most appropriate patterns from a collection that continuously evolves (number of

patterns is expected to increase rather than a fixed collection). Furthermore, GOF patterns are well

known in the software developer’s community, whereas the proposed change patterns are a new concept with

a lack of understanding for the first time users. To ensure that inexperienced users or architects are

able to select appropriate patterns, we must evaluate the accuracy of pattern selection that requires

a precise mapping of the evolution problems specified by the user and the solution represented

as available pattern(s). We evaluate the precision and recall factor for change pattern selection.

• Measuring Pattern Selection Precision (P) - is defined as number of relevant pattern instances

retrieved by a search divided by the total number of pattern instances retrieved. It is expressed as:

| Relevant Patterns Retrieved |
| Total Patterns Retrieved |

• Measuring Pattern Selection Recall (R) - is defined as number of relevant pattern instances

retrieved by a search divided by the total number of existing relevant pattern. It is expressed as:

| Relevant Patterns Retrieved |
| Total Existing Relevant Patterns |

A summary graph of precision and recall is presented in Figure 9.7. Based on the precision

and recall criteria above, the results of pattern selection recall results in a high value indicating

that the solution is able to retrieve approximately all of the relevant patterns from the language.

Please note that due to a smaller search space (7 patterns and 2 variants) the recall is measured to be

0.99 approx. for all pattern instances. We believe that a high recall is a results of the smaller search

space for the patterns. We can only objectively evaluate the results of pattern selection recall when

we have a larger pattern space - evaluating and comparing selection recall with manual selection

and QOC method. This means that a smaller pattern space represents a threat to the validity of

recall results whenever the size (total number of patterns in) pattern space grows overtime.

A high recall suggests the solution is adequate in selecting the most

relevant instances from available collection. However, we experience

a different behaviour for precision because identification of the exact

pattern in the context of related patterns is more challenging.

191

Precision
Recall

CM FS FU AD CC CA CS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CM FS FU AD CC CA CS
Precision 0.33 0.5 0.99 0.5 0.33 0.33 0.33
Recall 0.99 0.99 0.99 0.99 0.99 0.99 0.99

CM = Component Mediation
FS = Functional Slicing
FU = Functional Unification
AD = Active Displacement
CC = Child Creation
CA = Child Adoption
CS = Child Swap

Figure 9.7: Precision and Recall for Pattern Selection.

The corresponding values for selection precision varies between 0.33 and 0.99. Whenever we

query for ”component integration pattern”, we are returned with at least three pattern instances

(Component Mediation, Parallel Mediation, and Correlated Mediation).

A relative low precision suggests that an improvement of the pattern

selection is required. Even with a small search space (7+2) patterns the

solution is not very accurate in selecting the most appropriate patterns.

To improve the selection precision, we classify the architecture change patterns and then re-

evaluate the results for pattern selection.

9.6.2 Effects of Pattern Classification on Selection Precision

The classification of change patterns in Figure 9.8 helps us to organise the patterns into a group

of functionally related patterns. More specifically, it enables a logical grouping of related patterns

based on the types of architectural changes that a group of patterns support. We have classi-

fied the existing patterns into three distinct types as Composition, Association and Decomposition

patterns with classification ids 1, 2, and 3 respectively, presented in Figure 9.8. For example, in

Figure 9.8 the Child Creation pattern enables the composition of an atomic component into a composite

one that contains one or more child components and is classified as Composition Type pattern. In the

pattern language context, the classification has no effect on pattern relations - pattern(s) in one

classification may be related to pattern(s) in a different classification.

192

DecompositionAssociationComposition

Functional
Unification

Child
Creation

Child
 Swap

Child
 Adoption

Active
Displacement

Component
Mediation

Functional
Slicing

Figure 9.8: An Overview of Change Pattern Classification.

Pattern classification reduces the pattern search space and ultimately increasing selection preci-

sion. For example, if a user wants to select a pattern for decomposition of a composite component

into atomic components; instead of searching in a space of 7 different patterns he/she can locate

the Functional Slicing pattern under classification type decomposition.

A possible limitation for pattern type classification is that the user must

specify the classification type in which they aim to search the patterns.

If the type is not specified correctly, the appropriate pattern(s) must be

searched in all the classifications which results in a lower precision - as

illustrated in Figure 9.7.

Based on the pattern classification in Figure 9.8, we again evaluate the precision and recall of

pattern selection. A summary graph of the precision and recall is presented in Figure 9.9. Pattern

classification has no impact on selection recall factor that remains as 0.99 also highlighted in Figure

9.7. However, we are able to increase the selection precision factor because the pattern search

space is minimised with the pattern type classification. The selection precision for association and

decomposition type patterns is 0.99. The precision for composition type pattern is 0.5 - a low

precision is a consequence of the overlap of change support by Child Swap, Child Creation and

Child Adoption patterns is 0.33 that is subject to further evaluations.

193

Precision
Recall

CM FS FU AD CC CA CS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CM FS FU AD CC CA CS
Precision 0.99 0.33 0.33 0.33 0.99 0.99 0.99
Recall 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Composition = 1
FU = Functional Slicing
CA = Child Adoption
CC = Child Creation
CS = Child Swap

Association = 2
CM = Component Mediation
AD = Active Displacement

Decomposition = 3
FS = Functional Slicing

Figure 9.9: Accuracy of Pattern Selection based on Pattern Classification.

9.6.3 Implications of a Small Search Space for Pattern Selection Precision

The current search space (total patterns in the language) represents a relatively small number

(7+2) patterns that limits a strong judgement or claims about pattern selection precision. A small

search space is a consequence of change patterns being a new concept when compared to the

more established GOF design patterns [Gamma 2001] and their selection [Kampffmeyer 2007].

Moreover, an empirical discovery of new change patterns requires the availability of more data in

terms of investigating architecture evolution histories that represent a possible dimension of the

future research.

Based on pattern selection research in [Zdun 2007, Kampffmeyer 2007], the small search space

represents a possible threat to the validity and generalisation of pattern selection precision (cf.

Figure 9.9). It also raises the following concerns:

1. What is the measure of selection precision when the number of patterns in the language

grows?

2. Is there an increase in the complexity and total time taken for pattern selection?

3. Does the user need more knowledge about existing change patterns for an accurate selec-

tion?

Currently the small pattern search space can only be compensated in the future with the ad-

dition of new patterns in the language over-time. However, as the number of patterns grow

in the language the complexity and the effort for pattern selection increases [Zdun 2007]. In

194

order to tackle this challenge, we have utilised the QOC methodology [MacLean 1995] as a

systematic and semi-automated approach for pattern selection (already detailed in Chapter 8).

Specifically, in comparison to any manual methods (that are error-prone and time consuming)

[Kampffmeyer 2007] for pattern selection the QOC method supports a semi-automated approach

âĂŞ supporting the necessary user intervention for pattern selection from the language. By ex-

ploiting the QOC methodology, the user can query for the appropriate pattern (if exists) based on

the predefined criteria.

The current evaluations suggests that even when the number of patterns may grow, the user

can select the appropriate patterns with minimal or sometimes no knowledge about the individual

patterns by following a systematic approach. However, the impact of the increased number of

patterns on pattern selection, complexity and time taken can only be objectively evaluated when

new patterns are incorporated by investigating new data (as it becomes available) from different

logs.

9.7 Evaluating the Efficiency and Reusability of Pattern-based

Architecture Evolution

In Chapter 8, we presented pattern-based evolution to support reusability and consistency of

architectural changes. Here, we aim to evaluate RQ 4 to analyse if:

• Does the application of change patterns to evolve architectures enhances the efficiency of the architec-

ture evolution process?

• Do the change patterns enable reuse of change operations for architectural change implementation?

In the remainder of this section, we evaluate the sub-characteristics efficiency and reusability

to evaluate pattern-based architecture evolution process. The efficiency of architecture evolution

process is evaluated in terms of number of change operations required and the time taken to

implement the required architectural changes.

The ISO/IEC 9126 - 1 model do not consider reusability as a sub-characteristics of software

product quality. In our evaluation, we need to evaluate the reusability of architectural changes.

Therefore, we borrow reusability - a sub-characteristics of maintainability - from ISO/IEC 25010

standard. In ISO/IEC 25010 standard, ”reusability refers to the degree to which an asset can be used in

more than one software system, or in building other asset [ISO/IEC25010 2010]. We utilise the case of

195

architectural evolution of a peer-to-peer appointment system to evaluate patter-based evolution.

Reusabiliy of change has an impact on the granularity of architectural change. The granularity

of architectural changes refers to changes applied to different levels or different architecture ele-

ments in the architecture model [Buckley 2005]. In terms of granularity, architectural changes can

be classified as coarse-grained and fine-grained changes. In the context of CBSAs, coarse-grained

changes include addition, removal and modification of architectural components and connectors

only. In contrast, the fine-grained changes include addition, removal and modification of architec-

tural components, their ports, connectors as well as their endpoints (cf. Chapter 6). We evaluate

the effects of reusability on granularity of architectural changes.

9.7.1 Pattern-based Evolution of a Peer-to-Peer Appointment System to Client-

Server Architecture

A high-level architectural view of the peer-to-peer appointment system (P2P-AS) [Rosa 2004] is

presented in Figure 9.10. Architectural components and connectors are represented inside config-

urations for modelling of P2P-AS system. The pattern discovered from EBPP [EBPPCaseStudy]

and 3-in-1 Telephone System [3-in-1 Phone System 1999] case studies are applied to evolve a peer-

to-peer architecture to a client-server architecture. We have specified the architecture descriptions

as component-connectors model of P2P-AP system as a graph. Graph-based modelling of architec-

ture - already explained in Chapter 2 - allows us to exploit graph transformation for architecture

evolution. Additional details about the component-connector view of P2P-AS architecture are pro-

vided in Appendix B. We asked the participants to use the PatEvol prototype for pattern-based

architecture evolution with details in Appendix E

Evolution Scenarios, Change Primitives and Patterns

After presenting the evolution scenario in Figure 9.10, we now provide a mapping of the evolu-

tion scenario (evolution problem) and the necessary change primitives and change patterns (as

available solutions) in Table 9.6. Please note, that problem solution mapping (evolution problem

and available solution in terms of change pattern) is already discussed in Chapter 8.

Also, the technical distinction between change primitives and change patterns is already pre-

sented in Chapter 6. In Table 9.6, we only highlight the pattern as a reusable solution to recurring

architectural problems.

196

Component ConnectorConfiguration

out in

ports

Appointment Server

Appointment Client

getAppointments getSchedules

Appointment Client

getAppointments getSchedules

Client
Authentication

Client
Registration

Appointment Client
getAppointments getSchedules

Client
Registration

Client
Authentication

Appointment Schedule Appointment Client
getAppointments getSchedules

Client
Registration

Client
Authentication

Priority Schedule

Routine Schedule

Client
Authentication

Appointments Schedule

Appointment Server

Appointment Server Appointment Server

Source Architecture

Evolution Scenario 1 Evolution Scenario 2

Evolution Scenario 3 Evolution Scenario 4

Appointments Client

Client

getAppointment

Appointment Data

Appointment System

Client
Authentication

Appointments Schedule

Evolved Architecture

Appointment Client
getAppointments getSchedules

Client
Registration

Client
Authentication

Priority Schedule

Routine Schedule

Appointment Server

Client

Server

Appointment Data

Appointment System

Figure 9.10: Source and Evolved Architecture Model with Architecture Evolution Scenarios.

197

Evolution Scenario 1
To interpose the AppointmentServer component between the AppointmentClients and AppointmentSchedule components. The newly integrated Appointment Server
component mediates between the client requests and appointment scheduling.

Change Primitives Change Pattern
CS-AS architecture is modified with addition of a new component AppointmentServer and two ComponentMediation([CM] < C1, CM, C2 >)
connectors (getAppointment, getSchedule)
to enable mediation among Clients and Appointment components.
opr1 := ADD(AppointmentServer ∈ CMP)
opr2 := ADD(getAppointment((AppointmentClient, AppointmentServer) ∈ CMP) ∈ CON)
opr3 := ADD(getSchedule((AppointmentServer, AppointmentSchedule) ∈ CMP) ∈ CON) To interpose a mediator component (CM) among two or more
opr4 := REM(getAppointment((AppointmentClient, AppointmentServer) ∈ CMP) ∈ CON) directly connected components (C1, C2).

Evolution Scenario 2
To create a child component ClientRegistration inside the AppointmentServer component. The newly added Client Registration component enables
registration of individual clients on the server.

Change Primitives Change Pattern
CS-AS architecture is modified by creating the ClientRegistration component (atomic component) ChildCreation([C] < X1 : C >)
in Appointment Server (composite component) and a connector (register).
opr1 := ADD(ClientRegister ∈ CMP)
opr2 := ADD(register((ClientRegister, AppointmentClient) ∈ CMP) ∈ CON) To create a child component (X1) inside an atomic component (C).

Evolution Scenario 3
To move a child component ClientAuthentication from AppointmentSchedule component to Appointment Server component. The addition of Client Authentication
authentication of individual clients on the server before making an appointment.

Change Primitives Change Pattern

CS-AS architecture is modified by moving ClientAuthentication component from AppointmentSchedule ChildAdoption([C] < X1 : C >)
AppointmentSchedule to AppointmentServer . AppointmentSchedule is now
an atomic component component and AppointmentServer is a composite component.
opr1 := REM(ClientAuthentication ∈ CMP, AppointmentSchedule ∈ CMP)
opr2 := ADD(ClientAuthentication ∈ CMP, AppointmentServer ∈ CMP) To create a child component (X1) inside an atomic component (C).

Evolution Scenario 4
To replace an existing component AppointmentSchedule with two new components PrioritySchedule and RoutineSchedule. The newly added components provide
either a priorotised or a routine scheduling based on the client request to the AppointmentServer.

Change Primitives Change Pattern

CS-AS architecture is modified by replacing the AppointmentSchedule component with two newly added ActiveDisplacement(< C1 : C2 >,< C1 : C3 > [C2 : C3])
components PrioritySchedule and RoutineSchedule and connectors (getpriority, getRoutine).
opr1 := ADD(RoutineSchedule ∈ CMP)
opr2 := ADD(PrioritySchedule ∈ CMP)
opr3 := ADD(getRoutine((RoutineSchedule, AppointmentServer) ∈ CMP) ∈ CON)
opr4 := ADD(getPriority((PrioritySchedule, AppointmentServer) ∈ CMP) ∈ CON) To replace an existing component (C1) with a new
opr5 := REM(getSchedule((AppointmentSchedule, AppointmentServer) ∈ CMP) ∈ CON) component (C3) while maintaining the interconnection with
opr6 := REM(AppointmentSchedule ∈ CMP) ∈ CON) with existing component (C2).

Table 9.5: A Summary of Evolution Scenarios, Change Primitives and Change Patterns.

198

In Table 9.6, first we present the description of evolution scenario that follows the presentation

of change primitives and finally the pattern as reusable solutions to address the evolution scenario.

Change Primitive

Represent a collection of composite change operations to enable addition, removal and modifica-

tion of individual components and connectors. For example, in Evolution Scenario 1 (Table 9.6)

change primitive requires at-least a total of 4 change operations to integrate a mediator component

in existing architecture. We only consider changes on architectural components and connectors

omitting changes on ports and endpoints - it has already been explained that components must

contains ports and connectors must contain endpoints (detailed in Chapter 6).

9.7.2 Summary of Comparison for Primitive vs Pattern-based Changes

After presenting evolution scenarios and patterns to address these scenarios, we discuss the results

of evaluation. A summary of the results of evaluation is presented in Table 9.6. In Table 9.6, we

compare the efficiency of change implementation using change primitives and change patterns

using:

1. Total Change Operations - to quantify the required efforts for change implementation, we

count the number of change operators required for implementing a change and call this Total

Change Operations (TCO). TCO is defined as the total number of architecture change operations

required to resolve an architecture evolution scenario.

For example, in Table 9.6 the TCO value for component integration is 4. The TCO concept

is inspired by Line of Code (LOC) methods. The difference between the proposed TCO

and LOC is that TCO is a measure of the total number of change operations to implement

a particular change. LOC is a measure of the total lines to code required to achieve a

functionality. LOC is a measure of the size of source code in terms of executable lines. In

contrast, the TCO measures the operational complexity for architecture evolution.

2. Total Time Taken - represents the time efficiency of change implementation. Time efficiency

is more relevant during dynamic adaptation or evolution of time critical software. Here we

provide a comparison of the time efficiency of primitive and pattern-based changes. For

example, in Table 9.6, time required to integrate a component using primitive change is

231 seconds. Alternatively, the application of component Mediation pattern can achieve the

same effect in 42 seconds (only 25% time taken when compared to primitive changes).

199

3. Ratio of Change Operationalisation (Primitive vs Pattern) - represents the ratio of change

operators from Pattern to primitive changes expressed as: 1− (
N

TCO
E

TCO
). For an example, see

Table 9.6. The terms NTCO denotes the number of change operations required by the patterns

(N), whereas ETCO denotes the number of change operations required by the primitive (E).

4. Ratio of Time Taken (Primitive vs Pattern) - represents the ratio of change operators from

pattern to primitive changes expressed as: 1− (
N

Time
E

Time
). For example, in Table 9.6 as below.

The terms NTime denotes the total taken by the patterns (N) to implement a change, whereas

ETime denotes the total time taken by the primitive (E).

Change Pattern Change Primitive Efficiency Comparison

Pattern Name TCO Time Taken Intent of Primitive TCO Time Taken 1− (
N

TCO
E

TCO
) 1− (

N
Time

E
Time

)

Component Mediation 3 42 Integration of Components 4 156 25 27
Parallel Mediation 3 38 Integration of Components 3 105 0 36
Correlated Mediation 3 67 Integration of Components 8 440 63 15
Functional Slicing 3 33 Splitting of Components 4 101 25 32
Functional Unification 3 37 Merging of Components 4 96 25 38
Active Displacement 3 54 Replacement of Components 4 177 25 30
Child Creation 3 34 Composition of Components 4 94 25 36
Child Adoption 3 41 Move a Component 6 143 50 28
Child Swap 3 48 Swap a Component 4 149 25 32

3 43.77 4.55 162.33 29.22% 30.44%

Table 9.6: A Summary of Efforts for Change Primitives and Change Patterns.

Based on the summary of results in Table 9.6 we provide an overview of the comparative

analysis for TCO for primitive and pattern-based changes in Figure 9.11. In addition, we also

provide a comparison of time taken during primitive as well as pattern-based changes in Figure

9.12. The graph in Figure 9.11 reflects that the operation using pattern-based changes is a constant.

In contrast, primitive changes requires between 3 and 8 change operations. In addition, pattern-

based changes provide a process-based overview of change implementation. As highlighted in

Table 9.6, the pattern-based changes on average require 43.77 seconds (43.77/60 = 0.73 minutes),

whereas the primitive changes in comparison require 162.33 seconds (162.33/60 = 2.70 minutes).

The results suggests that:

Pattern-based changes take only 29% of change operations compared

to primitive changes. However, pattern-based change does not support

a fine granular change representation.

Based on the summary of results in Table 9.6 we provide an overview of analysis for time taken

for primitive as well as pattern-based changes.

200

In pattern-based changes it takes on average less than a minute to

resolve an evolution scenario. Primitive changes on average take more

than 2.50 minutes to implement the change. Pattern-based changes on

average require only 30% of time compared to primitive changes.

ÎÏ ÐÏ ÑÏ ÒÓ ÒÔ ÕÖ ÎÎ ÎÕ ÎÓ×ØÙ
ÚÛÜ
ÝÞß

Primitive vs Patterns

N
um

be
r

of
 C

ha
ng

es
 A

pp
lie

d
by

 U
se

r

Change Primitives Change Patterns

Figure 9.11: A Comparison of TCO for Pattern vs Primitive Changes.

9.7.3 Granularity vs Reusability of Changes

In primitive vs pattern-based changes, there is a trade-off between the granularity and reusabil-

ity of architectural changes. Granularity of architectural changes refer to the completeness of

changes (e.g. adding configurations with components that contain ports). Reusability of archi-

tectural changes refers to reuse of generic change operations (e.g. integration, composition of

components). To discuss granularity vs reusability we represent the types of architectural changes

as a layered structure with primitive changes (a.k.a. change operations) at the bottom that are

abstracted by change patterns at the top.

For example, moving from top to bottom (patterns to primitives) the granularity of change is

increased. The loss of granularity results in:

1. Change Implementation at Higher Abstraction - patterns with reusable but coarse-grained

changes only provide generic changes that affect components and connectors. This abstrac-

201

àá âá ãá äå äæ çè àà àç àåéêééëééìééíééîééïééðééñéé

Primitive vs Patterns

T
im

e
T

ak
en

 to
 Im

pl
em

en
t C

ha
ng

e
(s

ec
on

ds
)

Change Primitives Change Patterns

Figure 9.12: An Overview of Time Taken for Primitive vs Pattern-based Changes.

tion do not support lower level changes changes at the component operations level, that

are exposed at ports. In contrast, the change primitives supported with change operations

support a fine granular change representation. The granularity of change implementation

is also a concern of source code level changes [Williams 2010, Buckley 2005] and not the

architecture evolution.

2. Structural Integrity of Architecture Model - the granularity of architectural changes ensure

that architectural integrity is preserved (components and their port, connectors have bind-

ings). In our solution, architectural hierarchy is preserved with change operations that are

abstracted in patterns.

In contrast to primitive architectural changes, pattern-based changes support reuse that results in an

increased efficiency of the architecture evolution process - 30 % less effort for change implementation and

80% less time required to implement changes. However, pattern-based changes support reuse of

architectural evolution but do not support a fine-granular change implementation.

202

9.8 Threats to Validity of Research

In this section we discuss the threats to the validity of this research (that can become possible

limitations) and provide an indication of future work that can possibly minimise these threats.

Challenges of Software Architecture Evolution

Software architecture evolution involves different challenges that include modelling, analysing

and executing architectural changes in a consistent and efficient manner and empowering the role

of software architects to evolve architectures in a semi-automated way [Barnes 2013, Bennett 2000].

For example, in our case the ultimate benefits of our solution can only be practically quantified if

utilising our solution produces better results than already existing solutions in an industrial con-

text. However, in an industrial scale software architecture [Clerc 2007, Slyngstad 2008] evolution

usually takes place over long periods that span months, years and often decades [Slyngstad 2008].

The prospects of evaluating the effectiveness of our solution for industrial case studies requires

more data and validation to comment on the benefits of solution in the context of evolution for

industrial software. In the general context of this thesis, the research aims to provide a founda-

tion with a framework that integrates architecture change mining for a continuous acquisition of

knowledge as patterns that support reusablity and efficiency of the change execution process.

Threat I - Enabling the Continuity of Pattern Discovery Process

During the architecture change mining process, continuity of pattern discovery refers to providing

the necessary methods and techniques to continuously discover architecture change patterns over

time and from different change logs. In this thesis, a more rigorous validation of solution requires

more case studies to discover patterns. Currently, in the PatEvol framework - architecture change

mining process - we only have two case studies to investigate their evolution and to discover

architecture change patterns.

To minimise this type of threat, there is a need to acquire more data from different logs and case

studies. Data collection from representative sources is time-intensive process requiring months or

years for the acquisition of representative data [Kagdi 2007, Buckley 2005]. To compensate for this,

pattern discovery algorithms (cf. Chapter 7) can be seen as a solution to minimise this type of

threat. Pattern discovery from change log graph is an automated and user customised technique

to continuously discover patterns as new log data becomes available.

203

Threat II - Evaluating the Accuracy of Pattern Selection Process with New Patterns

During pattern-based architecture evolution, accuracy of the pattern selection refers to solution’s

ability to select the most appropriate change patterns from a pattern collection. The possible

threat to a more rigorous validity of pattern selection is the limited number of patterns in the

pattern language. This threat has a direct impact on selecting the most appropriate patterns from

pattern language. Currently, we have a total of (7+2), i.e., 7 change patterns and 2 variants of

patterns that represent a relatively limited number of patterns. As the number of change patterns

in the pattern language grows it may have an impact on the precision of pattern selection.

We have classified patterns into three different categories that helps to increase the pattern

selection precision (similar patterns are grouped together). If pattern discovery is supported as

a continuous process, the number of patterns in the pattern language is expected to grow over

time and that requires a re-evaluation of the accuracy of pattern selection in future. The presented

QOC methodology in Chapter 8 provides the user with an accurate and incremental means to

select appropriate patterns.

Threat III - Limited Data Size and Practitioners’ Experience

In the context of pattern mining and pattern application, we also need to consider the validity

threats regarding i) the size of the data used for pattern mining and ii) the experience of the practitioners

evaluating pattern application.

More specifically, the relative size of data in the change log used for pattern mining is smaller

when compared to other solutions of pattern mining [Geng 2008] and repositories for source code

analysis [Zimmermann 2005]. We have available data from two case studies of architectural evolu-

tion that represent a couple of thousands of changes (2200 approx. individual change operations).

An inherent limitation with such small data size and its analysis lies with the discovery of a lim-

ited number of patterns. Moreover, any reliable cross validation of the mining techniques and

solutions must rely on a significantly large data sets [Hassan 2008] - currently lacking in our eval-

uation. In the absence of a large data set, a possibility to minimse such threat is to use artificially

generated data [Agrawal 1995] or use larger data set for cross validation. As part of future research

(detailed in subsequent chapter), we aim to follows the later approach by means of customising

and validating the pattern discovery algorithms by mining architectural change log of significant

size [ROS-Distributions 2010].

Another threat relevant to user-based evaluation of the impact of patterns on architecture evo-

204

lution is a limited experience of the practitioners’ who participated in the evaluation. Specifically,

due to time constraints and the willingness of the practitioners to participate in the evaluation we

only had a total of five practitioners with a total combined inexperience of seven years in software

architecture related activities. Such small size have direct implications on the user-based valida-

tion of pattern applicability. To compensate for a small population, we used the key informant

method [Gallivan 2001] as a qualitative approach to ensure high-relevance of the participants to

the evaluation. However, there is still a need to further evaluate the solution with more partici-

pants for a more objective interpretation of the results. A possibility lies with the deployment of

a survey to engage geographically distributed participants to evaluate our approach.

Threat IV - The Adoption of Architectural Change Logs for Evolution Analysis

The research and practices on history-based analysis of software evolution are primarily focused

on analysing changes in source code repositories [Robbes 2005] and architectural configurations

[Van der Westhuizen 2002]. The notion of the change log for mining architectural evolution anal-

ysis is not well established with only a few studies exploiting the concept of architectural change

log with release histories [Wermelinger 2011]. With a lack of evidence we face a threat to validity

of research on mining change patterns from architectural change logs. More specifically, the ques-

tion arises: ’what is the practicality and adoption of the architecture change logs for analysing architecture

evolution histories’?

The only answer to such a question lies with some recent research that exploited the concepts

of architecture change logs for mining the evolution of Eclipse [Wermelinger 2011] and capturing

the evolution of ROS [ROS 2010]. However, based on only a limited evidence the research cannot

objectively argue about the adoption of change logs from a wider research community and by

the practitioners as well. The concept of change log in this thesis complements the available

evidence and outlines the necessary challenges and appropriate solutions for log-based mining of

architectural evolution.

9.9 Chapter Summary

We utilised the ISO/IEC 9126 - 1 quality model to evaluate the efficiency and quality of the

proposed solution. More specifically, in the PatEvol framework first we evaluate the architecture

change mining process to address the challenges in RQ 1 and RQ 2 and then architecture change

execution to address challenges in RQ 3 and RQ 4 (outlined in Chapter 1):

205

• RQ 1 deals with evaluating the suitability and efficiency of modelling architectural changes

as change log graphs discussed in Section 9.4. The evaluation suggests that as the size of

data increases (more than 1200 changes) in a log file, graph-based traversal and searching of

log data is efficient in Section 9.4.

• RQ 2 aims at evaluating the efficiency, accuracy of pattern discovery process. We have

evaluated the discover algorithms in comparison to any manual process for pattern discovery

and found that pattern discovery is more efficient and accurate than manual efforts discussed

in Section 9.5.

• RQ 3 is evaluated in terms of selecting the most appropriate change pattern from the pattern

language. We observed that pattern classification helps in increasing the precision of pattern

selection discussed in Section 9.6.

• RQ 4 is evaluated based on evaluating the efficiency of pattern-based architecture evolution

process. The evaluation suggests that pattern-based evolution is more efficient than primitive

changes discussed in Section 9.7.

206

Chapter 10
Conclusions and Future Research

Contents
10.1 Research Focus and Implications of the PatEvol Framework 207

10.1.1 Practical Implementation of the PatEvol Framework 208

10.2 Summary of Research Contributions . 209

10.3 Dimensions of Future Research . 211

10.3.1 Pattern-driven Plans for Architecture Evolution 211

10.3.2 Post-mortem Analysis of Architecture Evolution Histories of Evolving Software211

10.3.3 The Notion of Architecture Change Anti-Patterns 213

10.1 Research Focus and Implications of the PatEvol Framework

In this chapter, we present the main conclusions of our research by highlighting the contributions

and discussing future research. First, we provide a summary of the research focus and practical

implementation of the PatEvol framework. Then, we discuss the core contributions of this research

followed by dimensions of future research.

In modern day software, we face a challenge with frequently evolving requirements that

needs to be implemented in existing software in a timely and cost-effective manner [Garlan 2009,

Tamzalit 2010]. Lehman’s law of continuing change [Lehman 1996] poses a direct challenge for

research and practices that aim to support long-living and continuously evolving architectures

[Le Goaer 2008] under changing requirements [Yskout 2012]. The primary challenges (as identi-

fied in Chapter 3) to support a continuous change are concerned with: a) acquisition and ap-

plication of reusable solutions to address recurring evolution problems and b) selection of an

appropriate abstraction for software change implementation [Medvidovic 1999]. To address these

challenges, we support the discovery of evolution-centric knowledge that can be reused to evolve

207

software at its architecture level. Some industrial studies [Cámara 2013, Mohagheghi 2004] have

suggested that the integration of an empirically discovered reuse knowledge in the architecture evolution

process supports reusability of change implementations and ultimately the efficiency of evolution process.

The focus of this research was to discover reuse knowledge and expertise - operationalisation and

patterns - that can be integrated in the architecture evolution process (Chapter 4). In architecture

change mining process, we performed a post-mortem analysis of architecture evolution histo-

ries (Chapter 5) - change logs - to discover recurring operationalisations (Chapter 6) and change

patterns (Chapter 7). In the change execution process (Chapter 8), we applied the discovered

operationalisation and patterns to support reuse in the evolution of software architectures.

In terms of the results, the research also draws inspiration from pattern languages to build

complex architectures in the real world [Alexander 1999]. We focus on composition and the ap-

plication of a pattern language that exploits a collection of discovered patterns and their relations

to evolve software architectures. Language composition is enabled with a continuous discovery

of patterns from architecture change logs and formalisation of relations among discovered change

patterns. The language application is supported with an incremental selection and application of

patterns to achieve reuse in architecture-centric software evolution. Reuse-knowledge in the pro-

posed pattern language is expressed as a collection of connected patterns (a.k.a. pattern relations).

The application domain of the pattern language is component-based software architectures and

their evolution. Graph mining is exploited for pattern discovery [Agrawal 1995] (language com-

position) and graph transformation for pattern-driven architecture evolution [Bhattacharya 2012]

(language application).

10.1.1 Practical Implementation of the PatEvol Framework

In recent years, the needs for reuse knowledge and expertise have grown as indicated in research

[Garlan 2009, Tamzalit 2010] and practice [Cámara 2013] for software architecture evolution. This

research provides a framework and its implementation with two software prototypes to (semi-)

automate the architecture change mining and architecture change execution processes.

We have developed a prototype GPride (Graph-based Pattern Identification) to support au-

tomation of the pattern discovery process. The input to the prototype is a log file (modelled as a

log graph) for pattern discovery. The prototype supports a modular solution to pattern discovery

by offering the pattern discovery algorithms that support parametrisation and customisation of

the pattern discovery process. The output of the prototype is a list of discovered patterns that

208

are specified in a pattern template for later reuse. The prototype GPride discovers exact as well as

in-exact pattern instances from logs where only central pattern features suffice for identification

as detailed in Chapter 7.

We also provide a prototype PatEvol (Pattern-based Architecture Evolution) to support pattern-

driven reuse in architecture-centric software evolution. The input to the prototype is a list of dis-

covered patterns and descriptions of the source architecture model that needs to be evolved. The

prototype allows the user to select the most appropriate patterns in a given evolution scenario. Fi-

nally, the source architecture is transformed towards a target or evolved architecture using change

patterns - the outcome is an evolved architecture model as detailed in Chapter 8.

The prototypes emphasise the needs for practical solutions supporting reusability on architec-

ture evolution process [Clerc 2007, Slyngstad 2008]. Currently, we have implemented these two

prototypes as standalone applications. However, we plan to provide a unified solution by com-

bining the GPride and PatEvol prototype as an Eclipse plug-in1 to enhance prototype usability.

10.2 Summary of Research Contributions

This research contributes a pattern language as a collection of architecture change patterns to

promote reuse in the evolution of component-based software architectures. Pattern discovery is

enabled by analysing and mining recurring architectural changes from change logs. Architecture

change patterns abstract the primitive changes (addition, removal, modification of components

and connectors) into reusable pattern-based changes (composition, decomposition, replacement

etc. of components and connectors). We highlight the contributions of this thesis as:

• A Systematic Review of Research on Architecture Evolution Reuse Knowledge: We pro-

vided a systematic review of existing research to identify and classify the available evidence

about evolution reuse in software architectures, and provided a comparison of existing re-

search to highlight its potential, limitations and future dimensions. Chapter 3 can be viewed

as a stand-alone contribution as the literature base. It helps with knowledge sharing to ACSE

researchers and practitioners [Stammel 2011] and presents a collective impact of existing re-

search and insights into dimensions of future research. The results of this contribution are

published in [Ahmad 2014d].

• A Framework for Acquisition and Application of Evolution Reuse Knowledge: We have

1Plug-ins Eclipse: http://www.eclipse.org/resources/?category=Plug-ins

209

proposed a framework PatEvol that aims to unify the concepts of a) software repository min-

ing and b) software evolution to enable acquisition and application of architecture evolution

reuse knowledge. In the proposed PatEvol framework, we present knowledge acquisition

(architecture change mining) to enable post-mortem analysis of evolution histories to dis-

cover evolution-centric knowledge. Furthermore, we support reuse of discovered knowledge

to enable knowledge application (architecture change execution) that enables evolution-off-

the-shelf in software architectures as presented in Chapter 4. The results of this contribution

are published in [Ahmad 2011, Ahmad 2012e, Ahmad 2013b].

• A Taxonomical Classification of Architecture Change Operationalisation: By investigat-

ing architecture change logs, we taxonomically classify architectural change operations as

atomic, composite and sequential type changes. We distinguish between the change primitives

and change patterns. In addition, we classify operational dependencies as commutative and

dependent type change operations to analyse the extent to which architecture change op-

erations can be parallelised in Chapter 6. The results of this contribution are published in

[Ahmad 2012b].

• Mining Architecture Change Pattern from Logs: We provided algorithms to discover archi-

tecture change patterns from logs. Pattern discovery algorithms when executed on change

logs provide an automated and continuous discovery of patterns. Scalability of pattern-

discovery process beyond manual analysis is supported with a prototype ‘G-Pride’ (Graph-

based Pattern Identification) enabling automation and parametrised user intervention for

pattern mining in Chapter 7. The results of this contribution are published in [Ahmad 2012c,

Ahmad 2013a].

• Pattern-driven Reuse in Architecture Evolution: The solution promotes architecture evo-

lution as a two-step process: to leverage architectural change mining - discovering pattern

instances from change logs - and to support potential reuse during architecture change exe-

cution. We demonstrated that if an architectural evolution problem can be specified declaratively,

then pattern-driven evolution could relieve an architect from the underlying operational concerns for

executing routine evolution tasks facilitated with change patterns. We provided a prototype ‘Pat-

Evol’ (Pattern-based Architecture Evolution) that enables automation and user intervention

for architecture change execution in Chapter 8. The results of this contribution are published

in [Ahmad 2012a, Ahmad 2014b].

210

10.3 Dimensions of Future Research

We now discuss dimensions of possible future research that can complement the existing research

on evolution reuse or outline challenges for some novel solutions.

10.3.1 Pattern-driven Plans for Architecture Evolution

An interesting aspect of future research is to possibly integrate the proposed change patterns in

the evolution plans discussed in [Barnes 2013]. The architecture evolution plans [Barnes 2013]

describe an approach for planning, modelling and reasoning about architecture evolution. Specif-

ically, the evolution plan exploits the concept of evolution styles from [Garlan 2009] that empower

the role of an architect to derive high-level, reusable paths of architecture evolution. These paths

provide a decision support to the architect by evaluating different paths of evolution based on

various trade-offs (cost vs time of evolution, etc.). One of the limitations of the evolution styles

(the foundation for evolution plans) are derived based on the experience, observations and the

expertise of the individual architects that limit their reusability across systems.

We believe, as part of the future research an interesting investigation lies with analysing the

applicability of the empirically discovered patterns to derive evolution plans. This can ensure

better re-usability both at evolution planning (with styles) and evolution execution (with patterns)

levels. Moreover, the discovered patterns can also abstract the primitive and low-level architectural

changes to go beyond deriving plans and also assist the architect with reusing change execution.

10.3.2 Post-mortem Analysis of Architecture Evolution Histories of Evolving

Software

The applicability of the log-based pattern discovery algorithms beyond the existing solution needs

to be evaluated on different systems that evolve continuously. This means we need to acquire

an extensive real-world data that allows us to customise our proposed algorithms and to cross-

validate the results of pattern mining - with potential future research detailed below.

Mining Architecture Change Logs for ROS

The applicability of the log-based pattern discovery algorithms beyond the existing solution needs

to be evaluated on different systems that evolve continuously. This means we need to acquire

an extensive real-world data that allows us to customise our proposed algorithms and to cross-

211

validate the results of pattern mining. We are specifically interested in the postmortem analysis of

the architectural evolution history (recorded in the change logs) of the Robot Operating Systems

(ROS) [ROS 2010]. In particular, we view the change logs of ROS architecture as an ideal example -

providing us publicly available data (from 2010 - to date) [ROS-Distributions 2010] with thousands

of architectural changes to systematically analyse the evolution of ROS. Therefore, as part of the

future research, we aim to discover and investigate:

• The evolution patterns and their impact on the structure of the ROS that helps us to view

the most frequent structural changes of the architecture to predict futuristic evolution.

• The impact of evolution on the dependencies that exist among the architectural components

of ROS. The dependency analysis allows us to study the co-evolution of architectural ele-

ments.

• The classical work on the laws of software evolution [Lehman 1996] and their implication

can be empirically revisited in terms of a long-term evolving software.

Patterns for Legacy Modernisation towards Cloud-enabled Software

In recent years, there is a lot of attention on developing solutions that enable the migration of

legacy systems towards cloud-enabled software. Specifically, cloud computing as a platform al-

lows organizations to leverage the distributed and interoperable services to deploy their legacy

(on-premise) software systems over publicly available resources. From a business point of view,

organizations can benefit from the pay-per-use model offered by cloud services rather than an

upfront purchase of costly and over-provisioned infrastructure. From a technical perspective, the

scalability, interoperability, and efficient (de-)allocation of resources through cloud services can en-

able a smooth execution of organizational operations. However, legacy migration towards cloud

requires an appropriate process and tool support. A recent review of research [Jamshidi 2013a]

has highlighted the growing needs for reusable knowledge, processes and tool support for legacy

cloudification. Moreover, the Legacy-to-Cloud Migration Horseshoe [Ahmad 2014a] as a conceptual

framework provides a foundation for future integration of migration patterns for architecture-

driven legacy migration.

As a possible dimension of future research, we primarily focus on pattern-driven reuse of ar-

chitectural migration. Considering migration as a recurring problem, in future we aim to exploit

the migration process patterns as reusable solutions to frequent problems of architectural migra-

tion. A migration process pattern is defined as a generic and repeatable solution that addresses

212

the frequently occurring migration problems. Based on our proposed framework, we aim to in-

vestigate the architecture migration processes to empirically discover migration process patterns.

A catalogue of migration process patterns is envisaged as a pattern collection that shall guide the

migration process.

10.3.3 The Notion of Architecture Change Anti-Patterns

Central to a pattern-based design and evolution process is reusability and proven practices to

effectively tackle recurring problems [Gamma 2001, Goedicke 2002]. However, the pitfalls or the

negative consequences of applying patterns cannot be overlooked - resulting in the emergence

of anti-patterns [Mowbray 1998]. An anti-pattern represents a frequent solution to a recurring

problems but it has some negative consequences on software design. The consequences may

result in violating the design constraints and compromise the philosophy of pattern-based design

by producing negative impacts.

The role of the pattern language is central in promoting patterns to achieve reuse and consis-

tency in evolution for CBSA. However, change pattern do not guarantee an optimal solution to

a given evolution problem, instead they support an alternative and reusable solution. Structural

and semantic consistency of CBSA [Szyperski 2002, Medvidovic 1999] models may be violated as

a consequence of a pattern-based evolution. These counter-productive and negative impacts of change

patterns on architecture model results in change anti-patterns. A detailed discussion of potential anti-

patterns is beyond the scope of this research. However, we believe that in addition to discovering

the patterns and their variants (positive impacts), a complementary future work on discovery of

change anti-patterns (positive impacts) and possibly preventing them ensures the efficiency of

evolution process and the structural integrity of evolved architecture.

213

Bibliography

[3-in-1 Phone System 1999] 3-in-1 Phone System. K3: Cordless Telephony Profile. Bluetooth Specification Ver-
sion, vol. 1, 1999.

[Agrawal 1995] Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In In Eleventh Inter-
national Conference on Data Engineering, (ICDE’95), pages 3–14. IEEE, 1995.

[Ahmad 2010] Aakash Ahmad and Claus Pahl. Pattern-based Customisable Transformations for Style-based Ser-
vice Architecture Evolution. In In 6th International Conference on Next Generation Web Services Prac-
tices, pages 371–376. IEEE, 2010.

[Ahmad 2011] Aakash Ahmad and Claus Pahl. Customisable Transformation-driven Evolution for Service Archi-
tectures. In In 15th European Conference onSoftware Maintenance and Reengineering (CSMR), pages
373–376. IEEE, 2011.

[Ahmad 2012a] Aakash Ahmad, Pooyan Jamshid, Claus Pahl and Fawad Khaliq. PatEvol - A Pattern Language
for Evolution in Component-Based Software Architectures. First Workshop on Patterns Promotion and
Anti-patterns Prevention, 2012.

[Ahmad 2012b] Aakash Ahmad, Pooyan Jamshidi, Muteer Arshad and Claus Pahl. Graph-based Implicit
Knowledge Discovery from Architecture Change Logs. In In Seventh Workshop on SHaring and Reusing
Architecture Knowledge, pages 116–123. ACM, 2012.

[Ahmad 2012c] Aakash Ahmad, Pooyan Jamshidi and Claus Pahl. Graph-based Pattern Identification from
Architecture Change Logs. In In Tenth International Workshop on System/Software Architecture, pages
200–213. Springer, 2012.

[Ahmad 2012d] Aakash Ahmad, Pooyan Jamshidi and Claus Pahl. Reuse at Runtime: To-
wards a Pattern Language for Self-Adaptation in Software Architectures. Technical Re-
port: School of Computing, Dublin City University, 2012. Available from:
www.computing.dcu.ie/~pjamshidi/DAPL.pdf,(Accessed:27-08-2015).

[Ahmad 2012e] Aakash Ahmad and Claus Pahl. Pat-Evol: Pattern-drive Reuse in Architecture-based Evolution
for Service Software. volume 88, pages 200–213. ERCIM News, 2012.

[Ahmad 2013a] Aakash Ahmad, Pooyan Jamshidi and Claus Pahl. Graph-
based Discovery of Architecture Change Patterns from Logs. Technical Re-
port: School of Computing, Dublin City University, 2013. Available from:
www.computing.dcu.ie/~pjamshidi/PatternDiscovery.pdf,(Accessed:22-06-2013).

[Ahmad 2013b] Pooyan Ahmad Aakash Jamshidi and Claus Pahl. A Framework for Acquisition and Application
of Software Architecture Evolution Knowledge. In ACM SIGSOFT Software Engineering Notes, volume 38,
2013.

[Ahmad 2014a] Aakash Ahmad and Ali Babar. A Framework for Architecture-driven Migration of Legacy Sys-
tems to Cloud-enabled Software. In First Workshop on Software Architecture Erosion and Architectural
Consistency. ACM, 2014.

214

www.computing.dcu.ie/~pjamshidi/DAPL.pdf, (Accessed: 27-08-2015)
www.computing.dcu.ie/~pjamshidi/PatternDiscovery.pdf, (Accessed: 22-06-2013)

[Ahmad 2014b] Aakash Ahmad, Pooyan Jamshid, Claus Pahl and Fawad Khaliq. A Pattern Language for
the Evolution of Component-based Software Architectures. In Electronic Communications of the EASST,
Special Issue on Patterns Promotion and Anti-patterns Prevention. ECEASST, 2014.

[Ahmad 2014c] Aakash Ahmad, Pooyan Jamshidi and Khaliq Fawad Pahl Claus. A Pattern Language for the
Evolution of Component-based Software Architectures. Electronic Communications of the EASST, vol. 59,
pages 1–31, 2014.

[Ahmad 2014d] Pooyan Ahmad Aakash Jamshidi and Claus Pahl. Classification and Comparison of Architecture
Evolution Reuse Knowledge - A Systematic Review. In Journal of Software: Evolution and Process,
volume 26, pages 654–691, 2014.

[Alexander 1979] Christopher Alexander. The Timeless Way of Building, volume 1. New York: Oxford
University Press, 1979.

[Alexander 1999] Christopher Alexander. The Origins of Pattern Pheory: The Future of the Theory, and the
Generation of a Living World. IEEE Software, vol. 16, no. 5, pages 71–82, 1999.

[Babar 2004] Muhammad Ali Babar, Liming Zhu and Ross Jeffery. A Framework for Classifying and Comparing
Software Architecture Evaluation Methods. In In 2004 Australian Software Engineering Conference,
pages 309–318. IEEE, 2004.

[Babar 2009] Muhammad Ali Babar. Software Architecture Knowledge Management. Springer, 2009.

[Baresi 2002] Luciano Baresi and Reiko Heckel. Tutorial Introduction to Graph Transformation: A Software Engi-
neering Perspective. In Graph Transformation, pages 402–429. Springer, 2002.

[Baresi 2006a] Luciano Baresi, Elisabetta Di Nitto and Carlo Ghezzi. Toward Open-world Software: Issue and
Challenges. IEEE Computer, vol. 39, no. 10, pages 36–43, 2006.

[Baresi 2006b] Luciano Baresi, Reiko Heckel, Sebastian Thöneet al. Style-based Modeling and Refinement of
Service-oriented Architectures. Software & Systems Modeling, vol. 5, no. 2, pages 187–207, 2006.

[Barnes 2013] Jeffrey M Barnes and David Garlan. Challenges in Developing a Software Architecture Evolution
Tool as a Plug-Ins. In Proceedings of the 3rd Workshop on Developing Tools as Plugin-Ins, 2013.

[Barnes 2014] Jeffrey M Barnes, David Garlan and Bradley Schmerl. Evolution Styles: Foundations and Models
for Software Architecture Evolution. volume 13, pages 649–678. Springer, 2014.

[Basili 1990] Victor R. Basili. Viewing Maintenance as Reuse-oriented Software Development. IEEE Software,
vol. 7, no. 1, pages 19–25, 1990.

[Bengtsson 1999] P Bengtsson and Jan Bosch. Architecture Level Prediction of Software Maintenance. In In hird
European Conference on Software Maintenance and Reengineering, pages 139–147. IEEE, 1999.

[Bengtsson 2004] PerOlof Bengtsson, Nico Lassing, Jan Bosch and Hans van Vliet. Architecture-Level Modifia-
bility Analysis (ALMA). Journal of Systems and Software, vol. 69, no. 1, pages 129–147, 2004.

[Bennett 2000] Keith H Bennett and Václav T Rajlich. Software Maintenance and Evolution: A Roadmap. In
Conference on the Future of Software Engineering, pages 73–87. ACM, 2000.

[Bhattacharya 2012] Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu and Michalis Faloutsos. Graph-
based Analysis and Prediction for Software Evolution. In In 33rd International Conference on Software
Engineering, pages 419–429. IEEE, 2012.

[Bjørnson 2008] Finn Olav Bjørnson and Torgeir Dingsøyr. Knowledge Management in Software Engineering: A
Systematic Review of Studied Concepts, Findings and Research Rethods Used. Information and Software
Technology, vol. 50, no. 11, pages 1055–1068, 2008.

[Bradbury 2004] Jeremy S Bradbury, James R Cordy, Juergen Dingel and Michel Wermelinger. A Classification
of Formal Specifications for Dynamic Software Architectures. In International Workshop on Self-Managed
Systems (WOSMS’04), 2004.

[Brandes Ulrick 2007] D. Wagner Brandes Ulrick M. Gaertler. Experiments on Graph Clustering Algorithms. In
11th Annual European Symposium on Algorithms. Lecture Notes in Computer Science, 2007.

215

[Brandes 2002a] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt and M Scott Marshall.
GraphML Progress Report - Structural Layer Proposal. In Graph Drawing, pages 501–512. Springer, 2002.

[Brandes 2002b] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt and M Scott Marshall.
GraphML Progress Report - Structural Layer Proposal. In Graph Drawing, pages 501–512. Springer, 2002.

[Breivold 2012] Hongyu Pei Breivold, Ivica Crnkovic and Magnus Larsson. A Systematic Review of Software
Architecture Evolution Research. Information and Software Technology, vol. 54, no. 1, pages 16–40, 2012.

[Brereton 2007] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner and Mohamed Khalil.
Lessons from Applying the Systematic Literature Review Process Within the Software Engineering Domain.
Journal of Systems and Software, vol. 80, no. 4, pages 571–583, 2007.

[Brinkkemper 1996] Sjaak Brinkkemper. Method Engineering: Engineering of Information Systems Development
Methods and Tools. Information and Software Technology, vol. 38, no. 4, pages 275–280, 1996.

[Buckley 2005] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid and Günter Kniesel. Towards a
Taxonomy of Software Change. Journal of Software Maintenance and Evolution: Research and Practice,
vol. 17, no. 5, pages 309–332, 2005.

[Buschmann 1999] Frank Buschmann. Pattern Oriented Software Architecture: A System of Patters. Ashish
Raut, 1999.

[Buschmann 2007] Frank Buschmann, Kelvin Henney and Douglas Schimdt. Pattern Oriented Software
Architecture, Vol. 5, volume 5. John Wiley & Sons, 2007.

[Cámara 2013] Javier Cámara, Pedro Correia, Rogério De Lemos, David Garlan, Pedro Gomes, Bradley
Schmerl and Rafael Ventura. Evolving an Adaptive Industrial Software System to Use Architecture-based
Self-adaptation. In 8th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 13–22. IEEE, 2013.

[Carrière 1999] S Jeromy Carrière, Steven Woods and Rick Kazman. Software Architectural Transformation. In
Sixth Working Conference on Reverse Engineering, pages 13–23. IEEE, 1999.

[Chapin 2001] Ned Chapin, Joanne E Hale, Khaled Md Khan, Juan F Ramil and Wui-Gee Tan. Types of
Software Evolution and Software Maintenance. Journal of Software Maintenance and Evolution: Research
and Practice, vol. 13, no. 1, pages 3–30, 2001.

[Clements 2003] Paul Clements, David Garlan, Reed Little, Robert Nord and Judith Stafford. Documenting
Software Architectures: Views and Beyond. In 25th International Conference on Software Engineering,
2003, pages 740–741. IEEE, 2003.

[Clerc 2007] Viktor Clerc, Patricia Lago and Hans van Vliet. The Architect’s Mindset. In Software Architec-
tures, Components, and Applications, pages 231–249. Springer, 2007.

[Conte 2004] Donatello Conte, Pasquale Foggia, Carlo Sansone and Mario Vento. Thirty Years of Graph Match-
ing in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence,
vol. 18, no. 3, pages 265–298, 2004.

[Côté 2007] Isabelle Côté, Maritta Heisel and Ina Wentzlaff. Pattern-based Evolution of Software Architectures.
In In First European Conference on Software Architecture, pages 29–43. Springer, 2007.

[Davison 2004] Robert Davison, Maris G Martinsons and Ned Kock. Principles of Canonical Action Research.
Information Systems Journal, vol. 14, no. 1, pages 65–86, 2004.

[Desrosiers 2011] Christian Desrosiers, Philippe Galinier, Alain Hertz and Pierre Hansen. Improving Con-
strained Pattern Mining with First-fail-based Heuristics. Data Mining and Knowledge Discovery, vol. 23,
no. 1, pages 63–90, 2011.

[Dong 2006] Jing Dong, Yongtao Sun and Yajing Zhao. Design Pattern Detection by Template Matching. In
Proceedings of the 2008 ACM symposium on Applied Computing, pages 765–769. ACM, 2006.

[Ducasse 2009] Stéphane Ducasse and Damien Pollet. Software Architecture Reconstruction: A Process-oriented
Taxonomy. IEEE Transactions on Software Engineering, vol. 35, no. 4, pages 573–591, 2009.

216

[EBPPCaseStudy] EBPPCaseStudy. NACHA - The Electronic Bill Presentment and Payment. Available from:
www.nacha.org,(Accessed:13-08-2011).

[Ehrig 2004] Hartmut Ehrig, Ulrike Prange and Gabriele Taentzer. Fundamental theory for typed attributed
graph transformation. Springer, 2004.

[Ehrig 2006] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange and Gabriele Taentzer. Fundamentals of Algebraic
Graph Transformation, volume 373. Springer, 2006.

[Erl 2009a] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[Erl 2009b] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[Fahmy 2000] Hoda Fahmy and Richard C Holt. Using Graph Rewriting to Specify Software Architectural Trans-
formations. In Fifteenth IEEE International Conference on Automated Software Engineering, 2000,
pages 187–196. IEEE, 2000.

[Fayad 1997] Mohamed E Fayad. Software Development Process: A Necessary Evil. Communications of the
ACM, vol. 40, no. 9, pages 101–103, 1997.

[Flyvbjerg 2006] Bent Flyvbjerg. Five Misunderstandings About Case-study Research. Qualitative inquiry, vol. 12,
no. 2, pages 219–245, 2006.

[Gall 1997] Harald Gall, Mehdi Jazayeri, Rene R Klosch and Georg Trausmuth. Software Evolution Observa-
tions Based on Product Release History. In International Conference on Software Maintenance, ICSM’97,
pages 160–166. IEEE, 1997.

[Gallivan 2001] Michael J Gallivan. Organizational Adoption and Assimilation of Complex Technological Innova-
tions: Development and Application of a New Framework. vol. 32, no. 3, 2001.

[Gamma 2001] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Abstrac-
tion and Reuse of Object-oriented Design. Springer, 2001.

[Ganek 2003] Alan G Ganek and Thomas A Corbi. The Dawning of the Autonomic Computing Era. IBM Systems
Journal, vol. 42, no. 1, pages 5–18, 2003.

[Garg 2008] Amit X Garg, Dan Hackam and Marcello Tonelli. Systematic Review and Meta-analysis: When one
Study is Just Not Enough. Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pages
253–260, 2008.

[Garlan 2004] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl and Peter Steenkiste. Rainbow:
Architecture-based Self-adaptation With Reusable Infrastructure. IEEE Computer, vol. 37, no. 10, pages
46–54, 2004.

[Garlan 2009] David Garlan, Jeffrey M Barnes, Bradley Schmerl and Orieta Celiku. Evolution Styles: Foun-
dations and Tool Support for Software Architecture Evolution. In Joint Working IEEE/IFIP Conference on
Software Architecture, 2009 & European Conference on Software Architecture. WICSA/ECSA, pages
131–140. IEEE, 2009.

[Geng 2008] Xiangjun Dong He Jiang Geng Runian and Wenbo Xu. WTSPMiner: Efficiently Mining Weighted
Sequential Patterns from Directed Graph Traversals. In Advanced Intelligent Computing Theories and
Applications. With Aspects of Theoretical and Methodological Issues, pages 372–379. Springer Berlin
Heidelberg, 2008.

[Ghazizadeh 2002] Shayan Ghazizadeh and SudarshanS. Chawathe. SEuS: Structure Extraction Using Sum-
maries. In Discovery Science, volume 2534 of Lecture Notes in Computer Science, pages 71–85. Springer
Berlin Heidelberg, 2002.

[Gîrba 2006] Tudor Gîrba and Stéphane Ducasse. Modeling History to Analyze Software Evolution. Journal of
Software Maintenance and Evolution: Research and Practice, vol. 18, no. 3, pages 207–236, 2006.

[Goedicke 2002] Michael Goedicke and Uwe Zdun. Piecemeal Legacy Migrating With an Architectural Pattern
Language: A Case Study. Journal of Software Maintenance and Evolution: Research and Practice,
vol. 14, no. 1, pages 1–30, 2002.

217

www.nacha.org, (Accessed: 13-08-2011)

[Gomaa 2010] Hassan Gomaa, Koji Hashimoto, Minseong Kim, Sam Malek and Daniel A Menascé. Software
Adaptation Patterns for Service-oriented Architectures. In 2010 ACM Symposium on Applied Computing,
pages 462–469. ACM, 2010.

[Graaf 2007] Bas Graaf. Model-driven Evolution of Software Architectures. In 11th European Conference on
Software Maintenance and Reengineering, CSMR’07, pages 357–360. IEEE, 2007.

[H. Tong 2007] B. Gallagher H. Tong C. Faloutsos and T. Eliassi-Rad. Fast Best-Effort Pattern Matching in Large
Attributed Graphs. In 13th ACM International Conference on Knowledge Discovery and Data Mining,
2007.

[Harrison 2007] Neil B Harrison, Paris Avgeriou and Uwe Zdlin. Using Patterns to Capture Architectural
Decisions. IEEE Software, vol. 24, no. 4, pages 38–45, 2007.

[Hassan 2008] Ahmed. E. Hassan. The Road Ahead for Mining Software Repositories. In Frontiers of Software
Maintenance, pages 48–57. IEEE, 2008.

[Hentrich 2006] Carsten Hentrich and Uwe Zdun. Patterns for Process-Oriented Integration in Service-Oriented
Architectures. In EuroPLoP, pages 141–198, 2006.

[Huang 2003] Yin-Fu Huang and Shao-Yuan Lin. Mining Sequential Patterns using Graph Search Techniques. In
27th Annual International Computer Software and Applications Conference, pages 4–9, 2003.

[Hudlicka 1996] Eva Hudlicka. Requirements Elicitation with Indirect Knowledge Elicitation Techniques: Compar-
ison of Three Methods. In Second International Conference on Requirements Engineering, pages 4–11.
IEEE, 1996.

[ISO-IEC-IEEE42010 2011] ISO-IEC-IEEE42010. Systems and Software Engineering–Architecture Description.
Technical report, ISO/IEC/IEEE 42010, 2011.

[ISO/IEC25010 2010] ISO/IEC25010. 25010 Systems and Software Engineering–Systems and Software Quality
Requirements and Evaluation (SQuaRE)–System and Software Quality Models, 2010.

[Jamshidi 2013a] Pooyan Jamshidi, Ahmad Aakash and Claus Pahl. Cloud Migration Research: A Systematic
Review. IEEE Transactions on Cloud Computing, vol. 1, no. 1, 2013.

[Jamshidi 2013b] Pooyan Jamshidi, Mohammad Ghafari, Ahmad Aakash and Claus Pahl. A Framework for
Classifying and Comparing Architecture-centric Software Evolution Research. 2013.

[Javed 2009] Muhammad Javed, Yalemisew M Abgaz and Claus Pahl. A Pattern-based Framework of Change
Operators for Ontology Evolution. In In On the Move to Meaningful Internet Systems: OTM 2009
Workshops, pages 544–553. Springer, 2009.

[Javed 2013] Muhammad Javed, Yalemisew M Abgaz and Claus Pahl. Ontology Change Management and
Identification of Change Patterns. Journal on Data Semantics, pages 1–25, 2013.

[Jiang 2012] Chuntao Jiang, Frans Coenen and Michele Zito. A Survey of Frequent Subgraph Mining Algorithms.
The Knowledge Engineering Review, vol. 1, no. 1, pages 1–31, 2012.

[Jung 2004] Ho-Won Jung, Seung-Gweon Kim and Chang-Shin Chung. Measuring Software Product Quality:
A Survey of ISO/IEC 9126. IEEE Software, vol. 21, no. 5, pages 88–92, 2004.

[Kagdi 2007] Huzefa Kagdi, Michael L Collard and Jonathan I Maletic. A Survey and Taxonomy of Approaches
for Mining Software Repositories in the Context of Software Evolution. Journal of Software Maintenance
and Evolution: Research and Practice, vol. 19, no. 2, pages 77–131, 2007.

[Kampffmeyer 2007] Holger Kampffmeyer and Steffen Zschaler. Finding the Pattern You Need: The Design Pat-
tern Intent Ontology. In Model Driven Engineering Languages and Systems, pages 211–225. Springer,
2007.

[Kandé 2000] Mohamed Mancona Kandé and Alfred Strohmeier. Towards a UML Profile for Software Architec-
ture Descriptions. In UML 2000 - The Unified Modeling Language, pages 513–527. Springer, 2000.

218

[Kazman 1994] Rick Kazman, Len Bass, Mike Webb and Gregory Abowd. SAAM: A Method for Analyzing the
Properties of Software Architectures. In Proceedings of the 16th International Conference on Software
Engineering, pages 81–90. IEEE Computer Society Press, 1994.

[Kazman 1998] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lipson and Jeromy Car-
riere. The Architecture Tradeoff Analysis Method. In 4th IEEE International Conference on Engineering
of Complex Computer Systems, pages 68–78. IEEE, 1998.

[Kemerer 1999] Chris F. Kemerer and Sandra Slaughter. An Empirical Approach to Studying Software Evolution.
IEEE Software, vol. 25, no. 4, pages 493–509, 1999.

[Ketkar 2005] Nikhil S. Ketkar, Lawrence B. Holder and Diane J. Cook. Subdue: Compression-based Frequent
Pattern Discovery in Graph Data. In Proceedings of the 1st International Workshop on Open Source
Data Mining: Frequent Pattern Mining Implementations, pages 71–76, New York, NY, USA, 2005.
ACM.

[Kiwelekar 2010] Arvind W Kiwelekar and Rushikesh K Joshi. Ontological Analysis for Generating Baseline
Architectural Descriptions. In 4th European Conference on Software Architecture, pages 417–424.
Springer, 2010.

[Kruchten 2006] Philippe Kruchten, Henk Obbink and Judith Stafford. The Past, Present, and Future for Soft-
ware Architecture. IEEE Software, vol. 23, no. 2, pages 22–30, 2006.

[Kum 2006] Hye-Chung Kum, Joong Hyuk Chang and Wei Wang. Sequential Pattern Mining in Multi-
Databases via Multiple Alignment. Data Mining and Knowledge Discovery, vol. 12, no. 2–3, pages
151–180, 2006.

[Lassing 2003] Nico Lassing, Daan Rijsenbrij and Hans van Vliet. How Well can We Predict Changes at Archi-
tecture Design Time? Journal of Systems and Software, vol. 65, no. 2, pages 141–153, 2003.

[Le Goaer 2008] Olivier Le Goaer, Dalila Tamzalit, Mourad Oussalah and A-D Seriai. Evolution Shelf: Reusing
Evolution Expertise Within Component-based Software Architectures. In 32nd Annual IEEE International
Computer Software and Applications, 2008. COMPSAC’08, pages 311–318. IEEE, 2008.

[Lehman 1996] Manny M Lehman. Laws of Software Evolution Revisited. In Software Process Technology,
pages 108–124. Springer, 1996.

[Lehman 2003] Meir M Lehman and Juan F Ramil. Software Evolution: Background, Theory, Practice. Informa-
tion Processing Letters, vol. 88, no. 1, pages 33–44, 2003.

[Lehnert 2012] Steffen Lehnert, Qurat Farooq and Matthias Riebisch. A Taxonomy of Change Types and its
Application in Software Evolution. In 19th International Conference and Workshops on Engineering of
Computer Based Systems, pages 98–107. IEEE, 2012.

[Leung 2005] Ho-pong Leung, Fu-lai Chung and Stephen Chi-fai Chan. On the Use of Hierarchical Informa-
tion in Sequential Mining-based XML Document Similarity Computation. Knowledge and Information
Systems, vol. 7, no. 4, pages 476–498, 2005.

[Li 2012] Zengyang Li, Peng Liang and Paris Avgeriou. Application of Knowledge-based Approaches in Software
Architecture: A Systematic Mapping Study. Information and Software Technology, 2012.

[Loewe 1997] M Loewe, A Corradini, U Montanari, F Rossi, H Ehrig, R Heckelet al. Algebraic Approaches to
Graph Transformation Part I: Basic Concepts and Double Pushout Approach. 1997.

[Lytra 2012] Ioanna Lytra, Stefan Sobernig, Huy Tran and Uwe Zdun. A Pattern Language for Service-Based
Platform Integration and Adaptation. 2012.

[MacLean 1991] Allan MacLean, Richard M Young, Victoria ME Bellotti and Thomas P Moran. Questions,
Options, and Criteria: Elements of Design Space Analysis. Human Computer Interaction, vol. 6, no. 3-4,
pages 201–250, 1991.

[MacLean 1995] Allan MacLean and Diane McKerlie. Design Space Analysis and Use-representations. Scenario-
based Design: Envisioning Work and Technology in System Development, pages 183–207, 1995.

219

[Malavolta 2013] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione and Antony. Tang. What
Industry Needs from Architectural Languages: A Survey. IEEE Transactions on Software Engineering,
vol. 39, no. 6, pages 869–891, 2013.

[Medvidovic 1997] Nenad Medvidovic and Richard N Taylor. A Framework for Classifying and Comparing
Architecture Description Languages. In IEEE Transactions on Software Engineering, volume 22, pages
60–76. Springer-Verlag, 1997.

[Medvidovic 1999] Nenad Medvidovic, David S Rosenblum and Richard N Taylor. A Language and Envi-
ronment for Architecture-based Software Development and Evolution. In 1999 International Conference on
Software Engineering, pages 44–53. IEEE, 1999.

[Medvidovic 2000] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software Engineering, vol. 26, no. 1,
pages 70–93, 2000.

[Mens 1999] Kim Mens, Tom Mens, Bart Wouters and Roel Wuyts. Managing Unanticipated Evolution of
Software Architectures. Lecture Notes in Computer Science, pages 75–75, 1999.

[Mens 2008] Tom Mens and Serge Demeyer. Software Evolution. Springer, 1st édition, 2008.

[Moghadam 2012] I Hemati Moghadam and Mel O Cinneide. Automated Refactoring Using Design Differenc-
ing. In 16th European Conference on Software Maintenance and Reengineering (CSMR), pages 43–52.
IEEE, 2012.

[Mohagheghi 2004] Parastoo Mohagheghi and Reidar Conradi. An Empirical Study of Software Change: Origin,
Acceptance rate, and Functionality vs. Quality Attributes. In International Symposium on Empirical
Software Engineering, ISESE’04, pages 7–16. IEEE, 2004.

[Mooney 2013] Carl H. Mooney and John F. Roddick. Sequential Pattern Mining – Approaches and Algorithms.
ACM Computing Surveys, vol. 45, no. 2, pages 1–39, 2013.

[Mowbray 1998] W. J. Brown Mowbray Thomas J. and H. W. McCornnick III. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John Wiley Sons, 1st édition, 1998.

[Nagappan 2013] Meiyappan Nagappan, Thomas Zimmermann and Christian Bird. Diversity in Software
Engineering Research. In 9th Joint Meeting on Foundations of Software Engineering, pages 466–476.
ACM, 2013.

[Pahl 2009] Claus Pahl, Simon Giesecke and Wilhelm Hasselbring. Ontology-based Modelling of Architectural
Styles. Information and Software Technology, vol. 51, no. 12, pages 1739–1749, 2009.

[Pei 2002] Jian Pei, Jiawei Han and Wei Wang. Mining Sequential Patterns with Constraints in Large Databases. In
Proceedings of the Eleventh International Conference on Information and Knowledge Management,
pages 18–25. ACM, 2002.

[Perry 1992] Dewayne E Perry and Alexander L Wolf. Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, vol. 17, no. 4, pages 40–52, 1992.

[Petticrew 2008] Mark Petticrew and Helen Roberts. Systematic Reviews in the Social Sciences: A Practical
Guide. Wiley-Blackwell, 2008.

[Porter 2005] Ronald Porter, James O Coplien and Tiffany Winn. Sequences as a Basis for Pattern Language
Composition. Science of Computer Programming, vol. 56, no. 1, pages 231–249, 2005.

[Robbes 2005] Romain Robbes and Michele Lanza. Versioning Systems for Evolution Research. In Proceed-
ings of the Eighth International Workshop on Principles of Software Evolution, pages 155–164. IEEE
Computer Society, 2005.

[ROS-Distributions 2010] ROS-Distributions. ROS (Robot Operating System) Distributions. 2010. Available
from: http://wiki.ros.org/Distributions,(Accessed:15-06-2015).

[ROS 2010] ROS. ROS (Robot Operating System) Distributions. 2010. Available from:
http://www.ros.org/,(Accessed:11-06-2015).

220

http://wiki.ros.org/Distributions, (Accessed: 15-06-2015)
http://www.ros.org/, (Accessed: 11-06-2015)

[Rosa 2004] Nelson Souto Rosa, Paulo Roberto Freire Cunha and George Roger Ribeiro Justo. An Approach for
Reasoning and Refining Non-functional Requirements. Journal of the Brazilian Computer Society, vol. 10,
no. 1, pages 59–81, 2004.

[Sadou 2005] Nassima Sadou, Dalila Tamzalit and Mourad Oussalah. How to Manage Uniformly Software
Architecture at Different Abstraction Levels. In 24th International Conference on Conceptual Modeling,
pages 16–30. Springer, 2005.

[Shaw 2006] Mary Shaw and Paul Clements. The Golden Age of Software Architecture. IEEE Software, vol. 23,
no. 2, pages 31–39, 2006.

[Slyngstad 2008] Odd Petter N Slyngstad, Reidar Conradi, M Ali Babar, Viktor Clerc and Hans van Vliet.
Risks and Risk Management in Software Architecture Evolution: An Industrial Survey. In 15th Asia-Pacific
Software Engineering Conference, APSEC’08., pages 101–108. IEEE, 2008.

[Stammel 2011] Johannes Stammel, Zoya Durdik, Klaus Krogmann, Roland Weiss and Heiko Koziolek. Soft-
ware Evolution for Industrial Automation Systems: Literature Overview. KIT, Fakultät für Informatik,
2011.

[Stojanović 2005] Zoran Stojanović and Ajantha Dahanayake. Service-oriented Software System Engineering:
Challenges and Practices. Idea Group Publishing, 2005.

[Sun 2010] Xiaobing Sun, Bixin Li, Chuanqi Tao, Wanzhi Wen and Sai Zhang. Change Impact Analysis Based
on a Taxonomy of Change Types. In 34th Annual IEEE Computer Software and Applications Conference
(COMPSAC), pages 373–382. IEEE, 2010.

[Szyperski 2002] Clemens Szyperski, Dominik Gruntz and Stephan Murer. Component Software: Beyond
Object-oriented Programming. Addison-Wesley, 2002.

[Taentzer 2000] Gabriele Taentzer. AGG: A Tool environment For Algebraic Graph Transformation. In Applica-
tions of Graph Transformations with Industrial Relevance, pages 481–488. Springer, 2000.

[Tamzalit 2010] Dalila Tamzalit and Tom Mens. Guiding Architectural Restructuring Through Architectural
Styles. In 17th IEEE International Conference and Workshops on Engineering of Computer Based
Systems (ECBS), pages 69–78. IEEE, 2010.

[Tekumalla 2012] Bharath Tekumalla. Master of Science Thesis in Software Engineering and Management, Univer-
sity of Gothenburg. In 17th IEEE International Conference and Workshops on Engineering of Computer
Based Systems (ECBS), pages 1–51, 2012.

[Tu 2002] Qiang Tu and Michael W Godfrey. An Integrated Approach for Studying Architectural Evolution. In
10th International Workshop on Program Comprehension, pages 127–136. IEEE, 2002.

[Ulrich 2010] William M Ulrich and Philip Newcomb. Information Systems Transformation: Architecture
Driven Modernization Case studies. Morgan Kaufmann, 2010.

[van der Aalst 2002] Willibrordus Martinus Pancratius van der Aalst, Kees Max van Hee and Robert Arie
van der Toorn. Component-based Software Architectures: A Framework based on Inheritance of Behavior.
Science of Computer Programming, vol. 42, no. 2, pages 129–171, 2002.

[van der Hoek 2001] André van der Hoek, Marija Mikic-Rakic, Roshanak Roshandel and Nenad Medvi-
dovic. Taming Architectural Evolution. In 8th European Software Engineering Conference and 9th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, volume 26, pages
1–10. ACM, 2001.

[Van der Westhuizen 2002] Christopher Van der Westhuizen and André Van Der Hoek. Understanding and
Propagating Architectural Changes. In Proceedings of the IFIP 17th World Computer Congress-TC2
Stream ystem Design, Development and Maintenance3rd IEEE/IFIP Conference on Software Archi-
tecture, pages 95–109, 2002.

[Wei 2007] Ong Kein Wei and Tang Mei Ying. Knowledge Management Approach in Mobile Software System
Testing. In IEEE International Conference on Industrial Engineering and Engineering Management,
pages 2120–2123. IEEE, 2007.

221

[Wermelinger 2011] Michel Wermelinger, Yijun Yu, Angela Lozano and Andrea Capiluppi. Assessing Archi-
tectural Evolution: a case study. volume 16, pages 623–666. Springer, 2011.

[Williams 2010] Byron J Williams and Jeffrey C Carver. Characterizing Software Architecture Changes: A Sys-
tematic Review. Information and Software Technology, vol. 52, no. 1, pages 31–51, 2010.

[Yskout 2012] Koen Yskout, Riccardo Scandariato and Wouter Joosen. Change patterns: Co-evolving Require-
ments and Architecture. Journal of Software and Systems Modeling, 2012.

[Yu 2009] Liguo Yu. Mining Change Logs and Release Notes to Understand Software Maintenance and Evolution.
CLEI Electron Journal, vol. 12, no. 2, pages 1–10, 2009.

[Zdun 2007] Uwe Zdun. Systematic Pattern Selection using Pattern Language Grammars and Design Space Anal-
ysis. Software: Practice and Experience, vol. 37, no. 9, pages 983–1016, 2007.

[Zhang 2012] He Zhang and Muhammad Ali Babar. Systematic Reviews in Software Engineering: An Empirical
Investigation. Information and Software Technology, 2012.

[Zimmermann 2003] Thomas Zimmermann, Stephan Diehl and Andreas Zeller. How History Justifies System
Architecture (or not). In Sixth International Workshop on Principles of Software Evolution, pages 73–83.
IEEE, 2003.

[Zimmermann 2005] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber and Stephan Diehl. Mining
Version Histories to Guide Software Changes. IEEE Transactions on Software Engineering, vol. 31, no. 6,
pages 429–445, 2005.

222

Appendix A
Protocol and Auxiliary Information for
Systematic Review

Contents

A.1 Scope of Systematic Literature Review . 223

A.2 Definition and Evaluation of the Review Protocol 224

A.3 Conducting the Review . 224

A.4 Literature Search Strategies . 225

A.4.1 Executing Literature Search . 225

A.5 Inclusion or Exclusion of Studies . 226

A.6 Qualitative Assessment of Included Studies . 227

A.6.1 A Mapping of Research Themes to Activities in REVOLVE Framework . . . 228

A.7 Threats to Validity of SLR . 229

A.7.1 Threats to the Identification of Primary Studies 229

A.7.2 Threats to Selection and Data extraction Consistency 229

A.7.3 Threats to Data Synthesis and Results . 230

A.1 Scope of Systematic Literature Review

The primary objectives and general scope of this review is further clarified by establishing the

PICOC (Population, Intervention, Comparison, Outcome and Context) perspectives [Petticrew 2008],

summarised in Table E.3.1.

223

PICOC SRQ-1 SRQ-2 SRQ-3

Population Classification and Expression Methods to enable reusable Empirical approaches for
of Reuse in ACSE evolution and adaptation reuse methods and techniques

Intervention Taxonomical Classification of Identification of solutions for Identification of reuse methods
reuse methodologies reuse-driven evolution and adaptation and techniques

Comparison A holistic comparison among the population to analyse collective impact of existing research
on methods and solution, formalism and tool support, research validations etc.

Outcome Classification and comparison framework with synthesised evidence to guide research and practices
- Application of reuse-driven knowledge expertise in ACSE.
- Empirical discovery of reuse-knowledge that can be shared and reused to guide ACSE.

Context A refined extension in our previous SLR [Williams 2010, Breivold 2012, Jamshidi 2013b]
with an exclusive focus on evidence for reuse-driven evolution in architectures

Table A.1: PICOC Criteria to define Scope and Goals of SLR.

A.2 Definition and Evaluation of the Review Protocol

According to the guidelines in [Brereton 2007], the review protocol drives the planning, conduct-

ing and documenting phases of the systematic review. The protocol1 definition is provided in the

reminder of this section. More specifically, we present i) identification of the needs and objectives

for SLR, ii) definition of search strategies to identify, include and exclude and qualitatively analyse

the relevant literature, iii) data extraction and results synthesis, and iv) results classification.

It aims to classify and compare existing research, identify the research potential, its limitations

and outline future dimensions for methods, techniques and solution that enable evolution reuse

in software architectures. In addition, the research questions help us to a) outline the scope and

contributions of SLR and b) defining and evaluating the review protocol to conduct the SLR.

A.3 Conducting the Review

To conduct the review, we follow a three step process as i) searching the studies for review, ii)

selection and qualitative assessment of studies, and iii) extraction and synthesis of data from

studies.

The search terms used to identify primary studies were developed using suggestions in [Zhang 2012]

and guided by the research questions. Our search process comprises of primary and secondary

search.

• Primary Search is a five step process to identify and retrieve the relevant literature.

• Secondary Search includes a) review of references/bibliography section in the selected pri-

1We would like to acknowledge the efforts of Dr. Jim Buckely (affiliated with: Lero - the Irish Software Engineering
Research Centre, University of Limerick, Ireland) and Bardia Mohabbati (affiliated with: Simon Fraser University, Canada)
for their feedback and thoughtful suggestions throughout the development and evaluation of the review protocol.

224

mary studies to find other relevant articles, b) review of citations to the selected primary

studies to find any relevant articles and c) identify and contact authors of selected primary

studies for extended versions of the research, if required. The secondary search did not

lead to identification of any relevant studies. The secondary search and study selection was

performed iteratively until no new studies were found.

A.4 Literature Search Strategies

The search terms used were developed using suggestions in [Zhang 2012] and guided by the

research questions. Our search process comprises of primary and secondary search.

Search Step Description

Step 1 - Derive Search Strings From SR-Qs and PICOC Criteria (cf. Table E.3.1)
Consider alternative spellings and synonyms while composing search strings:
- Evolution as [change, restructure, update, extension,
adaptation, reconfiguration, migration, transformation, modification]
- Methods and Techniques to enable Reuse as [customise,

Step 2 - Consider Synonyms pattern, plan, styles, framework, strategies].
and Alternatives - Empirical Methods for Discovery as [identification,

extraction, tracing, mining, discovery, acquisition]
Architecture or Software Architecture [we only consider
the term software architecture as only using architecture resulted in a large
amount of irrelevant studies on Hardware, Network or System Architecture etc.]
Boolean OR to incorporate alternative spellings and synonyms

Step 3 - Search-term Combinations Boolean AND to link the major terms. Number of unique search string
depends on a multiplier: ([AND] clause) x (<OR>-keywords)

Step 4 - Search String Division Dividing strings so that they could be applied to different databases. Assigning unique
to every (sub-) search string and customising them for all selected resources.

Step 5 - Reference Management Citations with Zotero.

Table A.2: A Summary of the Step in Literature Search.

A.4.1 Executing Literature Search

The research question resulted in a composition of search string applied to 6 databases

as illustrated in Figure A.1. We extracted the published peer-reviewed literature from years

1999 to 2012 (inclusive). The year 1999 was chosen as the preliminary search found no earlier

results related to any of the research questions with 1550 manuscripts extracted. Because we

used our primary search criteria on title and abstract, the results provided a relatively high

number of irrelevant studies, which were further refined with secondary search. Note that

we have decomposed the search string for illustrative reasons in Figure A.1. To search the

primary studies the sub-strings in Figure A.1 were combined and represented as a single

search string.

225

òóôõö ÷øøøùúûüýþ ÿúý���þýö��� ÿ��þ��þõ�ýþ�� ���	
��
	����	��	 �üü�ûþÿ��üû�ý
276 ���

27627607

383 ���
2762762

���
2762763

245 47 72 527

18 4 ���� ��������� �!"�"# $%��� &'�"�(�)* +,(�-*)*.)�"(/ .�"�,�0%12%3���%, 1550 34

 [Core String]
Software Architecture Evolution

 Methods and Techniques for
 Application of Reuse Knowledge

 Methods and Techniques for
Acquisition of Reuse Knowledge

AND

Identification OR Extraction OR Tracing OR Mining OR Discovery OR
Acquisition

Reuse OR Customise OR Patterns OR Plan OR Framework OR Strategies
AND

Software Architecture
AND

Evolution OR Change OR Restructure OR Update OR Extension OR Adaptation
OR Reconfiguration OR Transformation

 Secondary Search
(Aug - Oct 2012)

 Publication Years
(1999 - 2012)

 Primary Search
(Jan - Mar 2012)

Figure A.1: A Summary of the Primary Search Process.

A.5 Inclusion or Exclusion of Studies

The study selection phase comprised of two processes, initial selection and final selection in Table

A.3, for the qualitative assessment.

1. Initial Selection: This process comprises screening of titles and abstracts of the potential

primary studies. It was performed by the researchers against the inclusion or exclusion

criteria in Table A.3. For almost 35% of studies, no decision could be made just on title and

abstract, as these papers did not make a clear distinction between an explicit knowledge

representation and application (SR-Q1 and SR-Q2) or acquisition (SR-Q1 and SR-Q3). In

such cases, exclusion [NO] or proceeding to final selection [YES] involved examining the full

text.

2. Final Selection This process is based on a brief validation scan of the studies, the use of

formalisms and tool support and details of the experimental setup.

226

Step 1 - Initial Selection

SR-Q1 Clear presentation of solution for application of Clear presentation for discovery of
SR-Q2 evolution reuse-knowledge? evolution reuse-knowledge?

(If Yes, Goto Step 2: Otherwise Exclude Study)
Step 1 - Final Selection

SR-Q1 1. Are findings in the study properly evaluated? 1. Source of knowledge and empirical discovery?
SR-Q2 2. Formalism and tool support provided? 2. Details about experiment setup provided?

(If Yes, Include Study: Otherwise Exclude Study)

Table A.3: Summary of the 2 Step Study Selection Process.

A.6 Qualitative Assessment of Included Studies

For the 34 included studies, we primarily focused on the technical rigour of content presented in

the study. We based our qualitative assessment on factors as General Assessment (G) and Specific

Assessment (S), as summarised in Table A.4.

General Items for Quality Assessment (G)

Score for General Items [Yes = 1.0 Partially = 0.5 No = 0]
G1 Are problem definition and motivation of the study clearly presented?
G2 Is the research environment in which the study was carried out properly explained?
G3 Are research methodology and its organisation clearly stated?
G4 Are the contributions of the in-line with presented results?
G5 Are the insights and lessons learnt from the study explicitly mentioned?
S1 Is the research clearly focused on application or acquisition of evolution reuse?
S2 Are the details about related research clearly addressing evolution reuse in architectures?
S3 Is the research validation clearly illustrates application or acquisition of evolution reuse?
S4 Are the results clearly validated in a real (industrial case study) evaluation context?
S5 Are limitations and future implications for architecture evolution reuse clearly positioned?

Table A.4: Summary of Quality Assessment Checklist.

The quality assessment check-list is provided in Table A.4 and the quality ranking formula is

as given as follows. G represents 5 factors as general assessment criteria from Table A.4, providing

a maximum score of 1 (25% weight), S represents a total of 5 factors as specific items providing a

maximum score of 3. S is weighted as 3 times more than G (75% weight) as specific contributions

of a study are more important than general factors for assessment. Based on a consensus among

the researchers and suggestions from the external reviewers, the criteria for qualitative assessment

maximum score was G + S = 4 where a 3− 4 score represented quality papers, a score less than

3 and greater than or equal to 1.5 is acceptable and a score less than 1.5 results in exclusion.

QualityScore =

[

∑
5
G=1
5 + ∑

5
S=1
5 × 3

]

Quality ranking is an internal metric only that helps us to choose most related studies and

does not reflect any comparison or objective interpretation of selected studies.

227

A.6.1 A Mapping of Research Themes to Activities in REVOLVE Framework

While the REVOLVE framework has provided a broader categorisation of research, some ob-

servations and interpretation of the results suggested an explicit mapping among the identified

research themes and the activities of REVOLVE framework. Figure A.2 provides a mapping of the

framework activities and the identified research themes to classify and compare application and

acquisition of architecture evolution reuse knowledge from Chapter 3.

20122011201020092008200720062005200420032002200120001999 KI KS KA KR KC

1,5,8,1
1,13,21
,23,24

2,6,12,14,
15,16,19,
20,22,27,

29

3,4,18,
25,26,2

8,30

7

8

17

99,10

317,31

9,10

17

17

7

9 10

17

3, 25

2, 296 12 1415,2716 1920,22

1,85,23 13 2111, 24

KI = Knowledge Identification
KS = Knowledge Sharing
KA = Knowledge Analysis

KR = Knowledge Reuse
KC = Knowledge Capture

Identified Research Themes (Vertical axis)REVOLVE Framework Activities (horizontal axis)

ES

CP

AS

PD

EP

CA

4, 28 1826 26

ES = Evolution Styles
CP = Change Patterns
AS = Adaptation Strategies

PD = Pattern Discovery
EP = Evolution Prediction
CA = Configuration Analysis

Figure A.2: Study Mapping for Research Themes, REVOLVE Activities and Publication Fora.

In this section, an iterative mapping process has been employed to present the identified re-

search themes and to provide an answer to the first research question (SR-Q1). The map as a

bubble plot is depicted in Figure A.2 to map research themes to activities of REVOLVE based on

• 5 activities of the REVOLVE framework along the horizontal axis.

• 6 identified research themes along the vertical axis.

The circles on right axis in Figure A.2 represent a mapping between framework activities and

identified research themes for a study reference (e.g., ‘8’ represents ‘S8’ in the Appendix list of

selected studies). Alternatively, the circles on left axis represent a publication map (providing a

temporal distribution, 1999 to 2012) for framework activities and identified research themes.

For example in Figure A.2, the bubble at right-axis and at the intersection of “research theme”

change pattern (CP) and “framework activity” knowledge reuse (KR) represents the studies [S2,

228

S6, S12, S14, S15, S16, S19, S20, S22, S27, S29] that support change patterns to apply reuse knowl-

edge in ACSE. Alternatively, the bubble at the left-axis that intersects “CP” and 2012 represents

the studies [Lehman 1996, Li 2012] published in 2012 and focus on change patterns. The relative

size of the bubble indicates the total number of studies (the bigger the size, the more studies that

theme represents).

A.7 Threats to Validity of SLR

Although the observations and results of systematic reviews are considered to be reliable [Petticrew 2008,

Zhang 2012], this type of review work has its own limitations that should be considered [Garg 2008].

We discuss the each of the validity threats associated to different steps in our SLR.

A.7.1 Threats to the Identification of Primary Studies

In general, the external validity and construct validity are strong for systematic reviews [Brereton 2007].

In our search strategies, the key idea was to retrieve as much as possible of the available literature

to avoid any possible bias. Another critical challenge in addressing these threats was to deter-

mine the scope of our study, since the notion of reuse knowledge refers to different communities

including software architecture, software product-lines and self-adaptive software which use different

terminologies. Therefore, to cover all and avoid bias, we searched for common terms and com-

bined them in our search string. While this approach decreases the bias, it also significantly

increases the search work. To identify relevant studies and ensure the process of selection was

unbiased, a review protocol was developed.

A.7.2 Threats to Selection and Data extraction Consistency

We have identified a lack of consistent terminologies for reuse knowledge. This poses difficulties

for the composition of the search queries and the inclusion/exclusion criteria. Such difficulties

led us to analyse the terms concerning reuse knowledge that were found on the selected stud-

ies. However, since the notion of “reuse knowledge” is used in numerous studies, but we are

specifically concerned with “architecture (-based) evolution reuse knowledge”, we had to exclude

a majority of retrieved studies that affected the low precision of our search. In addition, we per-

formed a quality assessment (Section A.5 for details) on the studies to ensure that the identified

findings and implications came from credible sources.

229

A.7.3 Threats to Data Synthesis and Results

The threat to the reliability of results is mitigated as far as possible by involving multiple re-

searchers, having a unified scheme, and several steps where the scheme and process were piloted

and externally evaluated. Although as a general practice, we were determined to use the guide-

lines provided in [Brereton 2007] to perform the review, we had deviations from their procedures.

230

Appendix B
Case Studies for Architecture Change
Mining and Change Execution
Processes

Contents
B.1 Architecture Evolution Case Studies . 231

B.1.1 Case Studies Selection . 231

B.2 Case Studies for Architecture Change Mining Process 233

B.2.1 Case Study I - Architectural View for EBPP Case Study 233

B.2.2 Case Study II - Architectural View for 3-in-1 Telephonic System Case Study 235

B.2.3 Capturing Architectural Changes for EBPP in Log 235

B.3 Case Study for Architecture Change Execution Process 237

B.3.1 Architectural Description and Evolution Scenario 237

B.1 Architecture Evolution Case Studies

In software engineering research, case study based approaches facilitate designing research pro-

cess and evaluating results by ensuring that data is collected and analysed in a systematic and

scenario-driven environment [Flyvbjerg 2006].

B.1.1 Case Studies Selection

We present the details of selected case studies that include scenarios of architecture-centric evo-

lution about i) Electronic Bill Presentment and Payment (EBPP) System [EBPPCaseStudy], ii)

3-in-1 Phone System [3-in-1 Phone System 1999] and iii) Client Server Appointment (CS-AS) System

[Rosa 2004]. We also explain how these case studies help us to design, refine and evaluate the

231

change mining and change execution processes. It is also vital to mention that while following

CAR methodology [Davison 2004], case study selection is a critical process that requires a careful

selection of case study data that is subject to analytical evaluation. The key characteristics for

selecting case studies in software engineering are detailed in [Davison 2004]. The architecture

evolution case study of EBPP is utilised as a running example throughout this thesis to elabo-

rate on framework processes and activities along with scenario-based evaluation of results. We

summarise the objectives with a list of questions for case study selection:

• What are the primary objective(s) of the research investigation?

• What are the primary subject(s) of the research investigation?

• How selected case studies are mapped to the framework processes?

These objectives are already outlined as research hypothesis and questions (in Chapter 1). Here,

we aim to select the case studies that help us to analyse architecture evolution and also to support

change execution on architecture models.

Framework Process Selected Case Study Intent of Investigation

Architecture Change Electronic Bill Presentment and Payment Change Classification and Operational Dependencies
Mining 3-in-1 Phone System Discover Architecture Change Patterns

Architecture Change Client-Server Appointment System Evolution of Architecture
Execution Pattern-based Reuse in Architecture Change Execution

Table B.1: Selected Case Studies along with the Intent of Case-study based Investigation.

The case studies include architectural evolution case for an i) Electronic Bill Presentment and

Payment System (EBPP) and ii) 3-in-1 Phone system. We have selected these case studies based on

availability and completeness of architecture evolution data. The intent of investigation during

architecture change mining is to analyse a fine granular representation of architecture change

instances that accumulate over-time to represent architecture evolution history.

The case study include the architecture evolution case of a client-server appointment system

(CS-AS) [Rosa 2004]. We have selected these case study based on availability of i) architectural

descriptions and ii) evolution scenarios. The primary intent of change execution is to support

pattern-driven, reusable change execution to support architecture evolution.

232

B.2 Case Studies for Architecture Change Mining Process

In this section, we introduce the case studies used in the architecture change mining process to

classify architecture change operations and change patterns discovery. We use the i) Electronic Bill

Presentment (EBPP) [EBPPCaseStudy] and ii) 3-in-1 Telephonic System [3-in-1 Phone System 1999]

case studies. Architectural changes from these case studies are captured in the change log for log-

based investigation of architecture evolution1. We have selected these two case studies because

of the availability and completeness of log data. In addition, the adequacy of change log data

refers to a systematic structuring of the log that ensures availability and completeness of informa-

tion. The granularity of change representation ensures completeness of syntax and semantics for

recorded change instances.

In Section B, we have already justified the rationale for selection of these case studies. Here we

primarily focus on presenting:

• What is a component and connector architectural view for EBPP and 3-in-1 Telephonic Sys-

tem case studies in Section B.2.1 and Section B.2.2.

• How changes from these two case studies are captured in the change logs for pattern dis-

covery in Section B.2.3.

Data about architectural changes for these two case studies provide a source of knowledge

to classify architecture change operationalisation (in Chapter 6) and change pattern discovery (in

Chapter 7).

B.2.1 Case Study I - Architectural View for EBPP Case Study

A high-level component and connector view for EBPP is presented in Figure B.1. For illustrative

reasons, we abstract the details about data store (DS) and user interface (UI) layers and focus on

architectural layers modelling components and connectors using implicit configurations []. These

configurations represent Metering (to provide meter information for customer’s consumption),

Billing (to handle customer billing), and Payment (to manage customer payments corresponding to

the billing amount). We are interested in component, connectors and the interaction (messaging)

that exists among the components.

1Each individual architectural change is captured in the log file as the basis for pattern discovery from change logs
provided here: http://ahmadaakash.wix.com/aakash#!changelogdata/c22ju

233

http://ahmadaakash.wix.com/aakash##!changelogdata/c22ju

<<Payment>><<Billing>>

<<Metering>>

BillerCRMBillerAppMeterApp billing

billAmount
invoicePay

custInvoice custPayment

makePaymentpayInvoicebillingData

custBillconsInvoice

accMgmt

generateInvoice

adjustAccount

<<Architecture Layer>>

44567869:;<==

<<UI Layer>><<DS Layer>>

monthPayment

custPayment
weekPayment

in/out
Port

out in
ConnectorComponent e.Src e.Trg

<<UserInterface>>

<<DataStore>>

>?@ABCDEFGB?@
Figure B.1: Architectural View for EBPP (before Evolution).

• Component (CMP) represents the first class entities as computational elements or data stores

of the EBPP architecture model, illustrated in Figure B.1. Component type classification is:

– Atomic Component - is the most fundamental type of a component that could not be

decomposed. Atomic components in Metering configuration are BillerCRM, BillerApp

and MeterApp.

– Composite Component - represents a component that contains an internal architecture as

a sub-configuration of components and connectors inside composite component. The

only example of composite component in is custPayment that has weekPayment and

monthPayment as its children.

• Connector (CON) are responsible for message passing among the component ports. Unlike

composite components, architecture has only atomic connectors for component interconnec-

tion. Example of a connector-based message passing among BillerCRM (port:out - source)

and custPayment (port:in - sink) components is expressed with makePayment connector.

234

B.2.2 Case Study II - Architectural View for 3-in-1 Telephonic System Case

Study

The component and connector architectural view for the 3-in-1 Telephonic System is presented in

Figure B.2. The architecture consists of the four components namely Receiver, NetworkProtocol,

MultimediaPlayback, and 3-in-1TelephoneHandset. The architectural changes are captured in the

log as detailed in Section B.2.

3-in-1 Telephone
Handset

MultiMedia
PlayBack

Network Protocol

Receiver

get
Multimedia

media
Streaming

GPRS
Signal

network
Signal

Telephonic Hardware

Network User

3-
in

-1
 P

ho
ne

 S
ys

te
m

 A
rc

hi
te

ct
ur

e

Figure B.2: Architectural Overview for 3-in-1 Phone System.

B.2.3 Capturing Architectural Changes for EBPP in Log

We look at an evolution scenario to exemplify how individual changes are captured in the change

log. In order to illustrate this, we present i) the description of the evolution scenario, ii) architec-

tural changes applied on the source model to obtain the target or evolved model and iii) recording

the changes in the log.

• Evolution Scenario The architecture evolution scenario in Figure B.3 aims to add a new com-

ponent and connect it to an existing one in the architecture model. More specifically the

scenario implies:

’Add a new component custPayment along with its port custBill in an existing configuration Pay-

ment. The newly added component custPayment must be connected to BillerCRM component with

235

addition of a connector billAmount’

• Architectural Changes In order to implement these changes, architectural changes must be

applied on the source architecture model to achieve its evolution, i.e. addition of a new

component. The source architecture model (before evolution) is presented in Figure B.3 a),

architectural change on the source model are presented in Figure B.3 b), while the target or

evolved model (after evolution) as a consequence of change execution is presented in Figure

B.3 c).

• Capturing Architectural Changes in the Log During architecture change execution, we must

capture each individual change in the log. Change log provides a central and updated

repository for architectural changes. The example in Figure B.3 represents instances of ar-

chitectural change as a sequence of operations that enable addition of a new component

custPayment along with its port custBill and corresponding operation getBill (op1, op2, op3).

The newly added component custPayment is connected to BillerCRM with addition of a con-

nector billAmount. It provides endpoint binding (op4) among the operations of BillerCRM

and custPayment inside Payment configuration. Once sequential architectural changes are

captured, change log data is classified as Auxiliary Data (AD) and Change Data (CD), in Figure

B.3. Details about change data and auxiliary data are provided in Chapter 5.

BillerCRM

sendBill

Payment

billAmount

getBill

custPayment

Payment

billAmount

sendBill getBill

BillerCRM custPayment

a) Change Preconditions

c) Change Postconditions

b) Architectural
Changes

op1 := ADD(custPayment : CMP , Payment : CFG)

op2: = ADD(getBil(l "in") : POR , custPayment : CMP)

op3: = ADD(billAmoun t: CON , Payment : CFG)

op4: = ADD(billPay : EPT , billAmount: CON)

 {src = "billPay.sendBil"l , trg = "billPay.getBil "l }

 - uID := aakash _ ADM1

 - cDate := 2012-02-17

 - cTime := 13:02:27

 - sysID : = EBPP

Architecture Evolution

Architecture Changes in the Log

Change DataAuxiliary Data

Figure B.3: An Overview of Capturing architectural Changes in the Log.

236

B.3 Case Study for Architecture Change Execution Process

An overview of the source architecture for a Peer 2 Peer Appointment System [Rosa 2004] is pre-

sented in Figure B.5. We utilise this case studies and its evolution scenarios to evaluate pattern-

based reuse of architecture evolution in Chapter 9. The architectural view consists of two config-

urations namely Client and AppointmentSchedule. In the source architecture, the clients make a

request for appointment scheduling. The configurations consists of:

• Components (CMP) are the computational elements contain ports. In Figure two the com-

ponents and AppointmentClients and ClientAuthentication as atomic components. In addition,

AppointmentsSchedule is a composite component (composed of ClientAuthentication Compo-

nent)

• Connectors (CON) enable interconnection among the architectural components. The only

connector in the source architecture is getAppointments in Figure B.5.

Component ConnectorConfiguration

out in

ports

Appointments Client

Client

getAppointment

Appointment Data

Appointment System

Client
Authentication

Appointments Schedule

Figure B.4: An Overview of the Architecture for Peer 2 Peer Appointment System.

B.3.1 Architectural Description and Evolution Scenario

We provide architecture descriptions using attributed typed graphs for graph-based modelling of

architecture elements. Details about graph-based description of architecture model is provided in

Chapter 2.

In the following we discuss a sample evolution scenario that causes evolution in the existing

architecture as illustrated in Figure B.5. The evolution Scenario is presented in Figure B.5.

The architecture is modified by creating the ClientRegistration component (atomic component)

in Appointment Server (composite component) and a connector (register).

237

Appointment Server

Appointment Client

getAppointments getSchedules

Client
Authentication

Appointments Schedule

Figure B.5: An Architecture Evolution Scenario for Peer 2 Peer Appointment System.

Additional details about the architecture evolution scenarios and the target/evolved architec-

ture model are presented in Chapter 9.

238

Appendix C
Change Log Graph for Pattern
Discovery

Contents
C.1 Architecture Change Log Data . 239

C.2 Converting Log Data into a Change Log Graph . 241

C.3 Sample Log Graph for Change Pattern Discovery 242

C.1 Architecture Change Log Data

As discussed in Chapter 5, the availability of the change log data is fundamental to change op-

eration definition (Chapter 6), pattern discovery (Chapter 7) and pattern language composition

(Chapter 8). The change log data comprises of individual architectural change operations (atomic

changes cf. Chapter 6) to add, remove and modify the architectural components and connectors

for EBPP [EBPPCaseStudy] and 3-in-1 Phone System [3-in-1 Phone System 1999] case studies.

The changes from these case studies are captured into a change log file 1. Additional details

about the number of change operations and the affected architecture elements as represented in

the change log are provided in Appendix E - experimental setup for framework evaluation. Be-

fore we discuss the change log data, we also highlight the assumptions that are considered about

the change log data. In the following we only provide a snippet (10 architectural changes) of the

change log data for illustrative reasons, while full log data is provided on the link in the footnote.

1Each individual architectural change is captured in the log file as the basis for pattern discovery from change logs
provided here: http://ahmadaakash.wix.com/aakash#!changelogdata/c22ju

239

http://ahmadaakash.wix.com/aakash##!changelogdata/c22ju

1 ChangeID = 1 , Change Operation = ADD(CMP) , Change Descr ipt ion = Add a Component

2 Composition Name = customerBi l l e r , Composition Type = CMP, Composition Param = n u l l

3 Composite Name = porcustomerBi l ler , Composite Type = POR

4

5 ChangeID = 2 , Change Operation = ADD(CON) , Change Descr ipt ion = Add a Connector

6 Composition Name = customerBi l l , Composition Type = CON, Composition

7 Param = (cus tomerBi l l e r , customerPayment) : CMP

8 Composite Name = eptCustomerBil l ing , Composite Type = EPT

9

10 ChangeID = 3 , Change Operation = ADD(CMP) , Change Descr ipt ion = Add a Component

11 Composition Name = customerBillingApp , Composition Type = CMP, Composition Param = n u l l

12 Composite Name = Ibi l l ingApp , Composite Type = POR

13 Composite Name = IcustomerConsumption , Composite Type = POR

14

15 ChangeID = 4 , Change Operation = ADD(CON) , Change Descr ipt ion = Add a Connector

16 Composition Name = customerBi l l ing , Composition Type = CON, Composition

17 Param = (customerBillingApp , customerPORo) : CMP

18 Composite Name = BcustomerBillPORo , Composite Type = EPT

19

20 ChangeID = 5 , Change Operation = ADD(CON) , Change Descr ipt ion = Add a Connector

21 Composition Name = customerDebt , Composition Type = CON, Composition

22 Param = (customerBillingApp , debtPORo) : CMP

23 Composite Name = BcustomerDebt , Composite Type = EPT

24

25 ChangeID = 6 , Change Operation = ADD(CON) , Change Descr ipt ion = Add a Connector

26 Composition Name = customerInvoice , Composition Type = CON, Composition

27 Param = (customerBillingApp , invoicePORo) : CMP

28 Composite Name = BcustomerInvoice , Composite Type = EPT

29

30 ChangeID = 7 , Change Operation = ADD(CON) , Change Descr ipt ion = Add a Connector

31 Composition Name = customerInvoiceData , Composition Type = CON, Composition

32 Param = (customerBillingApp , invoicePORo) : CMP

33 Composite Name = BcustomerInvoiceData , Composite Type = EPT

34

35 ChangeID = 8 , Change Operation = REM(CON) , Change Descr ipt ion = Remove a Connector

36 Composition Name = customerBi l l , Composition Type = CON, Composition

37 Param = (cus tomerBi l l e r , customerPORo) : CMP

38 Composite Name = BcustomerBil l , Composite Type = EPT

39

40 ChangeID = 9 , Change Operation = ADD(CMP) , Change Descr ipt ion = Add a Component

41 Composition Name = generateCustomerBil l , Composition Type = CMP, Composition Param = n u l l

42 Composite Name = I g e n e r a t e B i l l , Composite Type = POR

43 Composite Name = IcustomerInvoice , Composite Type = POR

44

45 ChangeID = 10 , Change Operation = ADD(CON) , Change Descr ipt ion = Add a Connector

46 Composition Name = g e n e r a t e B i l l , Composition Type = CON, Composition

47 Param = (cus tomerBi l l e r , generateCustomerBi l l) : CMP

48 Composite Name = BcustomerBi l l ing , Composite Type = EPT

240

• Atomic Changes in the Log - We assume that all the architectural changes in the log repre-

sents atomic change operations on architecture elements [Ahmad 2012b].

• Sequential Changes in the Log Our assumption is that the architectural changes are applied

in a sequential fashion. If there exist any parallel changes that are represented as a sequence

[Buckley 2005].

• Completeness of the Log Data - We also assume that no changes from the case studies re

omitted or skipped and change log data is complete [Yu 2009].

C.2 Converting Log Data into a Change Log Graph

- As detailed in Chapter 5, we model change log data as an attributed typed graph [Ehrig 2006]

in order to exploit sub-graph mining for pattern discovery. In this appendix, we provide a sample

of the change log graph (20 change operations). In Figure C.1, we illustrate

Add()

Payment : CFG

PaymentType

CMP

1

17-02-2012::10:37:52

startTime

 <node id = "1">

 <data key = TimeStamp> 17-02-2012::10:37:52 </d ata>

 <data key = opr> ADD </data>

 <data key = hasParam1> PaymentType </data>

 <data key = Param1Type> CMP </data>

 <data key = hasParam2> null </data>

 <data key = Param2Type> null </data>

 </node>

ChangeID = 1, Time = 17-02-2012::10:37:52

 Change Operation = ADD(CMP),

 Change Description = Add a Component,

 Composition Name =PaymentType,

 Composition Type = CMP,

 Composition Param = null

1 3

 2

a) Change Log Data

b) Change Log Graph

(Attributed Typed Graph)

(GraphML Notation)
c) Change Log Graph

Figure C.1: Graph-based Representation of the Change Log Data.

• Change Log Data: In Figure C.1 a), presents an individual change operation [Ahmad 2012b]

representing an operation for addition of a component PaymentType

• Attributed Graph-based Representation of Log Data: In Figure C.1 b), we present an attributed

typed graph-based [Ehrig 2006] representation for an individual change operation. The

change operation (Add()) is represented as the graph node, while the parameters of the

operation (PaymentType ∈ CMP) is represented as node attribute. The sequence among the

change operation is maintained with graph edges.

241

• GraphML-based Representation of Log Data: Finally, in Figure C.1 c), we present a GraphML

[Brandes 2002a] based representation of the change log data. It contains an XML-based

representation of the log graph for an automated manipulation of log data and pattern

discovery.

In Chapter 5, we have discussed the role of the prototype to convert the log data (provided as

input) into a change log graph (as the output).

C.3 Sample Log Graph for Change Pattern Discovery

A Sample Log Graph using GraphML representation is presented as follows.

1 <?xml vers ion = " 1 . 0 " encoding = "UTF−8" ?>

2

3 <graphml xmlns = " ht tp :// graphml . graphdrawing . org/xmlns "

4

5 xmlns : x s i = " ht tp ://www. w3 . org /2001/

6

7 XMLSchema−i n s t a n c e " x s i : schemaLocation

8

9 = " ht tp :// graphml . graphdrawing . org/xmlns

10

11 http :// graphml . graphdrawing . org/xmlns /1.0/ graphml . xsd ">

12

13 <!−− Graph generated by sones GraphAPI GraphMLWriter −−>

14

15 <key id = " opr " f o r = " node " a t t r . name = " opr " a t t r . type = " s t r i n g "> </key>

16

17 <key id = " hasParam1 " f o r = " node " a t t r . name = " hasParam1 " a t t r . type = " s t r i n g "> </key>

18

19 <key id = " Param1Type " f o r = " node " a t t r . name = " Param1Type " a t t r . type = " s t r i n g "> </key>

20

21 <key id = " hasParam2 " f o r = " node " a t t r . name = " hasParam2 " a t t r . type = " s t r i n g "> </key>

22

23 <key id = " Param2Type " f o r = " node " a t t r . name = " Param2Type " a t t r . type = " s t r i n g "> </key>

24

25 <key id = " seq " f o r = " edge " a t t r . name = " type " a t t r . type = " composition "> </key>

26

27

28 <graph id = " LogGraph " edgedefault = " d i r e c t e d ">

29

30

31 <node id = " 1 ">

32 <data key = opr> ADD </data >

33

242

34 <data key = hasParam1> c u s t o m e r B i l l e r </data >

35

36 <data key = Param1Type> CMP </data >

37

38 <data key = hasParam2> n u l l </data >

39

40 <data key = Param2Type> n u l l </data >

41

42

43

44 <node id = " 2 ">

45

46 <data key = opr> ADD </data >

47

48 <data key = hasParam1> cus tomerBi l l </data >

49

50 <data key = Param1Type> CON </data >

51

52 <data key = hasParam2> customerBi l l e r , customerInfo </data >

53

54 <data key = Param2Type> CMP </data >

55

56

57

58 <node id = " 3 ">

59

60 <data key = opr> ADD </data >

61

62 <data key = hasParam1> customerBill ingApp </data >

63

64 <data key = Param1Type> CMP </data >

65

66 <data key = hasParam2> n u l l </data >

67

68 <data key = Param2Type> n u l l </data >

69

70

71

72 <node id = " 4 ">

73

74 <data key = opr> ADD </data >

75

76 <data key = hasParam1> cus tomerBi l l ing </data >

77

78 <data key = Param1Type> CON </data >

79

80 <data key = hasParam2> customerBillingApp , customerInfo </data >

81

82 <data key = Param2Type> CMP </data >

243

83

84 <node id = " 5 ">

85

86 <data key = opr> ADD </data >

87

88 <data key = hasParam1> customerDebt </data >

89

90 <data key = Param1Type> CON </data >

91

92 <data key = hasParam2> customerBillingApp , debt Info </data >

93

94 <data key = Param2Type> CMP </data >

95

96

97 <edge id = " e1 " source = " 1 " t a r g e t = " 2 ">

98 </edge>

99

100 <edge id = " e2 " source = " 2 " t a r g e t = " 3 ">

101 </edge>

102

103 <edge id = " e3 " source = " 3 " t a r g e t = " 4 ">

104 </edge>

105

106 <edge id = " e4 " source = " 4 " t a r g e t = " 5 ">

107 </edge>

108

109

110 </graph>

111

112 </graphml>

114

244

Appendix D
Source Code and Discovered Change
Patterns from Log

Contents
D.1 Source Code for Pattern Discovery from Logs . 245

D.2 Pattern, Pattern Instance and Pattern Variant . 253

D.3 Prototype Support for Change Pattern Discovery . 255

D.3.1 Overview of the Prototype for Pattern Discovery 255

D.3.2 User Interface for Pattern Discovery Prototype 256

D.4 Prototype Support for Change Pattern Specification 257

D.5 A Catalogue of Architecture Change Patterns . 259

D.5.1 Component Mediation Pattern . 260

D.5.2 Functional Slicing Pattern . 261

D.5.3 Functional Unification Pattern . 261

D.5.4 Active Displacement Pattern . 263

D.5.5 Child Creation Pattern . 263

D.5.6 Child Adoption Pattern . 264

D.5.7 Child Swapping Pattern . 265

In this appendix, we present the Java source code we developed for pattern discover from

architecture change logs in Section D.5. We also present an overview of the discovered pattern

instances in Section D.1

D.1 Source Code for Pattern Discovery from Logs

We present the source code1 for pattern discovery in the following. The source code listed here

only present the core executable java code that is associated to the prototype GPride already

presented in Chapter 7. We provide the code for:

1All Java source code files for the prototype GPride are available at: http://ahmadaakash.wix.com/aakash/GPrideCode

245

http://ahmadaakash.wix.com/aakash/GPrideCode

• Pattern Candidate Generation enables generation of a list of pattern candidates.

• Pattern Candidate Validation enables validation of the generated candidates. Candidate val-

idation ensures that each individual candidate must preserved the structural integrity of

architecture model.

• Pattern Matching enables matching the generated candidates to discover patterns. A gener-

ated candidate is a pattern if it satisfies the specified pattern frequency threshold.

Additional technical details about pattern discovery process and the underlying algorithms

are provided in Chapter 7.

1

2 /* *

3 * Java Source Code f o r Candidate Generation

4

5 * @Author : Aakash Ahmad

6 * @Date : 08 − 17 − 2012

7 */

8 import GraphMLDemo . node ;

9 import java . io . S e r i a l i z a b l e ;

10 import java . u t i l . * ;

11

12 publ ic c l a s s Candidate implements S e r i a l i z a b l e {

13 publ ic c l a s s Candidate

14 {

15 publ ic boolean bIsVal id ;

16 publ ic ArrayList <node> NodesList ;

17

18 publ ic Candidate ()

19 {

20 t h i s . b IsVal id = true ;

21 t h i s . NodesList = new ArrayList <node > () ;

22 }

23

24 publ ic void AddNode(node oNode)

25 {

26 t h i s . NodesList . add (oNode) ;

27 }

28

29 publ ic s t a t i c boolean MAP Exact lyConta insAl l (Map<Candidate , Integer >

30 ExactMatchingCandidates , Candidate C2)

31 {

32 f o r (Map. Entry <Candidate , Integer > entry : ExactMatchingCandidates . en t r y S e t ())

33 {

246

34 Candidate C1 = entry . getKey () ;

35 i f (C1 . I sExac t lyEqual (C2))

36 re turn true ;

37 }

38 re turn f a l s e ;

39 }

40

41 publ ic boolean IsExac t lyEqual (Candidate c2)

42 {

43 boolean bIsNodeLengthSame = t h i s . NodesList . s i z e () == c2 . NodesList . s i z e () ,

44 bIsCandidate1Valid = t h i s . bIsVal id ,

45 bIsCandidate2Valid = c2 . bIsVal id ;

46

47 i f (bIsNodeLengthSame && bIsCandidate1Valid && bIsCandidate2Valid)

48 {

49 boolean bIsExactlyMatched = true ;

50 f o r (i n t nNodeIndex = 0 ; nNodeIndex < t h i s . NodesList . s i z e () ; nNodeIndex++)

51 {

52 i f (! (t h i s . NodesList . get (nNodeIndex) . equals (c2 . NodesList . get (nNodeIndex))))

53 {

54 bIsExactlyMatched = f a l s e ;

55 break ;

56 }

57 }

58 re turn bIsExactlyMatched ;

59 }

60 re turn f a l s e ;

61 }

62

63 publ ic s t a t i c boolean MAP InExact lyConta insAl l (Map<Candidate , Integer >

64 InExactMatchingCandidates , Candidate C2)

65 {

66 f o r (Map. Entry <Candidate , Integer > entry : InExactMatchingCandidates . en t r y S e t ())

67 {

68 Candidate C1 = entry . getKey () ;

69 i f (C1 . I s InExac t lyEqual (C2))

70 re turn true ;

71 }

72 re turn f a l s e ;

73 }

74

75 publ ic boolean Is InExac t lyEqual (Candidate c2)

76 {

77 boolean bIsNodeLengthSame = t h i s . NodesList . s i z e () == c2 . NodesList . s i z e () ,

78 bIsCandidate1Valid = t h i s . bIsVal id ,

79 bIsCandidate2Valid = c2 . bIsVal id ;

80

81 i f (bIsNodeLengthSame && bIsCandidate1Valid && bIsCandidate2Valid)

82 {

247

83 boolean bIsNodeIndexMisMatch = f a l s e ;

84 ArrayList <Integer > C2MatchingIndexes = new ArrayList <Integer > () ;

85 f o r (i n t Candidate1NodeIndex =0; Candidate1NodeIndex< t h i s . NodesList . s i z e () ;

86 Candidate1NodeIndex ++)

87 {

88 node C1CurrNode = t h i s . NodesList . get (Candidate1NodeIndex) ;

89 boolean bIsNodeMatch = f a l s e ;

90

91 f o r (i n t Candidate2NodeIndex =0; Candidate2NodeIndex< c2 . NodesList . s i z e () ;

92 Candidate2NodeIndex ++)

93 {

94 node C2CurrNode = c2 . NodesList . get (Candidate2NodeIndex) ;

95 i f ((C1CurrNode . equals (C2CurrNode)))

96 {

97 i f (! (C2MatchingIndexes . conta ins (Candidate2NodeIndex)))

98 {

99 C2MatchingIndexes . add (Candidate2NodeIndex) ;

100 bIsNodeMatch = true ;

101 i f (Candidate1NodeIndex != Candidate2NodeIndex)

102 bIsNodeIndexMisMatch = true ;

103 break ;

104 }

105 }

106 }

107 i f (! bIsNodeMatch)

108 re turn f a l s e ;

109 }

110 i f (bIsNodeIndexMisMatch)

111 re turn true ;

112 }

113 re turn f a l s e ;

114 }

115

116 publ ic S t r i n g t o S t r i n g ()

117 {

118 S t r i n g sNewLine = System . getProperty (" l i n e . separa tor ") ;

119 S t r i n g sTab = " " ;

120 S t r i n g B u f f e r b u f f e r = new S t r i n g B u f f e r () ;

121

122 b u f f e r . append (sNewLine + " Tota l Nodes : ") ;

123 b u f f e r . append (t h i s . NodesList . s i z e ()) ;

124

125 b u f f e r . append (sNewLine + " Generic Form : ") ;

126 b u f f e r . append (t h i s . GetCandidateGenericForm ()) ;

127

128 b u f f e r . append (sNewLine + " Nodes D e t a i l : "+ sNewLine) ;

129

130 f o r (i n t nNodeIndex = 0 ; nNodeIndex < t h i s . NodesList . s i z e () ; nNodeIndex++)

131 {

248

132 node CurrNode = t h i s . NodesList . get (nNodeIndex) ;

133 b u f f e r . append (sTab + " (") ;

134 b u f f e r . append ("Node Id : " + CurrNode . getValue ()) ;

135 b u f f e r . append (" Operator : " + CurrNode . getOperator ()) ;

136 b u f f e r . append (" Param1 : " + CurrNode . getParam1 ()) ;

137 b u f f e r . append (" Param1Type : " + CurrNode . getParam1Type ()) ;

138 b u f f e r . append (" Param2 : " + CurrNode . getParam2 ()) ;

139 b u f f e r . append (" Param2Type : " + CurrNode . getParam2Type ()) ;

140 b u f f e r . append (") " + sNewLine) ;

141 }

142 re turn b u f f e r . t o S t r i n g () ;

143 }

144

145 publ ic S t r i n g GetCandidateGenericForm ()

146 {

147 S t r i n g sGenericForm =" " ;

148 f o r (i n t NodeIndex =0; NodeIndex < t h i s . NodesList . s i z e () ; NodeIndex++)

149 {

150 node CurrNode = t h i s . NodesList . get (NodeIndex) ;

151 sGenericForm += CurrNode . getOperator () + " (" + CurrNode . getParam1Type () + ") " ;

152 }

153 re turn sGenericForm ;

154 }

155 ///

156 // Extra Code s t a r t s from t h i s point

157 ///

158

159 publ ic void DisplayCandidate () //not required now

160 {

161 f o r (i n t nNodeIndex = 0 ; nNodeIndex < t h i s . NodesList . s i z e () ; nNodeIndex++)

162 {

163 node CurrNode = t h i s . NodesList . get (nNodeIndex) ;

164 System . out . p r i n t (" (") ;

165 System . out . p r i n t ("Node Id : " + CurrNode . getValue ()) ;

166 System . out . p r i n t (" Operator : " + CurrNode . getOperator ()) ;

167 System . out . p r i n t (" Param1 : " + CurrNode . getParam1 ()) ;

168 System . out . p r i n t (" Param1Type : " + CurrNode . getParam1Type ()) ;

169 System . out . p r i n t (" Param2 : " + CurrNode . getParam2 ()) ;

170 System . out . p r i n t (" Param2Type : " + CurrNode . getParam2Type ()) ;

171 System . out . p r i n t (") , ") ;

172 }

173 System . out . p r i n t l n (" ") ;

174 }

175

176 publ ic s t a t i c void DisplayAllCandidates (L i s t <Candidate > CandidatesLis t)

177 {

178 Candidate TempCandidate = new Candidate () ;

179 f o r (i n t Index = 0 ; Index < CandidatesLis t . s i z e () ; Index ++)

180 {

249

181 TempCandidate = CandidatesLis t . get (Index) ;

182 TempCandidate . DisplayCandidate () ;

183 }

184 }

185

186 publ ic boolean Is InExac t lyEqual (Candidate c2)

187 {

188 boolean bIsNodeLengthSame = t h i s . NodesList . s i z e () == c2 . NodesList . s i z e () ,

189 bIsCandidate1Valid = t h i s . bIsVal id ,

190 bIsCandidate2Valid = c2 . bIsVal id ;

191

192 i f (bIsNodeLengthSame && bIsCandidate1Valid && bIsCandidate2Valid)

193 {

194 boolean bIsAllNodeLocationMismatch = f a l s e , bIsNodeMisMatch = f a l s e ;

195 f o r (i n t Candidate1NodeIndex =0; Candidate1NodeIndex< t h i s . NodesList . s i z e () ;

196 Candidate1NodeIndex ++)

197 {

198 i f (c2 . NodesList . conta ins (t h i s . NodesList . get (Candidate1NodeIndex)))

199 {

200 i f (Candidate1NodeIndex != c2 . NodesList . indexOf (t h i s . NodesList .

201 get (Candidate1NodeIndex)))

202 {

203 bIsAllNodeLocationMismatch = true ;

204 }

205 }

206 e l s e

207 {

208 bIsNodeMisMatch = true ;

209 break ;

210 }

211 }

212 i f (bIsAllNodeLocationMismatch && (! bIsNodeMisMatch))

213 re turn true ;

214 }

215 re turn f a l s e ;

216 }

217

218 publ ic boolean equals (Candidate c2)

219 {

220 i n t nC1Size = t h i s . NodesList . s i z e () ,

221 nC2Size = c2 . NodesList . s i z e () ;

222 i f (nC1Size != nC2Size)

223 re turn f a l s e ;

224 i f (t h i s . NodesList . c o n t a i n s A l l (c2 . NodesList))

225 re turn true ;

226 f o r (i n t nNodeIndex = 0 ; nNodeIndex< nC1Size ; nNodeIndex++)

227 {

228 node C1CurrNode = t h i s . NodesList . get (nNodeIndex) ,

229 C2CurrNode = c2 . NodesList . get (nNodeIndex) ;

250

230 i f (! (C1CurrNode . equals (C2CurrNode)))

231 re turn f a l s e ;

232 }

233 re turn f a l s e ;

234 }

235

236 }

1

2 /* *

3 * Java Source Code f o r Candidate Val idat ion

4

5 * @Author : Aakash Ahmad

6 * @Date : 09 − 02 − 2012

7 */

8

9 import java . u t i l . ArrayLis t ;

10 import java . u t i l . HashMap ;

11 import java . u t i l .Map;

12 import java . u t i l . TreeMap ;

13

14 publ ic c l a s s CandidateValidator {

15

16 publ ic s t a t i c void Val idateAl lCandidates (Map<Candidate , Integer > CandidatesLis t)

17 {

18 f o r (Map. Entry <Candidate , Integer > entry : CandidatesLis t . e n t r y S e t ())

19 {

20 Candidate CurrCandidate = entry . getKey () ;

21 i f (! Val idateCandidate (CurrCandidate))

22 {

23 CandidatesLis t . remove (entry . getKey ()) ;

24 }

25 }

26 }

27

28 p r i v a t e s t a t i c boolean ValidateCandidate (Candidate c)

29 {

30 i n t nC1Size = t h i s . NodesList . s i z e () ,

31 nC2Size = c2 . NodesList . s i z e () ;

32 i f (nC1Size != nC2Size)

33 re turn f a l s e ;

34 i f (t h i s . NodesList . c o n t a i n s A l l (c2 . NodesList))

35 re turn true ;

36 f o r (i n t nNodeIndex = 0 ; nNodeIndex< nC1Size ; nNodeIndex++)

37 {

38 node C1CurrNode = t h i s . NodesList . get (nNodeIndex) ,

39 C2CurrNode = c2 . NodesList . get (nNodeIndex) ;

251

40 i f (! (C1CurrNode . equals (C2CurrNode)))

41 re turn f a l s e ;

42 }

43 re turn f a l s e ;

44 }

45

46 }

47 }

1

2 /* *

3 * Java Source Code f o r Pat te rn Matching

4

5 * @Author : Aakash Ahmad

6 * @Date : 09 − 14 − 2012

7 */

8 import java . u t i l . ArrayLis t ;

9 import java . u t i l . HashMap ;

10 import java . u t i l .Map;

11 import java . u t i l . TreeMap ;

12 import GraphMLDemo . node ;

13

14

15 publ ic c l a s s PatternMatcher {

16 publ ic s t a t i c void IdentifyExactAndInExactMatch

17 (Map<Candidate , Integer > CandidatesList , Map graph , Map<Candidate , Integer >

18 ExactMatchingCandidates , Map<Candidate , Integer >

19 InExactMatchingCandidates , i n t nExactMatchFreqThreshold ,

20 i n t nInExactMatchFreqThreshold , boolean IdentifyExactMatch ,

21 boolean Ident i fyInExactMatch)

22 {

23 ExactMatchingCandidates . c l e a r () ;

24 InExactMatchingCandidates . c l e a r () ;

25 f o r (Map. Entry <Candidate , Integer > entry : CandidatesLis t . e n t r y S e t ())

26 {

27 Candidate CurrCandidate = entry . getKey () ;

28 i n t nPatternLength = CurrCandidate . NodesList . s i z e () ,

29 nExactMatchFrequency = 0 ,

30 nInExactMatchFrequency = 0 ;

31

32 f o r (i n t nMapIndex =0; nMapIndex ≤ (graph . s i z e ()− nPatternLength) ; nMapIndex++)

33 {

34 Candidate GraphCurrCandidate = new Candidate () ;

35 f o r (i n t n I t r =0; n I t r < nPatternLength ; n I t r ++)

36 {

37 GraphCurrCandidate . AddNode ((node) graph . get (n I t r +nMapIndex)) ;

38 }

252

39

40 i f (Ident i fyExactMatch)

41 {

42 i f (CurrCandidate . I sExac t lyEqual (GraphCurrCandidate))

43 nExactMatchFrequency ++;

44 }

45 i f (Ident i fyInExactMatch)

46 {

47 i f (CurrCandidate . I s InExac t lyEqual (GraphCurrCandidate))

48 nInExactMatchFrequency ++;

49 }

50 }

51

52 i f (nExactMatchFrequency≥nExactMatchFreqThreshold)

53 {

54 i f (! (Candidate . MAPExactlyContainsAll (ExactMatchingCandidates , CurrCandidate)))

55 ExactMatchingCandidates . put (CurrCandidate , nExactMatchFrequency) ;

56 }

57

58 i f (nInExactMatchFrequency≥nInExactMatchFreqThreshold)

59 {

60 i f (! (Candidate .MAP InExact lyConta insAl l (InExactMatchingCandidates , CurrCandidate)))

61 InExactMatchingCandidates . put (CurrCandidate , nInExactMatchFrequency) ;

62 }

63 }

64 }

65

66 publ ic s t a t i c void DisplayMatchingCandidates (Map<Candidate , Integer > MatchingCandidates)

67 {

68 f o r (Map. Entry <Candidate , Integer > entry : MatchingCandidates . en t r y S e t ()) {

69 Candidate CurrCandidate = entry . getKey () ;

70 i n t value = entry . getValue () ;

71

72 CurrCandidate . DisplayCandidate () ;

73 System . out . p r i n t l n (" Frequency : "+ value) ;

74 }

75

76 }

77 }

D.2 Pattern, Pattern Instance and Pattern Variant

We distinguish between a pattern, pattern instance and its variant in Figure D.1 and exemplify

the distinctions with the help of the Component Mediation pattern. In addition, it is vital to

mention about the pre-conditions and post-conditions of a pattern that present the architecture

253

before and after the application of a change patterns. The pattern provides a process-based change

implementation by explicitly representing the conditions before, during and after the change im-

plementation.

• Pattern A pattern represents a generic and repeatable solution to recurring architecture evo-

lution problems presented in Chapter 7.

A B

C

Pattern

Pattern Instance Pattern Variant

BillerCRM

PaymentType

CustPayment

getBill selectType

BillType

Billing Payment

Appointments
Client

Appointments
Server

Appointments
Schedule

getAppointments getSchedule

P
at

te
rn

 P
re

co
nd

iti
on

s

P
at

te
rn

P
os

tc
on

di
tio

ns

In
st

an
ti

at
io

n

A
b

st
ra

ct
io

n

Variation

Figure D.1: An Overview of the Pattern, Pattern Instance and Pattern Variant

We defined pattern as a ‘recurring constrained composition of change operationalisation on archi-

tecture elements.’. In Figure D.1 we represent this generic solution using a simple box and

arrows notation that represent the components and connectors of a pattern.

• Pattern Instance The pattern instance represents a concrete representation of the pattern. As

presented in Figure D.1 the pattern instance represents the interposition of a mediator com-

ponent Appointment Server component among the directly connected Appointment Client

and Appointment Schedule. We have exemplified the pattern instantiation in Chapter 8.

• Pattern Variant The pattern variant represents a possible variation of the implementation

of the pattern. In Figure D.1 Parallel Mediation represents the variation of the Component

Mediation pattern. We have discussed the discovery of pattern variants (exact and in-exact

pattern match) in Chapter 7.

254

D.3 Prototype Support for Change Pattern Discovery

D.3.1 Overview of the Prototype for Pattern Discovery

We have developed a prototype GPride (Graph-based Pattern Identification) presented to support

automation and customisation of the pattern discovery process. A high-level view of the proto-

type for pattern discovery is presented in Figure D.2 in terms of the input/output, core processes

and tasks. The input to the prototype GPride is a change log graph (.GML format) from chapter

5. The prototype has a three step process of pattern discovery including i) candidate generation,

ii) candidate validation and iii) pattern matching already explained in Chapter 7. During pat-

tern matching we discover recurring architecture change operations (from Chapter 6) as change

patterns.

The user input is vital to customise the pattern discovery process. User interface for pattern

discovery is presented in Figure D.3 and parametrise customisation of pattern discovery process.

The output of the prototype is a list of discovered architecture change patterns.

Change Log Log Graph

User Input

Process Task

Candidate
Generation

Candidate
Validation

Pattern
Matching

List of Discovered Pattern

Pattern Specification in a Template

Figure D.2: An Overview of the Prototype for Change Pattern Discovery.

To support a template-based specification of change patterns, the prototype allows the user to

specify each pattern in a pattern template.

255

D.3.2 User Interface for Pattern Discovery Prototype

In the section, we discuss the individual elements of the user interface to highlight process au-

tomation and parametrised customisation.

• A. Log File Selection As presented in Figure D.3, the prototype allows a user to select a

specific change log graph file to start the pattern discovery process. Details about change

log graph are presented in Chapter 5 and a sample log graph file in Appendix C.

• B. Pattern Discovery Parameters Pattern discovery parameters facilitate a user of the proto-

type to customise the pattern discovery process. The parameters for pattern discovery allow

a user to specify:

– Minimum and Maximum Length of the Pattern Candidate: As already discussed in Algo-

rithm I, a precondition to pattern discovery is generation of pattern candidates. There-

fore, specifying the minimum and maximum length of the pattern candidates allows

a user to specify the exact minimum (3 change operations) and exact maximum (10

change operations) length of pattern candidates in Figure D.3.

– Pattern Frequency Threshold: As already discussed in Algorithm I, the user can also spec-

ify the pattern frequency threshold. It maintains (3 occurrences) a minimum frequency

that must be satisfied to consider the recurring candidates as a discovered patterns.

– Discovery of Exact and Inexact Pattern Instances: As already discussed in Algorithm II,

the distinction between the exact and in-exact pattern instances. The prototype allows

a user to specify if they want to discover both the exact (23 patterns) as well as inexact

(9 pattern) instances. If the user only specifies Exact Pattern Instances, the pattern

discovery process is considerable faster but it skips the inexact pattern instances.

• C. Pattern Discovery Results As presented in Figure D.3, it provides a summary of the

results for pattern discovery process. It highlights the total number of change operations in-

vestigated for pattern discovery. The number of exact as well as inexact patterns instances

discovered and the total time taken for pattern discovery.

The discovered patterns need to be specified in a change pattern template.

256

A

B

C

B-1

B-2

B-3

C-1

C-1

C-3

C-4

Figure D.3: Screen-shot of the Prototype for Change Pattern Discovery.

D.4 Prototype Support for Change Pattern Specification

The prototype GPride (cf. Section D.3) also allows a user to specify the change patterns in a

change pattern template. In the following, we discuss the individual elements of the prototype to

specify change patterns as:

• A. Specifying Pattern Name and Intents As presented in Figure D.4, the prototype allows

a user to specify the name, intent and classification type for a pattern. Pattern name and

intent are specified by a user based on the impact of change pattern. For example, in Figure

D.4 the visualisation of pattern preconditions and pattern post-conditions helps a user to

identify that the pattern provides a component mediation among two directly connected

components. The user also specifies the classification type of change pattern.

• B. Pattern Constraints and Operations

257

The constraints and operations are extracted from each identified pattern and presented to

the user that helps to decide about the name and intent of the pattern. The constraints are

presented as preconditions and post-conditions. The change operations represents individ-

ual changes on architecture model as presented in Figure D.4.

• C. Change Pattern Impact

Finally, the impact of each discovered pattern is visualised to help the user to analyse the

impact of change patterns before and after the application of change pattern in Figure D.4.

A

B

C

A-1

A-2

A-3

B-1 B-2 B-3

C-1 C-2

Figure D.4: Screen-shot of Prototype for Change Pattern Specification.

258

D.5 A Catalogue of Architecture Change Patterns

A Pattern catalogue 2 refers to a collection or a repository of patterns contains patterns as repeat-

able solution to recurring problems in a specific domain. For example, the discovered patterns

presented in this thesis (Chapter 7) represent a collection of patterns that support reuse of archi-

tecture evolution. In contrast to a pattern language, a pattern catalogue do not support relations

or connections among the patterns. A pattern language goes beyond establishing a repository of

patterns to support the possible relationships among the existing patterns as we have detailed in

Chapter 8.

Here, we provide an overview of the discovered patterns3. Please note that, the pattern listing

for all discovered patterns and a detailed example (Component Mediation pattern) is used to ex-

plain the template-based specification of change patterns in Chapter 7. Here in this appendix, we

present the remaining patterns with the basic details specified in a pattern template. For example,

to clarify we first present the Active Displacement. We provide a template-based specification for

this pattern.

• Pattern Name Active Displacement(< C1 : C2 >, < C1 : C3 > [C2 : C3])

customerInvoice customerPayment

customerInvoice customerPayment

customerBilling

invoicePayment

invoicePayment

billPayment

X
X

Figure D.5: Example of Active Displacement Pattern

• Pattern Intent To replace an existing component (C1) with a new component (C3) while

maintaining the interconnection with existing component (C2).

• Pattern Example The example for the Active Displacement pattern is illustrated in Figure

D.5. In this example, the customerInvoice and customerPayment components are intercon-

nected using the connector invoicePayment. Now there is a need to replace the existing

2Our definition of the Pattern Catalogue is consistent with the view of pattern collections in the pattern community
http://hillside.net/patterns/patterns-catalogue

3Many pattern authors utilise the term pattern thumbnails referring to overview of a pattern also known as problem/-
solution mapping. Th problem refers to a specific concern or a challenge that is addressed with a specific pattern.

259

http://hillside.net/patterns/patterns-catalogue

component customerInvoice with customerBilling. This can be achieved by applying the

active displacement pattern as presented in Figure D.5.

D.5.1 Component Mediation Pattern

• Pattern Parameters - ComponentMediation([CM] < C1, CM, C2 >)

• Pattern Intent - To interpose a mediator component (CM) among two or more directly con-

nected components (C1, C2)

Context and Forces

• Constraints - Represent the architecture model before, during and after changes.

1. Preconditions - C1 and C2 must be directly connected.

2. Invariants - C1 and C2 must be disconnected.

3. Postconditions - C1 and C2 must connected with CM.

• Change Operators - Enables the architecture change implementation.

1. Add(Component) - Add a Component CM.

2. Rem(Connector) - Remove a Connector X1(C1, C2).

3. Add(Connector) - Add a Connector X2(C1, CM).

4. Add(Connector) - Add a Connector X3(CM, C2)

• Architecture Models - Represents the affected architecture model.

260

C1

C2

C1

C1 C2

X1
X2 X3

Preconditions Postconditions

Figure D.6: Overview of the Component Mediation Pattern

D.5.2 Functional Slicing Pattern

• Pattern Parameters - FunctionalSlicing([C] < C1, C2 >).

• Pattern Intent - To split a component (C) into two or more components (C1, C2) for functional

decomposition of C.

Context and Forces

• Constraints - Represent the architecture model before, during and after changes.

1. Preconditions - C already exists in the architecture.

2. Invariants - N/A.

3. Postconditions - C removed, C1 and C2 must be added.

• Change Operators - Enables the architecture change implementation.

1. Add(Component) - Add a Component C1 by splitting C.

2. Add(Component) - Add a Component C2 by splitting C.

3. Rem(Component) - Remove a Component C.

• Architecture Models - Represents the affected architecture model.

D.5.3 Functional Unification Pattern

• Pattern Parameters - FunctionalUni f ication(< C1, C2 > [C])

261

<<PRE>> <<POST>>

C

C1 C2

+ +

X

C

Figure D.7: Overview of the Functional Slicing Pattern

• Pattern Intent - To merge two or more components (C1, C2) into a single component (C) for

functional unification of (C1, C2).

Context and Forces

– Constraints - Represent the architecture model before, during and after changes.

1. Preconditions - C1 and C2 already exist in the architecture.

2. Invariants - N/A.

3. Postconditions - C1 and C2 removed, C is added.

– Change Operators - Enables the architecture change implementation.

1. Add(Component) - Add a Component C.

2. Rem(Connector) - Remove a Component C1.

3. Add(Connector) - Remove a Component C2.

– Architecture Models - Represents the affected architecture model.

<<PRE>>

C1

C2

<<POST>>

C
1 C

2

X X

C+

Figure D.8: Overview of the Functional Unification Pattern

262

D.5.4 Active Displacement Pattern

– Pattern Parameters - ActiveDisplacement(<C1 : C2>, <C1 : C3 > [C2 : C3])

– Pattern Intent - To replace an existing component (C1) with a new component (C3)

while maintaining the interconnection with existing component (C2).

Context and Forces

* Constraints - Represent the architecture model before, during and after changes.

1. Preconditions - C1 and C2 must be directly connected.

2. Invariants - C2 exists in architecture, C1 is removed.

3. Postconditions - C2 connected to a new component C3.

* Change Operators - Enables the architecture change implementation.

1. Rem(Component) - Remove a Component C1.

2. Rem(Connector) - Remove a Connector X1(C1, C2).

3. Add(Connector) - Add a Component C3.

4. Add(Connector) - Add a Connector X2(C2, C3).

* Architecture Models - Represents the affected architecture model.

x2
C3

++
<<PRE>> <<POST>>

C1

x1

C2

C1

x1

C2

X

X

Figure D.9: Overview of the Active Displacement Pattern

D.5.5 Child Creation Pattern

* Pattern Parameters - ChildCreation([C] < X1 : C >)

* Pattern Intent - To create a child component (X1) inside an atomic component

(C).

263

Context and Forces

* Constraints - Represent the architecture model before, during and after changes.

1. Preconditions - Component C is an atomic component.

2. Invariants - N/A.

3. Postconditions - X1 is a child component of C (C is Composite)..

* Change Operators - Enables the architecture change implementation.

1. Add(Component) - Add a Component X1.

2. Mov(Component) - Move in Component X1 inside a Component C.

3. Add(Connector) - Add a Connector X2(C1, CM).

4. Add(Connector) - Add a Connector X3(CM, C2)

* Architecture Models - Represents the affected architecture model.

C X1

C

<<PRE>> <<POST>>

+

Figure D.10: Overview of the Child Creation Pattern

D.5.6 Child Adoption Pattern

* Pattern Parameters - ChildAdoptionPattern(< C1 : X1, C2 >,< C1, C2 : X1 >)

* Pattern Intent - To adopt a child component (X1) from a composite component

(C1) to an atomic component (C2).

Context and Forces

* Constraints - Represent the architecture model before, during and after changes.

1. Preconditions - X1 is a child inside composite C1.

2. Invariants - X1 is removed from C1.

264

3. Postconditions - X1 is added in component C2.

* Change Operators - Enables the architecture change implementation.

1. Rem(Component) - Remove a Component X1 from Component C1 (C1 is atomic).

2. Rem(Connector) - Add a Component X1 into Component C2 (C2 is composite).

* Architecture Models - Represents the affected architecture model.

<<PRE>> <<POST>>

X1

C1
C2

X C1 X1

C2

+

Figure D.11: Overview of the Child Adoption Pattern

D.5.7 Child Swapping Pattern

* Pattern Parameters - ChildSwapping([X1 : C1], [X2 : C2] < X2 : C1 >,< X1 : C2 >

)

* Pattern Intent - To swap the child components (X1, X2) from composite compo-

nents (C1, C1).

Context and Forces

* Constraints - Represent the architecture model before, during and after changes.

1. Preconditions - X1 is a child of composite component C1, - X2 is a child of

composite component C2

2. Invariants - C1 and C2 must be moved out of their parents C1 and C2.

3. Postconditions - X2 is a child component of C1, - X1 is a child component of

C2.

* Change Operators - Enables the architecture change implementation.

1. Rem(Component) - Remove a Component X1 from Component C1.

265

2. Add(Component) - Add a Component X1 into Component C2.

3. Rem(Component) - Remove a Component X2 from Component C2.

4. Add(Component) - Add a Component X2 into Component C1.

* Architecture Models - Represents the affected architecture model.

<<PRE>>

<<POST>>

X
1

C
1

X
2

C
2

X
2

C
1

X
1

C
2

Figure D.12: Overview of the Child Swapping Pattern

266

A Template-based Specification of Component Mediation Pattern
1. Pattern Description

Pattern Classification - CLS <hasClassification = "Inclusion", classification ID = "1"> [Classifies]

Change Pattern - PAT <name = "Component Mediation", Intent = "Integration of a Mediator Component among
existing Configuration(s)"> [composedOf | hasVariant | follows]

2. Pattern Context and Operators
Change Operations - OPR <oprType = Add(); Rem(), compType = isComposite> [ConstrainedByEvolves]

- Add(CMPpro−req ∈ CMP);
- Add(CONJ ∈ CON, (CMPpro , CMPpro−req) ∈ CMP);
- Add(CONK ∈ CON, (CMPpro−req , CMPreq) ∈ CMP);
- Rem(CONI ∈ CON, (CMPpro , CMPreq) ∈ CMP)

Pattern Constraints - CNS <PRE, INV, POST>
- PRE : CONI(CMPpro , CMPreq) ∈ CON
- INV : ∀cmp ∈ CMPpro , CMPpro−req , CMPreq∃por ∈ POR

∀con ∈ CONI , CONJ , CONK∃ept ∈ EPT
- POST : (CONJ(CMPpro , CMPpro−req) ∧ CONK(CMPpro−req); CMPreq)) ∈ CON

3. Pattern Impacts on Architecture Model
ArchitectureModel - ARCH <PRE, INV, POST>

- CMP = CMPpro , CMPpro−req , CMPreq ∈ CMP
- CON = CONI , CONJ , CONK ∈ CON

The pre-condition in the constraints specifies that provider and requester must be connected and the
invariant(s) preserved. . The post-condition specify that provider and requester must now be connected
through a mediator (where CONI ∈ CONφ is an orphaned connector that must be removed)
Pattern Instance: The generic specification above can be instantiated with concrete architecture elements.
We integrate a new Payment Type service among directly connected services Pay Invoice
and Transfer Money

CustInvoice

payInvoice

CustBill

billAmount

BillerCRM CustPayment

PaymentType

BillerCRM
makePayment

CustPayment

CustPayment

CustBill

billAmountpayInvoice

BillerCRM

CustInvoice

BillerCRM
makePayment

CustPayment

BillerCRM

CustInvoice

payInvoice

makePayment
CustPayment

CustBill

billAmount

Preconditions (PRE)

Source Architecture

Postconditions (POST)Invariants (INV)

Target ArchitectureIntermediate Architecturea) b) c)

selectType custPay

BillerCRM CustPayment

PaymentType

PRECONDITIONS

CMPpro
Con I

CMPreq

CMPpro-req

x

Con j
ConK

CMPpro

Con I CMPreq

POSTCONDITIONS

Instance of Linear Inclusion Pattern for Component Integration(Partial Architecture View)
4. Pattern Variants

Variant - VAR< PatternID1, . . . , PatternIDn >

It refers to the possible variants of the Linear Inclusion Pattern that are summarised as:
PatternID1(Parallel Mediation) - refers to addition/removal of the architectural components that provide
alternative/parallel functionality to an existing component, illustrated in Figure below. For example, to add a new
component (D) that allows a redirection as (A, D, B) in addition to an existing connection (A, C, D)
PatternIDn(Corelated Mediation) - refers to adding/removing a set of functionally co-related architecture
components into the existing architecture. For example, while applying observer
pattern, addition/removal of an abstract observer requires addition/removal of a concrete observer in
same change step to complete observer pattern application

Variant I - Parallel Mediation Variant II - Corelated Mediation

C1 C2

C3

C4

C1 C2

C4

<<PRE>> <<POST>>

C1

x1

C2

<<PRE>> <<POST>>

C1 C2

C3

C4

Instance of Linear Inclusion Pattern for Component Integration(Partial Architecture View)

Table D.1: Example of Pattern 1 - Component Mediation Pattern.

267

Appendix E
Experimental Setup, Validity
Threats and Questionnaire for
Evaluation of the PatEvol
Framework

Contents
E.1 Quality Characteristics of ISO/IEC 9126 Model for Evaluation 271

E.1.1 Quality Characteristic II - Usability 272

E.1.2 Quality Characteristic III - Efficiency 272

E.2 Experimental Setup for the Framework Evaluation 273

E.2.1 Identification of Evaluation Methods 273

E.2.2 Activity I - Selected Case Studies for Architecture Evolution . . 274

E.2.3 Activity II - Collection of Change Log Data for Evaluation . . . 274

E.2.4 Activity III - ALMA-based Selection of Evolution Scenarios . . 277

E.2.5 Step IV - Selection of Participants for Experimental Feedback . 277

E.3 Evolution Scenarios for Pattern Discovery 279

E.3.1 User Interfaces for Architecture Evolution Prototype 282

E.4 Questionnaire for Participant’s Feedback 285

E.5 Part I - Suitability of Change Log Graph 288

E.5.1 Instructions for the Participants 288

E.5.2 Questions to the Participants . 288

E.6 Part II - Accuracy and Efficiency of Log Graph 289

E.6.1 Instructions for the Participants’ 289

E.6.2 Questions to the Participants . 289

E.6.3 Filled By Coordinator . 290

E.7 Efficiency and Reusability of Architecture Evolution 291

E.7.1 Instructions for the Participants 291

E.7.2 Questions to the Participants . 291

268

E.1 Quality Sub-characteristics of ISO/IEC 9126 Model

for Framework Evaluation

Quality Characteristic I - Functionality The evaluation of PatEvol functionality refers

to the capability of the framework to provide functions/processes (architecture change

mining and architecture change execution) which satisfies the needs and objectives

of the solution framework when used under specified conditions. The underlying

question we aim to investigate is:

Are the required functions of architecture change mining (for knowledge acquisition) and archi-

tecture change execution (for knowledge application) provided by the PatEvol framework?

We evaluate framework functionality based on the quality sub-characteristics with

functional suitability and functional accuracy.

Sub-characteristic A - Suitability

It refers to the evaluating the capability of the framework to resolve the problems of

recurring architecture evolution faced by the users/architects. More specifically, the

framework must ensure a suitable mechanism to capture user inputs, process them in

a correct and timely manner and produce the desired results. For example, during

architecture change execution process the framework must ensure i) specifications of

source architecture model, ii) enable pattern-driven architecture architectural transfor-

mation , and iii) represent the evolved architecture model.

Sub-characteristic B - Accuracy

It refers to evaluating the correctness and completeness of the framework in terms of

producing accurate results. More specifically the correctness of framework implies that

for each given input by user, the capability of the framework to produce an error-free

and accurate output. For example, during architecture change mining process when

the user specifies the change log graph along with parameters - minimum and maxi-

mum lengths of pattern candidates and pattern frequency threshold - the framework

must ensure accuracy of pattern discovery.

269

E.1.1 Quality Characteristic II - Usability

The evaluation of PatEvol usability refers to the capability of the framework to be

understood, learned and easily used by its user when used under specified conditions.

The underlying question we aim to investigate is:

Is the PatEvol framework understood and of practical use to its users?

We evaluate framework usability based on the quality sub-characteristics understand-

ability and operatability.

Sub-characteristic A - Understandability

It refers to evaluating the framework based on its understandability of the inputs,

outputs and functionality. For example, during the architecture change mining process

the user must be able to understand the role of the framework in terms of user inputs

for pattern discovery. In addition, a clear understanding of the framework inputs

and outputs enables the user a parameterised customisation of the pattern discovery

process.

Sub-characteristic B - Operatability

refers to evaluating the framework based on its ease of operatability by its users in

terms of providing inputs, viewing outputs and necessary intervention and supervi-

sion of its functionality, if required.

E.1.2 Quality Characteristic III - Efficiency

The evaluation of PatEvol efficiency refers to its capability to provide the required

performance - processing time - in relation to the amount of resource utilisation under

the stated conditions. The underlying question we aim to investigate is:

How efficient is the framework to enable architecture change mining and architecture change

execution processes?

For example, in the architecture change mining process evaluating pattern discovery,

algorithmic accuracy (correctness and completeness), and performance are the key fac-

tors to evaluate the efficiency. The accuracy of the algorithms is to identify all change

270

patterns from architecture change logs. The evaluation must ensure the framework

does not skip any available patterns. We focus on:

Sub-characteristic A - Time Behaviour

It refers to evaluating the time-efficiency of the framework. For example, in an archi-

tecture change mining process we are concerned with evaluating the computational

complexity of pattern discovery algorithms.

Sub-characteristic B - Resource Utilisation

It refers to evaluating the utilisation of computational resources by the PatEvol Frame-

work.

To complement such theoretical claims and the quality model we must derive a con-

crete evaluation strategy for an experimental evaluation of the framework and its re-

sults.

E.2 Experimental Setup for the Framework Evaluation

In this section, first, in Table E.1 we identify the evaluation methods for solutions

(process and activities in PatEvol framework) that address different research challenges

as identified in Chapter 1. Second, in Figure E.1 we present an activity-based view of

setting-up and executing the individual activities in the evaluation process.

E.2.1 Identification of Evaluation Methods

Research challenges and proposed solutions are mentioned in Chapter 1 (Research

Questions) that need to be evaluated based on the sub-quality characteristics from

ISO/IEC 9126 - 1 product quality model - as summarised in Table E.1.

1. Challenge I - Modelling Architecture Change Log Data In order to enable change

operation classification and pattern discovery from logs, a critical challenge lies

with selection of an appropriate data structure to model change log data. It re-

quires a careful selection of a data structure that enables a formal representation

of log data along with efficient searching and retrieval of log data.

271

Research Problems and Solution Evaluation Method
Research Challenge Solution Sub-quality Characteristics Evaluation Strategy

(Research Questions) (PatEvol Framework) (ISO/IEC 9126 - 1) Experiments Feedback ALMA
Challenge I Modelling Log Graph Efficiency, Suitability X X X

Challenge II Pattern Discovery Algorithms Accuracy, Efficiency X X X

Challenge III Pattern Selection with QOC Accuracy X X

Challenge IV Pattern-based Evolution Efficiency, Reusability X X

Table E.1: Overview of Research Challenges, their Solutions and Evaluation Methods.

2. Challenge II - Discovery of Architecture Change Patterns from Logs Once log

data is formalised as a graph (Challenge I), the challenges lies with an automated

discovery of architecture change patterns from logs. The solution must ensure the

discovery of exact as well as inexact instances of architecture change patterns.

3. Challenge III - Pattern Selection form Language Collection After pattern specifi-

cation (Challenge III), the solution must support its user to select the most appro-

priate pattern(s) from language collection. Pattern selection requires a mapping

of the problems of architecture evolution to select the applicable patterns as its

solution.

4. Challenge IV - Pattern-based Architecture Change Execution After pattern se-

lection (Challenge IV), the solution must support architecture evolution that is

guided by change patterns. Pattern-based change execution requires patterns to

guide source to target architecture transformation.

E.2.2 Activity I - Selected Case Studies for Architecture Evolution

In software engineering research, case study based approaches facilitate i) designing re-

search process (Chapter 1 to Chapter 4), ii) conducting the research (Chapter 5 to Chap-

ter 8) and evaluating research results (in this Chapter 9) by ensuring that data is col-

lected and analysed in a systematic and scenario-driven environment [Flyvbjerg 2006].

We mentioned the the case studies in Chapter 2 - research background - and provide

details about individual case studies in Appendix B.

E.2.3 Activity II - Collection of Change Log Data for Evaluation

The evaluation data is gathered by capturing architectural changes on EBPP and 3-in-1

Phone System case studies (Appendix B) as presented in Table E.2. Table E.2 presents

272

all the architectural changes as number of change operations on architecture elements1.

For example, the operation Add an architecture element that is of type Component

with an occurrence frequency 212 represents addition of 212 architectural components

recorded in change log. In Table E.2, we only provide an overview of addition removal

and modification of configurations among a set of components (containing ports) and

their connectors (containing endpoints).

Configuration Component Port Connector Endpoint Total
Add 87 212 283 254 297 1133
Remove 36 122 177 163 223 721
Modify 17 52 79 83 113 344
Total 140 386 539 500 633 2198

Example I - Add a Configuration, Component, Port
Opri : = Add(Payment ∈ CFG)
Oprj: = Add(PaymentType ∈ CMP Payment ∈ CFG)
Oprk : = Add(payBill ∈ POR PaymentType ∈ CFG)

Example II - Remove a Connector, Endpoint
Oprm: = Rem(custBill(srcPort, trgPort) ∈ EPT, makePayment ∈ CON)
Oprn: = Rem(makePayment ∈ CMP, (CustPayment, BillerCRM) ∈ CMP)

Table E.2: Total Change Operations on Architecture Model Recorded from Change Log.

1The corresponding change log file recording change operations on architectural elements from Table E.2 is provided
at: http://ahmadaakash.wix.com/aakash/LogFile.txt

273

http://ahmadaakash.wix.com/aakash/LogFile.txt

Log Graph Analysis

Identify Case
Studies

Extract Evolution
Scenario

Select Users for
Experiment

Capture User
Feedback and Results

Collect
Experimental Data

Are Case Studies Representative?

YES

NO

Is Data set Complete and Sufficient?NO

YES

Pattern Discovery
Algorithms

Pattern Specification
Template

Pattern-based
Evolution

Execute Experiments

Start Evaluation

Are Experiments Sufficient to
Capture Feedback?

NO

Is Feedback sufficient to
Generalise results

YES

NO

End Evaluation

Activity Sub-activity

Activity Decision Activity Transition

Figure E.1: Activity-based Representation of Experimental Setup.

274

E.2.4 Activity III - ALMA-based Selection and Analysis of Architec-

ture Evolution Scenarios

The ALMA method is used to select and analyse the architecture evolution scenarios to

evaluate the architecture change mining and architecture change execution processes.

We select these scenarios from architecture case studies (Activity II), as illustrated in

Figure E.1. More specifically, we select two evolution scenarios from EBPP case study

to analyse the accuracy and efficiency of pattern discovery algorithms in comparison

to a manual pattern discovery presented in Chapter 7. In addition, we select four

evolution scenarios to analyse the pattern-driven architecture evolution that updates a

peer-to-peer system to client server architecture presented in Chapter 9 and Appendix

D.

The ALMA method enables a scenario-driven approach for predicting (the efforts of)

architectural maintenance and evolution and analysing the evolved architecture model

as a 5-step process. Please note that, while following ALMA we do not aim to predict

maintenance efforts, instead we only focus on elicitation, evaluation and interpretation of

architecture evolution scenarios - Step III, IV, V as listed below. The ALMA method

consists of the following five steps:

* Step I Set the goal for architecture-level evolution analysis.

* Step II Specify architecture description to provide a representation of the archi-

tecture model (before and after architectural evolution).

* Step III Elicit architecture evolution scenarios from case studies.

* Step IV Evaluate architecture scenarios to determine their effects on architecture

descriptions.

* Step V Interpret results of evolution scenarios to draw conclusions from analysis.

E.2.5 Step IV - Selection of Participants for Experimental Feedback

To select the participants for evaluations, we also followed the key informant method-

ology - a qualitative method - to seek the participants’/interviewees’ expert opinion or

knowledge to develop or evaluate a solution [Gallivan 2001]. By following the guide-

lines of key information methodology we focused on, i) Relevance of the participants’

275

expertise to the type of evaluation (i.e; software design and evolution process), ii) De-

sign of evaluation activities (detailed in Chapter 9 and in this appendix) to seek the

feedback for evaluation.

A participant-based evaluation of the PatEvol framework allows us to capture the feed-

back from participants in terms of evaluating the functional suitability and usability of

the framework. We selected a total of five unique participants to evaluate the frame-

work as presented in Table E.3. In Table E.3, each participant is assigned a unique id

to maintain details of individual feedback. For example, in Table E.3 P1 who is an

academic researcher in software architecture evolution to evaluate the framework is

identified as P1.

In terms of the professional affiliation of the participants, we had a total of 3 partic-

ipants from academia working as Ph.D researchers and two participants working in

software industry2 The academic participants are all working as software engineer-

ing (SE) researchers, while the industrial participants are from software design and

development and software testing background. The total combined experience of par-

ticipants in software engineering is 11 years with an average experience slightly more

than 2 years per participant. More specifically, the participants have a combined ex-

perience of 8 years with software architecture (SA) - on average more than 1.5 years

of an individual’s experience. The participants had experience with architectural de-

sign, maintenance and validation. The professional or research expertise of researchers

is architecture evolution (2 participants) and source code re-factoring (1 participant),

while industrial professional have expertise in Java based development and UML 2.0

for software design.

Participant Professional Professional Experience with Experience wwith Professional/Research
ID Affiliation Role SE (years) SA (years) Expertise

P1 Academic Researcher Research in SE 2 2 Architecture Evolution
P2 Academic Researcher Research in SE 2 1 Architecture Evolution
P3 Academic Researcher Research in SE 3 3 Code Refactoring
P4 Industrial Professional Software Development 3 1 UML 2.0, JAVA
P5 Industrial Professional Software Testing 1 1 UML 2.0, JSystem

Table E.3: Professional Affiliations, Role, Experience and Expertise of Participants for Feedback.

2Please note that in this evaluation the industrial professional do not represent their company or professional institute.
Both the professional took part in the evaluation in their individual capacity. We aim to seek the feedback for evaluation
both from academic researchers as well as from industrial professionals.

276

E.3 Evolution Scenarios for Pattern Discovery

Architecture Evolution Scenarios are identified using ALMA method (in Section E.2)

and briefly present our goal for scenario analysis, architecture descriptions in the evo-

lution scenarios, elicitation and evaluation of evolution scenarios before interpreting

the results.

Goal(s) of the Analysis

The primary goal of the analysis is to analyse the accuracy and efficiency of the pattern

discovery algorithms. An effective measure of accuracy is to investigate the precision

and recall factor for discovery algorithms (discussed in Chapter 7). In addition, we

also compare the efficiency and accuracy of the proposed pattern discovery algorithms

by comparing the results with a manual discovery (i.e; automated vs manual). Such an

analysis helps us to justify, if the discovery algorithms are more efficient and accurate

than any efforts of manual discovery by interpreting the results of evolution scenarios.

Architecture Descriptions

In the evolution scenarios, architecture elements represent the parametrisation of change

operations - i.e; change operations are applied to architecture elements. Therefore,

architecture descriptions are provided using a graph based notation [Brandes 2002a]

(graphml file) - a sample provided in Listing E.1. Listing E.1 represents the source

architecture model before evolution (PRE as preconditions), changes on source archi-

tecture model (OPR as change operations) and target architecture model after evolution

(POST as postconditions). The file contains a total 8 evolution scenarios, where some

of the scenarios are recurrent (pre/post-conditions and operations remain same but

architecture elements are different) representing the patterns in the file.

Listing E.1: A Sample of Log File for Manual Discovery of Change Patterns

1

2 <PRE>

3 <data key=" ArchElement "> BillerCRM </data >

4 <data key=" hasParam "> </data >

5 <data key=" hasType "> CMP </data >

277

6 <data key=" ArchElement "> CustPayment </data >

7 <data key=" hasParam "> </data >

8 <data key=" hasType "> CMP </data >

9 <data key=" ArchElement "> makePayment </data >

10 <data key=" hasParam "> BillerCRM , CustPayment </data >

11 <data key=" hasType "> CON </data >

12 </PRE>

13 <OPR>

14 <data key=" opr "> ADD </data >

15 <data key=" hasParam1 "> PaymentType </data >

16 <data key=" Param1Type "> CMP </data >

17 <data key=" hasParam2 "> </data >

18 <data key=" Param2Type "> </data >

19 <data key=" opr "> ADD </data >

20 <data key=" hasParam1 "> se lec tType </data >

21 <data key=" Param1Type "> CON </data >

22 <data key=" hasParam2 "> BillerCRM , PaymentType </data >

23 <data key=" Param2Type "> CMP </data >

24 <data key=" opr "> ADD </data >

25 <data key=" hasParam1 "> custPay </data >

26 <data key=" Param1Type "> CON </data >

27 <data key=" hasParam2 "> PaymentType , CustPayment </data >

28 <data key=" Param2Type "> CMP </data >

29 <data key=" opr "> REM </data >

30 <data key=" hasParam1 "> makePayment </data >

31 <data key=" Param1Type "> CON </data >

32 <data key=" hasParam2 "> BillerCRM , CustPayment </data >

33 <data key=" Param2Type "> CMP </data >

34 </OPR>

35

36 </POST>

37 <data key=" ArchElement "> BillerCRM </data >

38 <data key=" hasParam "> </data >

39 <data key=" hasType "> CMP </data >

40 <data key=" ArchElement "> CustPayment </data >

41 <data key=" hasParam "> </data >

42 <data key=" hasType "> CMP </data >

43 <data key=" ArchElement "> PaymentType </data >

44 <data key=" hasParam "> </data >

45 <data key=" hasType "> CMP </data >

46 <data key=" ArchElement "> se lec tType </data >

47 <data key=" hasParam "> BillerCRM , PaymentType </data >

48 <data key=" hasType "> CON </data >

49 <data key=" ArchElement "> custPay </data >

50 <data key=" hasParam "> PaymentType , CustPayment </data >

51 <data key=" hasType "> CON </data >

52 </POST>

53

278

Elicitation of Evolution Scenarios

We select two evolution scenarios in Figure E.2 and Figure E.3 that are presented to the

participant to discover them in the sample file in Listing E.1. These evolution scenarios

are the potential patterns in the log file depending on their frequency in the file. For

example, we asked the participants to discover these scenarios in the log file and report them

as patterns if their frequency is 2 or more. These evolution scenarios are presented to the

participants in the form of Figure E.2 and Figure E.3. We provide the generic names

for components and connectors and it is up to the participant to discover the pattern

(if exists) with concrete name of architectural elements in sample log file. For example,

in Figure E.2 the preconditions of a scenario represent that two components (A, B) are

interconnected using a connector (X1).

– Scenario I for Pattern Discovery This scenario is selected based on the running exam-

ple used in previous chapters (Chapter 7, Chapter 8). It represents the interposition

of a mediator component PaymentType that facilitates the selection of a payment type

mechanism among the directly connected components BillerCRM and CustPayment as

illustrated in Figure E.2.

A B
X1

X1

B
X2 X3

Preconditions Postconditions

Architectural Changes

PRE-1: A is a Component
PRE-2: B is a Component

PRE-3: X1 is a connector (A, B)

OPR1-: Add B as a Component
OPR2-: Add X2 as a Connector (A, C)
OPR3-: Add X3 as a Connector (C, B)
OPR4-: Remove X1 as a Connector (A, B)

A B

X2 C
X3

POST-1: A is a Component
POST-2: B is a Component

POST-4: X2 is a connector (A, C)
POST-3: C is a Component

POST-5: X3 is a connector (C, B)

Component
Addition

Connector X
+

Removal

+

X

Figure E.2: Overview of Scenario I as Presented to participants for Discovery in Sample Log File.

– Scenario II for Pattern Discovery represents the replacement of an existing component

B with a new component C as presented in Figure E.3.

279

After presenting the scenario I (Figure E.2) and Scenario II (Figure E.3), we ask the par-

ticipants to identify them in the sample log file (Listing E.1) with a specific occurrence

frequency.

A B
X1

Preconditions Postconditions

Architectural Changes

PRE-1: A is a Component
PRE-2: B is a Component

PRE-3: X1 is a connector (A, B)

X

+

Component
Addition

Connector X
+

Removal

BX1

C
X2

A C
X2

OPR1-: Add C as a Component
OPR2-: Add X2 as a Connector (A, C)
OPR3-: Remove B as a Component
OPR4-: Remove X1 as a Connector (A, B)

POST-1: A is a Component
POST-2: C is a Component
POST-4: X2 is a connector (A, C)

Figure E.3: Overview of Scenario II as Presented to Participants for Discovery in Sample Log File.

E.3.1 User Interfaces for Architecture Evolution Prototype

In this section, we present the user interfaces for pattern-driven architecture evolution by

utilising the example from Figure 8.8 (cf. Section 8.6.2).

– Interface to Import the Architecture Descriptions - in Figure E.4, the interface im-

ports the a) graph-description for source architecture model (left-hand side) and also

b) visualises the configurations, components (their ports) and connectors (right-hand

side).

– Interface for Change Specification - to specify changes on architecture model, the

interface in Figure E.5 allows the user to specify the a) change rule to add or remove

the desired architecture elements and b) the constraints as pre-conditions and post-

conditions on the source architecture model.

– Interface for Pattern Selection - once a change rule is specified the prototype pro-

vides the most appropriate pattern to address the given evolution scenario in Figure

280

E.6. The interface presents the pattern description (left-hand side) including the name,

intent and change operationalisation. In addition, the interface also provide an overview

of the impact of change pattern on architecture model even before a pattern is applied.

For example, in Figure E.6 the pattern impact shows interposition of a PaymentType

component among directly connected components BillerApp and CustBill inside cfg-

Billing configuration.

– Interface for Change Execution - once a pattern is applied, architectural changes are

executed by abstracting the operation level details. The evolved architecture model is

presented in Figure E.7. Graph-based description of the evolved architecture model

is presented on the left-side, while a visualisation of the evolved components and

connectors on the right.

Graph-based Description Architecture Model

1 2

Figure E.4: User Interface to Import the Source Architecture Model.

281

Change Specification Source Architecture

1 2

Figure E.5: User Interface to Specify Architectural Changes.

Pattern Selection Pattern Impact

1 2

Figure E.6: User Interface to Select Change Patterns.

282

Figure E.7: User Interface for Description of Evolved Architecture Model.

E.4 Questionnaire for Participant’s Feedback

Software and System Engineering Research Group

School of Computing, Dublin City University.

General Instructions

– Please indicate the option that satisfies your opinion the most with a tick (X) in the

283

specific field ([X]) (you are allowed to mark more than one options, where you feel

appropriate).

– Answers to the provided questions can be written or recorded. Should you feel you

need to record your answers please ask the coordinator before starting the question-

naire.

– Please ask the coordinator for explanations or clarifications any-time when answering

the questionnaire. Feel free to indicate either if you are unable understand something

or you want to point any issue related to the questionnaire.

284

1. Participant’s Profile

Name

Affiliation

Professional Role

On a scale from 1 to 5, where 1 represents "Expert" and 5 represent "No knowledge/expertise",

please indicate your expertise about software architecture or software design.

1 [] 2 [] 3 [] 4 [] 5 []

On a scale from 1 to 5, where 1 represents "Expert" and 5 represent "No knowledge/expertise",

please indicate your expertise about any of the following Maintenance OR evolution OR

adaptation of Software OR Software Architecture OR Software Design.

1 [] 2 [] 3 [] 4 [] 5 []

On a scale from 1 to 5, where 1 is "Expert" and 5 is "No knowledge/expertise",

please refer to your knowledge about any of the following Design Patterns OR Architecture Styles

1 [] 2 [] 3 [] 4 [] 5 []

2. Sections of the Questionnaire

The questionnaire captures the participant feedback based on the experiments for the anal-

ysis and evaluation purposes.

– Part I Feedback for Suitability of Change Log Graph for Architecture Change Repre-

sentation.

– Part II Feedback for Accuracy and Efficiency of Pattern Discovery Algorithms.

– Part III Feedback for Efficiency and Re usability of Pattern-based Evolution.

285

E.5 Part I - Suitability of Change Log Graph for Architecture

Change Representation

This section aims to capture the participants’ feedback for evaluating the Suitability of Log

Graph. Suitability is a sub-characteristics of Functionality in ISO 9126 - 1 model. Efficiency

of log-graph is evaluated based on experimental analysis for time required to retrieval data

from log graph.

E.5.1 Instructions for the Participants

– Step I Analyse the sample change log file that is provided with the questionnaire.

– Step II Analyse the sample change log graph that is provided with the questionnaire

– Step III Identify a change operation (both in the log file and log graph) that enables

addition of an architectural component PaymentType

– Step IV Convert at-least 3 change operations from change log file into a change log

graph.

– Step V Addition of change operations in the change log file and repeat Step IV.

– Step VI Add a new configuration, a component containing a port in the configuration

as an entry in the change log file.

– Step VII Add a new configuration, a component containing a port in the configuration

as an entry in the change log graph file.

E.5.2 Questions to the Participants

– Question I Which of the two provides a Suitable representation of change operationali-

sation on architecture elements?

Log File [] Log Graph [] Not Sure []

Comments:

– Question II Which of the two provides an easy interpret of the intent of architecture

change operations?

286

Log File [] Log Graph [] Not Sure []

Comments:

– Question III Visualisation of changes on architecture elements can be better achieved

with?

Log File [] Log Graph [] Not Sure []

Comments:

– Question IV It is easy to search and retrieve the log data from?

Log File [] Log Graph [] Not Sure []

Comments:

– Question V It is Easy to record change operations in?

Log File [] Log Graph [] Not Sure []

Comments:

E.6 Part II - Accuracy and Efficiency of Log Graph

This section aims to capture the participants’ feedback for evaluating the Accuracy and Effi-

ciency of Log Graph. Accuracy and efficiency are sub-characteristics of ISO 9126 - 1 quality

model.

E.6.1 Instructions for the Participants’

– Step I Analyse the architecture evolution scenarios provided with the questionnaire.

– Step II Analyse the change log graph provided with the questionnaire.

– Step III Identify the occurrence of evolution scenarios (Step I) in the log graph file (Step

II).

E.6.2 Questions to the Participants

– Question I Please write down the number of pattern instances discovered from log

graph.

287

Number of Discovered Pattern(s):

– Question II Please write down the time taken to discover pattern instances from log

graph.

Time taken in Second(s):

– Question III Do you notice any overlap of change operations on discovered pattern

instances?

YES [] NO [] Not Sure []

Comments:

E.6.3 Filled By Coordinator

– Result I What type of pattern instances are discovered by the participant?

Exact Instances [] Inexact Instances [] Both []

Comments:

– Result II What is the pattern discovery precision by the participant?

1.0 [] ≤ 1.0 ≥ 0.5 [] ≤ 0.5 []

Comments:

– Result III Is candidate identification required?

YES [] NO [] Not Sure []

Comments:

288

E.7 Efficiency and Reusability of Architecture Evolution

This section aims to capture the participants’ feedback for evaluating the efficiency and

reusability of pattern-based architecture evolution. Accuracy and efficiency are sub-characteristics

of ISO 9126 - 1 quality model.

E.7.1 Instructions for the Participants

– Step I Analyse the architecture evolution scenarios.

– Step II Specify the architectural changes to support the scenario.

E.7.2 Questions to the Participants

– Question I Does the Pattern-based evolution support reuse of architectural changes?

YES [] NO [] Not Sure []

Comments:

– Question II Is the process understandable?

YES [] NO [] Not Sure []

Comments:

– Question III Is Pattern-based architecture evolution process more efficient?

YES [] NO [] Not Sure []

Comments:

End of Questionnaire

Thank you for your participation!

Comments:

289

292

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Architecture-Centric Software Evolution
	1.1.1 Software Evolution
	1.1.2 Software Architecture
	1.1.3 Evolution of Software Architecture
	1.1.4 Reuse in Evolution of Software Architectures

	1.2 Implication of Change Reuse on Architectural Evolution
	1.2.1 Practical Benefits for Reuse-driven Architecture Evolution
	1.2.2 Change Reuse from Practitioners' Point-of-View
	1.2.3 Efficiency of Architecture Evolution Process Relative to Change Reuse

	1.3 Overview of the Research Challenges
	1.3.1 Identification of Knowledge Discovery Sources
	1.3.2 Discovery of Evolution-Reuse Knowledge
	1.3.3 Representation and Specification of Evolution-Reuse Knowledge
	1.3.4 Application of Evolution-Reuse Knowledge

	1.4 Research Problems and Proposed Solution
	1.4.1 Central Hypothesis
	1.4.2 Research Questions for the Thesis
	1.4.3 Solution Framework

	1.5 Research Contributions and Assumptions
	1.6 Overview of the Thesis Chapters
	1.7 Chapter Summary

	2 Background
	2.1 Chapter Overview
	2.2 Reuse Knowledge Management in Software Architectures
	2.2.1 Architecture Knowledge Activities
	2.2.2 Architecture Evolution-Reuse Knowledge
	2.2.3 The Notion of Architecture Change Logs

	2.3 Change Patterns as Elements of Architecture Evolution Reuse
	2.3.1 A 3-step Process for Pattern-based Architecture Evolution
	2.3.2 Composition of an Architecture Change Pattern Language
	2.3.3 Modelling of Pattern-based Architecture Evolution Activities
	2.3.4 UML vs Graph-based Modelling of Architecture Evolution Activities

	2.4 Graph Modelling for Change Mining and Change Execution
	2.4.1 Types of Graph Models
	2.4.2 Attributed Graphs to Model Activities of Architecture Evolution
	2.4.3 Graph-based Modelling of Architectural Changes from Logs
	2.4.4 Graph-based Modelling and Transformation of Architecture Models

	2.5 Component-based Architectures and their Evolution
	2.5.1 Modelling and Architecting with Component-based Models
	2.5.2 Graph-based Modelling of Component-based Software Architectures
	2.5.3 Configuration of Architecture Model
	2.5.4 Architecture Descriptions with Graph Modeling Language

	2.6 Chapter Summary

	3 A Systematic Literature Review of Architecture Evolution Reuse Knowledge
	3.1 Overview of Systematic Literature Review
	3.2 Secondary Studies on Software Architecture Evolution
	3.2.1 Systematic Literature Reviews of Software Architecture Evolution
	3.2.2 Survey-based and Taxonomic Studies on Architecture Evolution
	3.2.3 A Systematic Review of Architecture Evolution Reuse Knowledge

	3.3 Research Methodology for Systematic Literature Review
	3.3.1 Research Questions for Systematic Review
	3.3.2 Extracting and Synthesising Review Data
	3.3.3 Classifying and Documenting the Results
	3.3.4 A Framework to Classify Evolution Reuse Knowledge Research

	3.4 Results Categorisation and Reuse Knowledge Taxonomy
	3.4.1 A Taxonomical Classification of Evolution Reuse Knowledge
	3.4.2 Definition of Architecture Evolution Reuse Knowledge

	3.5 Application of Evolution Reuse Knowledge
	3.5.1 Methods and Techniques for Application of Reuse Knowledge
	3.5.2 Comparison of Methods and Techniques for Evolution Reuse

	3.6 Acquisition of Architecture Evolution Reuse Knowledge
	3.6.1 Methods and Techniques for Acquisition of Reuse Knowledge
	3.6.2 Comparison of Methods and Techniques for Acquisition of Reuse Knowledge

	3.7 Implications of Systematic Literature Review
	3.7.1 Research Trends and Future Directions

	3.8 Summary of Chapter

	4 A Framework for Change Mining and Change Execution
	4.1 Chapter Overview
	4.2 PatEvol - Pattern-driven Architecture Evolution Framework
	4.2.1 Elements of the PatEvol Framework

	4.3 Processes and Activities in the PatEvol Framework
	4.3.1 Process I - Architecture Change Mining
	4.3.2 Process II - Architecture Change Execution
	4.3.3 Types of Collection in the Framework

	4.4 A Summary of Comparison for Research on Architecture Evolution Reuse

	5 Change Logs as a Source of Architecture-centric Evolution Knowledge
	5.1 Chapter Overview
	5.2 Change Logs as Source of Evolution Knowledge
	5.2.1 Architecture Change Instance vs Architecture Change Operation

	5.3 Recording Architecture Changes in Logs
	5.3.1 A Meta-model for Architecture Change Logs
	5.3.2 Log-based Representation of Architecture Change Instances

	5.4 Preserving Evolution History in Change Logs
	5.4.1 Maintaining Architecture Change Sessions

	5.5 Graph-based Modelling of Architecture Change Log Data
	5.5.1 Creating Change Log Graph
	5.5.2 Creating Architecture Change Session Graph
	5.5.3 Sequential vs Hierarchical Representation of Log Data

	5.6 Mapping Log Data to GraphML-based Representation
	5.7 Chapter Summary

	6 A Taxonomical Classification and Definition of Architecture Change Operations
	6.1 Chapter Overview
	6.2 A Taxonomy of Architecture Change Operationalisation
	6.2.1 The Needs for Operational Taxonomy of Architectural Evolution
	6.2.2 Types, Representation and Dependencies of Change Operations

	6.3 Types of Architectural Changes
	6.3.1 Running Example of Architectural Changes
	6.3.2 Atomic Change Operations
	6.3.3 Composite Change Operations

	6.4 Architecture Change Sequences
	6.4.1 Order of Change Sequences

	6.5 Dependencies of Change Operations
	6.5.1 Commutative Change Operations
	6.5.2 Dependent Change Operations

	6.6 Chapter Summary

	7 Graph-based Discovery and Specification of Architecture Change Patterns
	7.1 Chapter Overview
	7.2 A Meta-model of Pattern-based Architecture Evolution
	7.2.1 Specifying the Architecture Model
	7.2.2 Specifying the Change Operations
	7.2.3 Specifying Constraints on Architecture Model
	7.2.4 Specifying Change Patterns

	7.3 Algorithms for Change Pattern Discovery from Logs
	7.3.1 Algorithm I - Candidate Generation
	7.3.2 Algorithm II - Candidate Validation
	7.3.3 Algorithm III - Candidate Pattern Matching

	7.4 Complexity of Change Pattern Discovery
	7.4.1 Performance Trade-offs - Accuracy vs Efficiency of Pattern Discovery

	7.5 Discovered Change Patterns from Logs
	7.5.1 Discovering and Generalising the Pre/Post-conditions of Change Patterns

	7.6 Template-based Specification of Architecture Change Patterns
	7.6.1 Mapping Elements of Template for Graph-based Pattern Specification
	7.6.2 Semi-automated Specification of Change Patterns in the Template

	7.7 Chapter Summary

	8 Composition and Application of a Change Pattern Language for Architecture Evolution
	8.1 Chapter Overview
	8.2 Overview of Pattern Language Composition and Application
	8.2.1 Architecture Change Mining for Pattern Language Composition
	8.2.2 Architecture Change Execution for Pattern Language Application

	8.3 Pattern Relations as the basis for Language Composition
	8.3.1 Establishing the Pattern Relations
	8.3.2 Static Sequence of Patterns
	8.3.3 Dynamic Sequence of Patterns
	8.3.4 Pattern Variants

	8.4 Application Domain of Change Pattern Language
	8.4.1 Evolution in Component-based Software Architecture

	8.5 Graph Transformation for Architecture Evolution
	8.5.1 Graph-based Architecture Models
	8.5.2 Constraints on Graph Model
	8.5.3 Graph Transformation Rule

	8.6 Application of Change Pattern Language
	8.6.1 Pattern Selection with Design Space Analysis
	8.6.2 Architecture Evolution guided by Change Patterns

	8.7 A Prototype for Pattern-based Architecture Evolution
	8.8 Chapter Summary

	9 Evaluation of the PatEvol Framework
	9.1 Chapter Overview
	9.1.1 Context, Objectives and Methodology of Evaluation

	9.2 Qualitative Analysis and Comparison of the PatEvol Framework
	9.2.1 Reuse-Driven Evolution in Software Architecture
	9.2.2 Pattern Languages for Architecture Change Management

	9.3 Methodology for Evaluating the PatEvol Framework
	9.3.1 ISO/IEC 9126 Model for Quality Evaluation
	9.3.2 Evaluation Strategy - Experiments and Participant's Feedback

	9.4 Evaluating the Efficiency and Suitability of the Log Graph
	9.4.1 Suitability of the Change Log Representation
	9.4.2 Summary of the User Feedback for Suitability of Change Log Graph
	9.4.3 Efficiency of the Graph-based Retrieval of Log Data
	9.4.4 Summary of Results for Efficiency of Log-based Data Retrieval

	9.5 Evaluating Accuracy and Efficiency of Pattern Discovery
	9.5.1 Interpretation of Results - Automated vs Manual Discovery of Patterns
	9.5.2 Discussion and Conclusions

	9.6 Evaluating the Accuracy of Pattern Selection
	9.6.1 Accuracy of Pattern Selection - Precision and Recall Measure
	9.6.2 Effects of Pattern Classification on Selection Precision
	9.6.3 Implications of a Small Search Space for Pattern Selection Precision

	9.7 Evaluating the Efficiency and Reusability of Pattern-based Architecture Evolution
	9.7.1 Pattern-based Evolution of a Client Server Architecture
	9.7.2 Summary of Comparison for Primitive vs Pattern-based Changes
	9.7.3 Granularity vs Reusability of Changes

	9.8 Threats to Validity of Research
	9.9 Chapter Summary

	10 Conclusions and Future Research
	10.1 Research Focus and Implications of the PatEvol Framework
	10.1.1 Practical Implementation of the PatEvol Framework

	10.2 Summary of Research Contributions
	10.3 Dimensions of Future Research
	10.3.1 Pattern-driven Plans for Architecture Evolution
	10.3.2 Post-mortem Analysis of Architecture Evolution Histories of Evolving Software
	10.3.3 The Notion of Architecture Change Anti-Patterns

	Bibliography
	A Protocol and Auxiliary Information for Systematic Review
	A.1 Scope of Systematic Literature Review
	A.2 Definition and Evaluation of the Review Protocol
	A.3 Conducting the Review
	A.4 Literature Search Strategies
	A.4.1 Executing Literature Search

	A.5 Inclusion or Exclusion of Studies
	A.6 Qualitative Assessment of Included Studies
	A.6.1 A Mapping of Research Themes to Activities in REVOLVE Framework

	A.7 Threats to Validity of SLR
	A.7.1 Threats to the Identification of Primary Studies
	A.7.2 Threats to Selection and Data extraction Consistency
	A.7.3 Threats to Data Synthesis and Results

	B Case Studies for Architecture Change Mining and Change Execution Processes
	B.1 Architecture Evolution Case Studies
	B.1.1 Case Studies Selection

	B.2 Case Studies for Architecture Change Mining Process
	B.2.1 Case Study I - Architectural View for EBPP Case Study
	B.2.2 Case Study II - Architectural View for 3-in-1 Telephonic System Case Study
	B.2.3 Capturing Architectural Changes for EBPP in Log

	B.3 Case Study for Architecture Change Execution Process
	B.3.1 Architectural Description and Evolution Scenario

	C Change Log Graph for Pattern Discovery
	C.1 Architecture Change Log Data
	C.2 Converting Log Data into a Change Log Graph
	C.3 Sample Log Graph for Change Pattern Discovery

	D Source Code and Discovered Change Patterns from Log
	D.1 Source Code for Pattern Discovery from Logs
	D.2 Pattern, Pattern Instance and Pattern Variant
	D.3 Prototype Support for Change Pattern Discovery
	D.3.1 Overview of the Prototype for Pattern Discovery
	D.3.2 User Interface for Pattern Discovery Prototype

	D.4 Prototype Support for Change Pattern Specification
	D.5 A Catalogue of Architecture Change Patterns
	D.5.1 Component Mediation Pattern
	D.5.2 Functional Slicing Pattern
	D.5.3 Functional Unification Pattern
	D.5.4 Active Displacement Pattern
	D.5.5 Child Creation Pattern
	D.5.6 Child Adoption Pattern
	D.5.7 Child Swapping Pattern

	E Experimental Setup and Questionnaire for Evaluation of the PatEvol Framework
	E.1 Quality Characteristics of ISO/IEC 9126 Model for Evaluation
	E.1.1 Quality Characteristic II - Usability
	E.1.2 Quality Characteristic III - Efficiency

	E.2 Experimental Setup for the Framework Evaluation
	E.2.1 Identification of Evaluation Methods
	E.2.2 Activity I - Selected Case Studies for Architecture Evolution
	E.2.3 Activity II - Collection of Change Log Data for Evaluation
	E.2.4 Activity III - ALMA-based Selection of Evolution Scenarios
	E.2.5 Step IV - Selection of Participants for Experimental Feedback

	E.3 Evolution Scenarios for Pattern Discovery
	E.3.1 User Interfaces for Architecture Evolution Prototype

	E.4 Questionnaire for Participant's Feedback
	E.5 Part I - Suitability of Change Log Graph
	E.5.1 Instructions for the Participants
	E.5.2 Questions to the Participants

	E.6 Part II - Accuracy and Efficiency of Log Graph
	E.6.1 Instructions for the Participants'
	E.6.2 Questions to the Participants
	E.6.3 Filled By Coordinator

	E.7 Efficiency and Reusability of Architecture Evolution
	E.7.1 Instructions for the Participants
	E.7.2 Questions to the Participants

