
IMPLEMENTING VON NEUMANN’S

ARCHITECTURE FOR MACHINE SELF

REPRODUCTION WITHIN THE TIERRA

ARTIFICIAL LIFE PLATFORM TO

INVESTIGATE EVOLVABLE

GENOTYPE-PHENOTYPE MAPPINGS

Declan Baugh, M.Eng. B.Sc.
School of Electronic Engineering, Dublin City University

Supervisor: Prof. Barry McMullin

A thesis submitted for the degree of Ph.D.

July 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Ph.D., is entirely my own work, and that I have

exercised reasonable care to ensure that the work is original, and does not to the best

of my knowledge breach any law of copyright, and has not been taken from the work of

others save and to the extent that such work has been cited and acknowledged within

the text of my work.

Signed: (Candidate), ID No.: 53605574, Date:

i

Dedication

All of my work is dedicated to Trevor - who inspires, supports, and
protects.

ii

Acknowledgements

I would like to express my special appreciation and thanks to my supervisor Prof.

Barry McMullin; you have been a tremendous mentor for me. I would like to thank

you for directing and encouraging my research over the years. For all the long meetings

delivering advice and guidance as well as the countless hours correcting and honing my

academic writing skills. Your support over the past years has been invaluable and I

sincerely appreciate the effort that you invested in me. I would also like to thank my

colleague, Dr. Tomonori Hasegawa for his assistance and companionship over the years

as we battled this Ph.D. together.

I would also like to express my sincere gratitude to Dr. Tim Taylor and Dr. Alistair

Sutherland for assuming the task of reading my thesis and sitting as my external and

internal examiners, and Dr. Darragh O’Brien for sitting as my examiner for my transfer

report.

I wish to thank the Tierra developers, mainly Thomas S. Ray, without whom this

thesis would have never been, the European Complexity Network (Complexity-NET)

through the Irish Research Council for Science and Technology (IRCSET) under the

collaborative project EvoSym for granting the funding for this Ph.D., and our part-

ner labs, the Artificial Intelligence Laboratory - Vrije Universiteit Brussel, and the

Bioinformatics Group - Universiteit Utrecht for their collaboration.

Finally I would like to say a special thanks to my family, friends and girlfriend

Catherine. Words cannot express how grateful I am to my Mother, for all of the

sacrifices that you’ve made on my behalf; I am forever grateful.

iii

Contents

Contents

1 Introduction 1

1.1 Chapter Overview . 2

1.2 What is Life? . 3

1.2.1 Fundamental Properties of Life 3

1.2.2 Hierarchy of Living Properties 4

1.3 Project EvoSym: Emergence and Evolution of Biological Systems 8

1.3.1 Introduction . 8

1.3.2 Project Collaboration and Affiliation 9

1.3.3 Project EvoSym Synopsis . 9

1.3.4 Work Package 2: Elaboration and Thesis Question 11

1.3.5 Thesis Contribution . 13

1.4 Thesis Overview . 15

2 Developments in Artificial Life 17

2.1 Chapter Overview . 18

2.2 An Introduction to the Theory of Evolutionary Dynamics 18

2.3 Biological Synthesis of Evolutionary Dynamics 19

2.4 Computational Synthesis of Evolutionary Dynamics 19

2.4.1 Von Neumann’s Kinematic Model 19

2.4.2 Cellular Automata . 20

2.4.3 Genetic Algorithms & Genetic Programming 23

2.4.4 Computer Viruses and Core Worlds 25

2.4.5 Tierra . 27

2.4.6 Avida . 29

2.4.7 Conclusion . 31

3 Von Neumann’s Architecture 33

3.1 Chapter Overview . 34

3.2 Von Neumann’s Problem: The Evolutionary Growth of Machine Com-

plexity . 34

3.3 Von Neumann’s Solution: The Von Neumann Architecture For Machine

Self Reproduction. 35

3.4 Interpretations of von Neumann’s design 37

3.5 Conclusion . 39

4 Tierra: A Platform For Artificial Life 41

4.1 Chapter Overview . 42

4.2 The Tierra 6.02 Virtual Computer . 42

4.2.1 The Default Instruction Set . 43

4.2.2 Self Reproduction by Self Inspection (Self Copiers) 45

4.2.3 Darwinian Operating System . 46

4.2.4 Conclusion . 50

5 Implementation of von Neumann’s Architecture Within Tierra 51

5.1 Chapter Overview . 52

5.2 Implementation of von Neumann’s Architecture for Machine Self Repro-

duction Within The Tierra Platform . 52

5.2.1 Implementation of a mutable genotype-phenotype mapping

within Tierra . 52

5.2.2 The Instruction Set . 53

5.2.3 The von Neumann Ancestor Structure in Tierra 55

5.2.4 Conclusion . 56

6 Experimental Procedure, Results and Discussions 57

6.1 Chapter Overview . 58

6.2 Experimental Procedure, Results and Discussions I 58

6.2.1 Classifications of Emergent Behaviour 60

6.2.2 Degeneration to Self Copying . 62

6.2.3 Pathological Construction . 64

6.2.4 The Emergence of Pathological Constructors from Self Copiers . 67

6.2.5 Discussion . 68

6.3 Experimental Procedure, Results and Discussions II 71

6.3.1 Modifications to the Tierra source code and configuration file . . 71

6.3.2 Redesigning the von Neumann ancestor and introducing redun-

dancy; vn lut64 316 . 73

6.3.3 Experimental Procedure . 73

6.3.4 Results . 75

6.3.5 Discussion . 76

6.4 Experimental Procedure, Results and Discussions III 81

6.4.1 Alternative Implementation of the Genotype-Phenotype Mapping 81

6.4.2 Comparing and Contrasting the Different Mapping Implementa-

tions . 81

6.4.3 The Structure of the Translation Table. 83

6.4.4 The Redesigned Ancestor, vn tt128 758 83

6.4.5 Investigation of Loss or Introduction of Symbol Mappings 86

6.4.6 Investigating a Change in Mapping, Without the Loss or Addi-

tion of Symbol Mappings . 95

6.4.7 Discussions . 103

6.5 Conclusion . 104

7 Conclusions and Future Work 106

7.1 Revisiting the Original Research Question 107

7.2 Thesis Summary . 107

7.3 Experimental Results Overview . 108

7.4 Future Work . 110

7.4.1 Development of Tierra . 110

7.4.2 Investigation of Alternative Mappings 111

7.4.3 Spontaneous Emergence of a Genotype-Phenotype Mapping . . . 112

7.5 Closing Statement . 114

Bibliography 115

Appendix A Creature Design 122

A.1 vn lut32 344 Code . 122

A.2 vn lut32 311 Code . 129

A.3 vn lut32 413 Code . 135

A.4 vn lut64 316 Code . 143

A.5 vn tt128 758 Code . 149

A.6 0035aaa Code . 163

A.7 0669aaa Code . 164

Appendix B Opcode Map Files 176

B.1 vn lut32 344 opcode.map . 177

B.2 vn lut32 311 opcode.map . 178

B.3 vn lut64 316 opcode.map . 179

B.4 vn tt128 758 opcode.map . 180

Appendix C Soup in Files 183

C.1 vn lut32 344 soup in . 183

C.2 vn lut32 311 soup in . 186

C.3 vn lut64 316 soup in . 188

C.4 vn tt128 758 soup in . 190

Appendix D Tierra Source Code Revisions 192

D.1 Tierra 6.02 update file . 192

Appendix E Python Analysing Tools 213

E.1 Compare Population Sizes . 213

E.2 Count Employed Symbols . 215

E.3 Count Employed Symbols II . 217

E.4 Average Employed vs. Non Employed Symbol Count 219

E.5 Creature Population Graph I . 221

E.6 Creature Population Graph II . 223

E.7 Employed Symbol Graph . 225

E.8 Increase In Employed Symbols . 228

E.9 Average Employed Symbol Count . 230

E.10 Lineage Tracer . 232

E.11 Change in Look-Up Table . 233

E.12 Translation Table Counter . 235

Abstract

John von Neumann first presented his theory of machine self reproduction in the

late 1940’s in which he described a machine capable of performing the logical steps

necessary to accommodate self reproduction, and provided an explanation in princi-

ple for how arbitrarily complex machines can construct other (offspring) machines of

equal or even greater complexity. In this thesis, a machine having the von Neumann

architecture for self reproduction is designed to operate within the computational world

of Tierra. This design implements a (mutable) genotype-phenotype mapping during

reproduction, and acts as an exploratory model to observe the phenomena which may

arise with such a system. A substitution mapping was chosen to carry out the genotype-

phenotype mapping, and two specific implementations of a substitution mapping were

investigated, via the use of a look-up table and a translation table. During imple-

mentation of the look-up table, preliminary experiments showed a degeneration to self

copiers where a lineage of von Neumann style self reproducers degenerated into self

copiers. Further experiments showed that a particular phenomenon emerges, where

pathological constructors quickly develop, which can ultimately lead to total ecosys-

tem collapse. If redundancy is introduced to the genotype-phenotype mapping, certain

inheritable perturbations (mutations) prove to be non-reversible via a change to the

genotype, which leads to a bias in the evolution of the genotype-phenotype mapping,

consistently resulting in the loss of any target symbols from the mapping which are

not vital for reproduction. It demonstrated how instances of Lamarkian inheritance

may occur, which allowed these genetically “non-reversible” perturbations to be re-

versed, but only when accompanied by a very specific perturbation to the phenotype.

The underlying dynamics of the chosen coding system was studied in order to better

understand why these phenomena occur. When implementing a translation table, the

space of possible mutations to the genotype-phenotype mapping was investigated and

the same phenomena observed, where non vital symbols were lost from the mapping,

and an instance of Lamarkian inheritance is necessary in order to introduce symbols to

the mapping.

Chapter 1

Introduction

1

1.1 Chapter Overview

The story of life, from its origin on Earth approximately 3.5 billion years ago to the

extremely complex living systems that we see today is a still under much investigation.

The field of Artificial life aims to study the logic of living systems in artificial environ-

ments in order to gain a deeper understanding of the complex information processing

that defines such systems.

To quote Christopher Langton “The aim of artificial life research is to study life-

as-it-could-be, in order to advance our understanding of life-as-we-know-it” (Langton,

1989). However, it is difficult to have any preconceptions what form life might take in

the digital medium.

In order to design artificial life systems which accurately emulate the properties of

living systems, it is important that we first develop a thorough understanding of the

fundamental properties which define systems which have proven to support evolution

in the carbon based medium, and explore if they can provide us with the foundations

to realize complex evolution in silico.

This chapter discusses the fundamental properties of life which must be understood

before attempting to recreate artificial life, in silico. Project EvoSym is introduced,

which was a collaborative project between the Dublin City University Artificial Life

group, the Bioinformmatics group of Utrecht, and the Artificial Intelligence Labora-

tory at Vrije University Brussels, whose aim was to investigate different aspects of the

evolution and emergence of biological symbol systems in different fields of artificial life.

The contributions that this thesis made towards Project Evosym are listed.

2

1.2 What is Life?

1.2.1 Fundamental Properties of Life

Some of the earliest theories of life were materialist, holding that all that exists is mat-

ter, and that life appears to be a property of the organisation of matter, not a property

inherent to the fundamental components which comprise lifeforms themselves. Basic

components which carbon based life forms are comprised of, such as amino acids, nu-

cleotides, proteins etc., are not categorised as living organisms, but when these basic

components are organised in the correct manner, emergent properties develop, which

are characterised as life. Emergent properties are global behavioural patterns which

arise from complex systems as a result of fundamental, local interactions between the

basic underlying components. The emergent properties of life are the result of systems

of chemical components, where the complexity of their global behaviours are qualita-

tively distinct from the complexity of all their local behaviours. Living systems do not

obey any simple principle of superposition, so it is difficult to examine these emergent

properties by axiomatizing the system and studying the individual parts in isolation.

The principal feature of an emergent system is that its properties are a result of the

complex interaction between its lower level components, and these properties may cease

to exist if the system is de-constructed in order to be examined.

Rather then studying the components in isolation, we can compare and contrast

the most primitive examples of life as we know it, and classify the primary behaviours

which are common across all forms of such carbon based life forms. The fundamental

properties which a system must incorporate in order to be classified as a genuine form

of life has been subject to much debate. There is currently no universally accepted

definition of the properties which a system must possess in order to be considered

living.

An early attempt to gather together several strands of scientific research and ques-

tion “what is life”, and “how can the events in space and time which take place within

the spatial boundary of a living organism be accounted for by physics and chemistry?”

was put forth by Erwin Schrödinger (1944). According to Benner (2010), a discussion

in 1994 by The National Aeronautics and Space Administration (NASA), following a

suggestion by astrophysicist Carl Sagan, proposed that life is a “self-sustaining chemical

system capable of Darwinian evolution.” (Joyce et al., 1994). However, the “NASA def-

inition” only illustrates a definition of life-as-we-know-it, as it excludes any conceivable

non-chemical system which may also fit the description of life. The field of artificial

life investigates life-as-it-could-be, which includes the possibility of electro-chemical

systems or digital systems which may support life.

When attempting to realize the limits of artificial life, which takes into account any

conceivable form of life, not just the carbon based life as we know it, Claus Emmeche

(1992) put forward the following list.

3

• Life is not medium-independent, but shows an interdependence of

form and matter.

• Life may be realized in other media than the carbon-chain dominated

as a result of a long, natural evolutionary process.

• Artificial life research may contribute to theoretical biology by: sim-

ulating developmental and evolutionary phenomena of life on Earth,

simulating life as it could have evolved in non-earthly environments

given some set of realistic boundary conditions, providing new con-

cepts and models of emergent phenomena belonging to a general set of

complex systems of which biological systems (under particular kinds

of descriptions) may be a subset.

• Artificial life may inspire attempts to realize life artificially in other

media by in vitro experiments. Such prospects include the experimen-

tal approach of molecular biology and protobiology research. However,

this is not yet the centre of interest in the present artificial life research

programme.

There is no however, no universally accepted, single property that can be used to

perfectly characterise life. Any single property that might be assigned to life will either

be too broad in that it also characterises many non-living systems, or too specific, so

that there will exist biological systems, which are already categorised as living, but

will not satisfy the single proposed property. Instead, a formal definition of life might

constitute a list of specific criteria which describes all living systems, and excludes all

systems which are not considered to be living. An attempt to define life was proposed

by Farmer and A Belin which consisted of a set of eight essential, fundamental criteria

which bear on the nature of life as we know it (Farmer & Belin, 1991). Their proposed

list of properties that they associate with life is as shown in Figure 1.1.

1.2.2 Hierarchy of Living Properties

The aforementioned list of properties is referred to by many artificial life researchers

as an accepted definition of life e.g, (Heudin, 1995), however, from the point of view

of designing an artificial life system which characterises life-like behaviours, it may

not be completely satisfactory. This set of criteria does not accurately categorise the

essential, fundamental criteria which bear on the nature of life, as it does not highlight

the relative level of complexity of each criterion, which is an important aspect to take

into consideration when designing systems which attempt to simulate the properties of

life. In order to accurately define a framework to support life, it is more informative

to construct a level-based hierarchy which consists of multiple levels of organisations,

having dynamics within and between the members depicted at each level of hierarchy.

The members (properties) are organised into levels and each level is a list. A chief

4

1. Life is a pattern in space-time, rather than a specific material object.
For example, most of our cells are replaced many times during our lifetime.
It is the pattern and set of relationships that are important, rather than
the specific identity of the atoms.

2. Self reproduction, if not in the organism itself, at least in some related
organism. (e.g. mules are alive, but cannot reproduce.)

3. Information storage of a self-representation. For example, contempo-
rary natural organisms store a description of themselves in DNA molecules,
which is interpreted in the context of the protein/RNA machinery.

4. A metabolism which converts matter and energy from the environment
into the pattern and activities of the organism. Note that some organisms,
such as viruses, do not have a metabolism of their own, but make use of the
metabolisms of other organisms.

5. Functional interactions with the environment. A living organism can
respond to or anticipate changes in its environment. Organisms create and
control their own local (internal) environment.

6. Interdependence of parts. The components of living systems depend on
one another to preserve the identity of the organism. One manifestation of
this is the ability to die. If we break a rock in two, we are left with two
smaller rocks; if we break an organism in two, we often kill it.

7. Stability under perturbations and insensitivity to small changes, allow-
ing the organism to preserve its form and continue to function in a noisy
environment.

8. The ability to evolve. This is not a property of an individual organism,
but rather of its lineage.

Figure 1.1: Proposed fundamental criteria which bear on the nature of life as we know
it. (Farmer & Belin, 1991, verbatim quotation, p. 4)

5

Level 0. Life is a pattern in space-time & functional interactions with the
environment.

Level 1. Stability under perturbations.

Level 2. Interdependence of parts.

Level 3. Information storage of a self-representation & a metabolism.

Level 4. Self reproduction.

Level 5. The ability to support inheritable variation.

Figure 1.2: A proposed hierarchy which displays the relative levels of complexity of
each fundamental property of life.

aspect of this concept is the fact that the different members at each level have different

functionalities that emerge from the interactions from entities of the same, and lower-

levels, therefore, I propose a specific hierarchy which is displayed in Figure 1.2. This

level based hierarchy was developed based on the relative level of complexity of each

fundamental property, with the least complex fundamental property on the bottom

level. The properties of each level must be a result of the emergent properties of the

levels below, while also capable of existing independently of the properties of the levels

above.

Although the number of properties described by Farmer and Belin was initially

8, this has been reduced here to 6 levels, where certain properties are considered as

sharing the same level of hierarchy.

Life is a Pattern in Space Time & Functional Interactions with the Envi-

ronment

These are not criteria specifically for life, but the fundamental criteria for the universe

in which life resides.

In order for matter as we know it to exist, firstly it must reside within space and

time, and secondly, there must be fundamental laws of this universe which determine the

behaviour of matter within space and time. In our physical universe, these interactions

are expressed by the laws of physics and chemistry. Within computational systems,

before a system is even inoculated with a digital presence, the system must contain

memory, which allows patterns to be stored in space time, and a set of rules which

specify the functional interactions between the patterns.

Stability Under Perturbations

The fundamental components of life must possess some appropriate degree of stability

in order for life to preserve its form in dynamic environments. They must consist of

6

stable components, robust enough that they are capable of holding form when external

forces are acting upon them, such as interactions with other entities within the system.

In biological systems, this might correspond to the emergence of macromolecules, very

large stable molecules typically composed as a polymerization of smaller subunits. Bi-

ologically important macromolecules include nucleic acids, proteins, carbohydrates and

lipids, which are relatively insoluble in water and similar solvents.

Interdependence of Parts

It has already been discussed that life appears to be a property of the organisation of

matter, and not a property inherent to the fundamental components which comprise a

life form itself. Therefore, living systems such as cells are an organisation of interde-

pendent parts, such as macromolecules, and if one component is removed the system

may fail. Individual components cannot constitute life on their own, but a life-form as

a whole may fail to function if one or more of its fundamental components is removed.

Information Storage of a Self Representation & Metabolism

Information storage must exist at a less fundamental level than the interdependence

of parts, as stored information must be interpreted by a separate component which

decodes and constructs the described entity. Similarly, a metabolism could not exist

without the interdependence of parts, as it must convert energy and matter in the

environment into the individual arrangement and activities of the organism.

There are two main schools of thought in how the origin of life unfolded, genes-first

or metabolism-first. The genes-first hypotheses postulate that the early emergence of

nucleic acids (an information storage) gave rise to biochemical reactions (a metabolism).

The metabolism-first hypotheses postulates that metabolism arose which gave rise

to nucleic acids. However, we are not specifically focusing here on the origin of life,

but the criteria for life, as it exists today. As the metabolism’s function is to build,

repair and guide the activity of matter within an organism, it must in general receive

its instructions to do so via some form of information storage. Similarly, a storage

of information must be initially organised from inorganic matter by a metabolism.

Therefore in order for life as we know it to continue existing, there must be a co-

dependence between the metabolism and information storage.

Self reproduction

Self reproduction relies on a metabolism, which exploits energy and organic matter

from the environment, and arranges this matter in a form that replicates the relevant

structure and behaviour of the parent. It may be argued that for simple organisms, in

order to self reproduce the metabolism can simply self inspect the parent’s arrangement,

and construct the offspring to the same specifications, without the use of information

storage of a self-representation. However, self reproduction cannot exist without a

7

metabolism, which in turn, is co-dependent on an information storage, so self repro-

duction should arguably be positioned a level of hierarchy higher than both metabolism

and information storage.

The Ability to Support Inheritable Variation

The ability to support heritable variation is the final fundamental behavioural criterion

which is stated as being common to all forms of life as we know it. Self reproduction is

an essential criterion for Darwinian evolution, so this would suggest that the ability to

evolve should be depicted as the highest hierarchical level, as it is an emergent property

of the complete system of lower-level interactions.

However, a single organism in isolation cannot be subject to evolution by natural

selection. Natural selection requires several interacting lineages of different instances of

life. With this in mind, Farmer and Belin’s exact wording of the criterion “the ability

to evolve” may lead to some confusion.

In order for evolution to occur, instances of life must exist already, and the in-

teractions between these life forms are what drives evolution by natural selection. If

primitive life did not possess the ability to evolve and adapt to its surroundings, then

as the environment changed in such a way that the rate of reproduction could no longer

keep pace with the mortality rate, the population would have fallen to extinction.

The Earth’s biosphere is a highly non-quiescent environment, therefore, one may

state that “the ability to evolve, is a fundamental property of life on Earth”. However,

Darwinian evolution itself could not have emerged had a primitive instance of life not

already existed. Therefore, one may also state that “the ability to evolve is an emergent

property of life on Earth”. These two statements contradict each other and may lead

to confusion, as the ability to evolve cannot be both a fundamental property, and an

emergent property. Therefore, “the ability to evolve” seems too vague a statement

to use. The ability to support inheritable variation is a much more suitable criterion

to define a single, primordial expression of life and less open to interpretation. With

this new criterion, we can say that incorporating the ability to support inheritable

variations is the final fundamental behavioural criterion which is common to all forms

of life as we know it.The ability to evolve is simply an emergent property, which arises

when selection occurs within an ecosystem, but not a fundamental property of a single

instance of life.

1.3 Project EvoSym: Emergence and Evolution of Bio-

logical Systems

1.3.1 Introduction

Of the suggested criteria which bear on the nature of life that were discussed, the

use of information storage as a self representation is a specific criterion which will

8

be the focus of this thesis. In order for information to be stored within a biological

system, specific mechanisms must be in place which can store a pattern of tokens or

symbols and interpret these symbols as information. This information in turn can be

used as instructions to construct further biological systems. Project EvoSym was a

collaborative project set up to investigate the emergence and evolution of examples of

such systems, in which the Artificial Life group in DCU participated.

1.3.2 Project Collaboration and Affiliation

The Rince Institute, based in the Faculty of Engineering and Computing at Dublin

City University, is an Irish national research centre focussed on innovation in engi-

neering technologies. The DCU Artificial Life Group, within Rince1, collaborated with

partners in the Bioinformatics group of Utrecht University (The Netherlands), and

the Artificial Intelligence Laboratory at Vrije University Brussels (Belgium), to carry

out the EvoSym project2 between October 2010 and September 2013. The partners

combined inter-disciplinary expertise in biological evolution, language evolution, com-

putation and robotics to enable a collaboration where specific relevant systems could

be studied simultaneously, and important general principles could be extracted.

This project was funded locally by the Irish Research Council3, under the

Complexity-Net4 funding scheme (European Network for the Coordination of Com-

plexity Research and Training).

1.3.3 Project EvoSym Synopsis

Out of the previously discussed list of criteria which bear on the nature of life as we know

it, this project most closely focused on understanding a specific aspect, “information

storage as a self representation”. This criterion requires the emergence and evolution

of symbolism, where a sequence of symbols are read and interpreted as information.

Symbols play an extensive role in biological organisation on the micro and macro

level, such as genetic coding, RNA and protein modification, cell signalling, epigenetics,

gene regulation etc. The aim of the EvoSym project as a whole was to investigate the

conditions for the emergence and evolution of such biosemiotic systems, and investigate

potential technological applications of this understanding in robotics and distributed

agent-based software. In summary, the two core questions which were addressed in the

initial project proposal, were as follows (McMullin, 2010):

• How do complex representational and communicative coding systems emerge,

self-organise and evolve, from micro to macro level in the natural biosphere?

1http://www.rince.ie
2http://evosym.rince.ie
3http://research.ie
4http://www.complexitynet.eu

9

• How can this biological understanding be applied to the artificial evolution of

complex coding systems in computational and/or robotic systems?

The investigation of these questions was structured into three distinct, but comple-

mentary and inter-related Work Packages (WP), with each partner leading one package.

These work packages will be briefly summarised here.

WP1: Evolutionary Emergence of Codes and the Role of Coding in the

Evolution of Complex Biotic Systems (Universiteit Utrecht) A fundamental

characteristic, shared by of all living systems on Earth, is that the responsibility of

the storage of genetic information is exclusively dedicated to DNA, while proteins are

responsible for catalytic behaviour. However, the RNA world hypothesis, first proposed

by Gilbert (1986), posits that at earlier stages of evolution, the roles of both information

storage and catalytic function were undertaken by RNA alone.

Throughout the natural progression of life on Earth, life has undergone major tran-

sitions in evolution, including the transition from asexual clones to sexual populations,

the transition from prokaryotic cells to eukaryotes, and the transition from an RNA

world to a DNA-RNA-protein world (Maynard Smith & Szathmáry, 1995). It has

been argued by De Beule (2011) that “The crucial factor that determines whether an

ecosystem will make a transition will be the capacity of the organisms to communicate.

Only after having established a shared convention of code will the ecosystem undergo

a transition.”

This suggests that transitions in evolution which result in an increased level of

complexity were accompanied by an increased level of symbolism or communication.

The transition from an RNA world to a DNA-RNA-protein world must have been

facilitated by the emergence of an accompanied coding system. It is well documented

that an RNA system suffers from a severe limitation with respect to the amount of

information which can be preserved accurately under a Darwinian replication-mutation

selection regime, given the high mutation rates during early evolution (Eigen, 1971;

McMullin, 2010). WP1 investigated whether the emergence of a shared coding system

could help alleviate the problem of this information threshold in a prebiotic RNA world

(Takeuchi et al., 2011).

WP2: Evolutionary Emergence of Codes and the Role of Coding in The Evo-

lution of Complex Mobile Software Agent Systems (Dublin City University)

As with WP1, this work package dealt with the emergence and evolution of abstract

coding systems, however, specifically within computational environments. The prob-

lem originates from John von Neumann’s work from 1948 - 1952 (Von Neumann, 1948),

where he demonstrated how a machine architecture (real or virtual) which incorporates

a division of labour between information storage (genotype), and catalytic behaviour

(phenotype) satisfies some of the conditions for open ended evolutionary growth of com-

plexity. This division of labour must be facilitated by an abstract genotype-phenotype

10

mapping, analogous to the translation of DNA to complex organic forms in biological,

genetic reproduction.

It has been argued that evolutionary platforms such as Tierra (Ray, 1991) have

demonstrated the evolutionary growth of complexity of digital automata (Ray, 1994).

However, reproduction is conventionally implemented purely by self inspection (self

copiers), somewhat analogous to the template-replication mechanism of the RNA world.

This work package focused on implementing conditions in which von Neumann style

reproduction may emerge and evolve in such computational worlds. Furthermore, it

investigated what distinctive evolutionary phenomena may emerge within the genotype

space when an evolvable genotype-phenotype mapping is implemented.

WP3: Using Principles and Insights from Evolutionary Linguistics to Un-

derstand the Evolutionary Emergence of Codes and the Role of Coding

in the Evolution of Complexity (Vrije Universiteit Brussels) The main goal

of WP3, was to investigate the generic mechanism for the emergence and evolution of

complex multi-levelled codes, such as natural language. The mechanisms which compo-

sitional and grammatical languages are built upon are not fully understood. This work

package aimed to develop new tools and techniques for both analysing and synthesizing

such multi-levelled linguistic systems (De Beule, 2011).

1.3.4 Work Package 2: Elaboration and Thesis Question

The aim of this thesis is to investigate a subset of the questions proposed by Work

Package 2. Within the natural biosphere, it is clear that biological organisms possess

the ability to produce offspring of equal or higher complexity than themselves through

the process of sexual or asexual reproduction. When observing the evolutionary growth

of complexity of biological organisms from primitive replicating molecules which pre-

sumably existed following the origin of life on Earth, to the highly complex organisms

that exist today, it is clear that biological organisms not only possess the ability to

produce offspring of greater complexity than themselves, but this procedure must have

occurred repeatedly and consistently throughout the duration of life on Earth.

If one was to assume that biological organisms could be categorised as extremely

complex, organic machines, which abide by the same fundamental laws of physics as

any machine which we can engineer today, then this poses the question, how can we

artificially engineer machines which also possess the ability to produce offspring of equal

or greater complexity than themselves?

There appears to be an inconsistency between biologically engineered, and humanly

engineered machines, as humanly engineered machines typically produce machines of

less complexity then themselves, while occasionally biologically engineered machines

can produce offspring of greater complexity than themselves through mutation and

evolution.

11

In order to investigate this problem, von Neumann envisaged a machine architecture

which not only satisfied the conditions to maintain complexity under reproduction, but

also allowed for increasing complexity (Von Neumann & Burks, 1966, pp. 82-87)[.

This machine architecture consisted of two main components, a passive and an active

component. The passive component is responsible for the storage of genetic information

by containing an encoded description of the active component, analogous to a genotype,

or a DNA sequence in biological organisms. The active component is responsible for all

functional activity of the machine, analogous to a phenotype in biological organisms5.

The phenotype of von Neumann’s machine was further divided into four interrelated

sub-components which cooperate to facilitate self reproduction: a general constructor,

a copier, a control unit, and an additional, relatively arbitrary “ancillary machinery”.

Firstly, the control unit activates the general constructor which can inspect and decode

an arbitrary genotype in order to construct an offspring phenotype. Upon construction

of the offspring phenotype, the control unit deactivates the general constructor, and

activates the copier. The copier inspects and duplicates the genotype (analogous to

template-directed DNA polymerase in biological organisms) and attaches the duplicate

genotype to the offspring phenotype. The ancillary machinery represents all other arbi-

trary functional activities of the machine. If the genotype which is copied and decoded

contains a self description of the machine itself, then this process will result in self re-

production and the offspring machine will be an exact replica of the parent, assuming

no errors occurred in the offspring’s construction. However, errors or perturbations

may indeed occur during the process of copying the genotype from parent to offspring.

5Although von Neumann never actually referred to the passive and active components as a genotype
and phenotype, they serve the same purpose as the genotype and phenotype in biological terminology.
Hence, we will refer to them as such from here forth.

12

This will result in an offspring whose genotype does not describe its phenotype

exactly, but describes a new arbitrary phenotype which may be of less, equal, or greater

complexity than the parent.

Furthermore, as the genotype includes the description of the entire phenotype, the

mechanism in which the general constructor decodes a genotype is also encoded within

the genotype. Should an error occur during reproduction which alters the description

of the mechanism in which the general constructor decodes a genotype, this would

potentially result in a change in the genotype-phenotype mapping of any offspring

constructed from this altered description, analogous to a change in the genetic code of

biological organisms.

As the emergence and evolution of symbolism appears to play a crucial role in

the evolutionary growth of complexity, von Neumann’s architecture seems to be a

possible mechanism in which this phenomenon can be modelled and studied. The aim

of this thesis is to implement von Neumann’s architecture for machine self reproduction

within a specific, currently existing, artificial life platform (Tierra); observe how such

a mutable coding system might evolve; and investigate what effects this may have on

the subsequent evolutionary dynamics of the system.

1.3.5 Thesis Contribution

The emergence and evolution of biological symbol systems appears to coincide with

increasing levels of complexity in many biological systems. This thesis focuses on

investigating evolvable symbol systems in which the utilised coding system is subject

to inheritable variation. Such a system is developed and implemented where a class

of artificial reproducing automaton are programmed with an initial “language” where

distinct symbols are interpreted as specific distinct instructions or information. The

specific architecture of this class of automaton allows for heritable variation so that the

interpretation of these symbols are subject to change through evolution. This results

in a mutable language or coding system, analogous to an evolvable symbol system in

biology. The implementation of such a system within an Artificial Life platform leads

to specific findings and publications which are documented in this thesis.

Firstly, when implementing automata which differentiated between the active cat-

alytic component and the passive information storage, a phenomenon was observed

where so called pathological constructors emerged.

13

These pathological constructors are automata which exploit specific anomalies in

the Tierra artificial life platform to construct multiple short, malfunctioning automata

which quickly exploit all available resources and drive all other automata in the neigh-

bourhood to extinction. These findings were presented in the following publications:

1. Baugh, Declan & McMullin, Barry (2012), The Emergence of Pathologi-

cal Constructors when Implementing the Von Neumann Architecture within

Tierra. In: Proceedings of the European Conference on Complex Systems

2012 (ECCS).

2. Baugh, Declan & McMullin, Barry. (2012), The Emergence of Patho-

logical Constructors when Implementing the Von Neumann Architecture for

Self Reproduction in Tierra. In: From Animals to Animats, 12th Interna-

tional Conference on the Simulation on Adaptive Behaviour (SAB).

3. Baugh, Declan & McMullin, Barry (2012), The Emergence of Pathologi-

cal Constructors when Implementing the Von Neumann Architecture within

Tierra. In: Proceedings of the Frontiers of Natural Computing Workshop,

University of York (NCFrontiers).

Further investigation was carried out where space for redundancy was introduced

to the symbol system mapping. This class of automaton had an alphabet of symbols

which comprised the genotype, which were mapped onto an alphabet of symbols which

comprised the phenotype. However, approximately 75% of the phenotypic alphabet

was not required for reproduction and so these symbols were “unused”. The mutable

mapping system created a “mutational ratcheting effect”, where non-reversible varia-

tion occurred, so when an automaton “lost” a symbol mapping which was imperative

to its survival, it did not give rise to functional offspring and the variation was not

carried out to future generations. If a symbol mapping which was not imperative to

survival was lost, the lineage would progress. However, as this variation proved to

be non-reversible, there was a bias towards the entire population losing every symbol

mapping which mapped a symbol to an unused instruction. This bias was not due

to Darwinian selection, but due to the underlying physical dynamics of the mapping

system where specific mutations were not directly (genotypically) reversible. Even-

tually, only instructions necessary for reproduction were implemented in the symbol

system. Furthermore, in order to reintroduce a lost mapping to the symbol system, an

instance of Lamarkian inheritance must occur. Specifically, a phenotypic perturbation

must occur which affects the automaton’s ability to decode the genotype, resulting in

a phenotypic change inherited by its offspring without any change to the genotype.

14

This work was been published and orally presented with following publications:

5. Baugh, Declan & McMullin, Barry (2013), Evolution of G-P Mapping in

a Von Neumann Self reproducer Within Tierra. In: Advances in Artificial

Life, European Conference of Artificial Life (ECAL).

6. Baugh, Declan & McMullin, Barry (2013), Evolution of Genotype-

Phenotype Mapping of Von Neumann style Self reproduction within the Plat-

form of Tierra. In: European Conference on Complex Systems (ECCS).

Further work included a new class of automaton that implemented a different mech-

anism to achieve a symbol mapping system. This mapping system was more complex

and required vastly more computer resources in order to achieve self reproduction,

therefore, it was infeasible to achieve a large data set of results through the conven-

tional means with the available resources. For this set of experiments, the architecture

was analysed and all possible variations were manually inspected and documented in

order to determine the range of possible phenomena which may occur using this alter-

native mapping system. Although a different mapping system was implemented, the

same mutational ratcheting effect caused by non-reversible variation was also appar-

ent with these results, which were a direct result of implementing a mutable mapping

system.

1.4 Thesis Overview

The aim of this thesis was to investigate the evolution of a genotype-phenotype mapping

of von Neumann style self reproducers within the artificial life platform of Tierra.

Previous work has been carried out in the investigation of agents which implement

a mutable genotype-phenotype mapping, however, much of this work appears to fo-

cus on symbol systems which are not designed to investigate reproduction, but for

the investigation of social communication in robotics such as swarm theory (Lukas &

Schmeck, 2009). Other research which deals with symbol systems responsible for re-

production, take a “top down” approach, which examine the emergent properties of

genotype-phenotype mappings, and attempt to understand the underlying mechanics

responsible for these emergent properties (Altenberg, 1995).

The aim of artificial life is to take a “bottom up” approach in which the fundamental

logical formalism of a biological system is simulated in a computational model in order

to observe and study the emergent properties which arise. This was accomplished via

the implementation of the von Neumann architecture for machine self reproduction

within the artificial life platform of Tierra.

Chapter 2 summarises a brief history of the developments and research in the field

of Artificial Life, which brings us up to date with the current advancements in the field

15

which eventually lead to the evolutionary platform of Tierra with which the evolution-

ary experiments were performed for this thesis. Chapter 3 describes the von Neumann

architecture for machine self reproduction and the logical formalism to how a self repro-

ducer with a mutable genotype-phenotype mapping may be designed. The artificial life

platform of Tierra, and how a von Neumann style ancestor may be implemented within

Tierra is described in detail in Chapter 4 and Chapter 5 respectively. The experimental

procedures and results are documented in Chapter 6. Within this chapter, two separate

implementations of a genotype-phenotype mapping are experimented with, and both

sets of experiments are analysed and compared. Finally Chapter 7 provides a summary

of entire the thesis and highlights the major findings, and potential the future work

which builds on the findings of this thesis.

16

Chapter 2

Developments in Artificial Life

17

2.1 Chapter Overview

The previous chapter argued that the emergence and evolution of symbol systems

appears to play a profound role in the evolution of biological systems. This chapter

briefly discusses the advances and developments in Artificial Life, from Darwin’s theory

of evolution by natural selection, to operating systems capable of evolving digital agents.

These developments have supplied us with platforms, allowing us to test theories in

silico, and provide proof-of-principle examples of evolving symbol systems in order to

further study this phenomenon.

2.2 An Introduction to the Theory of Evolutionary Dy-

namics

When Charles Darwin published On The Origin Of Species (1859), he provided a

beautifully simple, yet elegant mechanism to explain the origins and maintenance of

the large diversity of species which exist on Earth. Gregor Mendel’s extensive work

with the selective breeding of pea plants between 1856 and 1863 demonstrated that

the inheritance of certain traits follow particular patterns, which formed the founda-

tion of the modern science of genetics. However, there existed a gap in our knowledge

of evolutionary theory until Julian Huxley et al, published “Evolution: The Modern

Synthesis” (1942). The modern evolutionary synthesis bridged the gap between Dar-

winian selection and Mendelian genetics, and reflects the current consensus among the

scientific community. The modern synthesis states that all evolutionary phenomena

can be explained in a way which is consistent with known genetic mechanisms. Natural

selection is the fundamental mechanism which drives Darwinian evolution, where incre-

mental improvements in structure or behaviour will lead to the prevalence of different

genotypes. Darwinian evolution is typically a gradual process, where small incremental

genetic changes regulated by a process of selection accumulates over time. In general,

the progression of natural selection in the animal and plant kingdom is negligible on

the time-scale of a human life and therefore is very difficult to examine as it may take

thousands or even millions of years for a single species to diversify into a categorically

different species.

Evolutionary change can occur more rapidly if selective breeding takes place, as

is the case with artificial selection, to the point where phenotypic divergence can be

seen on the time-scale of a human life. Since 1959 The Soviet Union/Russia have been

performing long term selective breeding experiments which have domesticated lineages

of wild silver foxes (Trut, 1999) by selecting foxes which display more docile person-

ality traits for breeding. These descendents not only behaved differently, but their

physical appearance had shown drastic changes. It was also shown in small islands in

Florida that one species of lizard, Anolis carolinensis, evolved larger toe pads in order

to help it climb to higher perches, following the introduction of another closely related

18

species, Anolis safrei, to the environment, which introduced competition between the

two species (Stuart et al., 2014). However, although these experiments show evolu-

tionary change on observable time scales, these time scales may span across decades,

which require huge amounts of funding and dedication before results can actually be

observed.

2.3 Biological Synthesis of Evolutionary Dynamics

Due to evolution’s gradual pace within the Earth’s biosphere, experiments in evolution

have been generally limited. One method of studying the effects of evolution involves

using microscopic organisms with generation times on the order of hours, as shown

by Richard Lenski’s E. coli ongoing long-term evolutionary experiment (Lenski, 2011),

where twelve initially identical populations of asexual Escherichia coli bacteria were

studied over 50,000 generations. However even this approach has difficulties, as it is

difficult to perform measurements on such a small scale with high precision, and the

time-scale to see significant adaptation may still span weeks (Adami et al., 2000).

However, the advent of computer hardware and software over recent decades has

allowed us to design evolutionary systems in silico, which simulate at least some of

the properties of living biological systems. The dynamics of Darwinian evolution over

thousands or even millions of generations can be applied to these systems within the

time frame of minutes, hours or days, finally allowing us to examine the evolutionary

dynamics of such systems under fully controlled parameters and under practical time

frames.

2.4 Computational Synthesis of Evolutionary Dynamics

2.4.1 Von Neumann’s Kinematic Model

The first computational approach to the generation of life-like behaviour, was proposed

as early as 1948 by mathematician John von Neumann (1948) in his attempt to un-

derstand the evolutionary growth of complexity. Although von Neumann’s untimely

death prevented him from completing his work on this topic, his colleague Arthur Burks

proceeded to compile and complete von Neumann’s work, On The Theory of Self Re-

producing Automata (Von Neumann & Burks, 1966). Burks stated that von Neumann

posed the following question, “What kind of logical organisation is sufficient for an

automaton to reproduce itself?”. In an attempt to answer this question, von Neumann

first developed his Kinematic Model as an initial thought experiment. The Kinematic

Model is represented by a machine which floats on the surface of a two dimensional pond

along with instances of the fundamental physical subcomponents with which machines

may be composed (Von Neumann & Burks, 1966, pp. 82-87).

The floating machine consists of several different, yet essential, interdependent as-

19

semblies, one of which is a programmable constructor. If the floating machine is sup-

plied with the blueprints, or description, of an arbitrary target machine, the machine’s

programmable constructor has the computing capacity to analyse and decode the de-

scription, and the motor skills to select any parts required from its environment and

build the described machine. The assembly which contains the description is referred

to as the tape by von Neumann as it was inspired by the tape of Alan Turing’s com-

putational machine (Turing, 1936). The initial machine also contains a tape copier.

Upon constructing an offspring machine, the tape copier will copy the tape, and at-

tach a duplicate copy to the offspring, and the offspring machine is now “switched on”.

Should the contents of a tape contain an exact description of the initial machine, then

this machine will proceed to create copies of itself, legitimately exhibiting machine self

reproduction.

2.4.2 Cellular Automata

Von Neumann wished to devise a formal, logical system which modelled self repro-

duction, however, this required a large computational workload, and general purpose

computers were not available at the time, circa 1948. A colleague of von Neumann

while working at Los Alamos National Laboratory, Stanislaw Ulam, suggested using

a mathematical abstraction, such as a lattice network in which he was using to study

crystal growth. From this foundation, von Neumann worked on developing the logical

formalism of what is now called cellular automata.

Von Neumann attempted to extract the logical form of his Kinematic Model, and

implement it within a cellular automaton, however, there are two fundamental limita-

tions on behaviours which we can expect when implementing logical behaviours within

any computing machine (Langton, 1995).

The first limitation is that of computability. There are certain functions which are

possible to describe perfectly, but which are impossible to compute. Alan Turing pre-

viously proved this limitation in 1936 with the classic example of the Halting Problem

(Turing, 1936). The halting problem can be stated as follows: “Given a description of

an arbitrary computer program, decide whether the program finishes running or contin-

ues to run forever”. This is equivalent to the problem of deciding, given a program and

an input, whether the program will eventually halt (or in fact execute any prescribed

behaviour) when run with that input, or will run forever. There is no general mecha-

nism which can be applied to any arbitrary machine, within the complete space of all

possible machines, to determine whether or not this machine will halt. The machine

must be run in the context of its environment to observe whether the machine halts,

however, if the machine does not halt, one can only deduce that the machine did not

halt up to the point that they stopped observing it.

To minimise the computational limitation of his self reproducer, von Neumann

incorporated a Turing universal computation machine within the programmable con-

20

structor to ensure that his machine was computationally universal, and all possible

logical computations were possible.

The second limitation of logical behaviours of any computing machine is one of

computability in practice. In order to provide a machine with a formal specification of

how to exhibit a certain behaviour, we must first establish a sequence of logical steps

which the machine must obey in order to exhibit this behaviour. This limitation can be

loosely thought of as the complement of the Halting Problem. There can be no general,

formal mechanism which can be applied to the complete set of possible machine ar-

rangements to deduce whether any arbitrary machine will exhibit a specific behaviour

such as halting. Similarly, within the set of all possible arbitrary machine behaviours,

there cannot be a general, formal mechanism which can be used to deduce the descrip-

tion of the underlying machine when supplied with any arbitrary behaviour. There may

be certain behaviours where it is impossible to deduce the mechanical arrangement of

the underlying machine.

This is a consequence of the levels of hierarchy that exists with complex systems.

It may not be possible to determine the emergent properties of a complex system by

simply examining its description, and similarly, it may not be possible to determine the

description of a complex system system by examining its emergent properties. Thus, we

have no conventional methods for deriving a machine which will display a specifically

required behaviour, short of educated guessing, trial and error. In order to implement

the phenotypic behaviour of self reproduction within a cellular automata, von Neumann

had to design his system ab initio. Unfortunately, von Neumann’s final model was not

completed upon his death, however Burks (Von Neumann & Burks, 1966), completed

the work and published a working design of von Neumann’s machine architecture in

the cellular automata formalism (See Figure 2.1).

The machine was implemented within a 29 state cellular automaton with a two

dimensional, five cell neighbourhood, and accurately exhibited self reproduction. This

was constructive proof that fundamental characteristics of life could be achieved by

machines. In hindsight, we see that von Neumann also incorporated many of the other

fundamental criteria of life which were described earlier, such as; life being a pattern

in space-time, information storage of a self-representation, functional interactions with

the environment and interdependence of parts. In fact, it wasn’t until five years later,

in 1953 when Watson and Crick co-discovered the structure of DNA, that it was re-

alised that von Neumann’s architecture showed amazing prescience, precisely describing

how heritable information is passed from parent to offspring, consisting of both a tran-

scription/translation process (performed by the general constructor) and a replication

process (performed by the description copier). However, it should be noted that it was

possible that von Neumann was aware of the idea proposed earlier by Schrödinger where

genetic information must be contained within an “aperiodic crystal” in its configuration

of interchangeable covalent bonds (Schrödinger, 1944).

Edgar Codd and James Thatcher attempted to improve von Neumann’s automa-

21

Figure 2.1: Implementation of von Neumann’s Tessellation Automaton in cellular au-
tomata. Three generations of the Tessellation Automaton are shown, the second au-
tomaton has nearly finished construction of the third. The tapes can be seen protruding
to the right.(Public domain image reproduced from the sq3 website; based on the (1995)
implementation of von Neumann’s self-reproducing machine and generated using the
Golly software, located at http://golly.sourceforge.net.)

22

http://golly.sourceforge.net

ton by adding simplifications such as reducing the number of cell states within the

cellular automata and simplifying parts of the general constructor of the automaton

itself, (Codd, 1968; Thatcher, 1964), however, it is arguable that none of the applied

adjustments actually added greatly to the functionality of the model but just acted as

incremental improvements (Pesavento, 1995). Again, with hindsight, this is not sur-

prising, as in order to make the model significantly more “life-like” it would be expected

that one would include a greater number of the eight essential criteria which bear on the

nature of life. However, due to the extremely large computational workload required to

simulate models, it would not be until the advent of affordable, programmable, general

purpose computers that further major developments would be witnessed in this field.

2.4.3 Genetic Algorithms & Genetic Programming

Genetic algorithms (GAs) are computational models of evolution that are employed as

a method of solving practical problems in many areas of science, but play a central role

in models of evolution in artificial life. GAs as they are known today, were initially

described by John Holland in the 1960s and were further developed and published with

the release of his book “Adaptation in Natural and Artificial Systems”, which presents

the GA as an abstraction of biological evolution and displays the theoretical framework

for adaptation to occur (Holland, 1975). Holland wished to “extract the logical form”

of the natural process of evolution, using genetic algorithms. Holland’s GA is a method

for transforming a population of “chromosomes” (bit strings which represent functional

or phenotypic characteristics of an abstract organism) to a new population, by using

selection, paired with the application of genetic operators (crossover, mutation, dele-

tions) to the chromosomes. A selection mechanism will choose which chromosomes in

the population will be reproduced and decides how many offspring each chromosome

will bring forth. Selection chooses which chromosomes will reproduce by measuring its

“fitness”. This fitness is a measure of how well the chromosome performs a specific

task. Chromosomes with a higher fitness value will give rise to a greater number of off-

spring (fitness-proportionate selection). Genetic operators cause random perturbations

to the bit string representations of the offspring chromosomes. The inclusion of genetic

operators introduce inheritable variation to members of the population, and inspection

of the fitness function selects members of the population with increased fitness to be

reproduced. Members of the population with a lesser fitness are not reproduced in the

next generation. The general form of a GA is as follows (Mitchell & Forrest, 1994):

1. Start with a randomly generated population of chromosomes (i.e., representations

of candidate solutions to a problem)

2. Calculate the fitness of each chromosome in the population.

3. Apply selection and genetic operators to the population and generate a new pop-

ulation.

23

4. Revert to step 2 and begin the next generation.

This process is iterated over many generations until a population of highly fit chro-

mosomes are produced which can perform the specified task at higher fitness than the

initial chromosomes which inoculated the population of the first generation.

Although GAs are an optimisation tool which provide a proven method of evolving

chromosomes to achieve higher performance levels, GAs do not generally display open

ended evolution, as eventually the fitness of a population of chromosomes will plateau

and no further increase in fitness will be observed. GAs are generally not used as a tool

for displaying open ended evolution, but more as a search tool for searching a space

of possible chromosomes for a representation which will represent the fittest possible

solution.

We can see that GAs are missing many of the fundamental criteria which appear

in living organisms, such as a metabolism and self reproduction (bit strings within

memory are not manipulated or reproduced by the chromosomes themselves, but by

the externally applied selection tool). As a result of this, it would not seem likely that

evolution of GAs could provide the same level of increased complexity as observed in

organic biology.

Genetic Programming (GP), first introduced by Nils Barricelli (1962), and Lawrence

Fogel (1966), can be considered a particular case of GAs, where each individual is a

computer program. The output of GAs are generally strings of data which represent a

solution to a specific problem, however the GP is a machine learning technique where

the output itself is a population of computer programs, optimised according to a fitness

landscape determined by each program’s ability to perform a given computational task.

In particular, the question of “would it be possible to select symbioorganisms able to

perform a specific task assigned to them, for example, the task may consist of deciding

moves in a game being played against a human or against another symbioorganism”

(Barricelli, 1957, p 120). However the term “Genetic Programming” was not coined

until much later by John Koza (1990), where he describes how this paradigm provides a

method of creating computer programs which were genetically bred using the Darwinian

principle of survival of the fittest to evolve to perform complex tasks which include but

are not limited to solving equations, pattern recognition, neural network design and

game playing strategies, without the need of a human programmer guiding the entire

design process.

The evolving agents in GPs are typically written in Lisp-like languages1 which can

be represented in memory as tree structures. An example of a simple mathematical

function represented as tree structure is illustrated in Figure 2.2. The use of a tree

structure based programming language allows perturbations to be made to the code,

where mathematical operations and numbers can be changed within the code, but still

1Lisp is a family of computer programming languages which employs fully parenthesized Polish
prefix notation.

24

Figure 2.2: Example of a simple mathematical function represented as a tree structure,
adapted from Wikipedia (2014).

render the resulting code syntactically correct. Perturbations such as crossovers can

be applied where a node on the tree can be switched with a node from itself or one

from another program in the population. Point perturbations can also occur where

the information within an individual node can be perturbed to a random number or

mathematical operation.

2.4.4 Computer Viruses and Core Worlds

The early 1970’s saw the advent of early computer viruses, such as The Creeper Virus

which was an experimental self replicating program developed by Bob Thomas at BBN

Technologies in 1971 (Chen & Robert, 2004). Creeper used ARPANET 2 to infect

computers operating on the TENEX operating system where it created a copy of itself

and and displayed the message “I’m the creeper, catch me if you can!”. However,

after replication, Creeper would delete the previous copy of itself to prevent it from

progressively consuming the hard disk space on the affected computer. Subsequently,

the Reaper program was developed which was a computer program which used the

computer network to spread itself, locate, and delete the Creeper virus.

The advent of computer viruses sparked the realisation that self replicating com-

puter programs in the memory of computers could serve as a research platform for

Artificial Life. An early attempt to simulate artificial life within a computer was de-

scribed by A. K. Dewdney (1984) with the release of a programming game called Core

Wars. Within this game, two or more programs called “Warriors” reside within a 1

dimensional circular memory (core world), and compete with each other for the control

2The Advanced Research Projects Agency Network (ARPANET) was one of the world’s first oper-
ational packet switching network and the progenitor to the internet.

25

Figure 2.3: A Core Wars battle, simulated on the pMars simulator. The source code
for pMars can be downloaded from the official site: http://www.koth.org/pmars/.

of the virtual computer (Memory Array Redcode Simulator “MARS”), Figure 2.3.

Programs in Core Wars are written in a specifically designed assembler language

called Redcode. Redcode is loosely based on a complex instruction set computer

(CISC). Each Redcode instruction occupies a single location within the circular mem-

ory. There are no registers and all data are stored and manipulated within memory.

Redcode has 10 different instructions where each instruction can take two numbers as

arguments and each argument is preceded by an addressing mode. There are three

addressing modes, which specify whether the numbers which represent the arguments

are interpreted as numerical data, as a pointer to a location in memory, or as a pointer

to another pointer.

This game introduced the fundamental criterion of a metabolism, which converts

matter (memory) and energy (control over the virtual computer) into the pattern and

activities of the programs (warriors). Within this framework, warriors can propagate

throughout memory, and compete for memory space and control over the virtual com-

puter.

Building upon the framework of Core Wars, Steen Rasmussen designed a different

program called “Coreworld”, (Rasmussen, 1990). Random noise was added to the sys-

tem incorporated within the MOV command, which copies instructions from one location

in memory to another. This command was flawed with a certain probability so that

it would copy an instruction to a random destination. The specific goal of this sys-

tem was to construct an artificial computational chemistry that could support artificial

replicating programmes in the hope that these programmes would display emergent

computational behaviour.

Although Core Wars, and subsequently Coreworld introduced the concept of a

metabolism to digital programs, its instability and sensitivity to small changes was

26

http://www.koth.org/pmars/

a major defect which prevented the demonstration of further life-like phenomenon. In

a non-quiescent environment, it is difficult for warriors or programs to preserve their

form and may eventually malfunction as their code may be over written by other pro-

grams.

2.4.5 Tierra

In 1991 ecologist Thomas S. Ray developed a new system which could be used to

experimentally explore, in silico, the basic processes of evolutionary and ecological

dynamics (Ray, 1991). This system, Tierra, is similar in many ways to the Core War

system such as having a circular memory and machine language programs, however it

has a number of major advancements. Upon birth of offspring programs (creatures), the

memory block in which creatures are located are issued “write protection”. This ensures

that creatures do not overwrite each other’s code, and hence implement the fundamental

criterion of stability under perturbations and insensitivity to small changes, allowing

the creature to preserve its form and continue to function in a noisy environment

where neighbouring creatures cannot overwrite each others code. This is one of the

fundamental criteria which characterise life as we know it, that Farmer and Belin

proposed, which was not implemented within Core Wars.

The concept of random variation had been introduced in Coreworld. While data was

being copied from one location memory to another, the destination memory address

was subject to errors, allowing data to be copied to random locations rather than

the intended destination. This concept of introducing random variation was expanded

on in Tierra. Several genetic operators were introduced which allowed biologically

inspired changes such as point perturbations, crossovers, insertions and deletions. This

introduced noise allowed for a wider range of possible variation to emerge between

creatures and their offspring.

In order for life in our universe to exist, we rely on the delicate balance of finely

tuned physical laws. Within astrophysics and cosmology, the anthropic principle states

that our observations of the physical universe must be compatible with the conscious

life that observes it. However, there is no such anthropic principle within the digital

medium, so there is no pre-designed set of rules which we must follow in order to

create artificial life. As we have no formalisation for developing a set of fundamental

laws within the digital universe that may eventually support digital life we must act as

“God”, and by deliberate design, attempt to create a set of laws which is capable of

sustaining digital life.

Ray acknowledged this problem, and spoke about “conventional” and “unconven-

tional” factors that affected evolution (Ray, 1999). Conventional factors are aspects

which have been thoroughly analysed in the field of biology and are variable, e.g.,

population size, mutation rates etc. Unconventional factors are aspects which are not

variable in biology, but can be varied in the design of artificial systems, such as the

27

physical laws of the universe.

The field of genetic algorithms had already provided a good understanding of con-

ventional factors, however, the study in the understanding of the unconventional factors

was relatively limited. Ray decided to use biology as a basis, where he would try to im-

plement unconventional factors to resemble the laws which take place in real life. Ray

noted that proteins are composed of a set of 20 amino acids, therefore he implemented

a 5 bit assembler language instruction set, which allows a total of 32 distinct assembler

language instructions with no arguments or addressing modes, which only include the

minimum number of instructions necessary to facilitate self reproduction. Although

Redcode includes a smaller instruction set of 10, these instructions can take 2 numbers

as arguments which range from 1 to the total number of address locations in memory.

These arguments were also preceded by one of 3 addressing modes. This significantly

reduced space of possible instructions in Tierra compared to Redcode was intended

to increase its mutational robustness and its stability under perturbations. Random

perturbations applied to the reduced instruction set, may perturb it to only one of the

other 31 instructions available. This allows for random perturbations to be applied to

instructions, and have a higher probability that the result will itself be functional, in

some degree at least.

With genetic algorithms, reproduction is incorporated with an externally applied

fitness function. However, Tierran creatures perform the act of self reproduction au-

tonomously, within the memory, and so their fitness is a direct measure of the ability of

the creatures to actually reproduce. This removes the role of the external programmer

in determining the fitness function directly and allows a more substantive model of

natural selection.

Tierran creatures use a so-called template addressing mode rather than relative

addressing which was used in Redcode. Templates are complementary sequences of two

specifically reserved instructions (nop0 and nop1). This idea was also borrowed from

molecular biology, as biological molecular structures commonly interact by matching

complementary shapes. The intention of introducing this feature was to improve the

functional interactions with the environment, as it forces the Tierran creatures to behave

more like their analogous carbon based representation where the locations in memory

can be recognised without knowing their absolute address location.

However, evolution in Tierra generally still reaches a plateau where, after a period

of rich interactions between creatures within the ecosystem we meet a stage of stasis

(Ray, 1991). Simply implementing Farmer & Belin’s essential criteria for life is not

sufficient to observe, effective, on going, open ended evolution.

One may also focus on fine tuning the fundamental laws of the universe (unconven-

tional factors), which in turn improve the cooperation between the different levels of

the hierarchy of living properties, so as to improve evolvability. We understand that

life must exist as an ordered pattern in space-time, and it must bear functional interac-

tions with its environment. However, it is not clear as to what form these criteria must

28

be met in the digital universe, i.e., how the matter must be ordered, or what form of

interactions must take place between it and its environment. In order to answer these

questions, the only approach which we currently have is to study biological processes,

and attempt to incorporate these processes within our artificial life platforms.

2.4.6 Avida

As a successor to Tierra, a different Artificial Life simulator, Avida, was developed by

Chris Adami, Charles Ofria and C. Titus Brown at Michigan State University (Adami

& C. Titus, 1994). As mentioned before, unconventional factors which affect evolvabil-

ity are aspects that are not variable in biology, but can be varied in the design of the

artificial system. When examining the proposed hierarchy which bears on the nature

of life as we know it, we see that life is a pattern in space-time and functional interac-

tions with the environment are at the lowest level of hierarchy. These two factors are

essentially what Ray considers “unconventional factors”. Ray focused on improving the

functional interactions with the environment, by proposing new means by which the

Tierran creatures will interact with each other which bear a closer resemblance to that

of biological organisms. Adami however, seemed to focus on improving the patterns in

space-time by which the Avidan creatures exist.

A potential weakness in Tierra is the one dimensional linear memory space. Al-

though this doesn’t prevent evolution from occurring, it is quite different from the

complex three dimensional interactions which are observed in life on Earth. Two di-

mensional cellular automata already existed, however, they are less suited to study

evolution as they are typically quite brittle. Any small change in an organism will

generally result in a very low probability of it preserving its ability to self reproduce.

There has been examples of more “robust” evolution in two dimensional cellular au-

tomata, as is the case with Evoloop (Sayama, 1999), which is essentially an improved

version of Langton’s Loop (Langton, 1984). Due to the high adaptability of the self-

reproductive mechanism employed within Evoloop, when the construction arms of two

self-reproducing automata collide, two parent loops simply abort the construction of

their offspring and continue their self-reproducing activity by constructing an offspring

elsewhere. However, the wall-clock time required to carry out a complex procedure

such as self reproduction is still considerably slower in typical CA compared to that in

a core world type system.

Adami introduced a two-dimensional toroidal memory system. Each Avidan or-

ganism resides within its own protected region of memory (cell) and cannot read or

write information outside its own local memory space. Because of this, an Avidan may

only affect other organisms in its direct neighbourhood rather than the entire memory

system as is the case with Tierra.

The second major difference is that the virtual CPUs of different organisms can run

at different rates, based upon each organism’s ability to perform particular, externally

29

specified tasks, or logical computations. This new feature can be thought of as an

amalgamation of properties of both Tierra and genetic programming. An organism is

assessed by its ability to perform a specific task, much akin to how a fitness function is a

measure of how well a chromosome performs a specific task. In the case of GAs, fitness-

proportionate selection will select the chromosomes of higher fitness to be reproduced

at a higher rate, and similarly, Avidans which can perform specific tasks, are rewarded

with extra CPU time as a bonus, which in turn, can accelerate their rate of reproduction,

relative to neighbouring Avidans.

This new feature was another unconventional factor, which affected the digital or-

ganism’s functional interactions with the environment. This amendment was an at-

tempt to allow digital organisms to increase in complexity under natural selection, by

posing increasingly complex external computational tasks.

Evolution in an information poor landscape where there are no factors which drive

natural selection rather than speed of reproduction usually leads to shrinking of the

genome size3. This was first demonstrated in vitro in the 1960s when Sol Spiegelman

demonstrated the Darwinian evolution of Qβ genomic RNA (Joyce, 2007). Spiegelman

was aware that Qβ replicase would produce the occasional mutation during amplifica-

tion4. He allowed the amplification of RNA molecules within a controlled solution by

introducing Qβ replicase. After a specific period of time, a sample of the solution would

be extracted, and used to inoculate a new generation. After a number of generations,

he noticed that the RNA molecules would require less time for replication, and there-

fore would have a selective advantage. This was due to the molecules decreasing in size.

In an informationally poor landscape, speed of replication was the only selective force

in effect, so under evolution, all genomic information was lost, with the exception of

“instinctual knowledge” which is fundamentally required for the molecules to replicate,

and nothing else.

This result can also be observed in the previously developed digital medium of

Tierra. The default ancestral creature in Tierra only contains instinctual knowledge,

which is information embedded within the creature, without which it couldn’t func-

tion correctly and reproduce. Under evolution, these genes become more efficient at

performing the tasks that they can already perform, so the creatures shrink in size as

efficiency rises. However, no new knowledge is ever added, so it can be argued that the

complexity within Tierran creatures never actually rises.

In order to make a case for or against the evolution of complexity, complexity must

be defined and measurable. There are many approaches one may take, for example,

Kolmogorov complexity is a measure of the computational resources necessary to define

3In the experiments demonstrated in this thesis, this phenomenon is also seen to occur, however, the
aim of this thesis is not to search for “increased complexity” which usually coincides with an increase
in information/creature length, but is specifically looking at the possibilities of a heritable change in
the genotype-phenotype mapping, which does not inherently require an increase in “complexity”.

4Amplification within molecular biology refers to the process of creating multiple copies of a seed
molecule via a polymerase chain reaction.

30

an object. However, the Kolmogorov complexity of a random bit string would actually

be higher than that of an ordered bit string of the same length, because it would

take more computer resources to exactly describe a random bit string than it would

a more complex but ordered bit string of the same length. Shannon’s information

theory states that “the quantity entropy (H) represents the expected number of bits

required to specify the state of a physical object given a distribution of probabilities”

(Shannon, 1948; Adami et al., 2000). It seems that complexity of an organism may be

defined as some measure of how much information can be stored within the organism.

Physicist David Deutsch stated that “genes embody knowledge about their niches”

(Deutsch, 1997), in other words, during evolution, genes store information about their

environment, which in turn, increases the level of information stored within the gene,

hence increasing complexity. Because of this, Adami stated that an organism’s genes

are not simply a “book” about the organism, but also a book about the environment

in which the organism lives (Adami et al., 2000). With this in mind, if there is no

information within an organism’s environment which the organism can interact with,

then there is no possibility of the organism increasing in complexity. In order for an

organism to increase in complexity, it may have to reside within an informationally

rich landscape. Adami developed a system where knowledge could be learned from

interacting with an external environment, and this knowledge can become incorporated

within the organism’s genes.

While this development was successful at demonstrating how information of a crea-

ture’s surroundings can become incorporated into its genes, this system still eventually

suffers from the same fate as Tierra, as it does not display open ended evolution. Once

the creatures have learned the basic knowledge that is available in its environment,

evolution hits a period of stasis and plateaus.

2.4.7 Conclusion

There are many speculations as to why the mentioned artificial life systems inevitably

reach a plateau in evolution. The division of labour between passive information and an

active catalyst is a fundamental property of all living systems (Takeuchi et al., 2011).

If we wish to observe open ended evolution within an artificial life platform, it seems

reasonable that we should implement all the essential criteria which are common to real

life, which are already proven to be capable of hosting open ended evolution without

plateauing.

One essential criterion which is common to all organic life, information storage of

a self-representation, is not implemented in Tierra or Avida, although it was present

within von Neumann’s Tessellation Automaton. In order to incorporate this criterion,

von Neumann’s design included a mechanism which could accurately decode data and

interpret it as instructions to construct a physical automaton. As this decoding mech-

anism must be described within the self-representation, it too must also be subject to

31

inheritable variation just as the rest of the automaton. The next chapter describes

the automaton proposed by von Neumann in detail, and describes how this architec-

ture may be used to investigate how a mutable decoding system may evolve. If it is

possible for automata to emerge which incorporate a mutated decoding mechanism, or

genotype-phenotype mapping, than the plateau may be delayed and may also result in

a wider range of automata which are possible through evolution.

32

Chapter 3

Von Neumann’s Architecture

33

3.1 Chapter Overview

The previous chapter discussed several major developments in artificial life and dis-

cussed how they incorporated many of the fundamental criteria which bear on the

nature of life as we know it. The most recent developments which were discussed, the

Tierra and Avida platforms, and automata implemented within these systems failed to

incorporate one fundamental criterion, information storage of a self-representation. In

order to design an architecture for artificial life which incorporates an information stor-

age of a self-representation, an automaton must be designed which not only includes

an information storage, but has the ability to decode and interpret this information

in order to build an offspring. A logical formalism for a self reproducing automaton

capable of evolution, which performs this task, was articulated by John von Neumann.

However, this formalism has not generally been investigated in the most recent artificial

life platforms. This chapter summarises the problem which von Neumann set out to

solve, and explains the details of the architecture which he devised as a solution.

3.2 Von Neumann’s Problem: The Evolutionary Growth

of Machine Complexity

As indicated in Chapter 2, John von Neumann investigated the problem involved with

the evolutionary growth of complexity of arbitrary machines (Von Neumann & Burks,

1966; McMullin, 2000). Assuming that biological organisms are essentially extremely

complex organic machines, then over time these machines must, in at least some cases,

have constructed offspring of greater complexity than themselves in order to facilitate

an evolutionary growth of complexity1. Von Neumann pondered how a machine might

construct an offspring machine of greater complexity than itself. At face value, the

parent machine must already contain a description of the offspring’s design, hence

being of equal or greater complexity than the offspring.

Julian Huxley had recently published his book, Evolution: The Modern Synthesis

(Huxley, 1942), which attempted to bridge the gap between Darwinian evolution and

Mendelian genetics, however, the exact architecture that machines must possess in or-

der to accommodate the evolutionary growth of complexity was not rigorously defined.

Furthermore, a satisfactory definition of biological complexity has still not been ex-

plicitly defined to this day. Von Neumann simply adopted an informal definition of

complexity as “the ability to do very difficult and involved things” (Von Neumann &

Burks, 1966, p. 78).

1Although it is acknowledged that evolution may also occur through symbiogenesis, where increas-
ingly complex organisms can be created via the symbiosis of two simpler organisms, which explains the
origin of eukaryotic cells from prokaryotes, here we are referring to the generic Darwinian process of
evolution via inheritable variation among diverging organism lineages.

34

Von Neumann progressed to formulate a general and abstract machine architecture,

where the set of potential machines included an infinite subset which were:

1. Arbitrarily complex.

2. Capable of self reproduction

3. Capable of undergoing spontaneous inheritable mutations.

4. The entire set of such machines are connected under mutation. (McMullin, 2000)

Populations of machines that exhibit these criteria may possess the ability to un-

dergo an evolutionary growth of complexity, and with a single relatively simple seed

machine there may exist many evolutionary lineages leading to machines of higher

complexity.

This formalisation was the basis for his Schematic Kinematic Model. However, in

order to prove that his model indeed demonstrated true machine evolution, he would

have to extract its logical form, and exhibit a fully detailed design. To do so, he used

cellular automata as a platform to design what will be referred to here as the von

Neumann Architecture for Machine Self Reproduction.

3.3 Von Neumann’s Solution: The Von Neumann Archi-

tecture For Machine Self Reproduction.

Von Neumann’s architecture for machine self reproduction, presented in his theory of

self reproducing automata (Von Neumann & Burks, 1966; Baugh & McMullin, 2012a),

describes an abstract class of machine, M , which is decomposed into two primary

components, a functional component P , and a passive component G, denoted by M =

(P +G) (McMullin, 2012). G represents a one-dimensional string of symbols which has

no active/functional capability, but can be interpreted as information, similar to the

tape of a Turing machine. The information within G is used to describe (or “encode”)

an arbitrary target machine X under some function, φ(), such that G = φ(X).

P is further divided into four fundamental subcomponents, a general constructive

automaton A, a general copying automaton B, a control unit C, and so called ancillary

machinery, D. G will be referred to as the genotype while P will be referred to as the

phenotype2.

The general constructive automaton A can read the symbols within G, and interpret

them as an encoded description of the arbitrary machine X. A therefore has the

capability to apply an inverse “decoding” function, φ−1(), or ψ(), to G, and construct

the described machine X. We denote this by saying ψ(G) = ψ(φ(X)) = φ−1(φ(X)) =

X. In other words, when supplied with a genotype, the general constructive automaton

2Although von Neumann never actually used these specific terms to describe the components in
question, they are analogous to the genotype and phenotype in modern biological terminology.

35

applies the decoding function ψ(), to G, in order to construct some arbitrary machine

phenotype X.

The general copying automaton B, reads and duplicates the machine description G.

A control unit C is required to govern the automaton (A+B), directing its operation,

activating A and B in order, and ensuring that the offspring creature is appropriately

activated in a controlled fashion once its construction is complete.

The forth component, the ancillary machinery D, refers to all conceivable function-

ality that the machine may possess which does not interfere or hinder the reproductive

operation of (A+B + C).

When a machine (A + B + C + D) is supplied with a description, G = φ(X), the

control unit C first commands B to duplicate G. Upon duplication, C instructs A to

decode G under its characteristic genotype-phenotype mapping function ψ(), and thus

construct the described machine X. Finally C will attach the new instances of G and

X, and sever them from the parent automaton (A+ B + C +D) + φ(X), after which

there exists the new entity, X +G , X + φ(X).

Now consider the case where X , (A + B + C + D). This system, (A + B + C +

D) + φ(A+ B + C +D) will proceed to construct an offspring automaton and attach

it to the description of itself, (A+B + C +D) + φ(A+B + C +D). The parent and

offspring are identical, therefore achieving self reproduction. This machine architecture

is shown schematically in Figure 3.1.

Next we consider the case where a random phenotypic perturbation occurs during

the construction of P . If a perturbation affects the reproductive subcomponents A,B

or C, than the automaton will most likely be rendered infertile. Next consider the

possibility of the perturbation affecting D, so that a machine M = (P + G) produces

M ′ = (P ′+G), where P ′ = (A+B+C+D′). This machine (A+B+C+D′)+φ(A+B+

C +D) will proceed to decode and copy the unaltered G under the decoding function

ψ(), to recreate the original machine M = (A+B+C+D)+φ(A+B+C+D), and the

phenotypic perturbation is not inherited. For the case where the genotypic perturbation

affects the description, G, again, if the perturbation affects the description of A,B or

C, the automaton will most likely be rendered infertile. If the perturbation affects the

description of D in G, creating a machine M ′ = (A+B+C+D) +φ(A+B+C+D′),

M ′ will proceed to decode and copy G′ under the decoding function ψ() to create a new

machine, M ′′ = (A+B+C+D′)+φ(A+B+C+D′), where M ′′ = (P ′+G′). This case of

mutation allow for the offspring of a machine M to be modified and eventually produce

M ′′ which is itself self reproducing, but M ′′ may be more complex than its ancestor

M . So there is a potentially densely connected network of mutational pathways linking

arbitrarily simple to arbitrarily complex machines, having just (A+B+C)+φ(A+B+C)

in common.

It is worth noting that when a perturbation occurs within P , the perturbation is

not inherited in further generations, furthermore, when the perturbation occurs within

G, there is a generation delay between when the perturbation occurs in the genotype

36

A: Programmable
Constructor

B: Copier

C: Control

D: "Ancillary"
Machinery

P

M: P + Φ(P) = (A+B+C+D) + Φ(A+B+C+D)

A: Programmable
Constructor

B: Copier

C: Control

D: "Ancillary"
Machinery

P

G = Φ(X)

G = Φ(X)

Figure 3.1: A schematic of the von Neumann style architecture of machine self repro-
duction. Adapted from McMullin (2012).

and when it is expressed in the phenotype.

Should a random perturbation occur while copying the description of A to an off-

spring, which results in φ(A′+B+C+D), then the machine (A+B+C+D)+φ(A′+

B + C + D) will produce (A′ + B + C + D) + φ(A′ + B + C + D). It is possible that

this machine will now have an altered general constructive automaton. Von Neuman-

n/Burks stated “If the change is in A, B or C, the next generation will be sterile.”

(Von Neumann & Burks, 1966, p. 86), however it is conceivable that this statement

is untrue, and does not take into account perturbations within the description of A

which incrementally modify the decoding function ψ() without completely breaking its

reproductive functionality. Accordingly, this machine (P ′ + G′) may not be sterile,

but implement an altered decoding function ψ∗() where ψ∗(G′) = ψ∗(φ(P ′)) = (P ′)∗,

to construct the machine ((P ′)∗ + G′). If there are changes in the mapping which

allow (P ′)∗ = P ′, then the machine (P ′ + G′) will self reproduce successfully while

implementing a different genotype-phenotype mapping (McMullin, 2000).

3.4 Interpretations of von Neumann’s design

One specific aspect of von Neumann’s design, which may have led to some confu-

sion, was the fact the representation of von Neumann’s machine within the cellular

automata framework did not allow for spontaneous or indeterministic perturbations of

the cell states. Therefore, when represented in such a deterministic system, the designed

machine cannot actually undergo inheritable mutations, hence, this representation is

strictly unable to support evolutionary change. Due to this, it might be supposed that

37

von Neumann’s problem was limited only to the logic or architecture of self reproduc-

tion. Burks himself stated that von Neumann was interested in the following general

question: “What kind of logical organization is sufficient for an automaton to be able

to reproduce itself?” (Burks, 1970).

In order to rule out trivial self reproducing systems, such as crystal growth, it

has generally been required that any relevant self reproducing configuration must be

capable of universal computation, however, it is unlikely that the earliest self replicating

molecules, from which all present living organisms have evolved had this capability

(Langton, 1984).

In an attempt to build a platform simpler than von Neumann’s which is still capable

of accommodating self reproducing machines, British computer scientist Edgar F. Codd

asked “What kind of logical organisation is necessary for an automaton to be able to

reproduce” (Codd, 1968). Codd set out to reduce the complexity of von Neumann’s

CA and was able to demonstrate a configuration which required only 8 states per cell

rather than von Neumann’s 27. Both von Neumann and Codd’s machines reproduce in

a similar manner, however, Codd’s machine is more heavily influenced by the physiology

of the nervous system of animals, where instructions are transferred about the machine

via data paths.

The data path consists of a string of cells in state 1 (core cells). This string of

cells is surrounded on either side by cells in state 2 (sheath cells). Signals in the data

path consists of a packet of two co-travelling states, the signal state (state 4, 5, 6 or 7)

followed by the state 0. A data path may branch and fan out, or turn at right angles.

Computer scientist Christopher Langton recognised that if one of these data paths

closed in on itself, it could form a dynamic loop which could allow the storage of a

dynamic instruction rather than a static description in the form of a tape. Langton

proceeded to design a different machine based on this principle, the Langton Loop,

Figure 3.2.

Within von Neumann’s machine, the general constructor must decipher a static

symbol string (genotype) in order to acquire the instructions which will guide a con-

structor arm in building the offspring phenotype. With Langton’s Loop, rather then

having a static symbol string which is interpreted as a series of instructions, the un-

encoded instruction itself is simply propagating within a dynamic loop so that there is

no need for a general constructor, or a decoding mechanism, as the decoded signal is

already “active” within the loop.

Langton focused on designing a loop which can self reproduce, but cannot perform

any further behaviour such as construction of arbitrary machines. If von Neumann’s

problem was one of purely machine self reproduction, than this alternative method

shows that von Neumann’s machine was overly complex, and the same result could be

achieved by far simpler means. However, if we understand that von Neumann’s problem

was in understanding the evolutionary growth of complexity of arbitrary machines, then

Langton did not provide a simpler alternative, as it does not incorporate a decoding

38

Figure 3.2: Screen capture of Langton’s dynamic loop simulated in Golly 2.6 for Linux,
(Trevorrow & Rokicki, 2015), an open source cellular automata platform. The dynamic
loop can be seen on the left, with the data path/construction arm protruding to the
right.

mechanism between genotype and phenotype, which is a fundamental aspect to both

von Neumann’s automaton, and all known forms of organic life on Earth which display

an evolutionary growth of complexity.

3.5 Conclusion

This chapter explained in detail one possible architecture which is capable of self repro-

duction. This architecture, proposed by John von Neumann, incorporates a distinction

between genotype and phenotype where a general constructor is required to decode the

genotype, under some shared genotype-phenotype mapping, and construct the offspring

phenotype. As the aim of this thesis is to study the evolution of symbol systems, von

Neumann’s architecture provides an appropriate foundation in which we can follow in

designing such a system.

One particular candidate platform which may be used to host this architecture is the

Tierra platform. The Tierran operating system has memory protection, and is already

equipped with a number of operators, which will allow the introduction of random

perturbations to the agents within the system. Furthermore, reproduction rates within

Tierra are faster than those of typical cellular automata-based simulators. For example,

Ray’s initial experiment allows a population of approximately 500 to have a turnover

of several generations3 per second when run on a typical current personal computer

hardware, vastly reducing the wall-clock simulation time.

Using these foundations, it should be possible to examine if potential mutational

pathways may exist where the decoding mechanism is altered, resulting in an evolu-

tion of the genotype-phenotype mapping, and examine what properties and potential

3Generation time in Tierra refers to the time period in which it takes for sum of accumulated births
and deaths in the soup, to be equal the twice the average population of the previous generation.

39

advantages these new lineages may possess.

40

Chapter 4

Tierra: A Platform For Artificial

Life

41

4.1 Chapter Overview

The preceding chapter discusses the specific architecture, as described by John von Neu-

mann, of a self reproducing machine which incorporates a mutable genotype-phenotype

mapping. If realised on an appropriate artificial life platform, this architecture may

provide proof-of-principle examples in which the evolution of a genotype-phenotype

mapping may result in additional evolutionary lineages which are only possible with

a mutable mapping. A possible candidate for this task is the Tierra virtual computer

as it provides a platform which allows self reproducing programs in machine code to

reproduce with random perturbations affecting the contents of memory, introducing

noise and allowing for inheritable variation. In order to understand how the von Neu-

mann architecture may be implemented within this platform, this chapter discusses the

organisation of the Tierra virtual computer, its default instruction set, and the various

possible operators which perturb the contents of memory.

4.2 The Tierra 6.02 Virtual Computer

Tierra 6.02 is an virtual computer developed by ecologist Tom Ray with the design

objective to “support the evolution of self replicating machine code” (Ray, 1991).

The memory space in Tierra in which the machine code resides is called the soup.

The soup is a circular memory of configurable size. Each memory location within the

soup is an 8 bit, integer word, allowing a maximum of 256 distinct symbols to establish

the machine code instruction set in which programs in Tierra can be built.

Tierra is a Single Instruction, Multiple Data (SIMD) class of parallel computer

where multiple central processing units may perform operations on data in a shared

simultaneously. Each CPU includes seven registers; Ax, Bx, Cx, Dx, Ex, Fx, and

IP , each a 32 bit signed integer word. One register is reserved specifically for the

instruction pointer (IP), while the remaining six are general purpose registers. The

maximum soup size is limited by the size of the instruction pointer register which is

232 memory locations.

A circular stack of size 10 is also included within the CPU, where each memory

location is also a 32 bit wide signed integer word. The Tierra interface which displays

its registers and stack is shown in Figure 4.1

Upon initiation of a simulation in Tierra, certain configurable parameters can be

set via the soup_in file. This is a file which contain a list of “environmental” and

“observational” parameters which affect the output of a simulation. Environmental

parameters affect aspects such as the length of a simulation, soup size, mutation rates,

number of creatures to inoculate a run etc., which actually affect the evolutionary

trajectories of the creatures within the soup. Observational parameters do not affect

evolution, but affect how the data is saved to the computer which is running Tierra.

42

Figure 4.1: A screen capture of Tierra 6.02 highlighting the seven registers and stack

of one CPU.

4.2.1 The Default Instruction Set

When designing the default instruction set for Tierra, Figure 4.2, Ray based his system

on the Intel x86 instruction set. However, in order to simulate what he thought to be

the properties of life, he adjusted this set to optimise for digital evolution.

The Tierra virtual computer allows for a maximum of 256 low-level machine in-

structions. The instruction set for a specific run is configurable in size and content,

drawn from a library of pre-programmed potential instructions.

The default instruction set as configured by Ray used only 32 instructions. The

classes of instructions which were implemented in the default instruction set fall into

five categories; no operation, memory movement, instruction pointer manipulation,

calculation, and biological and sensory.

The no operation instructions, nop0 and nop1, are instructions that have no effect

if executed directly, however, within Tierra these instructions are utilised in template

addressing (as already described in Chapter 2). In Tierra, templates are used to spec-

ify memory locations rather than more conventional absolute or relative addressing.

Templates are an idea borrowed from molecular biology, where molecules “address”

one another by having complementary shapes. Templates in Tierra are complementary

patterns of nop sequences, where nop0 is complementary to nop1 and vice versa, so the

instruction sequence jmpo nop1 nop0 nop1, for example, causes execution of the code

to jump to the nearest occurrence of the instruction sequence nop0 nop1 nop0.

The memory movement instructions include a series of push and pop instructions

which copy data from the registers to the stack and vice versa. The stack is 10 memory

locations long which is initialised with zeros, and is cyclic, so a push to a full stack

will cause the stack pointer to loop back to the lowest memory location in the stack.

43

Default Tierra Instruction Set

No Operations: 2
nop0

nop1

Memory Movement: 11
pushA (push Ax onto stack)
pushB (push Bx onto stack)
pushC (push Cx onto stack)
pushD (push Dx onto stack)
popA (pop from stack into Ax)
popB (pop from stack into Bx)
popC (pop from stack into Cx)
popD (pop from stack into Dx)
movCD (Dx = Cx)
movAB (Bx = Ax)
movii (move from ram [Bx] to ram [Ax])

Calculation: 9
subCAB (Cx = Ax - Bx)
subAAC (Ax = Ax - Cx)
incA (increment Ax)
incB (increment Bx)
incC (increment Cx)
decC (decrement Cx)
zero (zero Cx)
not0 (flip low order bit of Cx)
shl (shift left all bits of Cx)

Instruction Pointer Manipulation: 5
ifz (if Cx == 0 execute next instruction)
jmpo (jump to template)
jmpb (jump backwards to template)
call (push IP onto the stack, jump to template)
ret (pop the stack into the IP)

Biological and Sensory: 5
adro (search outward for template, put address in Ax)
adrb (search backward for template, put address in Ax)
adrf (search forward for template, put address in Ax)
mal (allocate amount of space specified in Cx)
divide (cell division)

Total: 32

Figure 4.2: The default Tierra instruction set as configured by Tom Ray.

44

Furthermore, executing a pop to an empty stack will cause the stack pointer to point

to the top of the stack. There are also a set of mov instructions which are used to copy

data between registers, from the soup to a register, and from a register to the soup.

Arithmetic in Tierra’s registers allow for addition, subtraction, incrementing, decre-

menting, shifting left, and bitwise operations such as flipping the lowest order bit or

replacing a number with zero.

The “biological/sensory” instructions can search for a specific address location via

the address instructions adro, adrb and adrf, which will search outwards in either

direction for a matching template, specifically backwards for a matching template, or

specifically forward. Once found, the absolute memory address of the memory location,

directly following the matching template will be copied to the Ax.

The memory allocation instruction mal will attempt to allocate exclusive write

access to a block of memory whose size is determined by the number stored in the Cx

register. The instruction divide will deallocate any write access that a CPU might

have on a block of memory, and it will assign a new CPU to start executing at the

start of that block of memory. The CPU which executed the divide will then continue

to the next instruction in memory.

It should be noted that there is some level of ambiguity with the semantics of

the term “instructions” when referring to the assembler language used within Tierra

6.02. To understand this, what is referred to as “the opcode.map” must be introduced.

When utilising the maximum of an 8 bit word size, the Tierran CPU can operate upon

256 distinct binary numbers. How these numbers are interpreted when executed as

instructions by the CPU is defined by the preconfigured opcode.map file, so the same

8 bit low-level machine code may result in a different action when executed, depending

on the configuration of the opcode.map file. Furthermore, data in memory may not

always be interpreted as an executable instruction. In general, the contents of a memory

location within the soup may be interpreted as an executable instruction, or interpreted

as numerical data.

Von Neumann style self reproducers require a passive genotype which is never exe-

cuted, so the term “instruction” is not ideal in describing the contents of these memory

locations. In traditional descriptions of Tierra, all memory location content/values are

referred to as instructions, even though they may never be executed. To avoid con-

fusion, from now forth we will refer to the arbitrary data stored within the Tierran

memory locations as symbols where a symbol may be interpreted as either passive data

(represented as a number) or an active instruction, and the underlying symbol alphabet

will normally be labelled with its underlying numerical representation.

4.2.2 Self Reproduction by Self Inspection (Self Copiers)

Tierra was designed as an artificial life platform where populations of self reproducing

programs can compete with each other for both CPU time and memory space.

45

Upon initiation of a run, the soup_in file is read which instructs Tierra which

creature or creatures within the Tierran genebank to use to inoculate the soup. Other

information such as where the seed ancestors are to be placed within the soup, number

of generation to run the simulation for, and the seed for the pseudorandom number

generator which controls the “random” perturbations are also included.

The default self copier, 0080aaa, as designed by Ray is illustrated in Figure 4.3.

This creature is comprised of a string of symbols, which consists of four separate func-

tional blocks or subroutines in order to facilitate self reproduction, namely: initiation,

replication, separation and reset. During the initiation stage, the creature examines

its length, and the Tierra operating system inspects the surrounding memory space for

a single contiguous section of memory of equal size and write permission is allocated

to that block of memory. During replication, the contents of the parent creature’s

memory space is copied in succession to the allocated memory space. Upon separation,

the Tierra operating will assign a new CPU to the newly allocated memory space, the

parent loses write access to this memory space and an offspring is born. Reset is the

final stage of reproduction, where the parent resets its registers and stack pointer back

to their starting position, and the reproduction cycle may begin again.

4.2.3 Darwinian Operating System

In order to support Darwinian evolution, Tierra has certain built in functionalities

which allows it to simulate inheritable variation and the struggle for existence.

Time Allocation

Upon birth, each creature’s identity is entered into a circular queue of processes called

the slicer. The slicer allocates CPU time to each creature. The slicer may operate under

one of three possible mechanisms for allocating time, which is configurable within the

soup_in file via the SliceStyle. The slice size may be fixed, in which each consecutive

creature receives an equal amount of CPU time. The slice size may vary, in which a

random fluctuation may be applied which varies the time slice randomly within a

certain window (the default setting). Finally, the amount of CPU time allocated may

be a function of creature length, where larger creatures are allocated larger shares

of CPU time in order to allow for longer more complex creatures. A duration of a

simulation in Tierra may be measured in terms of CPU instruction executions, which

is the total number of instructions which are executed in a single run, (regardless of

the number of CPUs)

Death

Upon birth, a creature’s identity is entered onto the end of a linear reaper queue. If the

proportion of memory allocated within the soup exceeds a certain threshold which is

configurable within the soup_in file, then the creature at the top of the reaper queue

46

Figure 4.3: This schematic diagram illustrates the structure of the Ray style self copier.
Template addresses are denoted within square brackets. Registers with an asterisk
superscript represent situations where the data within the register is not interpreted
directly as numerical data, but as a pointer to data at address location within the soup.

47

will be “killed”, at which point it is removed from the queue and its CPU is removed

from the system. Certain actions within Tierra are considered “errors”, for example,

a creature trying to write data to a memory location in which it does not have write

access. Every million CPU executions the error count of the creatures in the queue are

analysed. If a creature has generated an error count greater than that of the creature

above it in the queue, then the two creatures will trade places, moving error prone

creatures one position higher in the queue and therefore resulting in an earlier death.

Conversely, a successful birth of an offspring will result in the parent creature swapping

places with the creature below it in the queue, extending the lifetime of reproducing

creatures. However, as a successful birth coincides with a new creature being inserted

into the bottom of the reaper queue, shifting the entire contents of the queue up one

step, the act of reproduction will effectively result in the parent creature remaining in

the same position while all other creatures move up the queue.

Memory Allocation

By default, all memory locations within the soup have write protection. In order for

a creature to reproduce it must seek write permission on a block of memory within

the soup. If no suitable contiguous blocks of memory are available, than the reaper is

activated and creatures are reaped until a suitable block of memory becomes available.

A creature may only have write permission to one contiguous block of memory at any

one time. Once a parent and offspring successfully divide, write permission is removed

and neither parent nor offspring can modify the content of the offspring’s memory.

Perturbations

There are three classes of random perturbations which may disrupt the functioning of

creatures within Tierra: point perturbations, splicing, and flaws.

• Point Perturbations:

Point perturbations affect the memory locations within the soup. This pertur-

bation may either be a bit flip, where a single bit is flipped, or a replacement,

where the number is replaced by a random number within the available symbol

alphabet.

There are two actions which may trigger this class of perturbation. Each time a

CPU executes an instruction, there is a certain probability that a random memory

location within the soup will be perturbed and its contents will be altered. Sec-

ondly, upon birth of an offspring, a random memory location within the offspring

creature may be targeted, and a point perturbation may be applied.

• Splicing:

There are three splicing mechanisms implemented in Tierra and they may only

occur within a creature at the time of birth. Splicing may occur at random

48

locations within a creature, or between segment boundaries marked by template

addresses.

Deletions. There are two types of deletions, point deletions and segment deletions.

Either a single symbol, or a segment up to half of the offspring’s total length may

be deleted. During a deletion, the Tierra operating system effectively overwrites

the symbols which are to be “deleted” with the offspring’s memory image im-

mediately to the right of the segment to be deleted. Next, a section of memory

to the very right of the creature, of equal size to that which was to be deleted,

is freed and memory protection is removed to create a shorter creature. For ex-

ample, if a hypothetical offspring’s memory image was the sequence of numbers

[1,2,3,4,5,6,7,8,9], and the segment [4,5] was to be deleted, the memory

image [6,7,8,9] will be copied by the Tierran operating system, and written

to memory, starting at the memory location [4], leaving [1,2,3,6,7,8,9,8,9].

As the memory image to be deleted was 2 symbols long, the last two symbols in

the memory image lose their write protection, so the memory image will now look

like [1,2,3,6,7,8,9]8,9 where the final two symbols still remain in memory but

do not have any write protection, leaving the offspring 2 symbols shorter.

Insertions. Similar to deletions, there are point and segment insertions. A random

creature within the soup is chosen and a segment of memory up to half of its total

length is selected. A random location within the offspring is targeted and selected

segment of the random creature is written to memory, followed by the memory

image of the offspring immediately to the right of the target location, overwriting

any underlying memory locations. For example, if an offspring with a memory

image [1,2,3,4,5,6,7] is selected for an insertion, a random point within the

creature is selected, e.g, after the fifth symbol. The entire offspring’s memory

image directly to the right of this point, [6,7], is copied by the Tierra operating

system. A segment of a random creature within the soup, e.g. [8,9,10], is

also selected and copied by the Tierra operating system. The random creature’s

copied segment is now written to the offspring’s memory image starting after the

fifth location, and the copied segment of the offspring is written next in memory.

As this “inserted” segment is three symbols long, the size of the offspring’s write

protected memory image is extended by three symbols and the final offspring’s

memory image will be [1,2,3,4,5,8,9,10,6,7].

Crossover. A random creature within the soup is targeted and a segment within

its memory is selected. A random crossover point within the offspring is tar-

geted which divides the offspring into two segments. The smaller segment of the

offspring is replaced by the previously selected segment from the random creature.

• Flaws:

Flaws are perturbations which affect the contents of the registers within a CPU.

49

When performing arithmetic such as adding or subtracting data, flaws may be

introduced which vary the outcome by +/- 1.

4.2.4 Conclusion

Tierra is a possible candidate for supporting the von Neumann architecture as it allows

for inheritable variation for self reproducing programs. However, Tierra was initially

designed with self copying programs in mind. Significantly more complex programs

must be designed in order to display von Neumann style reproduction which implements

a mutable genotype-phenotype mapping. The default instruction set is very limited

and only allows for very specific registers to be utilised for memory manipulation. For

example, the only instruction which copied data from one memory location within the

soup to another, is the movii instruction, which copied the contents of the address

pointed at by register Bx to the address pointed at by register Ax. There is no general

instruction for copying the contents of a memory address to a register, or for copying

the contents of a register to a location in memory. There are only push and pop

instructions to move data between four out of the possible six general purpose registers,

further limiting the functionality of the instruction set. Finally, there are only two

instructions which perform arithmetic, subcaab and subaac, which perform subtraction

and no instruction for addition. Out of a possible six available registers, these two

instructions only allow subtraction between Ax and Bx, and Ax and Cx. A series of

push and pop instruction must be performed if arithmetic must be performed on any

other registers, making both the task of designing of programmes significantly more

difficult, and also limiting the amount of registers which arithmetic may be performed,

therefore decreasing the evolvability of these programs. Many changes must be made

to the Tierra source code, and to the default configuration options of Tierra before the

von Neumann architecture can be straightforwardly implemented within Tierra.

50

Chapter 5

Implementation of von

Neumann’s Architecture Within

Tierra

51

5.1 Chapter Overview

The previous chapter described the Tierra operating system in detail and explained

why it might be a suitable evolutionary platform for hosting von Neumann style self

reproducers. It also discussed some of the limitations of the Tierra platform in relation

to programming a von Neumann type ancestor. Certain changes must be made to

the Tierra default instruction set in order to allow it to host such an ancestor. In

this chapter, specific details of possible methods in which such an architecture may be

implemented within Tierra are also discussed and solutions are proposed.

5.2 Implementation of von Neumann’s Architecture for

Machine Self Reproduction Within The Tierra Plat-

form

5.2.1 Implementation of a mutable genotype-phenotype mapping

within Tierra

The genetic code is a nearly universal feature of life on earth, (Bedau, 2003) and yet it

is difficult to understand how it could evolve to the high level of complexity to which it

exists today. Although von Neumann’s architecture allowed for heritable mutations to

all aspects of the general constructor, which includes the genotype-phenotype mapping,

von Neumann himself stated that a mutation which affects the functionality of the

genotype-phenotype mapping, will result in a sterile offspring:

If there is a change in the description φ(A + B + C + D), then the

system will produce, not itself, but a modification of itself. Whether the

next generation can produce anything or not depends on where the change

is. If the change is in A, B, or C, then the next generation will be sterile.

—(Von Neumann & Burks, 1966, p. 86)

This hypothesis had not been experimentally tested, so this thesis aims to explore the

mutational space of digital organisms with a von Neumann architecture to build a case

for, or against, the possibility of a mutable genotype-phenotype mapping.

Typically, self reproduction within Tierra is accomplished via self copying, where

a creature must inspect its entire memory image in order to construct an identical

offspring. This mechanism is loosely analogous to the reproduction process which

occurs in the RNA world hypothesis which posits that at the earlier stages of evolution,

RNA acted as both template and template-directed polymerase, and there existed no

distinction between genotype and phenotype. In order to implement the von Neumann

architecture within the platform of Tierra, the seed automaton must enforce a division

of labour between the storage of genetic information and the catalytic functionality,

hence recognising the roles of genotype and phenotype. Furthermore, the phenotype

52

must consist of three1 subcomponents of a von Neumann self reproducer’s phenotype;

the general constructor A, the copier B and the control mechanism C.

5.2.2 The Instruction Set

While initially designing the von Neumann architecture within Tierra, it came to light

that for many reasons the default instruction set configuration, and furthermore, the

set of instructions available within the Tierra instruction library, was unsuitable and it

was necessary to expand the instruction library in order to construct the new ancestor.

Code revisions can be seen in Appendix D.

Memory Manipulation

The general constructor (or programmable constructor) within a von Neumann self

reproducer must be able to decode (or be programmed to decode) any computable

function. A Turing complete general constructor allows for any possible genotype to

be decoded during construction of an offspring phenotype. Tom Ray states that the

Tierran language is Turing complete, as:

Sets of machine instructions similar to those used in the Tierra simulator

have been shown to be capable of ‘universal computation’. This suggests

that evolving machine codes should be able to generate any level of com-

plexity —(Ray, 1991).

However, there is one crucial difference between his default instruction set, and

those of other assembler languages. The default Tierra instruction set does not include

a generic memory read or write instruction. Assembler languages usually have an

instruction for reading from memory, and a separate instruction for writing to memory,

however, the default Tierra instruction set combines these two actions into a single

instruction, movii, which copies the contents of the absolute memory location pointed

at by the Bx address, to the contents of the absolute memory location pointed at by

the Ax register. In doing so, the reading and writing of data is performed in a single

instruction and therefore, it is impossible to directly inspect and perform arithmetic

manipulation on the contents of memory address.

A much more practical approach would be to split the movii instruction into a

read and write instruction, which would allow a creature to examine data within its

own memory space. The Tierra instruction library does contain two pre-programmed

instructions, movdi (read) and movid (write), which can be included within the instruc-

tion set of a particular run, which allow data to be copied from memory to a register,

and from a register to memory. movdi will copy the contents of the absolute mem-

ory location pointed at by the Bx address to the Ax register, and movid will copy the

1We will ignore the ancillary machinery D at this point as it is not immediately relevant to the
process of self reproduction in the Tierra framework.

53

contents of the Bx register to the memory location pointed at by the Ax register. How-

ever, there are there is no choice between choosing the source and destination registers,

which further increases the convoluted task of programming with Tierra, furthermore,

the mnemonic movdi does not relay any information to the programmer as to which

are the source and destination registers.

A set of instructions of the form movaB was therefore added to the Tierra source

code. This instruction allows the CPU to read the numerical data in the location

pointed at by the Bx register, and store this number within the Ax register. This

instruction mnemonic takes the form [instruction type][destination][source],

where the letters in the operands highlight which registers will be affected. For upper

case letters, the data within the specified register acts as a pointer to the corresponding

absolute memory address in the soup, and the data within that memory location is

accessed. For lower case letters, the data within the specific register itself is accessed.

A complete set of mov instructions were added to the instruction set to allow data to

be copied freely between any of the registers and the soup, which allowed for easier

programming of the creatures.

Tierra was designed with 6 general purpose registers, however, the initial instruction

set only includes push and pop instructions for 4 of these registers. This limits the

functionality of the creature and makes it more difficult to develop increasingly complex

creatures. push and pop instructions were accordingly added for all available registers.

Calculation

The Tierran instruction library is also very limited by the small number of

pre-programmed instructions which can perform calculations upon data. For

addition, there was only one instruction, addbbc. For subtraction, there

were only two options, subcab or subaac. This mnemonic takes the form

[operation][destination][source][source] so for example, it is possible only to

add the data in Cx and Bx together and place the sum in Bx. This limitation on avail-

able registers for performing arithmetic poses difficulty when designing more complex

creatures, as each arithmetic operation becomes increasingly convoluted as they must

be preceded and followed by a series of pop and push instructions in order to move the

data within the registers to the appropriate positions temporarily in order to perform

the calculations.

There was only an increment, inc, instruction available for Ax, Bx and Cx, and a

decrement instruction, dec, for Cx, which means that in order to increment or decre-

ment any other register, a series of push and pop instructions must also be executed.

The instruction set was therefore expanded to include a wider variety of add, sub, inc

and dec instructions to simplify the programming of more complex creatures.

54

Figure 5.1: Schematic diagram representing the memory image of a Von Neumann style
ancestor in Tierra.

Instruction Pointer Manipulation

The initial instruction library included a conditional jump instruction ifz, which checks

if the number stored within the Cx register equals zero. If true, the next instruction

would be executed, otherwise the next instruction would be skipped.

There was no conditional jump instruction which checks if the number within Cx

is not equal to zero, ifnz. This limitation somewhat complicates the procedure of

creating conditional jumps and loops in Tierra, so the instruction ifnz was created

and inserted into the instruction library.

5.2.3 The von Neumann Ancestor Structure in Tierra

A von Neumann style architecture that reproduces via implementation of a genotype-

phenotype mapping was designed within Tierra as outlined in Figure 5.1. Prior to

reproduction, this seed creature first inspects its genome and calculates the appropri-

ate offspring size and allocates a block of memory. While constructing an offspring

phenotype, the CPU incrementally steps through each memory location within the

parent genotype and the symbol stored at each address is inspected. The creature

then decodes the genotype under some arbitrary genotype-phenotype mapping, and

uses this description to construct the offspring phenotype. Following the construction

of the offspring phenotype, the parent’s genotype is then copied to the offspring space

and the connection between parent and offspring is severed. At this point the parent

loses write access to the offspring’s memory block and a new CPU is created and al-

located to the offspring. While copying the genotype, should a random perturbation

occur which affects the encoded description of the general constructor (or otherwise

modify the decoding process), then the creature’s offspring will incorporate a mutated

genotype-phenotype mapping. This is the particular phenomenon which is initially to

be investigated.

55

5.2.4 Conclusion

This chapter discussed the relevance of investigating symbol systems which reproduce

via implementation of a mutable genotype-phenotype mapping. How such a system may

be designed and implemented within Tierra was presented. The default instruction set

for Tierra was severely limited so many new instructions were added to increase the

functionality of the Tierran instruction set, and also allow easier programmability. A

possible ancestor structure was described which could possibly implement a mutable

genotype-phenotype mapping. The next chapter describes the experimental procedures

which were carried out when implementing a von Neumann ancestor within Tierra. The

resultant data which was produced from the experiments is documented and analysis

of these results is presented.

56

Chapter 6

Experimental Procedure, Results

and Discussions

57

6.1 Chapter Overview

The previous two chapters described the Tierra platform in detail, von Neumann’s self

reproducing architecture, and a possible mechanism in which a von Neumann style

creature may be implemented within Tierra. This chapter introduces the designed

creatures and documents a series of experiments using these creatures. The particular

phenomena which were observed during these experiments are presented, analysed and

discussed. The experiments within this chapter were run on Tierra 6.02, however it

was necessary to make several revisions to the initial source code in order to achieve a

suitable platform. The revisions which were applied are documented and explained in

Appendix D. The revised source code, experimental data, analysis tools and designed

creatures can be found at http://alife.rince.ie/db_phd_2015/. Furthermore, in

order to analysis the data produced from evolutionary runs, several analysis tools were

created, written in the Python programming language. These tools were developed to

analyse data, specific to these experiments, e.g., searching for change in the genotype-

phenotype mapping of a lineage, however, useful data analysis tools which can be

applied to any Tierra run were also created, such as tracing the lineage from a specific

creature to the seed ancestor, and graphing the population of a specific strain from

its emergence to its extinction. The created data analysis tools are documented in

Appendix E.

6.2 Experimental Procedure, Results and Discussions I

At the highest level, a von Neumann creature is comprised of two distinct components,

a passive genotype, which acts exclusively as an information store for a creature’s

description, and an active phenotype, which is responsible for all dynamic functionality

of the creature including the ability to decode the genotype and construct the described

creature to implement self reproduction. Each word value or symbol in the Tierra

memory may be interpreted as either (numerical) data, or a functional instruction,

depending on how the symbol is used in practice. Symbols situated within the genotype

will be labelled g-symbols, and symbols situated in the phenotype will be labelled p-

symbols. Both g-symbols and p-symbols share the same alphabet, which is a subset of

the maximum available word alphabet within Tierra.

In order to encode the phenotype of such a creature, some particular genotype-

phenotype mapping must be implemented. The evolutionary dynamics of a lineage

seeded from such a creature will be significantly affected by the nature of this arbitrarily

selected initial mapping.

For the purpose of this study, a simple bijective, mono-alphabetic substitution map-

ping was initially chosen. This was loosely based on the biological genetic code, in

which an mRNA, consisting of a one-dimensional string of symbols (nucleotides), is

transcribed into a different one-dimensional string of symbols (amino acids). If a single

58

http://alife.rince.ie/db_phd_2015/

letter in an mRNA codon gets perturbed, then the affected codon may result in the

incorporation of a different amino acid in the constructed protein.

If such an architecture is implemented which allows perturbations to the genotype

which may alter the description of the general constructor, specifically, altering the

genotype-phenotype mapping function ψ(), then new evolutionary trajectories may

arise where creatures implement an altered genotype-phenotype mapping.

This mapping process can be implemented via a look-up table within the general

constructor. This is only one specific mechanism which allows for the implementation of

this particular mapping and is by no means a fundamental requirement, as there exists

countless other formalisms which would satisfy the conditions for von Neumann style

self reproduction, so we must be aware that any phenomenon observed may be specific

and characteristic to the specific substitution mapping system which is implemented.

The look-up table consists of a simple one-dimensional symbol string representation

of all the available p-symbols in the intended phenotype space under an arbitrary

permutation. The permutation of p-symbols within the look-up table will determine the

genotype-phenotype mapping which is implemented within this substitution mapping.

During construction of an offspring phenotype, the parent’s genotype is incrementally

examined by the general constructor in order to decode each g-symbol. A g-symbol is

read and stored in a dedicated CPU register. This symbol is then used as a numerical

offset for a look-up table pointer, changing the look-up table pointer to an address in a

corresponding position within the look-up table. The symbol stored in this location is

now accessed and can be copied and written to the offspring phenotype where it may

subsequently function as an instruction or as numerical data. This activity facilitates

the mapping of passive g-symbols which are stored within the parent genotype, to active

p-symbols incorporated in the offspring phenotype.

Because the decoding mechanism which includes the look-up table is situated within

the phenotype, and therefore itself has an encoded description within the genotype, it

is subject to heritable mutations. Random perturbations within the genotype which

alter the description of the decoding mechanism may result in a mutation of its off-

spring’s genotype-phenotype mapping. This may have the effect of introducing new

mutational pathways for the creature, which were not possible under the previous

genotype-phenotype mapping.

For the initial investigation, an arbitrary substitution mapping from genotype to

phenotype was chosen, where the g-symbols were mapped onto arbitrary p-symbols.

This initial substitution function ψ() is determined by the permutation of symbols

within the look-up table. It is worth noting however, that regardless of the initial

permutation chosen for the (phenotypic) look-up table, the initial description of the

look-up table within the genotype will always be the same consecutive sequence of

symbols. If we let S represent the non-permutated list of symbols which exist in the

particular Tierra configuration1, then the permutation of the look-up table depicts how

1In this case, the non-permutated list of symbols is represented by a list of consecutive binary

59

each individual element within this non-permutated list of symbols is decoded under

ψ()2. The look-up table can now be described as ψ(S). If a phenotype in encoded

to generate a seed creature genotype, the encoded look-up table would be represented

by φ(ψ(S)) = ψ−1(ψ(S)) = S. Therefore, regardless of the initial permutation of the

look-up table, the encoding of the initial look-up table in the genotype will always take

the form of S. A series of look-up table based creatures were designed and a schematic

flowchart of the final prototype is shown in Figure 6.1.

6.2.1 Classifications of Emergent Behaviour

When discussing the emergent behaviour which may arise from evolutionary models

such as Tierra, it is worth first classifying the various types of behaviour which we

might expect to see. Cariani (1991) described “emergence-relative-to-a-model” where

the model constitutes the observer’s expectations of how the system will behave in the

future. If the system evolves such that the model no longer describes the system, we

have emergence in this sense.

Cariani recognised three different types of such emergence: syntactic, semantic and

pragmatic. Syntactic (symbolic or non symbolic) operations are those of computation.

Semantic operations are those of measurement and control. Pragmatic operations are

those of performance-measuring and relates to criteria which controls the selection

(Ray, 1991).

In relation to Tierra, symbolic emergence (syntactic), takes place within the CPU

registers where arithmetic operations take place, while non-symbolic emergence takes

place within the memory locations of the soup. Symbolic emergence arises via non-

hereditary perturbations to mathematical operations such as a CPU performing an

add or subtract incorrectly. Non-symbolic emergence relates to any change in the

executable code and data of the creature.

Semantic emergence affects the creature’s sensory subroutines, and how it “com-

municates” with itself or its environment. In Tierra, this type of emergence generally

occurs via the modification of the template addresses. There are two different functions

of templates address in Tierra, which are distinguished here as source templates, and

destination templates. A source template is a template address which informs the CPU

of the nop0/nop1 sequence which must be searched for. This form of template gen-

erally exist within the memory image of the creature which owns the executing CPU

(unless the CPU has been captured by another creature). A destination template may

exist anywhere within the soup, be it within the creature itself, within a neighbouring

creature, or within unallocated memory previously allocated to a deceased creature3.

numbers from 00000 to 11111 when using a 5 bit symbol alphabet (32 symbols).
2The first location in the look-up table represents which p-symbol is mapped onto by 00000. The

second position in the look-up table represents which p-symbol is mapped onto by 00001 etc.
3When a creature is reaped, write protection is removed from its memory space, and its CPU

is removed, however, its contents is not deleted, so unallocated space within the soup will generally
contain the fossil remains of reaped creatures.

60

Figure 6.1: This schematic diagram illustrates the structure of the look-up table based
von Neumann style self reproducer which was designed. Template addresses are denoted
within square brackets. Registers proceeded with an asterisk represent situations where
the data within the register is not interpreted directly as numerical data, but as a
pointer to data at address location within the soup.

61

When the CPU processes a source template, the Tierra operating system will scan the

soup for the nearest occurrence of its complement, the destination template. When a

destination template is located, its absolute address location within the soup is identi-

fied and stored in a CPU register. If a source template is perturbed, the “meaning” of

the template changes and a different destination template will be sought, which may or

may not exist within the creature’s own memory image. Similarly, if a destination tem-

plate is perturbed, its “meaning” is also changed, so it may come to match a different

source template which uses the complementary nop0/nop1 pattern.

Pragmatic emergence, is the least common form of emergence and corresponds to

any Darwinian selection event which results in an increase in the fitness of the lineage.

Fitness in Tierra is implicit and is determined by the creatures themselves and their

ability to self reproduce, therefore, pragmatic emergence in Tierra would be recognised

as any change in the creature’s phenotypic behaviour which reduce the reproduction

time.

In order to model evolutionary behaviour and build tools which analyse the result-

ing data, one should ideally know what sort of behaviour is expected. By highlighting

the possible forms of emergence, we can now move forward and run evolutionary ex-

periments where we can predict and search for the particular forms of emergence which

are being investigated and be aware of other forms of emergence which may also emerge

but are not central to our research question, namely investigating the effects of imple-

menting a mutable genotype-phenotype mapping.

6.2.2 Degeneration to Self Copying

The soup was inoculated with the initial design of the von Neumann ancestor. Tierra’s

internal naming mechanism labels this creature as 0344aaa, which only tells us that

this creature is 344 symbols long. For clarity, a separate, complementary naming

scheme will be used in this text which will supply a brief description of the creature,

thus: vn_lut32_344. This indicates that it is a von Neumann style creature (vn),

its genotype-phenotype mapping incorporates a look-up table (lut), with a maximum

alphabet size of 32 symbols, and the entire creature is 344 symbols long, which is

documented in Appendix A.1. The applicable opcode.map files and soup_in files are

found in Appendix B.1 and Appendix C.1 respectively.

In the first set of experiments vn_lut32_344 reproduced effectively and populated

the memory to form a stable ecosystem provided all random perturbations are disabled.

This demonstrated that vn_lut32_344 is a stable self reproducer in the absence of

disruption. However, when random perturbations are switched on, a short period

of stasis would consistently be followed by a rapid change in population, where the

population of von Neumann ancestors would revert to a population of self copiers.

A self copier will generally reproduce at a greater rate than the von Neumann style

reproducer as it can simply copy its memory image during reproduction rather than

62

performing a comparatively time expensive decoding function. The emergence of self

copiers quickly drives the population of von Neumann style reproducers to extinction,

hence preventing any further study on the evolutionary trajectory of lineages with

the von Neumann architecture. Under investigation by comparing the memory space

of this self copier with that of the seed ancestor it was found that the ancestor had

undergone a single point mutation which resulted in the alteration of a source template.

In order to construct an offspring, the seed ancestor calculates its entire length, and

allocates a block of memory of equal size to construct its offspring. Next it calculates

the length of the offspring phenotype and then proceed to decode and construct an

offspring phenotype. Finally, it measures the genotype length, and proceeds to copy

the genotype to the offspring. When the genotype is copied, the parent divides and

resets its registers so that the process can start again.

However, the relative address #201 within vn_lut32_344, which is situated

within the genotype, was mutated from a 3 to a 2. The 3 and 2 g-symbols

translate to the p-symbols 0 and 1 respectively under the arbitrary mapping cho-

sen. This resulted in an instruction sequence call nop0 nop0 nop1 nop1 being

changed to call nop0 nop1 nop1 nop1. Within vn_lut32_344, the instruction se-

quence call nop0 nop0 nop1 nop1 is located directly after the offspring’s memory

image has been allocated, and directly before the genotype decoding subroutine.

call nop0 nop0 nop1 nop1 causes the current instruction pointer’s absolute address

location to be pushed to the stack, and the instruction pointer will then jump to its

complement, nop1 nop1 nop0 nop0 which marks the start of the genotype decoding

subroutine. The creature then decodes the genotype and creates the offspring pheno-

type. However, when the mutated instruction sequence “call nop0 nop1 nop1 nop1”

is executed, the instruction pointer jumps to the template nop1 nop0 nop0 nop0 which

marks the start of the creature’s genotype copy loop and completely skips the decoding

subroutine and the instruction sequence which fetches the start address of the genotype

and calculates the length of the genotype.

At this point, the destination register, Ax, contains the starting address of the

offspring. The source register, Bx, contains the starting address of the parent, and the

count register, Cx, contains the length of the entire creature. Therefore the mutant

will proceed to copy its entire memory image to the allocated memory block and divide,

completing the reproduction cycle. As the creature no longer requires a time consuming

decoding process, it will reproduce faster. Furthermore, unused symbols will occupy

the majority of the memory image of these newly created self copiers. These are

symbols associated with what previously acted as the decoding subroutine and the

entire genotype which are no longer used. The length of the creatures dominating

the soup immediately reduced following the emergence of a self copiers due to random

deletions removing these unused regions, creating shorter, faster reproducing creatures.

In any case, the von Neumann style reproducers, which are comparatively expensive

on CPU time will be selected against and become extinct.

63

This emergence of self copiers in these experiments impeded the study of the evo-

lution of the genotype-phenotype mapping, which was the intended aim of this study.

In order to tackle this problem, the initial creature design was revised. It was noted

that although the ancestor exhibited “genetic reproduction”, it was in at least one

sense not a full representation of the “von Neumann architecture”. The von Neumann

architecture includes a general constructor, which when provided with a description of

any arbitrary machine, can decode the description, and construct an offspring machine.

However, this seed creature did not follow this logical formalism as it was designed to

only construct creatures of equal length to itself. If the genotype were perturbed to

one which describes a creature of longer or shorter length than itself, then it could not

reproduce successfully. This is due to the fact that in order to allocate space for an

offspring, the creature would inspect its entire memory image and allocate a memory

block of equal size to write its offspring too. This method uses the length of the parent’s

phenotype plus genotype to calculate the offspring length. A true von Neumann self

reproducer should only examine the genotype in order to construct an offspring. A new

technique was designed and implemented, in which the ancestor calculates the required

space for its offspring’s memory image via inspection of the genotype alone.

In order to simplify the coding of creatures, the substitution mapping was modified

to be a simple identity map, and the instruction set was increased from 32 to 64, to

allow for extra functionality when coding.

6.2.3 Pathological Construction

Using the mentioned amendments, a new creature, vn_lut32_3114, was designed. The

creature’s code, opcode.map file and soup_in file are found in Appendix A.2, Ap-

pendix B.2 and Appendix C.2 respectively.

When all random perturbations are disabled, vn_lut32_311 reproduced effectively

and populated the memory to form a stable ecosystem of identical creatures, proving

that this creature was indeed, self reproducing effectively. However, when all ran-

dom perturbations are switched on a particular phenomenon was consistently observed

where what is here termed pathological constructors quickly emerged, which then typi-

cally leads to catastrophic ecosystem collapse. Pathological constructors are categorised

as creatures which repeatedly (and rapidly) construct multiple short, malfunctioning,

offspring. Pathological constructors are evolutionary dead ends in themselves (as they

do not self reproduce) but they are a hindrance to an ecosystem because their off-

spring, although sterile, still occupy both memory space and CPU time. If several

pathological constructors coincide in time, their production rate can be so high that

their non-functional offspring stochastically displace the entire population of functional

self reproducing creatures, resulting in ecosystem collapse. This is obviously a problem

as it prevents any long term evolutionary trajectories from being studied.

4Labelled 0311aaa by Tierra’s internal naming mechanism.

64

Under a series of simulations where each source of random perturbation was individ-

ually disabled, the disabling of the segment deletion perturbation showed an apparent

barrier to the emergence of pathological constructors. The conjectured interpretation

of this is as follows. When a large segment deletion occurs while copying the genotype

from parent to offspring, the resultant creature will typically consists of a functional

phenotype, but paired with a short, partial, genotype. This creature continues to pro-

duce offspring rapidly, (due to the drastically shortened genotype) but these offspring

are usually non-functional as they consist of a short, corrupt, phenotype, encoded by

the corrupted genotype.

For von Neumann style reproducers, all perturbations which affects the genotype

will result in a constructor which will create at least one offspring which may or may

not be functional. Genotypes which experienced a segment deletion will generally result

in pathological constructors which can construct many non-functional offspring before

being killed by the reaper. Therefore, under the possibility of segment deletions, von

Neumann style creatures, which differentiate between genotype and phenotype, regard-

less of any other details including the specific choice of genotype-phenotype mapping,

will be particularly prone to giving rise to pathological constructors. This is not gen-

erally the case with non von Neumann reproducers such as self copiers which do not

differentiate between genotype and phenotype.

An example can be shown for one specific example where pathological construc-

tors emerge relatively early in the runs. For each Tierra simulation, a pseudorandom

number generator is used to generate “random” perturbations. Within the soup_in

file, the seed to this pseudorandom number generator can be specified by the “seed”

parameter. Here the system was inoculated with vn_lut32_311 with a seed param-

eter of 50. By 11.5 million CPU cycles (each generation is approximately 1 million

CPU cycles) a new population of creatures emerge, which Tierra labels 0035aaa (Ap-

pendix A.6). This creature is the offspring of the pathological constructor 0669aaa

(Appendix A.7), where an instance of this pathological constructor is located at abso-

lute address location zero. By 14.5 million CPU cycles, there are 3672 creatures in the

system. 2348 creatures are instances of 0035aaa, a product of a pathological construc-

tor. 121 creatures are instances of 0034aaa, the product of another newly emerged

pathological constructor. Only 11 instances of vn_lut32_311 remain. The other 1192

creatures appear to be non self reproducing as their individual population count does

not exceed 1. At approximately 16 million CPU cycles, vn_lut32_311 is driven to

extinction. As vn_lut32_311 was the only strain remaining in the soup which was self

reproducing,eventually all remaining creatures are reaped and the ecosystem collapses.

This analysis concludes that the mechanism which results in ecosystem collapse due

to pathological constructors appears to depend critically on the inclusion of segment

deletion perturbations. This factor results in a propensity for segment deletions to lead

to very short genotypes, while still leaving a functioning phenotype.

By contrast, in order for a pathological constructor to emerge from a classic Tier-

65

ran self copier, relatively much more specific, multiple, coordinated mutations must

occur upon very specific locations, which will alter, but not corrupt the reproductive

functionality. This suggests that the probability of pathological constructors emerging

within a population of von Neumann reproducers in Tierra is much higher than that

of a population of self copiers.

The Heterogeneity of the Tierra Memory Space

Previously, experiments within Tierra were under the assumption that the memory

space is homogeneous. It was assumed that each location within the memory system

was identical so a creature’s chances of survival were not affected by its memory lo-

cation, but only by its reproductive capability and the actions of the other creatures

residing within the soup. However, it was discovered that the Tierra platform is actually

heterogeneous, and this property can significantly affect the outcome of an evolutionary

run, occasionally contributing to ecosystem collapse.

As already described, Tierra incorporates a template addressing mode. Thus, for

example, the jmp instruction destination is specified by matching complementary se-

quences of nops. However, each memory location is also assigned an absolute underly-

ing, numeric address, and the call and ret instructions indirectly rely on this absolute

addressing mode to position the instruction pointer in memory.

If a CPU executes the call instruction, the instruction pointer’s current absolute

address location is pushed to the stack. When ret is executed, the number at the top of

the stack is popped to the instruction pointer register, returning the instruction pointer

to the corresponding absolute address. Upon birth, the stack is initialised with zeros.

It follows that if a malfunctioning creature executes ret before pushing a value to the

stack, then this will redirect the CPU instruction pointer to the absolute address zero,

and execute whatever code is located there (either an active creature or fossil code).

This absolute addressing, implicitly employed by call and ret, introduces a level

of heterogeneity to the system, where within an ecosystem which includes a number

of malfunctioning creatures, address zero is a preferential location for a functioning

creature to exist. Any creature located at address zero can effectively “harvest” CPU’s

from a significant variety of malfunctioning creatures throughout the soup. In all

investigated instances, where ecosystem collapse was observed due to the exploitation of

pathological constructors, the creature type dominating the soup immediately prior to

collapse was a malfunctioning product of a pathological constructor which is located at

address zero. It seems that in order for pathological constructors to result in ecosystem

collapse, a relatively large population of pathological constructors may have to exist

within the soup simultaneously, specifically including a pathological constructor located

at address zero. It is apparent that the cumulative effects of multiple malfunctioning

creatures throughout the soup, relocating their CPU to address zero, may indeed result

in ecosystem collapse.

66

Furthermore, rare instances have been observed, where a pathological constructor

(0669aaa) creates offspring (0035aaa, Appendix A.6) which immediately executes the

ret instruction. When such a pathological constructor is positioned at location zero,

the CPU of each offspring it creates will immediately return to the parent at address

zero, resulting in exponential growth of the number of CPUs executing the patholog-

ical constructor’s code, and thus exponential growth in the number of malfunctioning

offspring created. This is in contrast to a pathological constructor positioned at any

other location, where the number of malfunctioning offspring would grow only linearly

in time. A single instance of such a pathological constructor, located at address zero,

has been shown to have the effect of completely exhausting the system of resources,

resulting in catastrophic ecosystem collapse.

6.2.4 The Emergence of Pathological Constructors from Self Copiers

Previous reported work with Tierra has been performed exclusively using populations

of self copiers, and the phenomenon of pathological constructors has not been reported

explicitly under these circumstances. However, there is evidence that suggests that they

may have been observed in previously documented experiments under the standard

Tierra distribution.

Simulations experimenting with so called “macro-evolution” were performed by

Tierra creator, Ray (1991), where CPU time is allocated to each creature as a func-

tion of creature length in order to study the evolutionary dynamics of larger creatures.

Thus, creatures of greater length are allocated a greater amount of CPU time. Under

these conditions, self reproducing creatures with lengths of up to 10 times that of the

standard Tierra ancestor are easily observed. Under these circumstances the following

has been recorded:

Two communities have been observed to die after long periods. In one

community, a chaotic period led to a situation where only a few replicating

creatures were left in the soup, and these were producing sterile offspring.

When these last replicating creatures died (presumably from an accumula-

tion of mutations) the community was dead. (Ray, 1991, p. 16 emphasis

added).

The direct origin and function of these creatures which caused ecosystem collapse

were not investigated and it was simply assumed that “Under these circumstances it is

probably difficult for any genotype to breed true, and the genotypes may simply have

‘melted”’ (Ray, 1991). However, in retrospect, this description of ecosystem collapse

correlates at least partially to our observations of ecosystem collapse following the

emergence of pathological constructors.

These experiments by Ray were performed with creatures which were initially 80

symbols long, and the minimum creature size allowed was 12. If a creature of length 80

67

reproduces on average once in its lifetime, then a similar sized creature with the same

lifespan should only be able to create at most 6 full malfunctioning offspring of length

12 before it is reaped. However a population where the average creature size is 10 times

longer potentially allows for 66 malfunctioning offspring of length 12 to be created be-

fore the parent creature is reaped. Without access to the original experimental data,

it is possible to speculate that this increase in creature length and reproduction time

may be one of the reasons why behaviour characteristic of pathological constructors

was observed here, but not on previous experiments. Moreover, the greater number of

potential malfunctioning offsprings possible will allow more time for a creature posi-

tioned at location zero to harvest the CPU’s of malfunctioning creatures and eventually

trigger ecosystem collapse before it is reaped.

6.2.5 Discussion

In order to study the evolutionary trajectory of the genotype-phenotype mapping of von

Neumann style self reproducers in Tierra, it is important that we address the problem

of pathological constructors.

Interestingly enough, in the course of a number of experimental runs natural se-

lection occasionally provided us with a new class of creatures, represented here by an

examplar denoted vn_lut32_413, which seemed to be less vulnerable to generating

pathological constructors, and also would drive the family of vn_lut32_311 to extinc-

tion. This creature’s memory image is found in Appendix A.3. This showed a distinctive

method of increasing the mutational robustness of a population of von Neumann style

reproducers, by effectively causing the abortion of pathological constructors before they

are assigned a CPU. This occurred from a single point mutation to a source template,

within the genotype inspection subroutine. Prior to reproduction, vn_lut32_311 mea-

sures the length of its genotype, and then doubles this figure in order to calculate the

size of the offspring memory image which will host both genotype and its described

phenotype. This technique is functional as the chosen genotype-phenotype mapping

has a 1:1 mapping between symbols in the genotype and symbols in the phenotype. It

follows that the genotype and phenotype are of equal lengths.

A mutation affecting a source template within this subroutine causes the creature

to calculate its genotype as being 50 symbols longer than it actually is. The resulting

offspring, vn_lut32_413, is now approximately 33% longer, increasing the overall crea-

ture length from 311 symbols to 413 symbols. The creature proceeds to successfully

construct an offspring phenotype and genotype as before; however the final 100 sym-

bols are not actually written into the offspring segment by the parent. They simply

contain unused data, fossil remains of creatures that have previously been reaped. This

mutation ensures that regardless of the length of the genotype, the offspring will always

contain 100 symbols of unused, essentially “junk” data.

It is stated in the Tierra documentation (Ray et al., 2000, Tierra Manual,

68

p. 17), that when a creature attempts to divide, a configurable soup_in param-

eter MovPropThrDiv is checked. If the parent creature has written less than

MovPropThrDiv times the size of mother’s memory image into the daughter’s memory

image, then the division will abort. The default MovPropThrDiv value of .75 (as used

in current experiments) means that the mother must write data to at least 75% of the

daughter’s memory image. The reason this parameter exists is that without it, mutant

creatures may allocate space for an offspring, and immediately execute the divide

instruction without copying any data at all to the offspring, hence rapidly creating

non-functioning, sterile offspring, which may eventually lead to ecosystem collapse, i.e.,

an extreme form of pathological construction. This problem was evidently recognised

and addressed by implementing a defensive feature, where in order for a creature to be

assigned a CPU upon birth, it must have at least 75% of its data written to it directly

from the parent. If over 25% of an offspring’s memory image does not contain data

written to it directly by its parent, then the division will be aborted, the parent loses

writing permission to the memory space and the space will not be assigned a CPU.

By ensuring that an offspring “must” contain 100 unused symbols which were not

written directly by its parent, vn_lut32_413, ensures that any mutated offspring which

experiences a segment deletion to the genotype, resulting in an offspring with less than

400 symbols, will not progress past the fetal stage, as less than 75% of its memory

image was written to by vn_lut32_413. In summary, an offspring of vn_lut32_413

whom experiences a segment deletion to the genotype, will only be allocated a CPU if

the segment deletions is 13 symbols or less. However, a segment deletion of this size is

generally not large enough to constitute an effective pathological constructor.

This mutated creature, vn_lut32_413 has the same gestation time as its predeces-

sor, vn_lut32_311, as no CPU time is spent copying the extra 100 symbols. However it

essentially cannot give rise to pathological constructors once its lineage appears in the

soup, less CPU time is “wasted” on pathological constructors and their malfunctioning

offspring, and more CPU time is allocated to the self reproducing creatures. Consis-

tently, vn_lut32_413 comes to dominate the soup, driving the initial von Neumann

ancestor to extinction.

A set of experiments were run, where a soup was inoculated with both

vn_lut32_311 and vn_lut32_413. The experiment was run 100 times with all pertur-

bations are switched off, until one of the strains went extinct. Neither strain appeared to

have a consistent advantage over the other, and each strain displaced the other approx-

imately 50% of the time. However, with perturbations switched on, vn_lut32_311 was

consistently driven to extinction. 100 more simulations were run where perturbations

were switched off and the soup was inoculated with vn_lut32_311. Tierra was run until

the soup was at maximum capacity with instances of vn_lut32_311. A single instance

of vn_lut32_413 was introduced to the soup and perturbations were switched on. Even

under these circumstances, where the population of vn_lut32_311 greatly outnumbers

the population of vn_lut32_413, in 76% of the runs the strain vn_lut32_311 was still

69

driven to extinction. These experiments demonstrates that both vn_lut32_311 and

vn_lut32_413 are equally fit when mutations are not a factor, however, in the pres-

ence of mutations, (specifically the segment deletion) vn_lut32_413 has a distinctly

higher fitness and even in a case where a soup is entirely populated by vn_lut32_311,

if just one instance of vn_lut32_413 emerges, there is a high probability that it will

drive vn_lut32_311 to extinction.

70

6.3 Experimental Procedure, Results and Discussions II

6.3.1 Modifications to the Tierra source code and configuration file

The previous section described the phenomenon of pathological constructors and the

emergence of the vn_lut32_413 lineage of mutants which prevented the emergence of

such a phenomenon. However, this in itself does not provide an adequate strategy for

resuming the investigation of genotype-phenotype mapping evolution for the following

reason. When a vn_lut32_413 style creature reproduces successfully, its offspring,

though functionally identical, will not in general be identical in memory image to the

parent. This is because the 100 extra unused symbols contain the fossil remains of

the creature which previously resided in that position in memory. After a successful

reproduction event, as the offspring may not contain the identical symbol sequence

as the parent, the Tierra system will classify this as a different strain and it will be

assigned a different label than its parent. This will make it very difficult at best,

to track the lineages of such self reproducing creatures. Furthermore, the space of

possible names for new creature strains will be rapidly exhausted. Tierra uses a three

letter label as an identifier for each distinct strain of creature at any given length,

eg., “aaa” in 0311aaa. This allows for 263, or 17576 distinctive labels to be saved

to the genebank for each length5. As every reproduction event of a creature such

as vn_lut32_413 may cause a new identifier to be allocated, the name space will be

exhausted rapidly. Therefore, in order to prevent ecosystem collapse by pathological

constructors, a number of modifications were made, both to the Tierra source code and

to Tierra’s configurable input parameters.

The previously mentioned flaw with the ret instructions led to a heterogeneous

memory space, and specifically allowed effectively exponential growth by a single patho-

logical constructor. A correctly functioning creature should only execute the ret in-

struction after executing a corresponding call instruction which pushes the next in-

struction pointer memory location to the stack. Now, although the soup is designed to

be a circular memory system, the virtual computer is actually built upon an underlying

linear memory system. A Tierran CPU may execute freely across the boundary be-

tween the end and the start of the soup to implement a circular memory space. Thus,

the only legitimate reason why a ret to address zero should be executed is if a call

instruction was situated at the last memory location in the soup, causing the subse-

quent memory address, address zero, to be pushed to the stack. However, the memory

allocation instruction mal does not actually treat the soup as a single circular memory

system, but rather as as a single linear memory space, so cannot allocate a single block

of memory that crosses over the start/end border. As it is impossible for a single crea-

ture to be situated in such a way as to span this border, there are no legitimate reasons

why a properly functioning creature should execute a ret to zero. Accordingly, the

5Due to a flaw in the Tierra code, non-alphabetic, and also non-printable ASCII characters are also
used. This is addressed in more detail in Chapter 7.

71

ret instruction was modified to address this problem. Any instance where a creature’s

CPU attempts to jump to address location zero following a ret instruction is treated

like a nop; the CPU does not execute anything and the instruction pointer is simply

incremented to the next location in memory.

Furthermore, another flaw was also found in the Tierra source code which resulted

in the instruction pointer jumping to address zero via a flaw in the jmp instruction.

The jmp instruction causes the instruction pointer to jump to a location in memory

determined by the subsequent nop sequence. However, if a malfunctioning creature has

a jmp instruction that is not directly followed by a nop sequence, then the instruction

pointer will jump to the address location, pointed at by the Bx register. As the initial

state of the registers is zero, if a malfunctioning creature executes a jmp without a

template address, before any data is pushed to Bx, then the instruction pointer will

jump to zero. This idiosyncratic function is clearly a flaw in the code, and was fixed

so that a jmp instruction simply behaves like a nop if it is not followed by a template

address.

These modifications were effective in preventing ecosystem collapse by pathologi-

cal constructors, and allowed experiments in which much more extended evolutionary

trajectories could be simulated and analysed.

Although the change to the ret and jmp instructions prevented ecosystem collapse,

pathological constructors can still easily arise within the soup and can still represent a

significant drain on CPU time, so further changes were made in an attempt to further

reduce the incidence of emergence of pathological constructors. This would allow the

evolution of the genotype-phenotype mapping to be better investigated without this

pathological constructor overhead.

Further changes were made to the soup_in configuration file which contains values

for the observational parameters and environmental variables that control each specific

run. All random perturbations with the exception of the single point perturbation and

the copy perturbation were disabled. As the segment delete perturbation was primarily

responsible for the emergence of pathological constructors, removal of this perturbation

greatly reduced the number of sterile creatures existing and consuming resources in any

given run.

In an attempt to simplify data analysis, the soup_in configuration file was further

set so that only creatures of the same size as the seed ancestor could be born. This was

achieved by switching on the DivSameSiz parameter in the configuration files which

ensures the when a divide is executed, a CPU is only allocated to the new memory

image if it is exactly the same size as the parent. This meant that for every self repro-

ducing creature to appear within the soup, the relative positions of all their subroutines

would typically be identical. This allowed for tools to be developed which automated

the analysis of the thousands of strains which emerge within an evolutionary run. The

look-up table (if present) would start and finish in the exact same location within each

creature, so data analysis tools could be written which easily located the look-up table

72

and compared it with that of the initial ancestor to see if it has changed. It must

be noted that mutations to the look-up table are not the only potential mechanism

which can affect the genotype-phenotype mapping. It is possible that alternative mu-

tations to the general constructor may affect the decoding mechanism and alter the

mapping. However, as the size of the creatures are fixed, and a changes of this nature

may require multiple, coordinated, simultaneous mutations, mutations of this nature

are neglected in the current analysis, and data analysis tools were written focussing

specifically on changes to the look-up table as a mechanism which can result in a

change to the genotype-phenotype mapping. It must also be noted that restricting the

size of potential offspring may also, in turn, reduce the evolutionary search space for

potential offspring. Evolutionary trends which are common in Tierra such as reduction

of creature size and parasitism will be eliminated with this change in the configuration

file. However, these phenomena have already been studied and documented in detail,

(Ray, 1991), so are of limited concern here. This investigation aims to provide proof-

of-principle examples where evolution results in a change in the genotype-phenotype

mapping, so the evolutionary search space of single point perturbations was chosen to

be investigated as a starting point.

The redesigned creature, vn_lut64_316, its opcode.map file and soup_in file are

located at Appendix A.4 ,Appendix B.3 and Appendix C.3 respectively.

6.3.2 Redesigning the von Neumann ancestor and introducing redun-

dancy; vn lut64 316

The redesigned ancestor vn_lut64_316 used a minimum of 28 distinct p-symbols in

order to self reproduce. However, the mRNA-amino acid genetic code of natural biology

consists of a genotype space of 64 different codons and a significantly smaller phenotype

space of 22 amino acids, plus reserved start and stop codons. For the next set of

experiments, in an attempt to mirror the redundancy of the genetic code and introduce

a greater potential for an evolution of the genotype-phenotype mapping, a genotype

and phenotype space of 64 was implemented rather than 32. This corresponds to 64

distinct g-symbols and 64 distinct p-symbols, only 28 of which have an active function

relied on for self reproduction, and 36 of which have no active function at all and are not

employed in order to self reproduce. To facilitate this, 36 extra nops were introduced to

the instruction set. This mapping is presented in the opcode.map file in Appendix B.3,

(see also Figure 6.2.)

6.3.3 Experimental Procedure

The Tierran soup was inoculated with vn_lut64_316. Point perturbations which af-

fect random memory locations throughout the soup (cosmic rays) and perturbations

which occur exclusively to symbols that are being written to memory locations in the

soup (copy perturbations) were enabled and the system was run for 100 billion CPU

73

Figure 6.2: The upper figure presents the mapping from mRNA to amino acid. The
lower figure presents the initial mapping from g-symbols to p-symbols, implemented
with vn lut64 316. Orange symbols highlight those which are non-employed and grey
highlights symbols which initially map onto non-employed p-symbols.

74

cycles, which corresponded to approximately 250 thousand generations6. Each dis-

tinct creature to emerge throughout the run was captured and the number of employed

and non-employed p-symbols within the look-up table for each creature was counted.

Employed p-symbols refer to those which have a functional role in the process of re-

production, while non-employed p-symbols are included to introduce a potential for

redundancy in the genotype-phenotype mapping and do not actively contribute to-

wards the reproduction process. If a specific p-symbol exists in the look-up table, then

there must exist a specific g-symbol which maps onto it, otherwise construction of an

offspring look-up table would not be possible. If a p-symbol is absent from the look-up

table then it is lost from the genotype-phenotype mapping. With our current mapping

system, a substitution mapping, it is impossible for a p-symbol which is absent from a

parent’s look-up table to be included in its offspring’s phenotype (with the exception,

of course, of random phenotypic perturbations introducing random p-symbols to an

offspring).

The population of non-employed p-symbols in the look-up table of each newly

emerging strains was then plotted against the time of emergence of that strain, and

this process was repeated 4 times. This result can be seen in Figure 6.3.

6.3.4 Results

Standard evolutionary Behaviour

The first set of experiments showed evolutionary behaviour qualitatively similar to

that documented in Ray’s initial experiments (Ray, 1991). Informational parasitism7

quickly emerged due to segment deletions resulting in the description of the look-up

table being omitted from the genotype. The resulting creature will redirect its CPU to

a neighbouring host to facilitate the construction of its phenotype and therefore expend

less CPU time per reproduction cycle due to its reduced length. Another evolutionary

phenomenon typical of Ray’s experiments is the reduction of creature size by reducing

template addresses where possible. While the programmer creating the creature may

use an initial template size of four nop instructions, evolution will typically reduce

the template size where ever possible, creating shorter and more efficient offspring.

For further experiments, measures were taken to eliminate the distraction of these

phenomena, such as only allowing point perturbations and only allowing offspring of a

specific length to be created.

6A generation in Tierra is a calculated time interval, which is determined by a rolling average of the
number of CPU cycles required for each creature present in the soup to reproduce once and die.

7Informational parasitism refers to a form of parasitism which accesses and reads a host’s memory
contents, but does not directly interfere with its functionality.

75

Evolution of the genotype-phenotype mapping

The aforementioned evolutionary behaviours have already been studied and docu-

mented, and therefore are not of primary concern, so for the remaining experiments the

system parameters were configured so that the creature size cannot change. This will

prevent the distraction of the discussed known phenomena occurring and allow us to

focus on the specific evolutionary changes which arise as a direct result of a change in

the genotype-phenotype mapping. Specifically, we will focus on changes affecting the

look-up table.

Initially, non-fatal inheritable silent perturbations of the genotype can occur in the

description the look-up table. A “silent” perturbation is here defined as one which

alters the genotypic sequence but does not affect the functioning of the phenotype.

This alters the genotype-phenotype mapping and allows previously silent g-symbols (by

silent g-symbols, we refer to g-symbols which were initially mapped onto non-employed

p-symbols) to be mapped onto employed p-symbols. This allows single employed p-

symbols to be mapped onto by multiple g-symbols.

The initial ancestor, vn_lut64_316, has 36 silent g-symbols, which are mapped

onto 36 different non-employed p-symbols. As neither the silent g-symbols nor the

non-employed p-symbols functionally contribute to the reproduction of offspring, the

silent mutations that affect which p-symbol the silent g-symbols are mapped onto are

random and arbitrary. However it was found that there was a strong bias towards the

mapping of silent g-symbols onto employed p-symbols. During an evolutionary run,

we see a sharp decrease in the number of non-employed p-symbols within the look-

up tables of newly emerging strains. Eventually, all 36 non-employed p-symbols are

eliminated from the creatures within the soup, and the 64 positions in the look-up

tables will consist entirely of employed p-symbols.

6.3.5 Discussion

In this particular “toy” model, the evolution of the genotype-phenotype mapping is

initially driven predominantly by the underlying dynamics of the coding system. The

nature of the substitution mapping mechanism employed means that certain pertur-

bations of the look-up table are not directly reversible. This results in a systematic

evolutionary change of the genotype-phenotype mapping, eventually eliminating all

non-employed p-symbols from the phenotype by ensuring that they are not mapped

onto by any elements of the genotype space.

Figure 6.4 demonstrates a small section of the look-up table and its description. By

studying a creature’s look-up table one can deduce the genotype-phenotype mapping

that is implemented by that creature. For this small section of the mapping between the

g-symbols and p-symbols, we see a set of four g-symbols, 0, 1, 2 and 3, which are mapped

onto four p-symbols which may be interpreted as numerical data or, as the instructions

nop0, nop1, nop2 and nop3 respectively. The red symbols within the look-up table

76

Figure 6.3: Four evolutionary simulations displaying the number of non-employed p-
symbols present in the look-up table of strains of newly emerging lineages. Out of
a maximum look-up table symbol size of 64, the initial creature has 36 distinct non-
employed symbols which quickly are lost from the look-up tables of newly emerging
creatures.

77

Figure 6.4: Schematic diagram to demonstrate how specific perturbations to a look-
up table’s description may lead to the loss of a symbol mapping when expressed in
the phenotype. The left hand column represents a section of the genotype encoding
of a look-up table, and the right hand column represents the corresponding look-up
table. (a), (b), (c), and (d) represents the subsequent generations of a creature after it
experienced a mutation.

represent non-employed p-symbols, while the grey symbols within the look-up table’s

genetic encoding represent the g-symbols which initially map onto a non-employed p-

symbol. Figure 6.4(a) demonstrates the initial 1st generation ancestor’s look-up table

and description. We can see here that the initial mapping which was chosen is both

injective and surjective (bijective), as each element of the genotype space is mapped

onto a different element of the phenotype space. This mapping is also invertible, as it

is possible to determine a unique genotypic sequence corresponding to any arbitrary

phenotype. This can be denoted by saying that P , φ(G) and G , ψ(P) where

ψ() = φ−1().

Figure 6.4(b) represents an offspring which experienced a mutation to the 3rd po-

sition in the look-up table’s description, changing symbol 2 to 0. For this particular

implementation of von Neumann reproduction, there is normally a one-generation de-

lay between when a perturbation occurs in a genotype and when the perturbation is

expressed in the phenotype. When this 2nd generation creature attempts to reproduce,

it must first copy its exact genotype to the 3rd generation offspring, Figure 6.4(c). The

2nd generation creature must then decode its own genotype, and construct the 3rd

generation creature’s phenotype. However, under construction of the phenotype, when

78

decoding the 3rd symbol in the look-up table description, the employed p-symbol 0,

(nop0), is written to the third position in the look-up table, and the previous non-

employed p-symbol 2 (nop2), is therefore lost from the genotype-phenotype mapping.

Even if the perturbed genomic position in the look-up table description gets per-

turbed back to the previous state, Figure 6.4(d), the non-employed p-symbol cannot

be re-instated to the phenotype. This is because the genotype-phenotype mapping has

been changed, and now the silent g-symbol, which initially was mapped onto a non-

employed p-symbol, 2 (nop2), is now mapped onto an employed p-symbol, 0 (nop0).

We also see that the mapping is now non-injective and non-surjective, as an element

of the phenotype alphabet, 0 (nop0), is mapped onto by more than one element of the

genotype alphabet, 0 and 2. Furthermore, another element of the phenotype alphabet,

2 (nop2), is not mapped onto by any element of the genotype space. This renders

the mapping non-invertible, as it is now impossible to determine a unique genotypic

sequence corresponding to any arbitrary phenotype as ψ() 6= φ−1() as now G = ψ∗(P).

The only mechanism in which this mutation (which completely removes a p-symbol

from the look-up table) can be reversed, is via a genotypic perturbation, which returns

the look-up table description to its previous state, followed by a phenotypic perturba-

tion, which directly introduces the lost p-symbol to the look-up table. Due to the ease

with which a non-employed p-symbol can be lost, and the level of difficulty required

to re-introduce the non-employed p-symbol to the mapping, there is a strong immedi-

ate bias present which quickly eliminates all non-employed p-symbols from the look-up

table.

This feature of the implemented mapping system does incidentally demonstrate

a particular mechanism whereby phenotypic perturbations may be inheritable under

the circumstance that the perturbation affects the function ψ(). If we have a machine

X = (A′+B+C+D)+φ(A+B+C+D), where A′ represents a general constructor with

a changed genotype-phenotype mapping ψ
′
(), then this perturbation will be inherited to

the offspring phenotype only if ψ
′
(G) = P ′, where G = φ(A+B+C+D) and P ′ = (A′+

B + C +D). In other words, this demonstrates an instance of Lamarkian inheritance,

where a perturbation of the phenotype is passed down to future generations without

any change to the genotype. However, in order for this to occur, the perturbation must

affect the component of the phenotype which decodes the genotype, such that that

same genotype will now be decoded to give rise to the new perturbed phenotype. In

general, this would be an extremely unlikely (yet not quite impossible) combination

of circumstances, and may relate to the points in Figure 6.3 in which we see brief

periods where new strains emerge, which include non-employed symbols within the

lookup table.

79

Mutational robustness and Darwinian selection.

In such a situation where redundancy is introduced to the look-up table and many g-

symbols map onto the same p-symbol, Darwinian selection may also affect the genotype-

phenotype mapping, and create a more mutationally robust genotype. In particular,

the allocation in which silent g-symbols are mapped onto employed p-symbols may be

subject to Darwinian selection. Following a perturbation to a g-symbol, a phenotype

may still preserve form if both g-symbols maps to the same p-symbol. Conversely,

as long as there is no redundancy, then the mapping cannot incorporate any inherent

mechanism to ensure stability to perturbations and help the phenotype preserve its

form under inheritable variation. Every p-symbol will have the same robustness to

mutation, no matter how frequently its description occurs in the genotype, or how

imperative it is to the correct operation of the phenotype.

For these experiments, there are only have 28 employed p-symbols, but 64 g-

symbols. Darwinian selection may select how the silent g-symbols are mapped upon

the employed p-symbols. A p-symbol which is very common within the phenotype, has

a higher probability of having some of its description perturbed within the genotype.

If a large percentage of the silent g-symbols are mapped upon the most frequent, em-

ployed p-symbols, then the phenotype will have an increased probability of remaining

unchanged following an inheritable perturbation to the genotype.

To test this hypothesis, a creature was engineered with a non-surjective genotype-

phenotype mapping. All silent g-symbols were mapped onto the employed p-symbol,

0 (nop0). 0 is very frequent throughout the phenotype, as it is used for template

addressing. The mutational robustness of 0’s description has now greatly increased,

as there are 36 possible genotypic perturbations which will still allow the phenotype

to remain unchanged. The Tierra soup was inoculated with two von Neumann self

reproducers, the original ancestor with a surjective genotype-phenotype mapping, and

the engineered ancestor with the non-surjective genotype-phenotype mapping. The

two creatures used distinctly different start address templates, so that the descendants

of each ancestor could be distinguished from each other. This simulation was run for

100 billion instructions and the experiment was repeated 100 times with only point

perturbations activated. It was found that in 76 instances the initial ancestor was

driven to extinction, while in only 24 instances the engineered ancestor with the non-

surjective genotype-phenotype mapping was driven to extinction. If both creatures were

equally fit you should expect that drift will eventually cause either of the creatures to

go extinct with an equal probability. These preliminary tests show that there may be

a selective advantage for distributing the silent g-symbols amongst the most frequently

occurring employed p-symbols, and therefore room for Darwinian selection to guide the

evolution of the genotype-phenotype mapping.

80

6.4 Experimental Procedure, Results and Discussions III

6.4.1 Alternative Implementation of the Genotype-Phenotype Map-

ping

For the next set of experiments, a different implementation of the same genotype-

phenotype mapping was designed in order to compare and contrast different systems to

explore further the scope of phenomena which may arise when implementing a mutable

genotype-phenotype mapping.

The previously implemented genotype-phenotype mapping mechanism which in-

cluded a look-up table relies on a indexed addressing system where a symbol in the

genotype can be interpreted as numerical data which is used to direct a pointer to a

specific location within the look-up table. The look-up table address is specified by in-

dicating its distance from another address, the base address, which is the first location

in the look-up table. The symbol within that specific memory address is then accessed

and used as the output from the mapping.

In order to design an alternative mechanism for implementing the genotype-

phenotype mapping, a system which utilises associative memory may be implemented.

For the look-up table mechanism, a g-symbol is interpreted as a number, which is

used as an index into a “value array”. The symbol at this address location is then

interpreted as the output to the mapping. For the associative memory mechanism,

a “key-value array” or “associative memory” was used in the form of a translation

table, where a g-symbol is interpreted as a key, and the creature must scan through

the list of entries, or key-value pairs within the translation table to find an entry where

the key-symbol is identical to the inspected symbol in the genotype. The associated

value-symbols will be accessed and returned as the output to the mapping.

The translation table therefore consists of two columns, representing of all the pos-

sible symbols which can be used as inputs to the mapping (keys), and all the possible

symbols which can be returned as outputs (key-values). Each symbol within the input

column will map onto a single symbol within the second column. The biological motiva-

tion for the implementation of a translation table is an attempt to mimic tRNA, which

acts as the physical link between a nucleotide sequence (genotype) and an amino acid

sequence of proteins (phenotype) according to the genetic code, by specifying which

sequence of nucleotides correspond to which amino acid.

6.4.2 Comparing and Contrasting the Different Mapping Implemen-

tations

Disadvantages of the Translation Table

The processing speed of performing a genotype-phenotype mapping via a translation

table will be significantly slower than that with a look-up table. In order to translate a g-

symbol to a p-symbol, the creature must potentially scan through the entire translation

81

table, and at row in the table perform a check to see if the input g-symbol is identical

to key symbol within that row.

If the input g-symbol does not match the key in any row then the mapping will

fail and result in an indeterministic offspring; unless this is tested and handled in some

deterministic way. However due to the limited functionality of programming within

Tierra, adding this feature would be quite complicated to implement, and further in-

crease the gestation time of each creature, so was ignored for the purposes of these

experiments. If a creature does not find a matching key-value within the translation

table, it will continue to scan through memory until it eventually detects a matching

symbol elsewhere, and use this symbol as a key and perform a symbol mapping. In

doing so, matching symbols which are not located within the creatures translation ta-

ble but elsewhere within it’s memory image may be used. Furthermore, if no matching

symbol is detected within the creatures memory image, the search will extend beyond

the creature itself, and may find matching symbols within the unallocated memory lo-

cations of the soup or within other creatures. This process is not only indeterministic,

but potentially causes a very significant increase in gestation time, so it is likely, al-

though not for definitely, that any such creature will have low fitness and be selectively

displaced.

Advantages of the Translation Table

Throughout a run, the size of the g-symbol alphabet is fixed, therefore this puts a limit

on the minimum possible size of the look-up table. Under evolution, as symbols are lost

from the mapping the size of the look-up table might also decrease to reduce the overall

creature size and result in a more efficient self reproducer. However, as the look-up

table ancestor uses relative addressing to locate the output to a genotype-phenotype

mapping, the length of the look-up table must always be large enough to decode for

the employed g-symbol with the largest underlying numerical value. For example, if

there are only 28 employed g-symbols, but one employed g-symbol has an underlying

numerical value of 127, then the look-up table must be a minimum of 127 symbols long

in order to contain the relative address 127. The look-up table itself cannot reduce in

size any further and will be unnecessarily inefficient if it is constrained to contain many

unemployed p-symbols.

By contrast, when using an associative memory approach, the size of the translation

table might more easily be reduced as unemployed symbols are removed from the

mapping. As only the employed symbols are necessary in the translation table columns,

the memory image of the genotype-phenotype mapping routine can reduce in size to

only include the table rows necessary for reproduction, increasing the efficiency of the

self reproducer. This is a potential advantage to implementing a mapping system

which utilized an associative memory rather than a value array (look-up table). It

must be noted that it is possible that this “advantage” may be offset by the possibility

82

of Darwinian selection resulting in a genotype-phenotype mapping where the employed

p-symbols are mapped onto by g-symbols with a lower underlying numerical value,

therefore allowing a reduction in size of the look-up table.

However, the preliminary experiments to be described here are not directly focus-

ing on analysing the change in fitness of creatures due to a change in the genotype-

phenotype mapping, and so to simplify the analysis of these experiments, only offspring

of equal size to its parent will actually be allocated CPUs. Under these circumstances,

this possible advantage could not occur as any creature whose translation table may

have been reduced would be reaped at birth.

6.4.3 The Structure of the Translation Table.

For this set of experiments it was decided to use the maximum memory symbol alpha-

bet size allowed by Tierra, to increase the possible space of potential redundancy in

the genotype-phenotype mapping. The underlying 8 bit data words which comprise

the Tierran soup allows for a maximum alphabet size of 256 distinct symbols. How-

ever, as the data words are numerically typed as signed integers, the numerical range

spans from -128 to +127. The use of negative numerical values introduces unnecessary

complication to designing and programming the mapping system so a 7 bit alphabet

size was used which only incorporated positive numerical values. Each data word can

be interpreted as either a g-symbol or a p-symbol so our initial mapping system will

require a translation table with 128 rows, containing the complete set of g-symbols in

the first column and the complete set of p-symbols in the second column.

The initial mapping will be a permutation mapping where the array of data words

which make up the set of g-symbols in the translation table, and the array of data

words which make up the set of p-symbols are permutations of each other, so every

symbol within the shared alphabet will appear exactly once in each column.

Within the translation table, the first column which contains an ordered set of

data words which represent g-symbols will be referred to as “K” (keys) and the second

column which contains an ordered set of data words which are interpreted as p-symbols

will be referred to as “V ” (key-values). The translation table, which is situated within

the phenotype can therefore be represented by [K,V]. The encoded description of the

translation table in the genotype can be represented by φ([K,V]) = [φ(K), φ(V)]

6.4.4 The Redesigned Ancestor, vn tt128 758

By definition, an arbitrary translation table is a table with 2 columns, and (in general)

an indefinite number of rows. The initial translation table which was designed for this

creature contained 128 rows. Each row contains a key for a specific g-symbol, an an

associated value for the corresponding p-symbol. In order to construct the translation

table, the table is stored sequentially by row in memory. Therefore the first two mem-

ory location in the translation table’s memory image contains a key its associated value

83

respectively. This pattern repeats throughout the translation table until every possi-

ble g-symbol and its associated p-symbol under the implemented genotype-phenotype

mapping are accounted for. This creature required 28 distinct p-symbols in order to

reproduce successfully, therefore, there were initially 100 unemployed p-symbols in the

genotype-phenotype mapping.

The redesigned creature, vn_tt128_758, its opcode.map file and soup_in file are

located at Appendix A.5, Appendix B.4 and Appendix C.4 respectively and is schemat-

ically represented in Figure 6.5.

During reproduction, when vn_tt128_758 is attempting to decode a g-symbol, it is

first copied to a general purpose register. The first cell in the first row in the translation

table is then inspected. If the two symbols are not equal then the translation table

pointer is incremented by two, and the next key in the translation table inspected. If

the two symbols are equal, the translation table pointer is incremented by one, and

the corresponding value is interpreted as the p-symbol to be used as the output to the

genotype-phenotype mapping. vn_tt128_758 is significantly longer than the look-up

table based ancestor, vn_lut64_316, and its rate of reproduction is much slower, taking

approximately 75 times more CPU instruction cycles to complete one reproduction

event than the vn_lut64_316 as its decoding process is more expensive on CPU time.

Nonetheless, with all perturbations switched off, vn_tt128_758 successfully self re-

produced and a population of descendent creatures proceeded to fill the soup, demon-

strating that it is a functional self reproducer. In an attempt to compare the two

different mapping mechanisms, simulations were run in order to detect if this alterna-

tive implementation of a substitution mapping also experiences a quasi-deterministic

loss of symbols from the genotype-phenotype mapping, which would be indicative again

of mutational irreversibility.

This experiment was run for 100 billion CPU instructions, as were the simulations

in Figure 6.3. However, this amounted to little over 2200 generations, as opposed

to 50,000 generations for the look-up table simulations. Initial experiments showed

that approximately 50 out of 100 possible distinct unemployed p-symbols had been

removed from the translation table. This was concluded as the symbols were absent

from the V column in the translation table, so there were no longer any g-symbols

which mapped onto these particular p-symbols. However, it was uncertain whether or

not the system had plateaued yet, or if the system simply was not given enough time to

plateau. It became clear that due to the significantly slower reproduction rate, and with

the available experiment hardware, it was no longer practical to run the experiment

long enough for all unemployed p-symbols to be lost from the mapping. In real time,

previous experiments were run for up to seven days, however with reproduction rates

approximately 75 times slower, this was no longer feasible.

In order to observe the evolutionary trajectory of this new mapping system, it was

therefore more practical to first analyse the space of possible heritable perturbations

which are possible with such a system, and then manually introduce perturbations

84

Figure 6.5: This schematic diagram illustrates the structure of the translation table
based von Neumann style self reproducer which was designed. Template addresses are
denoted within square brackets. Registers with an asterisk, represent situations where
the data within the register is not interpreted directly as numerical data, but as a
pointer to data at address location within the soup.

85

to observe the expected resultant behaviours, and see is it possible for single point

perturbations to result in the change of a genotype-phenotype mapping while still

rendering the creature a stable, deterministic self reproducer.

To study the possible heritable perturbations which are possible with such a sys-

tem, a methodical approach must be taken, where perturbations are applied to the

various conceivable configurations in which such a translation table may exist. First

the possibility for single point perturbations to result in a loss or introduction of symbol

mappings to the translation table is investigated. Secondly, the possibility of a change

to the mapping, while keeping the total symbol count constant is investigated

6.4.5 Investigation of Loss or Introduction of Symbol Mappings

Phenotypic Perturbations Affecting The V Column

The effects of single point perturbations on a translation table with an identity mapping

was first investigated as it is the simplest configuration that the translation table may

occur in. This mapping will be a bijection where every distinct symbol in the genotype

space will be mapped to a distinct symbol in the phenotype space. Both symbol sets

use the same alphabet of 128 symbols. Whether they act as a p-symbol or g-symbol

is determined by how they are interpreted by the general constructor. The genotype-

phenotype mapping for this system will be a permutation mapping, where each of the

128 symbols will appear once and only once in both V , and K.

If a phenotypic perturbation affects V , then this will inevitably result in an in-

deterministic offspring, as demonstrated in Figure 6.6 that represents a fragment of

a possible translation table, and of its genomic description. The left column which

contains K and V represents the translation table within the phenotype, and the right

column represents its description within the genotype. As it implements the identity

mapping, each key symbol is mapped onto the identical key-value symbol.

First the effects of perturbing the V column was studied, so the 1 symbol within V

was changed to a 2 in the second generation. This altered creature, although retaining

the same genotypic description, would execute a different genotype-phenotype mapping

as the g-symbol 1 now maps onto the p-symbol 2, so instances of 1 and 2 in the genotype

will both result in a 2 in the phenotype of the third generation. This creature has now

lost the ability to decode the g-symbol 1, so if 1 appears anywhere in the genotype

the creature will malfunction as it no longer possesses the ability to reliably decode

this g-symbol. In practice the offspring behaviour will be indeterministic as we cannot

predict an output to the g-symbol 1 as it does not exist within the K column of the

translation table.

This creature will step through the entire K column searching for the key symbol

1. As this key is not found within K, it will continue to search through the soup until

it eventually encounters an indeterminate matching symbol (or until the creature is

reaped). If a matching symbol is found, then an indeterminate symbol in the memory

86

Generation 1

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Generation 2

Phenotype Genotype

K V φ(K) φ(V)

1 2 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Generation 3

Phenotype Genotype

K V φ(K) φ(V)

2 2 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Generation 4

Phenotype Genotype

K V φ(K) φ(V)

? ? 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Figure 6.6: Schematic representation of a section the translation table within the phe-
notype, and the corresponding description within the genotype for a lineage over four
generations where a perturbation was introduced to the V column in the second gener-
ation. Highlighted symbols represent those which are different to that of the previous
generation.

87

location directly following this symbol will be copied to the offspring phenotype. This

not only drastically decreases the reproduction speed of such a creature, but results in a

creature with an indeterminate genotype-phenotype mapping (indeterminate offspring

strain). Thus, for this architecture, there are no cases of a single point perturbation

that affects the V column of a permutation mapping with no redundancy, that will

result in a deterministic self reproducer.

Consequently, every distinct symbol must appear twice in the translation table,

and also twice in its description φ(K) and φ(V). For this translation table, every g-

symbol available to the mapping must be located within the column K. However, K is

located within the phenotype, therefore if a distinct symbol is removed entirely from the

phenotype, then that symbol cannot be interpreted as a g-symbol. If a distinct symbol

is removed from the phenotype alphabet, and therefore removed from the mapping,

every instance of it must also be removed from the genotype to achieve a deterministic

self reproducer. Therefore, every distinct symbol must appear exactly once in both

columns V and K.

If a symbol is lost from the mapping via a single phenotypic perturbation, then that

symbol will still exist in the genotype. It is impossible to remove a symbol from the

mapping of such a system and result in a stable, deterministic self reproducer without

also removing every instance of that symbol from the genotype. Therefore at least 2

more point perturbations to the genotype would be needed to remove the symbol from

both φ(K) and φ(V).

Phenotypic Perturbations Affecting the K Column

For the next case, the effects of introducing a phenotypic point perturbation which only

affects the V column of an identity mapping was investigated, Figure 6.7

The K column is perturbed in the second generation so that the symbol with an

underlying numerical value of 1 is perturbed to 2. This perturbation results in the loss

of the key-value pair for the g-symbol 1. When the creature attempts to reproduce, it

is not able to decode the g-symbol 1 and an indeterministic key-value pair is produced

in the third generation. Furthermore, we note that the g-symbol 2 appears to have

two distinct possible symbol mappings in the second generation; it may be mapped

onto 1 or 2 as it is located both in the first and second rows of the translation table.

However, with this specific implementation, the first matching key will be selected as

the active symbol mapping and any following symbol mappings which include the same

key will not be accessed or used. When this creature attempts to reproduce (assuming

that the indeterministic key-value pair has not rendered the creature sterile or affected

any other key-value pairs), the g-symbol 1 cannot be decoded, and furthermore, the

g-symbol 2 (rather than 1, as previously) will be decoded to the symbol 1.

If the third generation reproduces, the key 1 is now re-introduced to the mapping

of the fourth generation, however the key 2 is lost, so this creature in turn will not be a

88

Generation 2

Phenotype Genotype

K V φ(K) φ(V)

2 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Generation 3

Phenotype Genotype

K V φ(K) φ(V)

? ? 1 1
1 1 2 2
3 3 3 3
4 4 4 4

Generation 4

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1
? ? 2 2
3 3 3 3
4 4 4 4

Figure 6.7: Schematic representation of a section the translation table within the phe-
notype, and the corresponding description within the genotype for a lineage over three
generations, where a perturbation was introduced to the K column in the second gen-
eration. Highlighted symbols represent those which are different to that of the previous
generation.

89

Generation 2

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1
2 2 2 2
2 3 3 3
4 4 4 4

Generation 3

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1
2 2 2 2
? ? 3 3
4 4 4 4

Figure 6.8: Schematic representation of a section the translation table within the phe-
notype, and the corresponding description within the genotype for a lineage over two
generations, where a perturbation was introduced to the K column in the second gen-
eration. Highlighted symbols represent those which are different to that of the previous
generation.

deterministic reproducer. From this example it can be seen that it was not the symbol

which was initially perturbed which was lost from the mapping, but the symbol it was

perturbed to which was lost. A 1 was perturbed to a 2, however, it was the symbol 2

which was then lost from the mapping. This is due to the importance of location of

symbol mappings in the translation table. If a symbol in K is perturbed to a symbol

which already exists below it, then the symbol it was changed to will be lost as it will

effectively “deactivate” the symbol mapping below it.

Figure 6.8 is an example of a perturbation to K in which a key is perturbed to a

key which is located above it. Here a 3 was perturbed to a 2 in the second generation.

Under this new genotype-phenotype mapping, the g-symbol 2 will still be decoded into

the p-symbol 2 as this symbol mapping is unaffected. However, the g-symbol 3 can not

now be decoded which results in an indeterministic offspring.

From these examples it is concluded that a single phenotypic point perturbation to

the K column cannot result in a stable, deterministic creature with a different genotype-

phenotype mapping. If a symbol is perturbed, and the symbol in which it is perturbed

to exists lower down in the translation table, then the symbol in which it was perturbed

to is lost from the mapping, other wise the symbol which was initially perturbed will

be lost from the mapping.

Genotypic Perturbations Affecting The φ(V) Column

A single point genotypic perturbation was now applied to the description of the trans-

lation table, within the φ(V) column, as demonstrated in the second generation in

Figure 6.9. In this situation, a 1 was perturbed to a 2.

90

Generation 2

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 2
2 2 2 2
3 3 3 3
4 4 4 4

Generation 3

Phenotype Genotype

K V φ(K) φ(V)

1 2 1 2
2 2 2 2
3 3 3 3
4 4 4 4

Generation 4

Phenotype Genotype

K V φ(K) φ(V)

2 2 1 2
2 2 2 2
3 3 3 3
4 4 4 4

Generation 5

Phenotype Genotype

K V φ(K) φ(V)

? 2 1 2
2 2 2 2
3 3 3 3
4 4 4 4

Figure 6.9: Schematic representation of a section the translation table within the phe-
notype, and the corresponding description within the genotype for a lineage over four
generations, where a perturbation was introduced to the description of V within the
genotype in the second generation. Highlighted symbols represent those which are
different to that of the previous generation.

91

As the genotype-phenotype mapping of the second generation has not yet changed,

this creature will reproduce using the initial mapping and decode the altered genotype

to produce the third generation with a translation table where the V column no longer

contains the 1 key-value symbol. The third generation will now implement a different

mapping where both g-symbols 1 and 2 will be mapped to the p-symbol 2. As it

reproduces, the fourth generation no longer possesses the ability to decode the symbol

which was perturbed, 1, however as this symbol still remains once in the genotype as

it was not removed from the φ(K) column, the creature will be indeterministic.

Genotypic Perturbations Affecting The φ(K) Column

A single point genotypic perturbation was applied to the φ(K) column within the

translation table’s description. In this case, the 1 symbol was changed to a 2 which

already appears below it in the translation table, which can be seen in Figure 6.10

The second generation creature will proceed to construct an offspring under the

unaltered genotype-phenotype mapping. This will produce a third generation whose

translation table no longer contains the key symbol 1 within the K column. The third

generation no longer possess the ability to decode the g-symbol 1 as it does not appear in

K. Furthermore, the g-symbol 2 is now mapped to the p-symbol 1. As this reproduces,

the fourth generation will have lost the ability to decode the g-symbol 2, furthermore,

the 1 g-symbol is mapped onto an indeterminate p-symbol, denoted by “?”. The ability

to decode for the symbol which was perturbed, 1, and the symbol which it was perturbed

to, 2, has now been lost from the mapping. As these two symbols still exist within the

genotype, this creature is indeterministic.

Finally, a different single point genotypic perturbation was applied to the φ(K)

column within the translation table’s description, Figure 6.11. In this case, a mutation

results in a key symbol 3 being changed to a 2 which already ready appears above it in

the translation table.

By the third generation when this mutation is expressed in the phenotype, the

creature has lost the ability to decode for the g-symbol 3, however, as the perturbed

symbol was changed to a symbol that already exists above it in the φ(K) column, then

the edited row will not affect the mapping of the symbol which it was perturbed to,

as it appears higher up in the translation table. The g-symbol 2 will still map onto

the p-symbol 2, and the g-symbol which was perturbed 3 is not mapped onto any p-

symbol. This creature has only lost one symbol from its mapping, the symbol which

was perturbed, and not the symbol which it was perturbed to so the fourth generation

will be indeterministic.

To summarise, with this specific substitution mapping, it is possible to lose sym-

bol mappings from a genotype-phenotype mapping via a single point perturbation.

Some single point perturbations result in two symbol mappings being lost from the

genotype-phenotype mapping. However, the offspring will always be indeterministic.

92

Generation 2

Phenotype Genotype

K V φ(K) φ(V)

1 1 2 1
2 2 2 2
3 3 3 3
4 4 4 4

Generation 3

Phenotype Genotype

K V φ(K) φ(V)

2 1 2 1
2 2 2 2
3 3 3 3
4 4 4 4

Generation 4

Phenotype Genotype

K V φ(K) φ(V)

1 ? 2 1
1 1 2 2
3 3 3 3
4 4 4 4

Generation 5

Phenotype Genotype

K V φ(K) φ(V)

? ? 2 1
? ? 2 2
3 3 3 3
4 4 4 4

Figure 6.10: Schematic representation of a section the translation table within the
phenotype, and the corresponding description within the genotype for a lineage over
four generations, where a perturbation was introduced to the description of K within
the genotype in the second generation. Highlighted symbols represent those which are
different to that of the previous generation.

93

Generation 2

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1
2 2 2 2
3 3 2 3
4 4 4 4

Generation 3

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1
2 2 2 2
2 3 2 3
4 4 4 4

Generation 4

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1
2 2 2 2
2 ? 2 3
4 4 4 4

Figure 6.11: Schematic representation of a section the translation table within the
phenotype, and the corresponding description within the genotype for a lineage over
three generations, where a perturbation was introduced to the description of K within
the genotype in the second generation. The targeted symbol was changed to a symbol
which already exists higher up in the table. Highlighted symbols represent those which
are different to that of the previous generation.

94

This indeterministic creature may still find a matching symbol within itself or else-

where in the soup and reproduce, however, this indeterministic symbol mapping, may

affect the symbol mappings of employed p-symbols lower down in the translation ta-

ble, and therefore result in sterile offspring, further decreasing the probability that a

perturbation of this nature will produce a stable reproducer. As each symbol occurs

at least twice in the genotype, within the description of the translation table, in order

to ensure a stable reproducer, at least one more consecutive mutation must occur in

the genotype, which replaces the indeterministic g-symbol, with one for which there is

a matching key in the translation table.

Similarly, in order to introduce a new symbol mapping to the translation table of a

stable, deterministic self reproducer, a minimum of two point perturbations must occur

within the genotype to introduce this g-symbol to φ(K) and φ(V). Furthermore, a fur-

ther two phenotypic perturbation must occur to introduce the p-symbol to the K and

V columns. Therefore, I conjecture that it is impossible for a single point perturbation

to result in a symbol mapping being added or removed to the genotype-phenotype map-

ping and still result in a stable, deterministic self reproducer. However, it is possible

that indeterministic creatures may reproduce successfully provided the indeterministic

symbol mapping does not affect the symbol mappings of employed p-symbols, therefore,

it is possible that a second mutation may occur within this indeterministic creature,

which removes the indeterministic g-symbol from the genotype, and renders it a deter-

ministic, stable, self reproducer. However, in order to introduce a symbol mapping to

the translation table, a minimum of 4 consecutive perturbations must occur, making

the probability of this occurring significantly less. Therefore, with the translation table

implementation of a substitution mapping, we should still expect to see an evolutionary

bias to where creatures experiences a quasi-deterministic loss of unemployed symbols

from the genotype-phenotype mapping, which would be indicative again of mutational

irreversibility, as was observed with the look-up table

Furthermore, the situation is complicated even further if a permutation mapping

is used instead of an identity mapping. For a permutation mapping, if for example, a

key-value is lost from the translation table, then because the g-symbols and p-symbols

share the same alphabet, somewhere else in the translation table, that same symbol,

which is acting as a key, will be also lost. The key-value which this key mapped onto

will be indeterministic in the next generation, and this may cause a chain reaction, until

an employed symbol is finally lost from the mapping, rendering the lineage infertile.

6.4.6 Investigating a Change in Mapping, Without the Loss or Addi-

tion of Symbol Mappings

The nature of this translation table requires the active genotype-phenotype mappings

to take the form of a permutation mapping between two symbol sets which use the

same alphabet. In general this permutation mapping can be decomposed into several

95

cycles, or ordered sets. For example, Figure 6.12 presents an example of an identity

permutation mapping. This initial mapping can be thought of five different cycles, each

with a cycle length one, where 1 maps onto 1 is a single cycle. 2 mapping onto 2 is a

second cycle etc. The different cycles are indicated by different colours.

Phenotype Genotype

K V φ(K) φ(V)

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

Figure 6.12: Schematic representation of a section of creature’s translation table and

its description which implements a permutation mapping which is decomposed into five

cycles, each of cycle length 1.

For the next example, Figure 6.13, the cycle length is increased so there is only one

cycle, in which all symbols are included, with a cycle length of five. For example, the

g-symbol 1 maps to 2, 2 maps to 3, 3 maps to 4, 4 maps onto 5, and 5 maps back onto

1.

Phenotype Genotype

K V φ(K) φ(V)

1 2 5 1

2 3 1 2

3 4 2 3

4 5 3 4

5 1 4 5

Figure 6.13: Schematic representation of a section of creature’s translation table and

description, which implements a permutation mapping which is decomposed into a

single cycle, with a cycle length of 5.

This mapping can be edited to create two cycles with a cycle length of three and

two, rather than one single cycle with a cycle length of five, as shown in Figure 6.14.

The first cycle is as follows: 1 maps onto 2, 2 maps onto 3 and 3 maps back onto 1.

For the second cycle, 4 is mapped onto 5, and 5 is mapped back onto 4.

96

Phenotype Genotype

K V φ(K) φ(V)

1 2 3 1

2 3 1 2

3 1 2 3

4 5 5 4

5 4 4 5

Figure 6.14: Schematic representation of a section of creature’s translation table and

description, which implements a permutation mapping which is decomposed into two

cycles, with cycle lengths of 3 and 2.

In order to change the mapping of a translation table type system without either

introducing or losing symbols from the mapping, then the cycles within the permutation

mapping must be changed while keeping the total number of symbols consistent. This

can theoretically be achieved by either increasing the cycle length of one permutation

mapping and reducing the cycle length of another, joining two cycles together to create

one larger cycle, or dividing a cycle up into two smaller cycles.

A permutation mapping is effectively cyclic, for example in Figure 6.14, in the first

cycle, 1 is mapped onto 2, 2 is mapped onto 3, and 3 is mapped back onto 1. In a closed

sequence of symbol mappings, we will refer to the final symbol mapping in the cycle as

the wrap around symbol mapping, as the final symbol to be mapped in a sequence must

be mapped onto the first symbol in the sequence. In order to break up a large cycle into

two smaller cycles, a division point within the cycle must be chosen. At that division

point, a symbol mapping must be converted to a wrap around symbol mapping, and

it must now map to the first symbol in the cycle. Furthermore, the symbol mapping

which was initially the wrap around symbol mapping, must also be changed to map

onto the symbol which marks the first symbol in the new cycle.

Similarly, if you wish to join two cycles, e.g., the two cycles in Figure 6.14, the first

wrap around symbol mapping 3 − 1, must be edited to map onto the first symbol the

second cycle, 3−4. Furthermore, the wrap around symbol mapping of the second cycle

5− 4 must be changed to now map onto the first symbol in the first cycle, 5− 1. Now

both cycles will be joined in one contiguous cycle, of cycle length 5, identical to the

initial translation table in Figure 6.13.

From this reasoning, in can be seen that in order to change the genotype-phenotype

mapping in a creature which implements this form of mapping, two symbol mappings

must simultaneously be changed in the translation table at once. This is impossible

to achieve with a single point perturbation in a translation table where every key and

key-value is only represented once. However this it is possible if we add extra key-value

pairs to the translation table, which will be demonstrated in the next section.

Due to the nature of this translation table, it is actually impossible to introduce

97

redundancy. In order for redundancy to occur, the set of possible g-symbols must

be greater than the set of allowed p-symbols. With a look-up table, it is possible

for multiple g-symbols to map into the same p-symbol, however, with this translation

table, each distinct g-symbol must only map onto one distinct p-symbol. It is possible

however, to have what will be referred to here, as dormant symbol mappings within

the translation table. The translation table may consist of a number of active and

dormant symbol mappings. A dormant symbol mapping refers to a row which exists in

the translation table that will not be accessed by the creature during reproduction. As

this ancestor uses key-value pairs to search for entries in the translation table, once a

matching entry is found, the creature performs the mapping and proceeds to decode the

next g-symbol in the genotype. If more than one identical key exists in the translation

table matching any given g-symbol, then only the first key in the sequence will be

accessed and contribute towards an active symbol mapping. It must also be highlighted

that within a stable self reproducer, there cannot exist any keys or key-values within

the dormant rows of the translation table, which do not already exist within the active

rows, as for a symbol to appear anywhere in the phenotype, the p-symbol must be

mapped onto by some g-symbol, and hence, appear within an active mapping. Therefore

this genotype-phenotype mapping is a permutation mapping, where every active entry

within theK column must also exist within the V column. Furthermore, as the dormant

key-value pairs also exist within the creature’s phenotype, any entry which is located

within a dormant key-value pair, whether it be a key or an associated key-value, must

also exist within an active key-value pair. It is impossible to have a stable, deterministic

self reproducer which has a symbol within a dormant key-value pair which is not also

the key-value symbol within some active key-value pair.

Introducing change to a permutation mapping

As described earlier, in order to change the genotype-phenotype mapping in a creature

which implements this form of mapping, two key-value pairs must simultaneously be

changed in the translation table at once. It is possible to achieve this via a single

point perturbation, which has the effect of converting the status of certain key-value

pairs from active to dormant, and similarly, convert dormant key-value pairs to active,

having the final effect of a translation table with two changed symbol mappings.

When the translation table is perturbed, this may have the effect of changing the

relative positions of different key-value pairs, and therefore have the effect of making

a previously dormant mapping active, making a previously active mapping dormant,

or both. If an active row is perturbed, then the key it is changing from must have

been situated above any other instance of it in K. The key that it changed to may be

situated either above or below. If a key is perturbed to a key which already exists above

it, than the perturbed row in the translation table will become dormant. Furthermore,

if the perturbed key within an active row already exists in a row further down in K,

98

than that row will switch from dormant to active as demonstrated in Figure 6.15. Here

is an example of a possible translation table with two cycles, one with a cycle length of

four, in which all symbol mappings are active, and the second cycle with a cycle length

of one in which this mapping is currently dormant, 3 mapped onto 4. This mapping

is a mutation from the the initial mapping illustrated in in Figure 6.13, in which the

key 4 now maps onto 1 following a single point mutation. A minimum of two further

mutations allows the final key-value pair to be lost from the mapping and is rendered a

dormant mapping. This dormant mapping has by chance been permutated to resemble

an already existing, active key-value pair within the translation table.

For clarity the genotype has been omitted from the following diagrams and a “sta-

tus” column has been included which highlights if a row in the translation table is

active, “A”, or dormant, “D”.

Generation 1

K V status

1 2 A

2 3 A

3 4 A

4 1 A

3 4 D

Generation 2

K V status

1 2 A

2 3 A

1* 4 D

4 1 A

3 4 A

Figure 6.15: Schematic representation of a section of creature’s translation table. The

separate colours represent separate permutation mappings. A number followed by an

asterisk *, represents a symbol which is different from the previous generation.

In the mapping depicted in Figure 6.15, the symbol 3 appears twice in K, therefore

the first key-value pair where 3 is mapped onto 4 is active, and the second key-value

pair where 3 is also mapped onto 4 is dormant. A mutation is introduced which changes

the first instance of key 3 to a 1. As key 1 already exists further up the K column, this

row now becomes dormant. The second instance of key 3 is now the only instance of 3

within K, so this mapping now becomes active.

In this example a point perturbation to the translation table did not result in any

change to the genotype-phenotype mapping. When a perturbation to K changes a key

to one which already exists higher in K, then this will have the effect of switching an

active symbol mapping dormant, while activating a dormant symbol mapping. As the

99

newly active symbol mapping was actually identical to a perturbed one, the genotype-

phenotype mapping remained the same.

The second possible perturbation is if the symbol is perturbed to a symbol which

already exists below it in K, as shown in Figure 6.16.

Generation 1

K V status

1 2 A

2 3 A

3 4 A

4 1 A

2 1 D

Generation 2

K V status

1 2 A

4* 3 A

3 4 A

4 1 D

2 1 A

Figure 6.16: Schematic representation of a section of creature’s translation table. The

separate colours represent separate permutation mappings. A number followed by an

asterisk, represents a symbol which is different from the previous generation.

In this mapping, the symbol 2 appears twice in K, therefore the first symbol map-

ping where 2 is mapped onto 3 is active, and the second symbol mapping where 2 is

mapped onto 1 is dormant. A perturbation is introduced which changes the first in-

stance of 2 to a 4, where 4 already exists lower down in the K column. This perturbed

row still stays active, however the lower row containing 4 becomes dormant while the

bottom row which contains 2 is activated.

In this case, because the affected key is perturbed to a key which exists below it,

then the mapping will change. Rather than having one large active cycle with a cycle

length of four, this point mutation had the effect of creating 2 smaller active cycles of

cycle length two, where 1 is mapped onto 2 and 2 is mapped back onto 1, and also 3

is mapped onto 4 and 4 is mapped back onto 3. This is a definite proof-of-principle

example of single point perturbation to a stable, deterministic self reproducer, resulting

in a stable, deterministic self reproducer with a different genotype-phenotype mapping.

Therefore, when an active row is perturbed in a stable, deterministic reproducer, if

the perturbed row stays active, the mapping will change. If a dormant row is perturbed

and the affected key symbol is perturbed to a key symbol which already exists above it,

then the perturbed row will stay dormant and it will not affect the mapping. However,

if the affected symbol is perturbed to a symbol which already exists below it, then

100

it will change from a dormant mapping to an active mapping. This may cause the

mapping to change.

If it changes from dormant to active, then a row below will change from active to

dormant. If the newly active row does is not equal to the newly dormant row, then it

will not be a permutation mapping. Therefore, the only method in which a perturbation

to a dormant symbol can give rise to a stable reproducer, is if the mapping is unchanged

afterwards.

The only method in which the mapping can change is if an active row is perturbed,

and it stays active by changing the symbol to one which already exists below. This

method can be used to break up a single permutation mapping into two smaller per-

mutations, or join two permutations together to form one large one. For example, the

following is a mapping with two different permutation maps as shown in Figure 6.17

K V status

1 2 A

2 3 A

3 1 A

4 5 A

5 4 A

Figure 6.17: Schematic representation of a section of creature’s translation table. The

separate colours represent separate permutation mappings.

In order to join these two permutation mappings, two individual symbol mappings

must be changed. The rows 3 − 1 and 5 − 4 must be changed to 3 − 4 and 5 − 1.

If dormant symbol mappings are present in the translation table, then it is possible

for this to be accomplished via one perturbation by changing one active mapping to a

dormant one.

Figure 6.17 demonstrated a possible translation table which holds the same mapping

as Figure 6.18, although the location of the rows have been changed.

K V status

1 2 A

2 3 A

5 4 A

3 1 A

4 5 A

Figure 6.18: Schematic representation of a section of creature’s translation table. The

separate colours represent separate permutation mappings.

If a dormant symbol mapping 5 − 1 is introduced, generation one in Figure 6.19,

101

then it is possible for these two permutation maps can be joined together with only

one perturbation.

Generation 1

K V status

1 2 A

2 3 A

5 4 A

3 1 A

4 5 A

5 1 D

Generation 2

K V status

1 2 A

2 3 A

3 4 A

3* 1 D

4 5 A

5 1 A

Figure 6.19: Schematic representation of a section of creature’s translation table. The

separate colours represent separate permutation mappings. A number followed by an

asterisk *, represents a symbol which is different from the previous generation.

A perturbation is introduced in generation 2 of Figure 6.19, which changes the

active mapping from 5− 4 to 3− 4, which is demonstrated.

This has the effect of turning the lower down 3−1 mapping dormant, and activating

the 5 − 1 mapping. This is now a single active permutation mapping rather than two

smaller active mappings. This is an example of a single point perturbation changing

the genotype-phenotype mapping when space for redundancy is introduced.

This example changed the genotype-phenotype mapping by joining up two smaller

permutation mappings into one larger one. This next example attempts to change

the genotype-phenotype mapping by splitting a single permutation mapping into two

smaller mappings.

In order to split the above permutation mapping into two smaller mappings, a

random “break point” must be chosen in which the single mapping separates into two

individual mappings. If between the symbol 3 and 4 in the K column is chosen as the

break point, then the 3 − 4 and the 5 − 1 mappings must be removed, and a 3 − 1

and a 5 − 4 mapping must be introduced in a single point perturbation. This can be

achieved by introducing the dormant mapping 5 − 4 and changing the position of the

active mapping 5− 1 in the translation table shown in Figure 6.20.

102

Generation 1

K V status

1 2 A

2 3 A

5 1 A

3 4 A

4 5 A

5 4 D

Generation 2

K V status

1 2 A

2 3 A

3* 1 A

3 4 D

4 5 A

5 4 A

Figure 6.20: Schematic representation of a section of creature’s translation table. The

separate colours represent separate permutation mappings. A number followed by an

asterisk *, represents a symbol which is different from the previous generation.

When we have a dormant mapping 5− 4, the perturbation which changes the 5− 1

mapping to a 3− 1 mapping was applied.

The 3− 4 mapping was rendered dormant so it had been removed from the active

mapping, while the 5 − 1 mapping has been perturbed, so it had been lost. This

action also created the 3− 1 mapping, and activated the dormant 5− 4 mapping. By

removing the 3−4 and the 5−1 mappings and introducing a 3−1 and a 5−4 mapping

it was possible to break up the single active permutation mapping into two smaller

ones, where 1 is mapped onto 2, 2 is mapped onto 3, and 3 is mapped back onto 1,

and also 4 is mapped onto 5, and 5 is mapped back onto 4. This example shows that it

is possible for a single point mutation to change a mapping by both splitting a single

active permutation mapping up into two smaller active permutation mappings, or by

joining up two smaller permutation mappings into one larger one, however dormant

mappings must also exist in the translation table.

6.4.7 Discussions

For this experiment it became apparent that the redesigned creatures, vn_tt128_758,

needs substantially more processing time in order to reproduce. This meant that per-

forming simulations which allowed us to obtain data sets of the same size as previous

experiments would prove infeasible. An initial simulation was run which showed a re-

duction in the number of unemployed symbols. However the relatively small data set

obtained was not substantial evidence to confirm that the same mutational ratcheting

103

phenomena, which was observed with previous experiments, was being displayed here.

Rather than stochastically introducing pseudorandom perturbations to the

genotype-phenotype mapping, the mapping was manually tested, and each possible

single point perturbation which may give rise to a change in the mapping was tested.

For an initial mapping which included no dormant key-value pairs, it was discovered

that there are no single point mutations which can lead to a deterministic, self repro-

ducing offspring with a different genotype-phenotype mapping. A creature would have

to experience a minimum of two consecutive mutations in order to remove a symbol

mapping from the genotype-phenotype mapping. In order to re-introduce a symbol

mapping to the translation table, the creature must experience at least 2 phenotypic

perturbations and 2 genotypic perturbations, which shows that this associative memory

mechanism of implementing a substitution mapping also displays the same mutational

ratcheting phenomena as the previous experiments.

It was also found that in order to change a “permutation mapping” by a single

point perturbation, it is necessary to either join two cycles together to form one large

cycle, or break one cycle apart to form two smaller cycles.

To join two permutation mappings together, the last “wrap around” mapping for

both permutations must be edited (in the last case 3 − 1 and 5 − 4). This means two

mappings being lost and two mappings are created. This is the maximum number

of changes that is possible with one perturbation, so it is only possible to join up a

maximum of two permutation mapping with a single point perturbation. Furthermore,

when breaking up a permutation mapping into two, both end wrap around mappings

must be created. this means that 3− 1 and 5− 4 must be created and 3− 4 and 5− 1

must be lost. So it is also only possible to break up a single permutation mapping into

a maximum of two different mappings with a single point perturbation.

6.5 Conclusion

This chapter documented the experimental procedure and results for three separate sets

of experiments, each demonstrating a different mechanism for implementing a mutable

genotype-phenotype mapping within a von Neumann style self reproducer. The first set

of experiments implemented a random substitution mapping, carried out via inclusion

of a look-up table. These experiments saw the degeneration to self copiers and the

emergence of pathological constructors, which may eventually result in total ecosystem

collapse.

Both the Tierra operating system and ancestor prototype was redesigned in order to

eliminate these phenomena in order to focus on the evolution of the genotype-phenotype

mapping. An identity mapping which included several “unemployed” symbols was cho-

sen for the look-up table. When this new von Neumann style ancestor was implemented,

a particular phenomenon was observed in which the genotype-phenotype mappings of

the lineages which propagated throughout the soup changed so that all unemployed

104

symbol mappings were removed from the look-up table. This bias in the evolutionary

trajectory of the genotype-phenotype mapping was not due to Darwinian selection, or

drift, but due to mutations to the genotype-phenotype mapping which were not directly

reversible, therefore, a mutational ratcheting effect was observed. In order to reverse

these “not directly reversible” mutations, not only must the change to the genotype

must be reversed, but this change must also be coincidentally coordinated with a phe-

notypic perturbation which returns the phenotype to its previous state. This is an

example of how, in very exceptional circumstances, a form of Lamarkian inheritance

may in fact occur, if the phenotypic perturbation is such that it changes the decoding

mechanism of the creature. The creature now decodes its genotype under a different

genotype-phenotype mapping, and the newly constructed phenotype matches exactly

that of the parent creature after it experienced a perturbation to the phenotype.

A different implementation of a substitution mapping was implemented via the use

of a translation table. Through investigation it was discovered that this mechanism is

also subject to similar phenomena to those observed when examining the evolution in

the genotype-phenotype mapping carried out via the look-up table.

The results of the first set of experiments were accepted for publication in the pro-

ceedings of three international conferences in 2012, European Conference on Complex

Systems (Baugh & McMullin, 2012b), Simulation on Adaptive Behaviour (Baugh &

McMullin, 2012a), and the Frontiers of Natural Computing Workshop (Baugh & Mc-

Mullin, 2012c). The results of the second set of experiments were published and orally

presented in 2013 at the European Conference of Artificial Life (Baugh & McMullin,

2013a), and at the European Conference on Complex Systems (Baugh & McMullin,

2013b).

105

Chapter 7

Conclusions and Future Work

106

7.1 Revisiting the Original Research Question

The implementation of a mutable genotype-phenotype mapping is a phenomenon which

appears to be common to all forms of life as we know it. However, while devising an

architecture which supports the evolutionary growth of machine complexity, John von

Neumann and Arthur Burks stated that “If the change is in A, B or C, the next

generation will be sterile.” (Von Neumann & Burks, 1966, p. 86). In this context,

A, B and C refer to the set of components which are directly, and solely responsi-

ble for decoding and copying a genotype, and constructing an offspring genotype and

phenotype. This mechanism must therefore contain a programmable constructor, A,

which inspects a genotype, and under some genotype-phenotype mapping, constructs

an offspring phenotype. Although von Neumann stated that if a change happens to

A then the offspring will be sterile, it is apparent that through evolution, the biolog-

ical genotype-phenotype mapping must have experienced numerous and consecutive

changes over time to evolve into its current state. There must therefore be some situa-

tions in which a mutated genotype-phenotype mapping may give rise to functional, self

reproducing offspring. Although the genetic code appears to be universal throughout

the entire phylogenetic tree of life, genotype-phenotype mappings are quite diversified.

For example, a genotype-phenotype mapping of a particular organism might perform

error correction when decoding for specific attributes of the phenotype, making it less

variable than other attributes, or it might use a single gene to determine two attributes

ensuring that the two can only vary together (Webb & Knowles, 2014). Furthermore,

as the genotype-phenotype mappings are so diverse throughout life, the phenotype of

one organism can not map a genotype belonging to a distinctly different genus.

This thesis aimed to develop an exploratory model, using a modified version of an ex-

isting artificial life platform, and the architecture which was devised by Von Neumann,

to provide proof-of-principle examples where self reproducing agents, with a mutable

genotype-phenotype mapping, give rise to functional offspring which implemented a

mutated mapping.

7.2 Thesis Summary

The field of artificial life investigates the logic of living systems in artificial environ-

ments, in order to gain a deeper understanding of the complex information processing

that defines such systems. In order to develop an agent based system which simulates

the emergent properties of life, it is important to have a deep understanding of the

fundamental criterion to which bear on the nature of life as we know it. Chapter 1

investigated the question of “What is Life?” and a list of the fundamental properties of

life were proposed. One such property, information storage of a self representation was

noted as never being fully incorporated into the most widely used artificial life systems

such as Tierra.

107

Chapter 2 described the developments in artificial life, from the publication of, On

The Origin Of Species, to the development of artificial environments such as cellular

automata and core world type systems. In order to develop a system which can imple-

ment a self reproducing agent that contains a self representation within an information

storage, core world type systems appeared to be a suitable option, as specifically, com-

pared to cellular automata, they are relativity fast in wall-clock time, and easier to

configure/program. A possible candidate for a machine architecture which separated

genotype from phenotype had already been put forward by John von Neumann, and

Chapter 3 described this architecture in detail, highlighting the fact that such an ar-

chitecture would naturally incorporate a mutable genotype-phenotype mapping. The

focus of this thesis concentrated on designing an exploratory model which implements

a mutable genotype-phenotype mapping, and analysed the evolutionary trajectory and

phenomena which emerged from the system.

7.3 Experimental Results Overview

A von Neumann style self reproducer was designed and implemented within Tierra. In

Chapter 5, the evolutionary trajectory of this reproductive mechanism was stochasti-

cally and deterministically explored for different implementations of this architecture.

Amendments were made to the Tierra system itself to correct flaws, add extra

functionality to the system, and simplify data analysis. A number of tools were also

written in Python to analyse the output.

Preliminary experiments saw the emergence of self copiers, where a single point mu-

tation resulted in the loss of the genotype-phenotype mapping mechanism completely.

The mutated strain reverted to simply copying its code directly to its offspring without

performing any decoding of the genotype. This alludes to the possibility that there

are at least conceivable situations where the reverse may occur, in which a single point

mutation can result in a self copier giving rise to a creature which reproduces via the

inclusion of a genotype-phenotype mapping.

Further experiments saw the emergence of pathological constructors, which were at

least partially a result of a specific feature within Tierra, where a flaw in the code

resulted in a selective advantage for creatures to be located at a specific location in

memory. The separation of genotype and phenotype also resulted in an increased level

of ease with which these creatures can emerge, and hence, increased the probability

that such a creature will be randomly located at this position within the soup.

The specific genotype-phenotype mapping implemented was a substitution map-

ping, which was implemented by two different mechanisms; via a look-up table, and a

translation table. By analysing the look-up and translation tables of the strains which

are produced through evolution, the change in mappings can be studied, and a similar

set of phenomena was observed for both implementations. The first phenomenon ob-

served was that of a mutational ratcheting effect, where symbols which were originally

108

included in the mapping, but not employed specifically for reproduction, were system-

atically lost. Mutations which resulted in the loss of a symbol from the mapping were

not directly reversible (i.e. via the result of a genotypic change) so this resulted in

a non-Darwinian evolutionary bias, leading to cumulative loss of these non-employed

symbol mapping.

A second phenomenon which was observed, was an example of Lamarkian inheri-

tance, where perturbations directly within the phenotype, could in exceptional circum-

stances, be inherited without any change to the genotype. This was due to a perturba-

tion which affected the genotype-phenotype mapping function, which is located within

the phenotype itself. Although the genotype was unaltered, its interpretation by the

parent was changed such that the genotype now decodes to exactly match that of the

“new” perturbed phenotype, so effectively, the change to the phenotype is inherited

to its offspring. This form of Lamarkian inheritance proved to be the only mechanism

which allowed p-symbols, which were not present in the parent, to be introduced to

the mapping of the offspring, expanding the set of potential p-symbols which could be

coded for in the offspring phenotype.

Although the phenomenon observed may be true for other mappings, from these

experiments, one can only say for certain that this set of phenomena is true for this

specific implementation of this specific mapping. There are an infinite of different

mapping mechanisms to choose from, rather than a substitution mapping, and even

within the possibilities of a substitution mapping, there are a large number of possible

substitution mappings which may be implemented. Furthermore, these experiments

were performed on only one artificial life platform, Tierra. A completely different, non

core world architecture, such as cellular automata, may have been used which could

significantly affect the outcome of evolutionary runs.

Overall, I believe that choosing Tierra as a platform, von Neumann’s architecture

and a substitution mapping was a useful starting point. Tierra is a well known platform

with a wealth of literature available, so results can be compared and contrasted to work

which is already performed in the past. Using von Neumann’s architecture supplied a

definite research question which could be answered, “is it possible to demonstrate how

a mutable genotype-phenotype mapping may give rise to new strains, which are self

reproducing, but realise a different mapping?”, which was achieved and answered.

In hindsight, an identity mapping may not have been the best option. Although

it greatly simplified the process of programming ancestors, and creating data analysis

tools which would search the look-up table/translation table and their descriptions in

order to detect changes in the mappings, it also made it easier for “stray CPUs” to

start executing the symbols within the genotype, and interpreting it as meaningful code.

This may have had significant effects on the outcome of some evolutionary runs. If an

arbitrary initial substitution mapping was chosen which was not the identity mapping,

there would be a decreased probability that sections of a creature’s genotype could be

interpreted as functional strings of instructions.

109

7.4 Future Work

7.4.1 Development of Tierra

Tierra is a widely documented platform for investigating and simulating evolutionary

phenomena in silico. However, over the course of this thesis, some deficiencies became

apparent in the Tierra Platform, which could be improved upon.

The first fault is in relation to the strain labelling mechanism in which is imple-

mented. When a new strain emerges, a label is generated where the creature length

is concatenated with a three letter string. For example, the initial Ray self copier is

labelled 0080aaa. This three letter mnemonic only allows a default of 263 or 17,567

distinct mnemonics for each creature size, or an increased space of 523 or 140,608 if the

BIGNAMES parameter is configured. BIGNAMES allows the three letter mnemonic to use

upper case as well as lower case letters to increase the available namespace. However,

the source code which generates labels to strains is unreliable. If the namespace is

exhausted, then the leading/most significant character in the mnemonic will increment

past ‘z’ and non-printable ASCII characters may be used. When BIGNAMES is not con-

figured, once a mnemonic character increments past ASCII ‘z’, or numeric 122, it will

increment up to numeric 127, and wrap around back to numeric 0. Numeric 123 - 126

relates to the ASCII characters {, |, }, and ∼, while numeric 127 related to ASCII DELL

which is non-printable. Alternatively, if BIGNAMES is configured, the leading charterer

will increment up immediately past ‘Z’ in ASCII; initially that would be [, \,], ^, _,

and ‘; but that is followed by the start of the lower-case alphabetics - ‘a’, ‘b’, ‘c’, etc.,

so it would actually start generating labels that it had already generated previously,

but now referring to completely unrelated strains. Either way, once the three letter

alphabetic character namespace is exhausted, the genebanker functionality is no longer

reliable or even really usable. Tierra could be amended to included defensive coding to

raise an exception and terminate the run (with a suitable diagnostic message) if this

happens. However it is likely that when Tierra was initially developed, it just seemed

inconceivably (on then available hardware) that a run would go on long enough to

actually trigger this, so it was just simply ignored.

Additionally, for long simulations, the three letter string method of labelling crea-

tures is still not a viable mechanism. When a creature is born that is not identical to

its parent, Tierra must check if this creature previously exists in the genebank. If an

identical creature is found in the genebank than the new creature will be assigned the

same label. If Tierra searches every same length strain within the genebank and no

identical creature is found, then a new label will be created and applied to that strain.

As the genebank increases in size, this process becomes painstakingly slow and actually

results in a bottleneck where Tierra must sequentially search the genebank of creatures

each time a new creature is born, significantly slowing down the wall-clock speed of

experiments.

A far more effective labelling mechanism would be to use a hash function to label the

110

creatures saved to the genebank. A hash function is any function that can be used to

map digital data of arbitrary size to digital data of fixed size. When a creature is born,

its entire code can be fed as a “key” into a hash function in order to produce a “hash

value” which will be a code of fixed size, such as a numerical value. This numerical

value can will act as a label for the corresponding strain and can be stored in a hash

table data structure. Hash tables are widely used in computer software for rapid data

look-up. When a creature is born which differs from its parent, the creature’s raw code

can be fed into the hash function. If the hash value which is produced is not already

within the hash table, than the creature is a new distinct strain whose hash value will

be saved to the hash table. By using this mechanism, when a new creature emerges,

Tierra needs only to calculate the hash value, and seek this value within the hash table.

There is no need to search the genebank and compare the code of every creature of the

same length with that of the newly emerged. Including this feature in Tierra would

allow for longer simulations without severe performance loss as the genebank becomes

populated. Furthermore, this will significantly diminish the problem of exhausting the

namespace and increase the maximum number of distinct creatures which can be saved

to the genebank. Technically, a limit will still exist, which is defined by the range of

the hash function. For experiments of this size we can assume that this limit is beyond

that which will affect any currently conceivable experiments.

7.4.2 Investigation of Alternative Mappings

Firstly, the space of possible mappings which were explored was very limited. Within

the space of substitution mappings, there are a large number of symbol mappings

which may occur. The choice of the selected initial mapping may affect the possible

fitness of the descendants. For example including redundancy within the genotype-

phenotype mapping introduces a scope for evolutionary enhancement of mutational

robustness, where certain changes to the genotype do not lead to any changes in the

decoded phenotype. However, including a larger symbol alphabet may result in larger

creatures which increases the gestation period. There may be an optimum redundancy

size which will result in lineages of the greatest fitness. Furthermore, a substitution

mapping is not the only possible mechanism available. As the Tierra language is proven

to be “Turing complete” Maley (1994), then any conceivable computable function may

be used when decoding the genotype. However, the Tierra instruction set was created

with the design goal of encouraging evolution, and not to simplify human programming.

Manually designing a mapping which uses, for example, a compression coding, would be

complicated, and would significantly increase the size of the programmable constructor,

and the time taken to decode a genotype. In Tierra, reproduction time is the dominating

factor which affects a strain’s fitness, therefore strains with more complex mappings will

be seen as decreasingly fit, and will increase the evolutionary pressure for alternative

creatures such as self copiers to be retained.

111

Two specific types of reproduction have been demonstrated within the Tierra world,

self copying, and genetic reproduction. However, there may be alternative reproduc-

tion mechanisms available which can be explored. In Tierra, a creature must be fully

developed before it is allocated a CPU. Due to this, more complex creatures will have

a larger gestation time and its fitness will decrease. For simple single celled lifeforms

such as bacteria, once a fully grown cell divides, both cells are fully functioning and

fully developed. However, for multicellular, more complex lifeforms such as plant and

animal life, an offspring starts functioning on its own as a separate individual organism

long before it is fully developed. Introducing creatures who are only “partially devel-

oped” upon birth, would decrease the gestation time. For example, when a creature is

born, it contains a full genome, and partial phenotype and is still “developing” after it

is born. Such a creature may start decoding its genotype and constructing its offspring

phenotype, while simultaneously constructing the parts of its phenotype which are not

required to be in use yet.

7.4.3 Spontaneous Emergence of a Genotype-Phenotype Mapping

The original emergence of a genotype-phenotype mapping is a subject which requires

further investigation. It was demonstrated how a single point mutation can result in a

self copier emerging from a lineage of von Neumann style reproducers. This opens up

the conceptual possibility that it may be possible for the reverse, a von Neumann style

reproducer emerging from a lineage of self copiers.

According to the RNA world hypothesis, in the early origin of life, molecules of

RNA reproduced via social reproduction. A single molecule of RNA cannot self repro-

duce in isolation but might function as an enzyme to replicate a separate molecule of

RNA. Within this system, there is no division of labour between the passive storage

of information and the functional catalytic component. The entire strand of RNA can

act as either a functional component which catalyses the reproduction event, or act

as passive data of a self representation in order to be replicated by another RNA. As

there is no distinction between genotype and phenotype, this form of reproduction does

not include a (mutable) genotype-phenotype mapping. At some point, environmental

pressures resulted in a world in which there was a separation between genotype and

phenotype, and a passive information storage (DNA) and an active catalyst (proteins).

However the exact process of how an RNA world transitioned to a DNA-Protein world

is still unknown. This topic still requires much investigation and it may be useful to at-

tempt to replicate the RNA world, where creatures do not self reproduce, but replicate

the memory images of neighbouring creatures. However, an evolutionary simulation

platform capable of operating in this manner, where all programs can in principle func-

tion as both “rules” (functional enzymes) and “strings” (passive data) has already been

developed by Decraene & McMullin (2011). It was also shown that Cellular Informa-

tion Processing Networks, capable of distinct information processing could be evolved

112

in this manner, so it may be beneficial to investigate if this idea can be adapted to ob-

serve if the complex, information processing system of a genotype-phenotype mapping

may emerge/evolve using this similar methods.

In order to have a separation of genotype and phenotype, the phenotype must

also include a mechanism for decoding the genotype and constructing an offspring

phenotype. Complex information processing is not a property which is selectively

advantageous within Tierra, as it slows down reproduction time and hence the creature

appears to be “unfit” as Tierra favours rapid reproduction above everything else, so

this behaviour is not selectively favoured.

The question of “what are the environmental pressures that could steer the emer-

gence or evolution of the genotype-phenotype mapping?” is very important question

that requires investigation. This thesis only looked at the possibility of a mutable

genotype-phenotype mapping, but not how different mappings might be favoured. If

the overall aim is to investigate how to exploit genotype-phenotype evolution in ar-

tificial systems, one would need to have a theoretical understanding of the change of

genotype-phenotype mappings and understanding of evolutionary dynamics, and what

environmental factors influence these changes.

In the case of Tierra, this could be achieved by making changes to the creature

architecture itself, or by amending the Tierra platform. As Tierra favours creatures with

rapid reproduction times, creatures which spend extra time on information processing

are selectively displaced. This problem has already been noted and a possible solution

has been put in place with the artificial life platform Cosmos, which was designed with

the intention “to encourage the evolution of diversity and complexity of the competing

programs” (Taylor, 1999). Within Cosmos, a program has a store of energy tokens

which it collects from the environment. In order to function it must pay an energy

token to the processor for each instruction it executes. Avida is another Artificial

life platform which implements the idea of programmes being rewarded for performing

specific tasks, however, social reproduction cannot be performed on either Cosmos or

Avida, as the programs within these platforms cannot directly read the memory image

of their neighbours, so it would be impossible to implement an RNA type world on

these systems without significant change to the underlying source code.

By adapting this idea within Tierra, the system could be modified so that creatures

who perform a decoding of symbols during reproduction are allocated “bonus” slices of

CPU time, or are moved down the reaper queue so as to increase their life span.

If these evolutionary pressures are introduced, it may be possible to observe and

identify concrete examples of lineages of self copiers that evolve into lineages which

reproduce via the implementation of a genotype-phenotype mapping. This would not

however, shed any light on the natural selectional pressures that might favour such

pathways actually being followed in the absence of such artificial selection, but would

simply be a proof-of-principle example of the possibility of evolutionary pressures re-

sulting in the emergence of a genotype-phenotype mapping in the digital medium.

113

One specific method which could be investigated, would be to study the effects

of using an instruction set which includes some form of “decoding” instruction, which

may be implemented and executed during reproduction, as opposed to the copy instruc-

tions. Creatures can be rewarded in CPU time for executing this particular instruction

and might be one possible mechanism to introduce some environmental pressure to

encourage the emergence of a genotype-phenotype mapping.

7.5 Closing Statement

The overall aim of this thesis was to develop an exploratory model which simulated ma-

chine self reproduction, which facilitates the evolution of a mutable genotype-phenotype

mapping, to provide proof-of-principle examples that this task could be realised in sil-

ico, and to investigate the set of phenomena which may emerge from such a system.

This was accomplished via the implementation of the von Neumann architecture for

machine self reproduction within the artificial life platform of Tierra.

Phenomena which emerged from this system, was investigated, characterised and

published at various international conferences. Despite this preliminary work only

addressing a very small, particular, piece of the puzzle in the mechanisms at play

during the emergence and evolution of a biological genotype-phenotype mapping, this

thesis adds to the base of knowledge of the field, and poses significant future work

which is imperative to fully understanding the mystery of the origin of life.

114

Bibliography

Adami, C., & C. Titus, B. (1994). Evolutionary learning in the 2D artificial life system

Avida. California Institute of Technology Pasadena, CA 91125. http://arxiv.org/

abs/adap-org/9405003.

Adami, C., Ofria, C., & Collier, T. C. (2000). Evolution of biological complexity.

Proceedings of the National Academy of Sciences, 97 (9), 4463. http://www.pnas.

org/content/97/9/4463.full.

Altenberg, L. (1995). Genome growth and the evolution of the genotype-phenotype

map. Evolution and Biocomputation, Lecture Notes in Computer Science Vol-

ume 899, pp 205-259, Springer. http://link.springer.com/chapter/10.1007/

3-540-59046-3_11.

Barricelli, N. (1957). Numerical testing of evolution theories. (pp. 97–127). J. Statistical

Computation and Simulation, Vol. 1.

Barricelli, N. (1962). Numerical testing of evolution theories part 1, theoretical intro-

duction and basic tests. (pp. 69–98). Acta Biotheoretica, Vol 16, Issue 1-2.

Baugh, D., & McMullin, B. (2012a). The emergence of pathological constructors when

implementing the Von Neumann architecture for self reproduction in Tierra. In

12th International Conference on the Simulation on Adaptive Behaviour , (pp. 240–

248). University of Southern Denmark: From Animals to Animats, Volume 7426.

http://link.springer.com/chapter/10.1007%2F978-3-642-33093-3_24.

Baugh, D., & McMullin, B. (2012b). The emergence of pathological constructors

when implementing the Von Neumann architecture within Tierra. In Proceedings

of the European Conference on Complex Systems (ECCS), (pp. 165–169). Springer

Proceedings in Complexity 2013. http://link.springer.com/chapter/10.1007%

2F978-3-319-00395-5_25.

Baugh, D., & McMullin, B. (2012c). The emergence of pathological construc-

tors when implementing the Von Neumann architecture within Tierra. In

Proceedings of the Frontiers of Natural Computing Workshop. University of

York. http://www.academia.edu/4422290/Frontiers_of_Natural_Computing_

2012_-_Workshop_abstract.

115

http://arxiv.org/abs/adap-org/9405003
http://arxiv.org/abs/adap-org/9405003
http://www.pnas.org/content/97/9/4463.full
http://www.pnas.org/content/97/9/4463.full
http://link.springer.com/chapter/10.1007/3-540-59046-3_11
http://link.springer.com/chapter/10.1007/3-540-59046-3_11
http://link.springer.com/chapter/10.1007%2F978-3-642-33093-3_24
http://link.springer.com/chapter/10.1007%2F978-3-319-00395-5_25
http://link.springer.com/chapter/10.1007%2F978-3-319-00395-5_25
http://www.academia.edu/4422290/Frontiers_of_Natural_Computing_2012_-_Workshop_abstract
http://www.academia.edu/4422290/Frontiers_of_Natural_Computing_2012_-_Workshop_abstract

Baugh, D., & McMullin, B. (2013a). Evolution of g-p mapping in a Von Neumann

self reproducer within Tierra. In Advances in Artificial Life - European Conference

of Artificial Life (ECAL) 2013, Proceedings of the Twelfth European Conference

on the Synthesis and Simulation of Living Systems, (pp. 210–217). University of

Southern Denmark: The MIT Press. http://mitpress.mit.edu/sites/default/

files/titles/content/ecal13/978-0-262-31709-2-ch032.pdf.

Baugh, D., & McMullin, B. (2013b). Evolution of genotype-phenotype mapping of

Von Neumann style self reproduction within the platform of Tierra. In Proceedings

of the European Conference on Complex Systems (ECCS), (pp. 165–170). Springer.

https://books.google.ie/books?id=gIu4BAAAQBAJ&lpg=PR1&dq=Proceedings%

20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&

pg=PR1#v=onepage&q=Proceedings%20of%20the%20European%20Conference%

20on%20Complex%20Systems%202013&f=false.

Bedau, M. A. (2003). Artificial life: organization, adaptation and complexity from the

bottom up. Trends in Cognitive Sciences, 7 (11), 505–512. http://people.reed.

edu/~mab/publications/papers/BedauTICS03.pdf.

Benner, S. (2010). Defining life. (pp. 1021–1030). Astrobiology, 2010 Dec; 10(10).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005285/.

Burks, A. (1970). Essays on Cellular Automata. University of Illinois Press.

http://www.amazon.com/Essays-Cellular-Automata-Arthur-Burks/dp/

0252000234/ref=sr_1_1?s=books&ie=UTF8&qid=1433524759&sr=1-1&keywords=

Essays+on+Cellular+Automata.

Cariani, P. (1991). Emergence and articial life. (pp. 775–798). In: Artificial Life

II. Sante Fe Inst. Studies in Science of Comlexity. http://www.cariani.com/

CarianiNewWebsite/Publications_files/CarianiArtificialLife-II-1991.

pdf.

Chen, T. M., & Robert, J. (2004). The evolution of viruses and worms. In

W. W. Chen (Ed.) Statistical Methods in Computer Security , (pp. 265–

285). https://books.google.ie/books?hl=en&lr=&id=lPDKBQAAQBAJ&oi=

fnd&pg=PA265&dq=Chen,+T.+M.,+%26+Robert,+J.+(2004).+The+evolution+

of+viruses+and+worms.&ots=8WKW5eBAxU&sig=5DuP4iHjwtzf9sCkTCd_TTJwuBs&

redir_esc=y#v=onepage&q&f=false.

Codd, E. (1968). Cellular Automata. Academic Press, New York. http://www.amazon.

com/Cellular-Automata-E-F-Codd/dp/1483211746.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life. http://www.amazon.com/

116

http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch032.pdf
http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch032.pdf
https://books.google.ie/books?id=gIu4BAAAQBAJ&lpg=PR1&dq=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&pg=PR1#v=onepage&q=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&f=false
https://books.google.ie/books?id=gIu4BAAAQBAJ&lpg=PR1&dq=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&pg=PR1#v=onepage&q=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&f=false
https://books.google.ie/books?id=gIu4BAAAQBAJ&lpg=PR1&dq=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&pg=PR1#v=onepage&q=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&f=false
https://books.google.ie/books?id=gIu4BAAAQBAJ&lpg=PR1&dq=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&pg=PR1#v=onepage&q=Proceedings%20of%20the%20European%20Conference%20on%20Complex%20Systems%202013&f=false
http://people.reed.edu/~mab/publications/papers/BedauTICS03.pdf
http://people.reed.edu/~mab/publications/papers/BedauTICS03.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005285/
http://www.amazon.com/Essays-Cellular-Automata-Arthur-Burks/dp/0252000234/ref=sr_1_1?s=books&ie=UTF8&qid=1433524759&sr=1-1&keywords=Essays+on+Cellular+Automata
http://www.amazon.com/Essays-Cellular-Automata-Arthur-Burks/dp/0252000234/ref=sr_1_1?s=books&ie=UTF8&qid=1433524759&sr=1-1&keywords=Essays+on+Cellular+Automata
http://www.amazon.com/Essays-Cellular-Automata-Arthur-Burks/dp/0252000234/ref=sr_1_1?s=books&ie=UTF8&qid=1433524759&sr=1-1&keywords=Essays+on+Cellular+Automata
http://www.cariani.com/CarianiNewWebsite/Publications_files/CarianiArtificialLife-II-1991.pdf
http://www.cariani.com/CarianiNewWebsite/Publications_files/CarianiArtificialLife-II-1991.pdf
http://www.cariani.com/CarianiNewWebsite/Publications_files/CarianiArtificialLife-II-1991.pdf
https://books.google.ie/books?hl=en&lr=&id=lPDKBQAAQBAJ&oi=fnd&pg=PA265&dq=Chen,+T.+M.,+%26+Robert,+J.+(2004).+The+evolution+of+viruses+and+worms.&ots=8WKW5eBAxU&sig=5DuP4iHjwtzf9sCkTCd_TTJwuBs&redir_esc=y#v=onepage&q&f=false
https://books.google.ie/books?hl=en&lr=&id=lPDKBQAAQBAJ&oi=fnd&pg=PA265&dq=Chen,+T.+M.,+%26+Robert,+J.+(2004).+The+evolution+of+viruses+and+worms.&ots=8WKW5eBAxU&sig=5DuP4iHjwtzf9sCkTCd_TTJwuBs&redir_esc=y#v=onepage&q&f=false
https://books.google.ie/books?hl=en&lr=&id=lPDKBQAAQBAJ&oi=fnd&pg=PA265&dq=Chen,+T.+M.,+%26+Robert,+J.+(2004).+The+evolution+of+viruses+and+worms.&ots=8WKW5eBAxU&sig=5DuP4iHjwtzf9sCkTCd_TTJwuBs&redir_esc=y#v=onepage&q&f=false
https://books.google.ie/books?hl=en&lr=&id=lPDKBQAAQBAJ&oi=fnd&pg=PA265&dq=Chen,+T.+M.,+%26+Robert,+J.+(2004).+The+evolution+of+viruses+and+worms.&ots=8WKW5eBAxU&sig=5DuP4iHjwtzf9sCkTCd_TTJwuBs&redir_esc=y#v=onepage&q&f=false
http://www.amazon.com/Cellular-Automata-E-F-Codd/dp/1483211746
http://www.amazon.com/Cellular-Automata-E-F-Codd/dp/1483211746
http://www.amazon.com/Origin-Species-150th-Anniversary/dp/0451529065/ref=sr_1_1?s=books&ie=UTF8&qid=1433523584&sr=1-1&keywords=on+the+origin+of+species
http://www.amazon.com/Origin-Species-150th-Anniversary/dp/0451529065/ref=sr_1_1?s=books&ie=UTF8&qid=1433523584&sr=1-1&keywords=on+the+origin+of+species

Origin-Species-150th-Anniversary/dp/0451529065/ref=sr_1_1?s=books&ie=

UTF8&qid=1433523584&sr=1-1&keywords=on+the+origin+of+species.

De Beule, J. (2011). Evolution, organization and function in the biological system. Proc.

of the Fields Institute workshop on Semiotics, Cognitive Science and Mathematics.

http://ai.vub.ac.be/publications/438.

Decraene, J., & McMullin, B. (2011). The evolution of complexity in self-maintaining

cellular information processing networks. (pp. 55–75). Advances in Complex Systems,

Vol, 14, No. 1. http://doras.dcu.ie/16292/1/decraene-ACS-09.pdf.

Deutsch, D. (1997). The Fabric of Reality . Viking Adult. http://www.amazon.com/

The-Fabric-Reality-Universes-Implications/dp/0713990619.

Dewdney, A., & Jones, D. (1984). Core War guidlines. Department of Computer

Science, The University of Western Ontario. http://corewar.co.uk/cwg.txt.

Eigen, M. (1971). Selforganization of matter and the evolution of biological macro-

molecules. (pp. 465–523). Die Naturwissenschaften, Vol. 58, No. 10. http://www.

physik.uzh.ch/groups/aegerter/teaching/Biophys/eigen.pdf.

Emmeche, C. (1992). Life as an abstract phenomenon: Is artificial life possible? (pp.

466–474). Toward a Practice of Autonomous Systems. Proceedings of the First Euro-

pean Conference on Artificial Life, The MIT Presss. http://www.nbi.dk/~emmeche/

cePubl/92a.lifabsphe.html.

Farmer, J., & Belin, A. (1991). Artificial life: The coming evolution. (pp. 815–840).

Artificial Life II, Santa Fe Institute studies in the Sciences of Complexity, proceedings

Vol. X. Working Paper. http://www.santafe.edu/media/workingpapers/90-003.

pdf.

Fogel, L., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence

through Simulated Evolution. John Wiley & Sons. http://www.amazon.com/

Artificial-Intelligence-through-Simulated-Evolution/dp/B0000CNARU.

Gilbert, W. (1986). Origin of life: The RNA world. Nature Publishing Group

319, 618 (1986) doi:10.1038/319618a0. http://www.nature.com/nature/journal/

v319/n6055/abs/319618a0.html.

Heudin, J. (1995). Artificial life and evolutionary computing in machine percep-

tion. (pp. 418–428). Computer Architectures for Machine Perception, 1995. www.

computer.org/csdl/proceedings/camp/1995/7134/00/71340418.pdf.

Holland, J. (1975). Adaptation in Natural and Artificial Systems: An In-

troductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. University of Michigan Press. http://www.amazon.com/

117

http://www.amazon.com/Origin-Species-150th-Anniversary/dp/0451529065/ref=sr_1_1?s=books&ie=UTF8&qid=1433523584&sr=1-1&keywords=on+the+origin+of+species
http://www.amazon.com/Origin-Species-150th-Anniversary/dp/0451529065/ref=sr_1_1?s=books&ie=UTF8&qid=1433523584&sr=1-1&keywords=on+the+origin+of+species
http://www.amazon.com/Origin-Species-150th-Anniversary/dp/0451529065/ref=sr_1_1?s=books&ie=UTF8&qid=1433523584&sr=1-1&keywords=on+the+origin+of+species
http://ai.vub.ac.be/publications/438
http://doras.dcu.ie/16292/1/decraene-ACS-09.pdf
http://www.amazon.com/The-Fabric-Reality-Universes-Implications/dp/0713990619
http://www.amazon.com/The-Fabric-Reality-Universes-Implications/dp/0713990619
http://corewar.co.uk/cwg.txt
http://www.physik.uzh.ch/groups/aegerter/teaching/Biophys/eigen.pdf
http://www.physik.uzh.ch/groups/aegerter/teaching/Biophys/eigen.pdf
http://www.nbi.dk/~emmeche/cePubl/92a.lifabsphe.html
http://www.nbi.dk/~emmeche/cePubl/92a.lifabsphe.html
http://www.santafe.edu/media/workingpapers/90-003.pdf
http://www.santafe.edu/media/workingpapers/90-003.pdf
http://www.amazon.com/Artificial-Intelligence-through-Simulated-Evolution/dp/B0000CNARU
http://www.amazon.com/Artificial-Intelligence-through-Simulated-Evolution/dp/B0000CNARU
http://www.nature.com/nature/journal/v319/n6055/abs/319618a0.html
http://www.nature.com/nature/journal/v319/n6055/abs/319618a0.html
www.computer.org/csdl/proceedings/camp/1995/7134/00/71340418.pdf
www.computer.org/csdl/proceedings/camp/1995/7134/00/71340418.pdf
http://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116/ref=sr_1_1?s=books&ie=UTF8&qid=1433523944&sr=1-1&keywords=Holland%2C+J.+%281975%29.+Adaptation+in+Natural+and+Artificial+Systems.
http://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116/ref=sr_1_1?s=books&ie=UTF8&qid=1433523944&sr=1-1&keywords=Holland%2C+J.+%281975%29.+Adaptation+in+Natural+and+Artificial+Systems.

Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116/

ref=sr_1_1?s=books&ie=UTF8&qid=1433523944&sr=1-1&keywords=Holland%2C+

J.+%281975%29.+Adaptation+in+Natural+and+Artificial+Systems.

Huxley, J. (1942). Evolution: The Modern Synthesis. Harper & Brothers Publish-

ers. http://www.amazon.com/Evolution-Modern-Synthesis-Julian-Huxley/dp/

0262513668.

Joyce, G. (2007). Forty years of in vitro evolution. (pp. 6420–6436). Angewandte

Chemie Int. Ed 2007, 46. http://www.ncbi.nlm.nih.gov/pubmed/17634987.

Joyce, G. F., Deamer, D., & Fleischaker, G. (1994). In Origins of Life: The Central

Concepts. Jones and Bartlett Publishers, Boston.

Koza, J. (1990). Genetic programming: A paradigm for genetically breeding pop-

ulations of computer programs to solve problems. Stanford University Com-

puter Science Department technical report STAN-CS-90-1314. http://www.

genetic-programming.com/jkpdf/tr1314.pdf.

Langton, C. G. (1984). Self-reproduction in cellular automata. (pp. 135–144). Physica

D: Nonlinear Phenomena 10(1-2). http://deepblue.lib.umich.edu/bitstream/

handle/2027.42/24968/0000395.pdf?sequence=1&isAllowed=y.

Langton, C. G. (1989). Artificial Life. In C. G. Langton (Ed.) Artifi-

cial life: the proceedings of an Interdisciplinary Workshop on the Syn-

thesis and Simulation of Living Systems, held September, 1987, in Los

Alamos, New Mexico. Santa Fe Institute studies in the sciences of complex-

ity , (pp. 1–48). Addison-Wesley, Redwood City, CA. http://www.amazon.

com/Artificial-Life-Proceedings-Interdisciplinary-Simulation/dp/

0201093561/ref=sr_1_3?s=books&ie=UTF8&qid=1433525422&sr=1-3&keywords=

Artificial+Life+santa+fe.

Langton, C. G. (1995). Artificial life: An Overview (Complex

Adaptive Systems). The MIT Press. http://www.amazon.com/

Artificial-Life-Overview-Complex-Adaptive/dp/0262621126/ref=sr_1_

1?s=books&ie=UTF8&qid=1433524052&sr=1-1&keywords=langton+artificial+

life+an+overview.

Lenski, R. (2011). Evolution in action: a 50,000-generation salute to

Charles Darwin. (pp. 30–33). Microbe Vol. 6, Number 1. https://www.

microbemagazine.org/index.php?option=com_content&view=article&id=

3085:evolution-in-action-a-50000-generation-salute-to-charles-darwin&

catid=697&Itemid=925.

118

http://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116/ref=sr_1_1?s=books&ie=UTF8&qid=1433523944&sr=1-1&keywords=Holland%2C+J.+%281975%29.+Adaptation+in+Natural+and+Artificial+Systems.
http://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116/ref=sr_1_1?s=books&ie=UTF8&qid=1433523944&sr=1-1&keywords=Holland%2C+J.+%281975%29.+Adaptation+in+Natural+and+Artificial+Systems.
http://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116/ref=sr_1_1?s=books&ie=UTF8&qid=1433523944&sr=1-1&keywords=Holland%2C+J.+%281975%29.+Adaptation+in+Natural+and+Artificial+Systems.
http://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116/ref=sr_1_1?s=books&ie=UTF8&qid=1433523944&sr=1-1&keywords=Holland%2C+J.+%281975%29.+Adaptation+in+Natural+and+Artificial+Systems.
http://www.amazon.com/Evolution-Modern-Synthesis-Julian-Huxley/dp/0262513668
http://www.amazon.com/Evolution-Modern-Synthesis-Julian-Huxley/dp/0262513668
http://www.ncbi.nlm.nih.gov/pubmed/17634987
http://www.genetic-programming.com/jkpdf/tr1314.pdf
http://www.genetic-programming.com/jkpdf/tr1314.pdf
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/24968/0000395.pdf?sequence=1&isAllowed=y
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/24968/0000395.pdf?sequence=1&isAllowed=y
http://www.amazon.com/Artificial-Life-Proceedings-Interdisciplinary-Simulation/dp/0201093561/ref=sr_1_3?s=books&ie=UTF8&qid=1433525422&sr=1-3&keywords=Artificial+Life+santa+fe
http://www.amazon.com/Artificial-Life-Proceedings-Interdisciplinary-Simulation/dp/0201093561/ref=sr_1_3?s=books&ie=UTF8&qid=1433525422&sr=1-3&keywords=Artificial+Life+santa+fe
http://www.amazon.com/Artificial-Life-Proceedings-Interdisciplinary-Simulation/dp/0201093561/ref=sr_1_3?s=books&ie=UTF8&qid=1433525422&sr=1-3&keywords=Artificial+Life+santa+fe
http://www.amazon.com/Artificial-Life-Proceedings-Interdisciplinary-Simulation/dp/0201093561/ref=sr_1_3?s=books&ie=UTF8&qid=1433525422&sr=1-3&keywords=Artificial+Life+santa+fe
http://www.amazon.com/Artificial-Life-Overview-Complex-Adaptive/dp/0262621126/ref=sr_1_1?s=books&ie=UTF8&qid=1433524052&sr=1-1&keywords=langton+artificial+life+an+overview
http://www.amazon.com/Artificial-Life-Overview-Complex-Adaptive/dp/0262621126/ref=sr_1_1?s=books&ie=UTF8&qid=1433524052&sr=1-1&keywords=langton+artificial+life+an+overview
http://www.amazon.com/Artificial-Life-Overview-Complex-Adaptive/dp/0262621126/ref=sr_1_1?s=books&ie=UTF8&qid=1433524052&sr=1-1&keywords=langton+artificial+life+an+overview
http://www.amazon.com/Artificial-Life-Overview-Complex-Adaptive/dp/0262621126/ref=sr_1_1?s=books&ie=UTF8&qid=1433524052&sr=1-1&keywords=langton+artificial+life+an+overview
https://www.microbemagazine.org/index.php?option=com_content&view=article&id=3085:evolution-in-action-a-50000-generation-salute-to-charles-darwin&catid=697&Itemid=925
https://www.microbemagazine.org/index.php?option=com_content&view=article&id=3085:evolution-in-action-a-50000-generation-salute-to-charles-darwin&catid=697&Itemid=925
https://www.microbemagazine.org/index.php?option=com_content&view=article&id=3085:evolution-in-action-a-50000-generation-salute-to-charles-darwin&catid=697&Itemid=925
https://www.microbemagazine.org/index.php?option=com_content&view=article&id=3085:evolution-in-action-a-50000-generation-salute-to-charles-darwin&catid=697&Itemid=925

Lukas, K., & Schmeck, H. (2009). A completely evolvable genotype-phenotype mapping

for evolutionary robotics. Self-Adaptive and Self-Organizing Systems, 2009. SASO

’09. http://www.aifb.kit.edu/images/0/09/PID937965.pdf.

Maley, C. C. (1994). The computational completeness of Ray’s Tierran assembly lan-

guage. (pp. 503–514). In: Artificial Life 3, ed. C. G. Langton. Addison-Wesley.

ftp://theory.csail.mit.edu/people/cmaley/tierra/completeness.ps.Z.

Maynard Smith, J., & Szathmáry, E. (1995). The Major Transitions

in Evolution. Oxford University Press. http://www.amazon.com/

Major-Transitions-Evolution-Maynard-Smith/dp/019850294X/ref=sr_1_1?

s=books&ie=UTF8&qid=1433525491&sr=1-1&keywords=The+Major+Transitions+

in+Evolution.

McMullin, B. (2000). The Von Neumann self reproducing architecture, genetic rel-

ativism and evolvability. In Evolvability Workshop at Artificial Life VII . http:

//www.eeng.dcu.ie/~alife/talks/alife7/vn-evolvability/html-multi/.

McMullin, B. (2010). Evosym: Emergence and evolution of biological sym-

bol systems project proposal. http://www.nwo.nl/en/research-and-results/

research-projects/33/2300165233.html.

McMullin, B. (2012). Architectures for self reproduction: Abstractions, realisations

and a research program. (pp. 83–90). University of Southern Denmark: Artificial Life

13. The MIT Press. https://mitpress.mit.edu/sites/default/files/titles/

content/alife13/ch012.html.

Mitchell, M., & Forrest, S. (1994). Genetic algorithms and artificial life. (pp. 267–289).

Artificial Life 1 (3). http://pdxscholar.library.pdx.edu/cgi/viewcontent.

cgi?article=1003&context=compsci_fac.

Pesavento, U. (1995). An implementation of Von Neumann’s self reproducing ma-

chine. Artificial Life, 2 (4), 337–354. http://www-users.york.ac.uk/~gt512/BIC/

pesavento95.pdf.

Rasmussen, S. (1990). The coreworld: Emergence and evolution of cooperative struc-

tures in a computational chemistry. (pp. 111–134). Physica D: Nonlinear Phenom-

ena, volume 42, Issues 1-3. http://www.sciencedirect.com/science/article/

pii/0167278990900706.

Ray, T. (1991). Artificial life II, santa fe institute studies in the sci-

ences of complexity, vol. XI, 371-408. Redwood City, CA: Addison-

Wesley. Artificial life II , 10 , 371–408. http://www.amazon.com/

Artificial-Institute-Sciences-Complexity-Proceedings/dp/0201525712/

ref=sr_1_1?s=books&ie=UTF8&qid=1433524283&sr=1-1&keywords=artificial+

life+II.

119

http://www.aifb.kit.edu/images/0/09/PID937965.pdf
ftp://theory.csail.mit.edu/people/cmaley/tierra/completeness.ps.Z
http://www.amazon.com/Major-Transitions-Evolution-Maynard-Smith/dp/019850294X/ref=sr_1_1?s=books&ie=UTF8&qid=1433525491&sr=1-1&keywords=The+Major+Transitions+in+Evolution
http://www.amazon.com/Major-Transitions-Evolution-Maynard-Smith/dp/019850294X/ref=sr_1_1?s=books&ie=UTF8&qid=1433525491&sr=1-1&keywords=The+Major+Transitions+in+Evolution
http://www.amazon.com/Major-Transitions-Evolution-Maynard-Smith/dp/019850294X/ref=sr_1_1?s=books&ie=UTF8&qid=1433525491&sr=1-1&keywords=The+Major+Transitions+in+Evolution
http://www.amazon.com/Major-Transitions-Evolution-Maynard-Smith/dp/019850294X/ref=sr_1_1?s=books&ie=UTF8&qid=1433525491&sr=1-1&keywords=The+Major+Transitions+in+Evolution
http://www.eeng.dcu.ie/~alife/talks/alife7/vn-evolvability/html-multi/
http://www.eeng.dcu.ie/~alife/talks/alife7/vn-evolvability/html-multi/
http://www.nwo.nl/en/research-and-results/research-projects/33/2300165233.html
http://www.nwo.nl/en/research-and-results/research-projects/33/2300165233.html
https://mitpress.mit.edu/sites/default/files/titles/content/alife13/ch012.html
https://mitpress.mit.edu/sites/default/files/titles/content/alife13/ch012.html
http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1003&context=compsci_fac
http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1003&context=compsci_fac
http://www-users.york.ac.uk/~gt512/BIC/pesavento95.pdf
http://www-users.york.ac.uk/~gt512/BIC/pesavento95.pdf
http://www.sciencedirect.com/science/article/pii/0167278990900706
http://www.sciencedirect.com/science/article/pii/0167278990900706
http://www.amazon.com/Artificial-Institute-Sciences-Complexity-Proceedings/dp/0201525712/ref=sr_1_1?s=books&ie=UTF8&qid=1433524283&sr=1-1&keywords=artificial+life+II
http://www.amazon.com/Artificial-Institute-Sciences-Complexity-Proceedings/dp/0201525712/ref=sr_1_1?s=books&ie=UTF8&qid=1433524283&sr=1-1&keywords=artificial+life+II
http://www.amazon.com/Artificial-Institute-Sciences-Complexity-Proceedings/dp/0201525712/ref=sr_1_1?s=books&ie=UTF8&qid=1433524283&sr=1-1&keywords=artificial+life+II
http://www.amazon.com/Artificial-Institute-Sciences-Complexity-Proceedings/dp/0201525712/ref=sr_1_1?s=books&ie=UTF8&qid=1433524283&sr=1-1&keywords=artificial+life+II

Ray, T. (1994). Evolution, complexity, entropy, and artificial reality. (pp. 239–263).

Physica D: Nonlinear Phenomena. Volume 75, Issues 1-3. http://beaconcourse.

pbworks.com/f/Ray1994+-+Tierra.pdf.

Ray, T. (1999). Some thoughts on evolvability. (Unpublished draft manuscrift)http:

//life.ou.edu/pubs/evolvability/.

Ray, T., Xu, C., Charrel, A., Kimezawa, T., Yoshikawa, T., Chaland, M., & Uffner, T.

(2000). Tierra v6.02 documentation. Working Paper. Document (Tierra.doc) located

within tgz file at http://life.ou.edu/tierra/source/Tierra6_02.tgz.

Sayama, H. (1999). Toward the realization of an evolving ecosystem on cellular

automata. (pp. 254–257). Proceedings of the Fourth International Symposium on

Artificial Life and Robotics. http://citeseerx.ist.psu.edu/viewdoc/download;

jsessionid=DA9331850B8618964E408B2C3F1B50D6?doi=10.1.1.40.391&rep=

rep1&type=pdf.

Schrödinger, E. (1944). What is Life: With Mind and Matter and Autobio-

graphical Sketches. Cambridge University Press. http://www.amazon.com/

What-Life-Autobiographical-Sketches-Classics/dp/1107604664/ref=sr_

1_1?s=books&ie=UTF8&qid=1433524384&sr=1-1&keywords=what+is+life+

schrodinger.

Shannon, C. (1948). A mathematical theory of communication. University of Illi-

nois Press. Reprinted with corrections from The Bell System Technical Journal,

Vol. 27, pp. 379–423, 623–656. http://worrydream.com/refs/Shannon%20-%20A%

20Mathematical%20Theory%20of%20Communication.pdf.

Stuart, Y., Campbell, T., Hohenlohe, P., Reynolds, R., Revell, L., & Losos, J. (2014).

Rapid evolution of a native species fllowing invasion by a congener. (pp. 463–466).

Science Vol. 346 no. 6208. http://www.sciencemag.org/content/346/6208/463.

abstract.

Takeuchi, N., Hogeweg, P., & Koonin, E. V. (2011). On the origin of DNA

genomes: Evolution of the division of labor between template and catalyst

in model replicator systems. PLoS Computational Biology 7(3): e1002024.

doi:10.1371/journal.pcbi.1002024. http://journals.plos.org/ploscompbiol/

article?id=10.1371/journal.pcbi.1002024.

Taylor, T. (1999). The Cosmos artificial life system. Department of Artificial In-

telligence, University of Edinburgh. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.42.9606&rep=rep1&type=pdf.

Thatcher, J. (1964). Universality in the Von Neumann cellular model. (p. 100).

University of Michigan, College of Literature, Science and the Arts. Techni-

120

http://beaconcourse.pbworks.com/f/Ray1994+-+Tierra.pdf
http://beaconcourse.pbworks.com/f/Ray1994+-+Tierra.pdf
http://life.ou.edu/pubs/evolvability/
http://life.ou.edu/pubs/evolvability/
http://life.ou.edu/tierra/source/Tierra6_02.tgz
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DA9331850B8618964E408B2C3F1B50D6?doi=10.1.1.40.391&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DA9331850B8618964E408B2C3F1B50D6?doi=10.1.1.40.391&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DA9331850B8618964E408B2C3F1B50D6?doi=10.1.1.40.391&rep=rep1&type=pdf
http://www.amazon.com/What-Life-Autobiographical-Sketches-Classics/dp/1107604664/ref=sr_1_1?s=books&ie=UTF8&qid=1433524384&sr=1-1&keywords=what+is+life+schrodinger
http://www.amazon.com/What-Life-Autobiographical-Sketches-Classics/dp/1107604664/ref=sr_1_1?s=books&ie=UTF8&qid=1433524384&sr=1-1&keywords=what+is+life+schrodinger
http://www.amazon.com/What-Life-Autobiographical-Sketches-Classics/dp/1107604664/ref=sr_1_1?s=books&ie=UTF8&qid=1433524384&sr=1-1&keywords=what+is+life+schrodinger
http://www.amazon.com/What-Life-Autobiographical-Sketches-Classics/dp/1107604664/ref=sr_1_1?s=books&ie=UTF8&qid=1433524384&sr=1-1&keywords=what+is+life+schrodinger
http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf
http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf
http://www.sciencemag.org/content/346/6208/463.abstract
http://www.sciencemag.org/content/346/6208/463.abstract
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002024
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002024
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.9606&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.9606&rep=rep1&type=pdf

cal Report. http://deepblue.lib.umich.edu/bitstream/handle/2027.42/7923/

bad2800.0001.001.pdf?sequence=5&isAllowed=y.

Trevorrow, A., & Rokicki, T. (2015). Golly. http://golly.sourceforge.net.

Trut, L. (1999). Early canid domestication: The farm-fox experiment. American

Scientist, Volume 87, Number 2, Page: 160. http://www.americanscientist.org/

issues/pub/early-canid-domestication-the-farm-fox-experiment.

Turing, A. (1936). On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society, (Ser. 2, Vol.

43, 1937). http://www.dna.caltech.edu/courses/cs129/caltech_restricted/

Turing_1936_IBID.pdf.

Von Neumann, J. (1948). The General and Logical Theory of Automata. Ox-

ford, England: Wiley, xiv, 311 pp. https://www.cs.ucf.edu/~dcm/Teaching/

COP5611Spring2010/vonNeumannSelfReproducingAutomata.pdf.

Von Neumann, J., & Burks, A. (1966). Theory of Self reproduc-

ing Automata. University of Illinois Press. http://www.amazon.com/

Theory-Self-Reproducing-Automata-John-Neumann/dp/B0000CNFSD/ref=sr_

1_1?s=books&ie=UTF8&qid=1433524616&sr=1-1&keywords=john+von+neumann+

the+theory+of+Self+reproducing+Automata.

Webb, A., & Knowles, J. (2014). Studying the evolvability of self-encoding genotype-

phenotype maps. Proceedings of the Fourteenth International Conference on the

Synthesis and Simulation of Living Systems. http://mitpress.mit.edu/sites/

default/files/titles/content/alife14/978-0-262-32621-6-ch014.pdf.

Wikipedia (2014). Tree data structure. http://en.wikipedia.org/wiki/Tree_data_

structure. [Online; accessed 01-June-2015].

121

http://deepblue.lib.umich.edu/bitstream/handle/2027.42/7923/bad2800.0001.001.pdf?sequence=5&isAllowed=y
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/7923/bad2800.0001.001.pdf?sequence=5&isAllowed=y
http://golly.sourceforge.net
http://www.americanscientist.org/issues/pub/early-canid-domestication-the-farm-fox-experiment
http://www.americanscientist.org/issues/pub/early-canid-domestication-the-farm-fox-experiment
http://www.dna.caltech.edu/courses/cs129/caltech_restricted/Turing_1936_IBID.pdf
http://www.dna.caltech.edu/courses/cs129/caltech_restricted/Turing_1936_IBID.pdf
https://www.cs.ucf.edu/~dcm/Teaching/COP5611Spring2010/vonNeumannSelfReproducingAutomata.pdf
https://www.cs.ucf.edu/~dcm/Teaching/COP5611Spring2010/vonNeumannSelfReproducingAutomata.pdf
http://www.amazon.com/Theory-Self-Reproducing-Automata-John-Neumann/dp/B0000CNFSD/ref=sr_1_1?s=books&ie=UTF8&qid=1433524616&sr=1-1&keywords=john+von+neumann+the+theory+of+Self+reproducing+Automata
http://www.amazon.com/Theory-Self-Reproducing-Automata-John-Neumann/dp/B0000CNFSD/ref=sr_1_1?s=books&ie=UTF8&qid=1433524616&sr=1-1&keywords=john+von+neumann+the+theory+of+Self+reproducing+Automata
http://www.amazon.com/Theory-Self-Reproducing-Automata-John-Neumann/dp/B0000CNFSD/ref=sr_1_1?s=books&ie=UTF8&qid=1433524616&sr=1-1&keywords=john+von+neumann+the+theory+of+Self+reproducing+Automata
http://www.amazon.com/Theory-Self-Reproducing-Automata-John-Neumann/dp/B0000CNFSD/ref=sr_1_1?s=books&ie=UTF8&qid=1433524616&sr=1-1&keywords=john+von+neumann+the+theory+of+Self+reproducing+Automata
http://mitpress.mit.edu/sites/default/files/titles/content/alife14/978-0-262-32621-6-ch014.pdf
http://mitpress.mit.edu/sites/default/files/titles/content/alife14/978-0-262-32621-6-ch014.pdf
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Tree_data_structure

Appendix A

Creature Design

This section contains the raw data for the code of the creatures which are discussed

throughout the body of this thesis.

A.1 vn lut32 344 Code

Listing A.1: Von Neumann Creature: vn lut32 344 code

1 nop1 ;Creature start template

2 nop1

3 nop1

4 nop1

5 nop1

6 adrb ;Find creature start template address

7 nop0

8 nop0

9 nop0

10 nop0

11 nop0

12 subAAC ;Subtract template size from start template address

13 pushA ;Push start address to stack

14 popB ;Pop start address to Bx

15 adrf ;Find creature end template

16 nop0

17 nop0

18 nop0

19 nop0

20 nop1

21 incA ;Increment to allow for dummy instruction

22 subCAB ;Calculate total creature length

23 nop1

24 nop1

25 nop1

26 nop0

27 nop1

28 pushC ;Save creature length to stack

29 mal ;Allocate offspring memory space

30 call ;Save current IP location. Jump to decode subroutine

31 nop0

32 nop0

122

33 nop1

34 nop1

35 divide ;Divide. Remove write protection to offspring memory image

36 popC ;Pop creature length to Cx

37 jmpo ;Jump to daughter allocation subroutine

38 nop0

39 nop0

40 nop0

41 nop1

42 nop0

43 ifz

44 nop1

45 nop1

46 nop1

47 nop0

48 nop0

49 pushA ;Push offspring start address in stack

50 popD ;Pop offspring start address to Dx

51 adrf ;Find start of LUT

52 nop0

53 nop0

54 nop1

55 nop0

56 nop1

57 pushA ;Push LUT start address to stack

58 popE ;Pop LUT start address to Ex

59 adrf ;Find genotype start address

60 nop0

61 nop0

62 nop1

63 nop0

64 nop0

65 pushA ;Pushg genotype start address to stack

66 popB ;Popo genotype start address to Bx

67 adrf ;Find creature end address

68 nop0

69 nop0

70 nop0

71 nop0

72 nop1

73 subAAC ;Calculate genotype end address

74 subCAB ;Calculate genotype length

75 nop1

76 nop1

77 nop1

78 nop0

79 nop0

80 movdi ;Copy g-symbol to Ax

81 add ;Add LUT start address to Ax

82 movii2 ;Write symbol poinetd at by Ax to phenotype

83 incB ;Increment genotype pointer

84 incC ;Increment offspring phenotype pointer

85 decC ;Decrement counter

86 ifz ;If C!=0 jump to start of decode loop

87 jmpb ;Else skip jmpb instruction

88 nop0

89 nop0

90 nop0

123

91 nop1

92 nop1

93 pushD ;Push offspring phenotype pointer to stack

94 adrf ;Find genotype start address

95 nop0

96 nop0

97 nop1

98 nop0

99 nop0

100 pushA ;Push genotype start address to stack

101 popB ;Popo genotype start address to Bx

102 adrf ;Find creature end template

103 nop0

104 nop0

105 nop0

106 nop0

107 nop1

108 incA ;Increment to include dummy instruction

109 subCAB ;Calculate genotype length

110 popA ;Pop offspring pointer to Ax

111 nop0

112 nop1

113 nop0

114 nop0

115 nop0

116 movii ;Copy g-symbol from parent to offspring

117 incA ;Increment offspring pointer

118 incB ;Increment parent genotype pointer

119 decC ;Decrement counter

120 ifz ;If C!=0 jump to start of copy loop

121 jmpb ;Else skip jmpb instruction

122 nop1

123 nop0

124 nop1

125 nop1

126 nop1

127 ret ;Return IP to address stored in stack

128 nop1 ;Look -up table (LUT) start template

129 nop1

130 nop0

131 nop1

132 nop0

133 pushA ;LOOK -UP TABLE

134 subCAB

135 nop1

136 nop0

137 popE

138 ret

139 popB

140 divide

141 subAAC

142 popC

143 incA

144 mal

145 pushD

146 movii2

147 jmpb

148 add

124

149 ifz

150 pushB

151 adrf

152 adrb

153 movdi

154 adro

155 movii

156 incC

157 call

158 decC

159 movBA

160 incB

161 popA

162 pushC

163 popD

164 jmpo :LOOK -UP TABLE END

165 nop1 ;Genotype start template

166 nop1

167 nop0

168 nop1

169 nop1

170 add

171 add

172 add

173 add

174 add

175 jmpo

176 ifz

177 ifz

178 ifz

179 ifz

180 ifz

181 decC

182 nop0

183 incA

184 popE

185 ifz

186 ifz

187 ifz

188 ifz

189 add

190 pushA

191 nop1

192 add

193 add

194 add

195 ifz

196 add

197 adrf

198 pushB

199 movdi

200 ifz

201 ifz

202 add

203 add

204 incB

205 incC

206 divide

125

207 ifz

208 ifz

209 ifz

210 add

211 ifz

212 popC

213 add

214 add

215 add

216 ifz

217 ifz

218 nop0

219 mal

220 popE

221 ifz

222 ifz

223 add

224 ifz

225 add

226 nop0

227 subCAB

228 popE

229 ifz

230 ifz

231 add

232 ifz

233 ifz

234 nop0

235 incA

236 popE

237 ifz

238 ifz

239 ifz

240 ifz

241 add

242 decC

243 nop1

244 add

245 add

246 add

247 ifz

248 ifz

249 jmpb

250 popB

251 pushD

252 adro

253 movBA

254 movii2

255 popC

256 popA

257 ifz

258 ifz

259 ifz

260 add

261 add

262 pushC

263 popE

264 ifz

126

265 ifz

266 add

267 ifz

268 ifz

269 nop0

270 incA

271 popE

272 ifz

273 ifz

274 ifz

275 ifz

276 add

277 pushA

278 nop1

279 adrb

280 ifz

281 add

282 ifz

283 ifz

284 ifz

285 ret

286 pushA

287 adro

288 movii2

289 popC

290 popA

291 add

292 ifz

293 add

294 add

295 add

296 subAAC

297 add

298 add

299 ifz

300 add

301 ifz

302 nop0

303 nop1

304 add

305 ifz

306 subCAB

307 subAAC

308 incA

309 incB

310 decC

311 incC

312 pushA

313 pushB

314 pushC

315 pushD

316 popA

317 popB

318 popC

319 popD

320 popE

321 jmpo

322 jmpb

127

323 call

324 ret

325 movBA

326 movdi

327 movii2

328 movii

329 adro

330 adrb

331 adrf

332 mal

333 divide

334 add

335 add

336 ifz

337 add

338 add ;GENOTYPE END

339 nop1 ;Genotype end template

340 nop1

341 nop1

342 nop1

343 nop0

344 ifz ;Dummy instruction

128

A.2 vn lut32 311 Code

Listing A.2: Von Neumann Creature: vn lut32 311 code

1 adrf ; Search for start of genotype

2 nop1 ; Creature start template

3 nop0

4 nop1

5 nop0

6 pushA ; Push genotype start address to stack

7 popB ; Pop genotype start address to Bx

8 adrf ; Find creature end template

9 nop1

10 nop1

11 nop1

12 nop0

13 pushC ; Push creature end template size to stack

14 subCAB ; Subtract to find the length of the genotype + end template

15 pushC ; Push genotype length to stack

16 popA ; Pop genotype length to Ax

17 add2 ; Double the value in Ax

18 incA ; Increment to allow for dummy instruction

19 popB ; Pop creature end template to Bx

20 subCAB ; Subtract Bx from Ax to find length of twice the genotype , plus one

end template

21 nop0

22 nop0

23 nop1

24 nop0

25 pushC ; Save length to stack

26 mal ; Allocate offspring memory space

27 call ; Save current IP location. Jump to decode subroutine

28 nop0

29 nop0

30 nop1

31 nop1

32 divide ; Divide. Remove write protection to offspring memory image

33 popC ; Pop creature length to Cx

34 jmpo ; Jump to daughter allocation subroutine

35 nop1

36 nop1

37 nop0

38 nop1

39 ifz

40 nop1

41 nop1

42 nop0

43 nop0

44 pushA ; Push offspring start address in stack

45 popD ; Pop offspring start address to Dx

46 adrf ; Find start of LUT

47 nop0

48 nop1

49 nop0

50 nop0

51 pushA ; Push LUT start address to stack

52 popE ; Pop LUT start address to Ex

53 adrf ; Find genotype start address

129

54 nop1

55 nop0

56 nop1

57 nop0

58 pushA ; Push genotype start address to stack

59 popB ; Pop genotype start address to Bx

60 adrf ; Find creature end address

61 nop1

62 nop1

63 nop1

64 nop0

65 subAAC ; Calculate genotype end address

66 subCAB ; Calculate genotype length

67 nop0

68 nop1

69 nop1

70 nop0

71 movdi ; Copy g-symbol to Ax

72 add ; Add LUT start address to Ax

73 movii2 ; Write symbol poinetd at by Ax to phenotype

74 incB ; Increment genotype pointer

75 incC ; Increment offspring phenotype pointer

76 decC ; Decrement counter

77 ifz ; If C!=0 jump to start of decode loop

78 jmpb ; Else skip jmpb instruction

79 nop1

80 nop0

81 nop0

82 nop1

83 pushD ; Push offspring phenotype pointer to stack

84 adrf ; Find genotype start address

85 nop1

86 nop0

87 nop1

88 nop0

89 pushA ; Push genotype start address to stack

90 popB ; Popo genotype start address to Bx

91 adrf ; Find creature end template

92 nop1

93 nop1

94 nop1

95 nop0

96 incA ; Increment to include dummy instruction

97 subCAB ; Calculate genotype length

98 popA ; Pop offspring pointer to Ax

99 nop0

100 nop1

101 nop1

102 nop1

103 movii ; Copy g-symbol from parent to offspring

104 incA ; Increment offspring pointer

105 incB ; Increment parent genotype pointer

106 decC ; Decrement counter

107 ifz ; If C!=0 jump to start of copy loop

108 jmpb ; Else skip jmpb instruction

109 nop1

110 nop0

111 nop0

130

112 nop0

113 ret ; Return IP to address stored in stack

114 nop1 ; Look -up table (LUT) start template

115 nop0

116 nop1

117 nop1

118 pushA ; LOOK -UP TABLE

119 subCAB

120 nop1

121 nop0

122 popE

123 ret

124 popB

125 divide

126 subAAC

127 popC

128 incA

129 mal

130 pushD

131 movii2

132 jmpb

133 add

134 ifz

135 pushB

136 adrf

137 adrb

138 movdi

139 adro

140 movii

141 incC

142 call

143 decC

144 add2

145 incB

146 popA

147 pushC

148 popD

149 jmpo : LOOK -UP TABLE END

150 nop0 ; Genotype start template

151 nop1

152 nop0

153 nop1

154 popE ; GENOTYPE

155 add

156 ifz

157 add

158 ifz

159 nop0

160 incA

161 popE

162 add

163 add

164 add

165 ifz

166 adrf

167 nop1

168 adrf

169 adrb

131

170 movii

171 pushA

172 incA

173 nop1

174 ifz

175 ifz

176 add

177 ifz

178 adrf

179 pushB

180 movdi

181 ifz

182 ifz

183 add

184 add

185 incB

186 incC

187 divide

188 add

189 add

190 ifz

191 add

192 popC

193 add

194 add

195 ifz

196 ifz

197 nop0

198 mal

199 popE

200 ifz

201 add

202 ifz

203 ifz

204 nop0

205 subCAB

206 popE

207 add

208 ifz

209 add

210 ifz

211 nop0

212 incA

213 popE

214 add

215 add

216 add

217 ifz

218 decC

219 nop1

220 ifz

221 add

222 add

223 ifz

224 jmpb

225 popB

226 pushD

227 adro

132

228 add2

229 movii2

230 popC

231 popA

232 add

233 ifz

234 ifz

235 add

236 pushC

237 popE

238 add

239 ifz

240 add

241 ifz

242 nop0

243 incA

244 popE

245 add

246 add

247 add

248 ifz

249 pushA

250 nop1

251 adrb

252 ifz

253 add

254 add

255 add

256 ret

257 pushA

258 adro

259 movii2

260 popC

261 popA

262 add

263 ifz

264 ifz

265 ifz

266 subAAC

267 add

268 ifz

269 add

270 add

271 nop0

272 nop1

273 add

274 ifz

275 subCAB

276 subAAC

277 incA

278 incB

279 decC

280 incC

281 pushA

282 pushB

283 pushC

284 pushD

285 popA

133

286 popB

287 popC

288 popD

289 popE

290 jmpo

291 jmpb

292 call

293 ret

294 add2

295 movdi

296 movii2

297 movii

298 adro

299 adrb

300 adrf

301 mal

302 divide

303 ifz

304 add

305 ifz

306 add ;GENOTYPE END

307 nop0 ;Genotype end template

308 nop0

309 nop0

310 nop1

311 ifz ;Dummy instruction

134

A.3 vn lut32 413 Code

Listing A.3: PC Immune Creature: vn lut32 413 code

1 adrf ; Search for start of genotype

2 nop1 ; Creature start template

3 nop0

4 nop0

5 nop0

6 pushA ; Push genotype start address to stack

7 popB ; Pop genotype start address to Bx

8 adrf ; Find creature end template

9 nop1

10 nop1

11 nop1

12 nop0

13 pushC ; Push creature end template size to stack

14 subCAB ; Subtract to find the length of the genotype + end template

15 pushC ; Push genotype length to stack

16 popA ; Pop genotype length to Ax

17 add2 ; Double the value in Ax

18 incA ; Increment to allow for dummy instruction

19 popB ; Pop creature end template to Bx

20 subCAB ; Subtract Bx from Ax to find length of twice the genotype , plus one

end template

21 nop0

22 nop0

23 nop1

24 nop0

25 pushC ; Save length to stack

26 mal ; Allocate offspring memory space

27 call ; Save current IP location. Jump to decode subroutine

28 nop0

29 nop0

30 nop1

31 nop1

32 divide ; Divide. Remove write protection to offspring memory image

33 popC ; Pop creature length to Cx

34 jmpo ; Jump to daughter allocation subroutine

35 nop1

36 nop1

37 nop0

38 nop1

39 ifz

40 nop1

41 nop1

42 nop0

43 nop0

44 pushA ; Push offspring start address in stack

45 popD ; Pop offspring start address to Dx

46 adrf ; Find start of LUT

47 nop0

48 nop1

49 nop0

50 nop0

51 pushA ; Push LUT start address to stack

52 popE ; Pop LUT start address to Ex

53 adrf ; Find genotype start address

135

54 nop1

55 nop0

56 nop1

57 nop0

58 pushA ; Push genotype start address to stack

59 popB ; Pop genotype start address to Bx

60 adrf ; Find creature end address

61 nop1

62 nop1

63 nop1

64 nop0

65 subAAC ; Calculate genotype end address

66 subCAB ; Calculate genotype length

67 nop0

68 nop1

69 nop1

70 nop0

71 movdi ; Copy g-symbol to Ax

72 add ; Add LUT start address to Ax

73 movii2 ; Write symbol poinetd at by Ax to phenotype

74 incB ; Increment genotype pointer

75 incC ; Increment offspring phenotype pointer

76 decC ; Decrement counter

77 ifz ; If C!=0 jump to start of decode loop

78 jmpb ; Else skip jmpb instruction

79 nop1

80 nop0

81 nop0

82 nop1

83 pushD ; Push offspring phenotype pointer to stack

84 adrf ; Find genotype start address

85 nop1

86 nop0

87 nop1

88 nop0

89 pushA ; Push genotype start address to stack

90 popB ; Popo genotype start address to Bx

91 adrf ; Find creature end template

92 nop1

93 nop1

94 nop1

95 nop0

96 incA ; Increment to include dummy instruction

97 subCAB ; Calculate genotype length

98 popA ; Pop offspring pointer to Ax

99 nop0

100 nop1

101 nop1

102 nop1

103 movii ; Copy g-symbol from parent to offspring

104 incA ; Increment offspring pointer

105 incB ; Increment parent genotype pointer

106 decC ; Decrement counter

107 ifz ; If C!=0 jump to start of copy loop

108 jmpb ; Else skip jmpb instruction

109 nop1

110 nop0

111 nop0

136

112 nop0

113 ret ; Return IP to address stored in stack

114 nop1 ; Look -up table (LUT) start template

115 nop0

116 nop1

117 nop1

118 pushA ; LOOK -UP TABLE

119 subCAB

120 nop1

121 nop0

122 popE

123 ret

124 popB

125 divide

126 subAAC

127 popC

128 incA

129 mal

130 pushD

131 movii2

132 jmpb

133 add

134 ifz

135 pushB

136 adrf

137 adrb

138 movdi

139 adro

140 movii

141 incC

142 call

143 decC

144 add2

145 incB

146 popA

147 pushC

148 popD

149 jmpo : LOOK -UP TABLE END

150 nop0 ; Genotype start template

151 nop1

152 nop0

153 nop1

154 popE ; GENOTYPE

155 add

156 ifz

157 ifz

158 ifz

159 nop0

160 incA

161 popE

162 add

163 add

164 add

165 ifz

166 adrf

167 nop1

168 adrf

169 adrb

137

170 movii

171 pushA

172 incA

173 nop1

174 ifz

175 ifz

176 add

177 ifz

178 adrf

179 pushB

180 movdi

181 ifz

182 ifz

183 add

184 add

185 incB

186 incC

187 divide

188 add

189 add

190 ifz

191 add

192 popC

193 add

194 add

195 ifz

196 ifz

197 nop0

198 mal

199 popE

200 ifz

201 add

202 ifz

203 ifz

204 nop0

205 subCAB

206 popE

207 add

208 ifz

209 add

210 ifz

211 nop0

212 incA

213 popE

214 add

215 add

216 add

217 ifz

218 decC

219 nop1

220 ifz

221 add

222 add

223 ifz

224 jmpb

225 popB

226 pushD

227 adro

138

228 add2

229 movii2

230 popC

231 popA

232 add

233 ifz

234 ifz

235 add

236 pushC

237 popE

238 add

239 ifz

240 add

241 ifz

242 nop0

243 incA

244 popE

245 add

246 add

247 add

248 ifz

249 pushA

250 nop1

251 adrb

252 ifz

253 add

254 add

255 add

256 ret

257 pushA

258 adro

259 movii2

260 popC

261 popA

262 add

263 ifz

264 ifz

265 ifz

266 subAAC

267 add

268 ifz

269 add

270 add

271 nop0

272 nop1

273 add

274 ifz

275 subCAB

276 subAAC

277 incA

278 incB

279 decC

280 incC

281 pushA

282 pushB

283 pushC

284 pushD

285 popA

139

286 popB

287 popC

288 popD

289 popE

290 jmpo

291 jmpb

292 call

293 ret

294 add2

295 movdi

296 movii2

297 movii

298 adro

299 adrb

300 adrf

301 mal

302 divide

303 ifz

304 add

305 ifz

306 add ;GENOTYPE END

307 nop0 ;Genotype end template

308 nop0

309 nop0

310 nop1

311 ifz ;Dummy Instruction

312 nop0 ; JUNK DATA

313 nop0

314 nop0

315 nop0

316 nop0

317 nop0

318 nop0

319 nop0

320 nop0

321 nop0

322 nop0

323 nop0

324 nop0

325 nop0

326 nop0

327 nop0

328 nop0

329 nop0

330 nop0

331 nop0

332 nop0

333 nop0

334 nop0

335 nop0

336 nop0

337 nop0

338 nop0

339 nop0

340 nop0

341 nop0

342 nop0

343 nop0

140

344 nop0

345 nop0

346 nop0

347 nop0

348 nop0

349 nop0

350 nop0

351 nop0

352 nop0

353 nop0

354 nop0

355 nop0

356 nop0

357 nop0

358 nop0

359 nop0

360 nop0

361 nop0

362 nop0

363 nop0

364 nop0

365 nop0

366 nop0

367 nop0

368 nop0

369 nop0

370 nop0

371 nop0

372 nop0

373 nop0

374 nop0

375 nop0

376 nop0

377 nop0

378 nop0

379 nop0

380 nop0

381 nop0

382 nop0

383 nop0

384 nop0

385 nop0

386 nop0

387 nop0

388 nop0

389 nop0

390 nop0

391 nop0

392 nop0

393 nop0

394 nop0

395 nop0

396 nop0

397 nop0

398 nop0

399 nop0

400 nop0

401 nop0

141

402 nop0

403 nop0

404 nop0

405 nop0

406 nop0

407 nop0

408 nop0

409 nop0

410 nop0

411 nop0

412 nop0

413 nop0

142

A.4 vn lut64 316 Code

Listing A.4: Von Neumann Creature: vn lut64 316 code

1 adrf ; Search for start of genotype

2 nop1 ; Creature start template

3 nop0

4 nop1

5 nop0

6 pushA ; Push genotype start address to stack

7 popB ; Pop genotype start address to Bx

8 adrf ; Find creature end template

9 nop1

10 nop1

11 nop1

12 pushC ; Push creature end template size to stack

13 subCAB ; Subtract to find the length of the genotype + end template

14 pushC ; Push genotype length to stack

15 popA ; Pop genotype length to Ax

16 shlA ; Double the value in Ax

17 incA ; Increment to allow for dummy instruction

18 popB ; Pop creature end template to Bx

19 subCAB ; Subtract Bx from Ax to find length of twice the genotype , plus one

end template

20 nop0

21 nop0

22 pushC ; Save length to stack

23 mal ; Allocate offspring memory space

24 call ; Save current IP location. Jump to decode subroutine

25 nop0

26 divide ; Divide. Remove write protection to offspring memory image

27 popC ; Pop creature length to Cx

28 jmpb ; Jump to daughter allocation subroutine

29 nop1

30 nop1

31 pushA ; Push offspring start address in stack

32 popD ; Pop offspring start address to Dx

33 adrf ; Find start of LUT

34 nop1

35 nop0

36 nop0

37 pushA ; Push LUT start address to stack

38 popE ; Pop LUT start address to Ex

39 adrf ; Find genotype start address

40 nop1

41 nop0

42 nop1

43 nop0

44 pushA ; Push genotype start address to stack

45 popB ; Pop genotype start address to Bx

46 adrf ; Find creature end address

47 nop1

48 nop1

49 nop1

50 subAAC ; Calculate genotype end address

51 subCAB ; Calculate genotype length

52 nop0

53 movAb ; Copy g-symbol to Ax

143

54 addAAE ; Add LUT start address to Ax

55 movda ; Write symbol pointed at by Ax to phenotype

56 incB ; Increment genotype pointer

57 incD ; Increment offspring phenotype pointer

58 decC ; Decrement counter

59 ifz ; If C!=0 jump to start of decode loop

60 jmpb ; Else skip jmpb instruction

61 nop1

62 pushD ; Push offspring phenotype pointer to stack

63 adrf ; Find genotype start address

64 nop1

65 nop0

66 nop1

67 nop0

68 pushA ; Push genotype start address to stack

69 popB ; Popo genotype start address to Bx

70 adrf ; Find creature end template

71 nop1

72 nop1

73 nop1

74 incA ; Increment to include dummy instruction

75 subCAB ; Calculate genotype length

76 popA ; Pop offspring pointer to Ax

77 nop1

78 movab ; Copy g-symbol from parent to offspring

79 incA ; Increment offspring pointer

80 incB ; Increment parent genotype pointer

81 decC ; Decrement counter

82 ifnz ; If C=0 jump to start of copy loop

83 jmpb ; Else skip jmpb instruction

84 nop0

85 ret ; Return IP to address stored in stack

86 nop0 ; Look -up table (LUT) start template

87 nop1

88 nop1

89 nop0 ; LOOK_UP TABLE START

90 nop1

91 nop2

92 nop3

93 ifnz

94 nop4

95 addAAE

96 nop5

97 subCAB

98 nop6

99 subAAC

100 nop7

101 incA

102 nop8

103 incB

104 nop9

105 decC

106 nop10

107 incD

108 nop11

109 pushA

110 nop12

111 nop13

144

112 nop14

113 pushC

114 nop15

115 pushD

116 nop16

117 popA

118 nop17

119 popB

120 nop18

121 popC

122 nop19

123 popD

124 nop20

125 popE

126 nop21

127 nop22

128 nop23

129 jmpb

130 nop24

131 adrf

132 nop25

133 nop26

134 nop27

135 call

136 nop28

137 movAb

138 nop29

139 movda

140 nop30

141 movab

142 nop31

143 ret

144 nop32

145 nop33

146 shlA

147 nop34

148 nop35

149 mal

150 nop36

151 nop37

152 divide ; LOOK -UP TABLE END

153 nop0 ; Genotype start template

154 nop1

155 nop0

156 nop1

157 adrf ; GENOTYPE

158 nop1

159 nop0

160 nop1

161 nop0

162 pushA

163 popB

164 adrf

165 nop1

166 nop1

167 nop1

168 pushC

169 subCAB

145

170 pushC

171 popA

172 shlA

173 incA

174 popB

175 subCAB

176 nop0

177 nop0

178 pushC

179 mal

180 call

181 nop0

182 divide

183 popC

184 jmpb

185 nop1

186 nop1

187 pushA

188 popD

189 adrf

190 nop1

191 nop0

192 nop0

193 pushA

194 popE

195 adrf

196 nop1

197 nop0

198 nop1

199 nop0

200 pushA

201 popB

202 adrf

203 nop1

204 nop1

205 nop1

206 subAAC

207 subCAB

208 nop0

209 movAb

210 addAAE

211 movda

212 incB

213 incD

214 decC

215 ifnz

216 jmpb

217 nop1

218 pushD

219 adrf

220 nop1

221 nop0

222 nop1

223 nop0

224 pushA

225 popB

226 adrf

227 nop1

146

228 nop1

229 nop1

230 incA

231 subCAB

232 popA

233 nop1

234 movab

235 incA

236 incB

237 decC

238 ifnz

239 jmpb

240 nop0

241 ret

242 nop0

243 nop1

244 nop1

245 nop0

246 nop1

247 nop2

248 nop3

249 ifnz

250 nop4

251 addAAE

252 nop5

253 subCAB

254 nop6

255 subAAC

256 nop7

257 incA

258 nop8

259 incB

260 nop9

261 decC

262 nop10

263 incD

264 nop11

265 pushA

266 nop12

267 nop13

268 nop14

269 pushC

270 nop15

271 pushD

272 nop16

273 popA

274 nop17

275 popB

276 nop18

277 popC

278 nop19

279 popD

280 nop20

281 popE

282 nop21

283 nop22

284 nop23

285 jmpb

147

286 nop24

287 adrf

288 nop25

289 nop26

290 nop27

291 call

292 nop28

293 movAb

294 nop29

295 movda

296 nop30

297 movab

298 nop31

299 ret

300 nop32

301 nop33

302 shlA

303 nop34

304 nop35

305 mal

306 nop36

307 nop37

308 divide

309 nop0

310 nop1

311 nop0

312 nop1 ; GENOTYPE END

313 nop0 ; Creature end template

314 nop0

315 nop0

316 ifz ;Dummy instruction

148

A.5 vn tt128 758 Code

Listing A.5: Von Neumann Creature: vn tt128 758 code

1 adrf ; Search for start of genotype (SELF INSPECTION)

2 nop1 ; Creature start template

3 nop0

4 nop1

5 nop0

6 pushA ; Push genotype start address to stack

7 popB ; Pop genotype start address to Bx

8 adrf ; Find creature end template

9 nop1

10 nop1

11 nop1

12 pushC ; Push creature end template size to stack

13 subCAB ; Subtract to find the length of the genotype + end template

14 pushC ; Push genotype length to stack

15 popA ; Pop genotype length to Ax

16 addAAA ; Double the value in Ax

17 incA ; Increment to allow for dummy instruction

18 popB ; Pop creature end template to Bx

19 subCAB ; Subtract Bx from Ax to find length of twice the genotype , plus one

end template

20 nop0 ; (MEMORY ALLOCATE AND DE -ALLOCATE)

21 nop0

22 pushC ; Save length to stack

23 mal ; Allocate offspring memory space

24 call ; Save current IP location. Jump to decode subroutine

25 nop0

26 divide ; Divide. Remove write protection to offspring memory image

27 popC ; Pop creature length to Cx

28 jmpb ; Jump to daughter allocation subroutine

29 nop1

30 nop1

31 pushA ; Push offspring start address in stack (DECODE SUBROUTINE)

32 popD ; Pop offspring start address to Dx

33 adrf ; Find start of TT

34 nop1

35 nop0

36 nop0

37 pushA ; Push TT start address to stack

38 popF ; Pop TT start address to Fx

39 adrf ; Find genotype end address

40 nop1

41 nop1

42 nop1

43 subAAC ; Calculate genotype end address

44 pushA ; Push genotype end address to stack

45 popB ; Pop genotype end address to Bx

46 adrf ; Search for start of genotype

47 nop1

48 nop0

49 nop1

50 nop0

51 pushA ; Push genotype start address to stack

52 popE ; Pop genotype start address to Ex

53 subCBA ; Calculate genotype length , put in Cx

149

54 pushF ; Push TT start address to stack

55 popB ; Popo TT start address to Bx

56 nop1

57 nop1

58 nop0

59 nop1

60 movAe ; Copy g-symbol numerical value to Ax

61 pushB ; Push TT start address to stack

62 movBb ; Copy number in TT to Bx

63 ifequal ; If Ax != Bx skip next instruction

64 jmpf ; Else jump to template [11]

65 nop0

66 nop0

67 popB ; Pop TT start address to Bx

68 incB ; Increase Bx (pointer to TT)

69 incB ; Increase Bx (pointer to TT)

70 jmpb ; Jumb back to start of decoding subroutine

71 nop0

72 nop0

73 nop1

74 ifz

75 nop1

76 nop1

77 popB ; Pop current TT address to Bx

78 incB ; Increment to point to associated key -value

79 movdb ; Copy key value to offspring phenotype

80 incD ; Increase offspring phenotype pointer

81 incE ; Increase parent genotype pointer

82 decC ; Decrease counter

83 pushF ; Push TT start to stack

84 popB ; Popo TT start to Bx

85 ifnz ; If Cx=0, skip jump instruction

86 jmpb ; Else , jump back to start of decode subroutine

87 nop0

88 nop0

89 nop1

90 nop0 ; (COPY SUBROUTINE)

91 pushD ; Push offspring pointer to stack

92 adrf ; Search for start of genotype

93 nop1

94 nop0

95 nop1

96 nop0

97 pushA ; Push genotype start address to stack

98 popB ; Pop genotype start address to Bx

99 adrf ; Find genotype end template

100 nop1

101 nop1

102 nop1

103 incA ; Increment to include dummy instruction

104 subCAB ; Subtract to find genotype length

105 popA ; Pop offspring pointer to Ax

106 nop1

107 movab ; Copy g-symbol to offspring

108 incA ; Increment offspring pointer

109 incB ; Increment g-symbol pointer

110 decC ; Decrement counter

111 ifnz ;If Cx!=0, skip jump instruction

150

112 jmpb ; Else , jump to start of copy subroutine

113 nop0

114 ret ; Return IP to address stored in stack

115 nop0 ; Translation table (TT) start template [011]

116 nop1

117 nop1

118 nop1 ; (TRANSLATION TABLE START)

119 nop1

120 nop0

121 nop0

122 popB

123 popB

124 adrf

125 adrf

126 pushA

127 pushA

128 incB

129 incB

130 jmpb

131 jmpb

132 subCAB

133 subCAB

134 pushC

135 pushC

136 incA

137 incA

138 pushF

139 pushF

140 decC

141 decC

142 ifnz

143 ifnz

144 popA

145 popA

146 ifz

147 ifz

148 pushD

149 pushD

150 ifequal

151 ifequal

152 movab

153 movab

154 movBb

155 movBb

156 movAe

157 movAe

158 subCBA

159 subCBA

160 popF

161 popF

162 jmpf

163 jmpf

164 incD

165 incD

166 popE

167 popE

168 subAAC

169 subAAC

151

170 incE

171 incE

172 mal

173 mal

174 addAAA

175 addAAA

176 popD

177 popD

178 popC

179 popC

180 ret

181 ret

182 movdb

183 movdb

184 call

185 call

186 pushB

187 pushB

188 divide

189 divide

190 decF

191 decF

192 moveA

193 moveA

194 movac

195 movac

196 subCEB

197 subCEB

198 subBFC

199 subBFC

200 subCDB

201 subCDB

202 movAb

203 movAb

204 movda

205 movda

206 movce

207 movce

208 movbc

209 movbc

210 addCCF

211 addCCF

212 subBBC

213 subBBC

214 jmpo

215 jmpo

216 pushE

217 pushE

218 movdf

219 movdf

220 addAAD

221 addAAD

222 subBDC

223 subBDC

224 movcd

225 movcd

226 addBBF

227 addBBF

152

228 subBEA

229 subBEA

230 movbd

231 movbd

232 subCFB

233 subCFB

234 subABC

235 subABC

236 movae

237 movae

238 addCCA

239 addCCA

240 movBa

241 movBa

242 incC

243 incC

244 movdA

245 movdA

246 subAAB

247 subAAB

248 subAFC

249 subAFC

250 movAd

251 movAd

252 movaB

253 movaB

254 subADC

255 subADC

256 subACB

257 subACB

258 subADB

259 subADB

260 decA

261 decA

262 subCFA

263 subCFA

264 movbe

265 movbe

266 subAEC

267 subAEC

268 moveB

269 moveB

270 movcA

271 movcA

272 movad

273 movad

274 subCEA

275 subCEA

276 movde

277 movde

278 adrb

279 adrb

280 addBBE

281 addBBE

282 subAFB

283 subAFB

284 subAEB

285 subAEB

153

286 addAAF

287 addAAF

288 movcb

289 movcb

290 subBBA

291 subBBA

292 decB

293 decB

294 movbf

295 movbf

296 addBBD

297 addBBD

298 addAAE

299 addAAE

300 movBc

301 movBc

302 subCCA

303 subCCA

304 movca

305 movca

306 movcB

307 movcB

308 incF

309 incF

310 addBBC

311 addBBC

312 subCDA

313 subCDA

314 movbA

315 movbA

316 zero

317 zero

318 movAf

319 movAf

320 movBd

321 movBd

322 movaf

323 movaf

324 subCCB

325 subCCB

326 addCCB

327 addCCB

328 movfA

329 movfA

330 subBCA

331 subBCA

332 movAa

333 movAa

334 addBBB

335 addBBB

336 adro

337 adro

338 decD

339 decD

340 movdc

341 movdc

342 addCCE

343 addCCE

154

344 movBe

345 movBe

346 movba

347 movba

348 movdB

349 movdB

350 addBBA

351 addBBA

352 movfB

353 movfB

354 addAAC

355 addAAC

356 decE

357 decE

358 movBf

359 movBf

360 addCCD

361 addCCD

362 subBAC

363 subBAC

364 movAc

365 movAc

366 addAAB

367 addAAB

368 subBEC

369 subBEC

370 subBDA

371 subBDA

372 movcf

373 movcf ; TRANSLATION TABLE END

374 nop0 ; Genotype start template

375 nop1

376 nop0

377 nop1

378 adrf ; (GENOTYPE)

379 nop1

380 nop0

381 nop1

382 nop0

383 pushA

384 popB

385 adrf

386 nop1

387 nop1

388 nop1

389 pushC

390 subCAB

391 pushC

392 popA

393 addAAA

394 incA

395 popB

396 subCAB

397 nop0

398 nop0

399 pushC

400 mal

401 call

155

402 nop0

403 divide

404 popC

405 jmpb

406 nop1

407 nop1

408 pushA

409 popD

410 adrf

411 nop1

412 nop0

413 nop0

414 pushA

415 popF

416 adrf

417 nop1

418 nop1

419 nop1

420 subAAC

421 pushA

422 popB

423 adrf

424 nop1

425 nop0

426 nop1

427 nop0

428 pushA

429 popE

430 subCBA

431 pushF

432 popB

433 nop1

434 nop1

435 nop0

436 nop1

437 movAe

438 pushB

439 movBb

440 ifequal

441 jmpf

442 nop0

443 nop0

444 popB

445 incB

446 incB

447 jmpb

448 nop0

449 nop0

450 nop1

451 ifz

452 nop1

453 nop1

454 popB

455 incB

456 movdb

457 incD

458 incE

459 decC

156

460 pushF

461 popB

462 ifnz

463 jmpb

464 nop0

465 nop0

466 nop1

467 nop0

468 pushD

469 adrf

470 nop1

471 nop0

472 nop1

473 nop0

474 pushA

475 popB

476 adrf

477 nop1

478 nop1

479 nop1

480 incA

481 subCAB

482 popA

483 nop1

484 movab

485 incA

486 incB

487 decC

488 ifnz

489 jmpb

490 nop0

491 ret

492 nop0

493 nop1

494 nop1

495 nop1

496 nop1

497 nop0

498 nop0

499 popB

500 popB

501 adrf

502 adrf

503 pushA

504 pushA

505 incB

506 incB

507 jmpb

508 jmpb

509 subCAB

510 subCAB

511 pushC

512 pushC

513 incA

514 incA

515 pushF

516 pushF

517 decC

157

518 decC

519 ifnz

520 ifnz

521 popA

522 popA

523 ifz

524 ifz

525 pushD

526 pushD

527 ifequal

528 ifequal

529 movab

530 movab

531 movBb

532 movBb

533 movAe

534 movAe

535 subCBA

536 subCBA

537 popF

538 popF

539 jmpf

540 jmpf

541 incD

542 incD

543 popE

544 popE

545 subAAC

546 subAAC

547 incE

548 incE

549 mal

550 mal

551 addAAA

552 addAAA

553 popD

554 popD

555 popC

556 popC

557 ret

558 ret

559 movdb

560 movdb

561 call

562 call

563 pushB

564 pushB

565 divide

566 divide

567 decF

568 decF

569 moveA

570 moveA

571 movac

572 movac

573 subCEB

574 subCEB

575 subBFC

158

576 subBFC

577 subCDB

578 subCDB

579 movAb

580 movAb

581 movda

582 movda

583 movce

584 movce

585 movbc

586 movbc

587 addCCF

588 addCCF

589 subBBC

590 subBBC

591 jmpo

592 jmpo

593 pushE

594 pushE

595 movdf

596 movdf

597 addAAD

598 addAAD

599 subBDC

600 subBDC

601 movcd

602 movcd

603 addBBF

604 addBBF

605 subBEA

606 subBEA

607 movbd

608 movbd

609 subCFB

610 subCFB

611 subABC

612 subABC

613 movae

614 movae

615 addCCA

616 addCCA

617 movBa

618 movBa

619 incC

620 incC

621 movdA

622 movdA

623 subAAB

624 subAAB

625 subAFC

626 subAFC

627 movAd

628 movAd

629 movaB

630 movaB

631 subADC

632 subADC

633 subACB

159

634 subACB

635 subADB

636 subADB

637 decA

638 decA

639 subCFA

640 subCFA

641 movbe

642 movbe

643 subAEC

644 subAEC

645 moveB

646 moveB

647 movcA

648 movcA

649 movad

650 movad

651 subCEA

652 subCEA

653 movde

654 movde

655 adrb

656 adrb

657 addBBE

658 addBBE

659 subAFB

660 subAFB

661 subAEB

662 subAEB

663 addAAF

664 addAAF

665 movcb

666 movcb

667 subBBA

668 subBBA

669 decB

670 decB

671 movbf

672 movbf

673 addBBD

674 addBBD

675 addAAE

676 addAAE

677 movBc

678 movBc

679 subCCA

680 subCCA

681 movca

682 movca

683 movcB

684 movcB

685 incF

686 incF

687 addBBC

688 addBBC

689 subCDA

690 subCDA

691 movbA

160

692 movbA

693 zero

694 zero

695 movAf

696 movAf

697 movBd

698 movBd

699 movaf

700 movaf

701 subCCB

702 subCCB

703 addCCB

704 addCCB

705 movfA

706 movfA

707 subBCA

708 subBCA

709 movAa

710 movAa

711 addBBB

712 addBBB

713 adro

714 adro

715 decD

716 decD

717 movdc

718 movdc

719 addCCE

720 addCCE

721 movBe

722 movBe

723 movba

724 movba

725 movdB

726 movdB

727 addBBA

728 addBBA

729 movfB

730 movfB

731 addAAC

732 addAAC

733 decE

734 decE

735 movBf

736 movBf

737 addCCD

738 addCCD

739 subBAC

740 subBAC

741 movAc

742 movAc

743 addAAB

744 addAAB

745 subBEC

746 subBEC

747 subBDA

748 subBDA

749 movcf

161

750 movcf

751 nop0

752 nop1

753 nop0

754 nop1 ; GENOTYPE END

755 nop0 ; Creature end template

756 nop0

757 nop0

758 ifz ;Dummy instruction

162

A.6 0035aaa Code

This creature is the result of a pathological constructor, which simply executes the

ret instruction and redirects its CPU to location zero in the soup. The remaining

instructions are never executed.

Listing A.6: Pathological Creature: 0035aaa code

1 ret ; Redirect instruction pointer to absolute address zero.

2 nop1 ; The instructions from this point onwards are never accessed.

3 ret

4 divide

5 popC

6 adrf

7 pushD

8 adrb

9 adrf

10 pushA

11 pushA

12 subCAB

13 pushA

14 subCAB

15 subCAB

16 movdi

17 add

18 movii2

19 incB

20 incC

21 call

22 pushC

23 mal

24 call

25 nop0

26 nop0

27 nop1

28 nop0

29 nop1

30 nop1

31 nop0

32 nop0

33 nop0

34 nop1

35 nop1

163

A.7 0669aaa Code

This pathological constructor is an offspring of vn lut32 311, which received quite a

large segment insertion. A segment 358 symbols long was inserted into the middle of

the look-up table. This segment insertion contained strings of nops. As the creature

attempted to search for the addresses templates which usually mark the start and

finish of the genotype, the creature instead finds the addressed of templates within the

segment insertion. The creature then calculates the offspring as being of length 35 and

proceeds to create malfunctioning creatures of that length.

Listing A.7: Pathological Constructor: 0669aaa code

1 adrf ; Search for template [0101]

2 nop1

3 nop0

4 nop1

5 nop0

6 pushA ; Push [0101] address to stack

7 popB ; Pop [0101] address to Bx

8 adrf ; Search for template [0001]

9 nop1

10 nop1

11 nop1

12 nop0

13 pushC ; Push [0001] template size to stack

14 subCAB ; Subtract to find the length between template [0101] and [0001].

15 pushC ; Push length to stack (This length is 20 instead of genotype length)

16 popA ; Pop length to Ax

17 add2 ; Double value in Ax

18 incA ; Increment Ax

19 popB ; Pop [0001] template size to Bx

20 subCAB ; Subtract Bx from Ax

21 nop0

22 nop0

23 nop1

24 nop0

25 pushC ; Save length to stack

26 mal ; Allocate offspring memory space

27 call ; Save current IP location. Jump to decode subroutine

28 nop0

29 nop0

30 nop1

31 nop1

32 divide ; Divide. Remove write protection to offspring memory image

33 popC ; Pop creature length to Cx

34 jmpo ; Jump to daughter allocation subroutine

35 nop1

36 nop1

37 nop0

38 nop1

39 ifz

40 nop1

41 nop1

42 nop0

43 nop0

44 pushA ; Push offspring start address in stack

164

45 popD ; Pop offspring start address to Dx

46 adrf ; Find start of LUT

47 nop0

48 nop1

49 nop0

50 nop0

51 pushA ; Push LUT start address to stack

52 popE ; Pop LUT start address to Ex

53 adrf ; Find genotype start address

54 nop1

55 nop0

56 nop1

57 nop0

58 pushA ; Push [0101] address to stack

59 popB ; Pop [0101] address to Bx

60 adrf ; Find [0001] address

61 nop1

62 nop1

63 nop1

64 nop0

65 subAAC ; Subtract the template size (4) from [0101]

66 subCAB ; Subtract the position of template [0001] from Ax.

67 nop0

68 nop1

69 nop1

70 nop0

71 movdi ; Copy g-symbol to Ax

72 add ; Add LUT start address to Ax

73 movii2 ; Write symbol poinetd at by Ax to phenotype

74 incB ; Increment genotype pointer

75 incC ; Increment offspring phenotype pointer

76 decC ; Decrement counter

77 ifz ; If C!=0 jump to start of decode loop

78 jmpb ; Else skip jmpb instruction

79 nop1

80 nop0

81 nop0

82 nop1

83 pushD ; Push offspring phenotype pointer to stack

84 adrf ; Find genotype start address

85 nop1

86 nop0

87 nop1

88 nop0

89 pushA ; Push genotype start address to stack

90 popB ; Popo genotype start address to Bx

91 adrf ; Find creature end template

92 nop1

93 nop1

94 nop1

95 nop0

96 incA ; Increment to include dummy instruction

97 subCAB ; Calculate genotype length

98 popA ; Pop offspring pointer to Ax

99 nop0

100 nop1

101 nop1

102 nop1

165

103 movii ; Copy g-symbol from parent to offspring

104 incA ; Increment offspring pointer

105 incB ; Increment parent genotype pointer

106 decC ; Decrement counter

107 ifz ; If C!=0 jump to start of copy loop

108 jmpb ; Else skip jmpb instruction

109 nop1

110 nop0

111 nop0

112 nop0

113 ret ; Return IP to address stored in stack

114 nop1 ; Look -up table (LUT) start template

115 nop0

116 nop1

117 nop1

118 pushA ; LOOK -UP TABLE

119 subCAB

120 nop1

121 nop0

122 popE

123 ret

124 popB

125 divide

126 subAAC

127 popC

128 incA

129 mal

130 pushD

131 movii2

132 jmpb

133 add

134 ifz

135 pushB; *** This is an insertion perturbation of 358 symbols ***

136 nop0; These symbols never get executed ,

137 popA; however , the string of nops affect the

138 popE; template addressing and result in

139 adrf; the creature calculating its offspring as 35 symbols long

140 nop1

141 nop0

142 ret

143 ret

144 movdi

145 movii2

146 movii

147 adro

148 adrb

149 adrf

150 mal

151 divide

152 ifz

153 add

154 ifz

155 add

156 nop0

157 popB

158 add

159 popE

160 pushA

166

161 pushA

162 subCAB

163 pushA

164 pushD

165 popD

166 adro

167 pushA

168 pushA

169 subCAB

170 incA

171 nop1

172 ifz

173 ifz

174 decC

175 add2

176 incB

177 popA

178 pushC

179 popD

180 jmpo

181 nop0; Template [0101]

182 nop1

183 nop0

184 nop1

185 movdi

186 add

187 movii2

188 incB

189 incC

190 call

191 pushC

192 mal

193 call

194 nop0

195 nop0

196 nop1

197 nop0

198 nop1

199 nop1

200 nop0; Template [0001]

201 nop0

202 nop0

203 nop1

204 nop1

205 nop0

206 nop0

207 nop1

208 nop0

209 nop0

210 nop0

211 popD

212 adrf

213 nop0

214 nop1

215 nop0

216 nop0

217 pushA

218 popE

167

219 popE

220 popE

221 add

222 adrf

223 movii

224 nop0

225 nop1

226 nop1

227 nop1

228 nop0

229 pushC

230 nop1

231 nop1

232 nop0

233 nop0

234 adrf

235 nop1

236 nop1

237 nop1

238 popB

239 nop1

240 nop0

241 nop0

242 nop0

243 nop1

244 nop0

245 adrf

246 ifz

247 adrf

248 ifz

249 nop1

250 pushC

251 nop0

252 adrf

253 adrf

254 adrf

255 ifz

256 nop0

257 nop1

258 nop0

259 pushC

260 adrb

261 movdi

262 adro

263 movii

264 incC

265 call

266 decC

267 add

268 add

269 incB

270 incC

271 divide

272 add

273 add

274 ifz

275 add

276 popC

168

277 add

278 add

279 ifz

280 ifz

281 nop0

282 ifz

283 nop1

284 nop1

285 nop0

286 nop0

287 pushA

288 popD

289 adrf

290 nop0

291 nop1

292 nop0

293 nop0

294 pushA

295 popE

296 adrf

297 nop1

298 nop0

299 nop1

300 nop0

301 pushA

302 popB

303 adrf

304 nop1

305 nop1

306 nop1

307 nop0

308 subAAC

309 subCAB

310 nop0

311 nop1

312 nop1

313 nop0

314 movdi

315 adro

316 add

317 ret

318 popE

319 adrf

320 nop1

321 adrf

322 adrb

323 call

324 nop1

325 decC

326 divide

327 popC

328 subAAC

329 nop0

330 movdi

331 subCAB

332 pushA

333 pushA

334 subCAB

169

335 movii2

336 pushC

337 subCAB

338 nop1

339 add

340 ifz

341 ifz

342 add

343 pushC

344 popE

345 add

346 ifz

347 popD

348 jmpo

349 nop0

350 popB

351 nop0

352 nop0

353 nop0

354 nop1

355 decC

356 nop0

357 nop1

358 nop0

359 nop0

360 nop1

361 nop1

362 nop0

363 mal

364 call

365 nop1

366 nop1

367 nop0

368 pushA

369 nop0

370 nop1

371 nop1

372 nop0

373 nop0

374 popB

375 nop0

376 nop1

377 nop0

378 nop1

379 pushA

380 nop0

381 nop1

382 nop1

383 nop1

384 nop1

385 nop1

386 mal

387 divide

388 ifz

389 add

390 ifz

391 add

392 nop0

170

393 nop0

394 nop1

395 ifz

396 ifz

397 adrf

398 nop1

399 nop0

400 nop1

401 nop0

402 pushA

403 popB

404 adrf

405 nop1

406 nop1

407 nop1

408 nop0

409 pushC

410 subCAB

411 pushC

412 popA

413 add2

414 incA

415 popB

416 subCAB

417 nop0

418 nop0

419 nop1

420 nop0

421 pushC

422 mal

423 call

424 nop0

425 nop0

426 nop1

427 nop0

428 nop1

429 nop1

430 nop0

431 nop0

432 nop0

433 nop1

434 nop1

435 nop0

436 nop0

437 nop1

438 nop0

439 nop0

440 nop0

441 nop0

442 nop1

443 nop1

444 pushA

445 nop0

446 nop1

447 nop1

448 nop1

449 nop1

450 popB

171

451 add

452 adrf

453 movii

454 add

455 nop0

456 incA

457 adrf

458 popD

459 adrf

460 add

461 adrf

462 add

463 add

464 adrf

465 popC

466 popE

467 adrf

468 add

469 adrf

470 add

471 adrf

472 add

473 popE

474 adrf

475 adrf

476 adrf

477 add

478 popE

479 adrf

480 nop1

481 adrf

482 adrb

483 call

484 nop1

485 decC

486 divide

487 popC

488 subAAC

489 nop0

490 movdi

491 subCAB

492 pushA

493 pushA; *** Insertion Ends ***

494 adrf

495 adrb

496 movdi

497 adro

498 movii

499 incC

500 call

501 decC

502 add2

503 incB

504 popA

505 pushC

506 popD

507 jmpo : LOOK -UP TABLE END

508 nop0 ; Genotype start template

172

509 nop1

510 nop0

511 nop1

512 popE ; GENOTYPE

513 add

514 ifz

515 add

516 ifz

517 nop0

518 incA

519 popE

520 add

521 add

522 add

523 ifz

524 adrf

525 nop1

526 adrf

527 adrb

528 movii

529 pushA

530 incA

531 nop1

532 ifz

533 ifz

534 add

535 ifz

536 adrf

537 pushB

538 movdi

539 ifz

540 ifz

541 add

542 add

543 incB

544 incC

545 divide

546 add

547 add

548 ifz

549 add

550 popC

551 add

552 add

553 ifz

554 ifz

555 nop0

556 mal

557 popE

558 ifz

559 add

560 ifz

561 ifz

562 nop0

563 subCAB

564 popE

565 add

566 ifz

173

567 add

568 ifz

569 nop0

570 incA

571 popE

572 add

573 add

574 add

575 ifz

576 decC

577 nop1

578 ifz

579 add

580 add

581 ifz

582 jmpb

583 popB

584 pushD

585 adro

586 add2

587 movii2

588 popC

589 popA

590 add

591 ifz

592 ifz

593 add

594 pushC

595 popE

596 add

597 ifz

598 add

599 ifz

600 nop0

601 incA

602 popE

603 add

604 add

605 add

606 ifz

607 pushA

608 nop1

609 adrb

610 ifz

611 add

612 add

613 add

614 ret

615 pushA

616 adro

617 movii2

618 popC

619 popA

620 add

621 ifz

622 ifz

623 ifz

624 subAAC

174

625 add

626 ifz

627 add

628 add

629 nop0

630 nop1

631 add

632 ifz

633 subCAB

634 subAAC

635 incA

636 incB

637 decC

638 incC

639 pushA

640 pushB

641 pushC

642 pushD

643 popA

644 popB

645 popC

646 popD

647 popE

648 jmpo

649 jmpb

650 call

651 ret

652 add2

653 movdi

654 movii2

655 movii

656 adro

657 adrb

658 adrf

659 mal

660 divide

661 ifz

662 add

663 ifz

664 add ;GENOTYPE END

665 nop0 ;Genotype end template

666 nop0

667 nop0

668 nop1

669 ifz ;Dummy instruction

175

Appendix B

Opcode Map Files

This section contains the opcode.map files for the simulations which were run and

discussed throughout the body of this thesis. The opcode.map files determines which

instructions out of the pre-programmed Tierra instruction library are used within the

instruction set of a particular run and each row represents a different instruction.

The second column1 instructs Tierra how many CPU cycles to spend on this in-

struction.

The third column represents the assembler mnemonic associated with that instruc-

tion.

The fourth column is a pointer to the function which will actually carry out the

operation associated with this instruction. Each function may carry out a number of

different instructions, for example, the math function is responsible for the subtraction

and addition instructions. These functions are defined in the instruct.c source module.

The fifth column is a pointer to the function which will decode the operation as-

sociated with this instruction, for example, the dec1d2s function which is responsible

for the sabAAC instruction will decode one destination register and two source values.

These functions are defined in the decode.c source module.

Many of the executable instructions operate on source values from registers and/or

generate destination values that will be placed in registers. For example, add and

subtract take two source values and generate one destination value. The fifth column

specifies the registers that will be associated with these source and destination values.

The opcode.map file contains a string in this field, in which the letters specify the

registers which are affected. For example, the instruction subAAC uses the following

string, ”aac”. The first ”a” specifies the destination register, and the next two letters

”ac” specify the two source registers.

Finally the fifth column contains the flags bitfield. There are some situations in

which the relationship of the source and destination values to registers in not simple

1Note that neither the source code commentary or the Tierra documentation explains the purpose of
the first column. However, it appears that this column must contain a zero in order for the associated
instruction to be executed properly by a Tierran CPU.

176

enough to be handled by the mechanisms implemented through the standard proce-

dures. In these cases a flag is set, to indicate that special handling is necessary. Flag

conditions are triggered by the presence of characters in the register assignments field

which are upper case letters. For example, the divide() instruction creates a new CPU

whose stack and general purpose registers are all initialised as zero, however the in-

struction pointer register must contain the absolute address location of the first memory

location in the newly created offspring. By setting a “C” flag in this field it is possible

to write to “speCial” registers which to not belong to the CPU which is executing the

instruction.

B.1 vn lut32 344 opcode.map

Listing B.1: vn lut32 344 opcode.map file

1 {0, 1, "nop0", nop , pnop , "", ""},

2 {0, 1, "nop1", nop , pnop , "", ""},

3 {0, 1, "add", add , dec1d2s , "", {0}}, /* "rrr" */

4 {0, 1, "ifz", ifz , dec2s , "cc", ""}, /* "r#" */

5 {0, 1, "subCAB", math , dec1d2s , "cab", ""}, /* "cab" */

6 {0, 1, "subAAC", math , dec1d2s , "aac", ""}, /* "aac" */

7 {0, 1, "incA", math , dec1d1s , "aa", ""}, /* "aa" */

8 {0, 1, "incB", math , dec1d1s , "bb", ""}, /* "bb" */

9 {0, 1, "decC", math , dec1d1s , "cc", ""}, /* "cc" */

10 {0, 1, "incC", math , dec1d1s , "dd", ""}, /* "cc" */

11 {0, 1, "pushA", push , dec1s , "a", ""}, /* "a" */

12 {0, 1, "pushB", push , dec1s , "b", ""}, /* "b" */

13 {0, 1, "pushC", push , dec1s , "c", ""}, /* "c" */

14 {0, 1, "pushD", push , dec1s , "d", ""}, /* "d" */

15 {0, 1, "popA", pop , dec1d , "a", ""}, /* "a" */

16 {0, 1, "popB", pop , dec1d , "b", ""}, /* "b" */

17 {0, 1, "popC", pop , dec1d , "c", ""}, /* "c" */

18 {0, 1, "popD", pop , dec1d , "d", ""}, /* "d" */

19 {0, 1, "popE", pop , dec1d , "e", ""}, /* "e" */

20 {0, 1, "jmpo", adr , decjmp , "b", ""}, /* "r" */

21 {0, 1, "jmpb", adr , decjmp , "b", ""}, /* "r" */

22 {0, 1, "call", tcall , ptcall , "", ""}, /* no decode args */

23 {0, 1, "ret", pop , dec1d , "", ""}, /* no decode args */

24 {0, 1, "movBA", movdd , dec1d1s , "ba", ""}, /* "ba" */

25 {0, 1, "movdi", movdi , pmovdi , "ab", ""}, /* "rr" */

26 {0, 1, "movii2", movii , pmovii , "da", ""}, /* "rr" */

27 {0, 1, "movii", movii , pmovii , "ab", ""}, /* "rr" */

28 {0, 1, "adro", adr , decadr , "ac ", ""}, /* "rr " */

29 {0, 1, "adrb", adr , decadr , "ac ", ""}, /* "rr " */

30 {0, 1, "adrf", adr , decadr , "ac ", ""}, /* "rr " */

31 {0, 1, "mal", malchm , dec1d3s , "ac a", ""}, /* "rr r" */

32 {0, 1, "divide", divide , dec2s , "ac", "C"}, /* "rr" */

177

B.2 vn lut32 311 opcode.map

Listing B.2: vn lut32 311 opcode.map file

1 {0, 1, "nop0", nop , pnop , "", ""},

2 {0, 1, "nop1", nop , pnop , "", ""},

3 {0, 1, "add", add , dec1d2s , "", {0}}, /* "rrr" */

4 {0, 1, "ifz", ifz , dec2s , "cc", ""}, /* "r#" */

5 {0, 1, "subCAB", math , dec1d2s , "cab", ""}, /* "cab" */

6 {0, 1, "subAAC", math , dec1d2s , "aac", ""}, /* "aac" */

7 {0, 1, "incA", math , dec1d1s , "aa", ""}, /* "aa" */

8 {0, 1, "incB", math , dec1d1s , "bb", ""}, /* "bb" */

9 {0, 1, "decC", math , dec1d1s , "cc", ""}, /* "cc" */

10 {0, 1, "incC", math , dec1d1s , "dd", ""}, /* "cc" */

11 {0, 1, "pushA", push , dec1s , "a", ""}, /* "a" */

12 {0, 1, "pushB", push , dec1s , "b", ""}, /* "b" */

13 {0, 1, "pushC", push , dec1s , "c", ""}, /* "c" */

14 {0, 1, "pushD", push , dec1s , "d", ""}, /* "d" */

15 {0, 1, "popA", pop , dec1d , "a", ""}, /* "a" */

16 {0, 1, "popB", pop , dec1d , "b", ""}, /* "b" */

17 {0, 1, "popC", pop , dec1d , "c", ""}, /* "c" */

18 {0, 1, "popD", pop , dec1d , "d", ""}, /* "d" */

19 {0, 1, "popE", pop , dec1d , "e", ""}, /* "e" */

20 {0, 1, "jmpo", adr , decjmp , "b", ""}, /* "r" */

21 {0, 1, "jmpb", adr , decjmp , "b", ""}, /* "r" */

22 {0, 1, "call", tcall , ptcall , "", ""}, /* no decode args */

23 {0, 1, "ret", pop , dec1d , "", ""}, /* no decode args */

24 {0, 1, "add2", add , dec1d2s , "", {0}}, /* "rrr" */

25 {0, 1, "movdi", movdi , pmovdi , "ab", ""}, /* "rr" */

26 {0, 1, "movii2", movii , pmovii , "da", ""}, /* "rr" */

27 {0, 1, "movii", movii , pmovii , "ab", ""}, /* "rr" */

28 {0, 1, "adro", adr , decadr , "ac ", ""}, /* "rr " */

29 {0, 1, "adrb", adr , decadr , "ac ", ""}, /* "rr " */

30 {0, 1, "adrf", adr , decadr , "ac ", ""}, /* "rr " */

31 {0, 1, "mal", malchm , dec1d3s , "ac a", ""}, /* "rr r" */

32 {0, 1, "divide", divide , dec2s , "ac", "C"}, /* "rr" */

178

B.3 vn lut64 316 opcode.map

Listing B.3: vn lut64 316 opcode.map file

1 {0, 1, "nop0", nop , pnop , "", ""},

2 {0, 1, "nop1", nop , pnop , "", ""},

3 {0, 1, "add", add , dec1d2s , "", {0}}, /* "rrr" */

4 {0, 1, "ifz", ifz , dec2s , "cc", ""}, /* "r#" */

5 {0, 1, "subCAB", math , dec1d2s , "cab", ""}, /* "cab" */

6 {0, 1, "subAAC", math , dec1d2s , "aac", ""}, /* "aac" */

7 {0, 1, "incA", math , dec1d1s , "aa", ""}, /* "aa" */

8 {0, 1, "incB", math , dec1d1s , "bb", ""}, /* "bb" */

9 {0, 1, "decC", math , dec1d1s , "cc", ""}, /* "cc" */

10 {0, 1, "incC", math , dec1d1s , "dd", ""}, /* "cc" */

11 {0, 1, "pushA", push , dec1s , "a", ""}, /* "a" */

12 {0, 1, "pushB", push , dec1s , "b", ""}, /* "b" */

13 {0, 1, "pushC", push , dec1s , "c", ""}, /* "c" */

14 {0, 1, "pushD", push , dec1s , "d", ""}, /* "d" */

15 {0, 1, "popA", pop , dec1d , "a", ""}, /* "a" */

16 {0, 1, "popB", pop , dec1d , "b", ""}, /* "b" */

17 {0, 1, "popC", pop , dec1d , "c", ""}, /* "c" */

18 {0, 1, "popD", pop , dec1d , "d", ""}, /* "d" */

19 {0, 1, "popE", pop , dec1d , "e", ""}, /* "e" */

20 {0, 1, "jmpo", adr , decjmp , "b", ""}, /* "r" */

21 {0, 1, "jmpb", adr , decjmp , "b", ""}, /* "r" */

22 {0, 1, "call", tcall , ptcall , "", ""}, /* no decode args */

23 {0, 1, "ret", pop , dec1d , "", ""}, /* no decode args */

24 {0, 1, "add2", add , dec1d2s , "", {0}}, /* "rrr" */

25 {0, 1, "movdi", movdi , pmovdi , "ab", ""}, /* "rr" */

26 {0, 1, "movii2", movii , pmovii , "da", ""}, /* "rr" */

27 {0, 1, "movii", movii , pmovii , "ab", ""}, /* "rr" */

28 {0, 1, "adro", adr , decadr , "ac ", ""}, /* "rr " */

29 {0, 1, "adrb", adr , decadr , "ac ", ""}, /* "rr " */

30 {0, 1, "adrf", adr , decadr , "ac ", ""}, /* "rr " */

31 {0, 1, "mal", malchm , dec1d3s , "ac a", ""}, /* "rr r" */

32 {0, 1, "divide", divide , dec2s , "ac", "C"}, /* "rr" */

179

B.4 vn tt128 758 opcode.map

Listing B.4: vn tt128 758 opcode.map file

1 {0, 1, "nop0", nop , pnop , "", ""},

2 {0, 1, "nop1", nop , pnop , "", ""}, /* no decode args */

3 {0, 1, "zero", movdd , dec1d1s , "", {0}}, /* "rr" */

4 {0, 1, "ifequal", skip , dec2s , "ab", ""}, /* "rr" */

5 {0, 1, "ifz", skip , dec2s , "cc", ""}, /* "rr" */

6 {0, 1, "ifnz", skip , dec2s , "cc", ""}, /* "rr" */ */

7 {0, 1, "addAAA", add , dec1d2s , "aaa", ""},

8 {0, 1, "addAAB", add , dec1d2s , "aab", ""},

9 {0, 1, "addAAC", add , dec1d2s , "aac", ""},

10 {0, 1, "addAAD", add , dec1d2s , "aad", ""},

11 {0, 1, "addAAE", add , dec1d2s , "aae", ""},

12 {0, 1, "addAAF", add , dec1d2s , "aaf", ""},

13 {0, 1, "addBBA", add , dec1d2s , "bba", ""},

14 {0, 1, "addBBB", add , dec1d2s , "bbb", ""},

15 {0, 1, "addBBC", add , dec1d2s , "bbc", ""},

16 {0, 1, "addBBD", add , dec1d2s , "bbd", ""},

17 {0, 1, "addBBE", add , dec1d2s , "bbe", ""},

18 {0, 1, "addBBF", add , dec1d2s , "bbf", ""},

19 {0, 1, "addCCA", add , dec1d2s , "cca", ""},

20 {0, 1, "addCCB", add , dec1d2s , "ccb", ""},

21 {0, 1, "addCCD", add , dec1d2s , "ccd", ""},

22 {0, 1, "addCCE", add , dec1d2s , "cce", ""},

23 {0, 1, "addCCF", add , dec1d2s , "ccf", ""},

24 {0, 1, "subCBA", add , dec1d2s , "cba", ""},

25 {0, 1, "subCCA", add , dec1d2s , "cca", ""},

26 {0, 1, "subCDA", add , dec1d2s , "cda", ""},

27 {0, 1, "subCEA", add , dec1d2s , "cea", ""},

28 {0, 1, "subCFA", add , dec1d2s , "cfa", ""},

29 {0, 1, "subCAB", add , dec1d2s , "cab", ""},

30 {0, 1, "subCCB", add , dec1d2s , "ccb", ""},

31 {0, 1, "subCDB", add , dec1d2s , "cdb", ""},

32 {0, 1, "subCEB", add , dec1d2s , "ceb", ""},

33 {0, 1, "subCFB", add , dec1d2s , "cfb", ""},

34 {0, 1, "subAAC", add , dec1d2s , "aac", ""},

35 {0, 1, "subABC", add , dec1d2s , "abc", ""},

36 {0, 1, "subADC", add , dec1d2s , "adc", ""},

37 {0, 1, "subAEC", add , dec1d2s , "aec", ""},

38 {0, 1, "subAFC", add , dec1d2s , "afc", ""},

39 {0, 1, "subAAB", add , dec1d2s , "aab", ""},

40 {0, 1, "subACB", add , dec1d2s , "acb", ""},

41 {0, 1, "subADB", add , dec1d2s , "adb", ""},

42 {0, 1, "subAEB", add , dec1d2s , "aeb", ""},

43 {0, 1, "subAFB", add , dec1d2s , "afb", ""},

44 {0, 1, "subBAC", add , dec1d2s , "bac", ""},

45 {0, 1, "subBBC", add , dec1d2s , "bbc", ""},

46 {0, 1, "subBDC", add , dec1d2s , "bdc", ""},

47 {0, 1, "subBEC", add , dec1d2s , "bec", ""},

48 {0, 1, "subBFC", add , dec1d2s , "bfc", ""},

49 {0, 1, "subBBA", add , dec1d2s , "bba", ""},

50 {0, 1, "subBCA", add , dec1d2s , "bca", ""},

51 {0, 1, "subBDA", add , dec1d2s , "bda", ""},

52 {0, 1, "subBEA", add , dec1d2s , "bea", ""},

53 {0, 1, "incA", math , dec1d1s , "aa", ""}, /* "aa" */

54 {0, 1, "incB", math , dec1d1s , "bb", ""}, /* "bb" */

180

55 {0, 1, "incD", add , dec1d1s , "dd", ""},

56 {0, 1, "incC", add , dec1d1s , "cc", ""},

57 {0, 1, "incE", add , dec1d1s , "ee", ""},

58 {0, 1, "incF", add , dec1d1s , "ff", ""},

59 {0, 1, "decA", add , dec1d1s , "aa", ""},

60 {0, 1, "decB", add , dec1d1s , "bb", ""},

61 {0, 1, "decC", add , dec1d1s , "cc", ""},

62 {0, 1, "decD", add , dec1d1s , "dd", ""},

63 {0, 1, "decE", add , dec1d1s , "ee", ""},

64 {0, 1, "decF", add , dec1d1s , "ff", ""},

65 {0, 1, "pushA", push , dec1s , "a", ""},

66 {0, 1, "pushB", push , dec1s , "b", ""},

67 {0, 1, "pushC", push , dec1s , "c", ""},

68 {0, 1, "pushD", push , dec1s , "d", ""},

69 {0, 1, "pushE", push , dec1s , "e", ""},

70 {0, 1, "pushF", push , dec1s , "f", ""},

71 {0, 1, "popA", pop , dec1d , "a", ""}, /* "a" */

72 {0, 1, "popB", pop , dec1d , "b", ""}, /* "b" */

73 {0, 1, "popC", pop , dec1d , "c", ""}, /* "c" */

74 {0, 1, "popD", pop , dec1d , "d", ""}, /* "d" */

75 {0, 1, "popE", pop , dec1d , "e", ""}, /* "e" */

76 {0, 1, "popF", pop , dec1d , "f", ""}, /* "e" */ /* "e" */

77 {0, 1, "jmpf", adr , decjmp , "b", ""}, /* "r" */

78 {0, 1, "jmpb", adr , decjmp , "b", ""}, /* "r" */

79 {0, 1, "jmpo", adr , decjmp , "b", ""}, /* "r" */

80 {0, 1, "adrf", adr , decadr , "ac ", ""}, /* "rr " */

81 {0, 1, "adrb", adr , decadr , "ac ", ""}, /* "rr " */

82 {0, 1, "adro", adr , decadr , "ac ", ""}, /* "rr " */

83 {0, 1, "call", tcall , ptcall , "", ""}, /* no decode args */

84 {0, 1, "movAa", movdi , pmovdi , "aa", ""}, /* "rr" */

85 {0, 1, "movAb", movdi , pmovdi , "ab", ""}, /* "rr" */

86 {0, 1, "movAc", movdi , pmovdi , "ac", ""}, /* "rr" */

87 {0, 1, "movAd", movdi , pmovdi , "ad", ""}, /* "rr" */

88 {0, 1, "movAe", movdi , pmovdi , "ae", ""}, /* "rr" */

89 {0, 1, "movAf", movdi , pmovdi , "af", ""}, /* "rr" */

90 {0, 1, "movBa", movdi , pmovdi , "ba", ""}, /* "rr" */

91 {0, 1, "movBb", movdi , pmovdi , "bb", ""}, /* "rr" */

92 {0, 1, "movBc", movdi , pmovdi , "bc", ""}, /* "rr" */

93 {0, 1, "movBd", movdi , pmovdi , "bd", ""}, /* "rr" */

94 {0, 1, "movBe", movdi , pmovdi , "be", ""}, /* "rr" */

95 {0, 1, "movBf", movdi , pmovdi , "bf", ""}, /* "rr" */

96 {0, 1, "movbA", movid , pmovid , "ba", ""}, /* "rr" */

97 {0, 1, "movcA", movid , pmovid , "ca", ""}, /* "rr" */

98 {0, 1, "movdA", movid , pmovid , "da", ""}, /* "rr" */

99 {0, 1, "moveA", movid , pmovid , "ea", ""}, /* "rr" */

100 {0, 1, "movfA", movid , pmovid , "fa", ""}, /* "rr" */

101 {0, 1, "movaB", movid , pmovid , "ab", ""}, /* "rr" */

102 {0, 1, "movcB", movid , pmovid , "cb", ""}, /* "rr" */

103 {0, 1, "movdB", movid , pmovid , "db", ""}, /* "rr" */

104 {0, 1, "moveB", movid , pmovid , "eb", ""}, /* "rr" */

105 {0, 1, "movfB", movid , pmovid , "fb", ""}, /* "rr" */

106 {0, 1, "movab", movii , pmovii , "ab", ""}, /* "rr" */

107 {0, 1, "movac", movii , pmovii , "ac", ""}, /* "rr" */

108 {0, 1, "movad", movii , pmovii , "ad", ""}, /* "rr" */

109 {0, 1, "movae", movii , pmovii , "ae", ""}, /* "rr" */

110 {0, 1, "movaf", movii , pmovii , "af", ""}, /* "rr" */

111 {0, 1, "movba", movii , pmovii , "ba", ""}, /* "rr" */

112 {0, 1, "movbc", movii , pmovii , "bc", ""}, /* "rr" */

181

113 {0, 1, "movbd", movii , pmovii , "bd", ""}, /* "rr" */

114 {0, 1, "movbe", movii , pmovii , "be", ""}, /* "rr" */

115 {0, 1, "movbf", movii , pmovii , "bf", ""}, /* "rr" */

116 {0, 1, "movca", movii , pmovii , "ca", ""}, /* "rr" */

117 {0, 1, "movcb", movii , pmovii , "cb", ""}, /* "rr" */

118 {0, 1, "movcd", movii , pmovii , "cd", ""}, /* "rr" */

119 {0, 1, "movce", movii , pmovii , "ce", ""}, /* "rr" */

120 {0, 1, "movcf", movii , pmovii , "cf", ""}, /* "rr" */

121 {0, 1, "movda", movii , pmovii , "da", ""}, /* "rr" */

122 {0, 1, "movdb", movii , pmovii , "db", ""}, /* "rr" */

123 {0, 1, "movdc", movii , pmovii , "dc", ""}, /* "rr" */

124 {0, 1, "movde", movii , pmovii , "de", ""}, /* "rr" */

125 {0, 1, "movdf", movii , pmovii , "df", ""}, /* "rr" */

126 {0, 1, "ret", pop , dec1d , "", ""}, /* no decode args */

127 {0, 1, "mal", malchm , dec1d3s , "ac a", ""}, /* "rr r" */

128 {0, 1, "divide", divide , dec2s , "ac", "C"}, /* "rr" */

182

Appendix C

Soup in Files

This section contains the soup_in files for the simulations which were run and discussed

throughout the body of this thesis. The soup_in file contains a set of configurable

parameters which can be set before each run.

C.1 vn lut32 344 soup in

Listing C.1: vn lut32 344 soup in file

1 # tierra core: 14-12-93 INST == 0

2

3 # observational parameters:

4

5 BrkupSiz = 0 size of output file in K, named break.1, break.2 ...

6 CumGeneBnk = 0 Use cumulative gene files , or overwrite

7 debug = 0 0 = off , 1 = on, printf statements for debugging

8 DiskBank = 1 turn disk -genebanker on and off

9 DiskOut = 1 output data to disk (1 = on, 0 = off)

10 FindTimeM = 0 to set trap at a certain InstExe time , for debugging

11 FindTimeI = 0 to set trap at a certain InstExe time , for debugging

12 GeneBnker = 1 turn genebanker on and off

13 GenebankPath = 1/ path for genebanker output

14 hangup = 0 0 = exit on error , 1 = hangup on error for debugging

15 MaxFreeBlocks = 800 initial number of structures for memory allocation

16 SaveFreq = 50 frequency of saving core_out , soup_out and list

17 SavRenewMem = 0 free and renew dynamic memory after saving to disk

18 SavMinNum = 1 minimum number of individuals to save genotype

19 SavThrMem = .02 threshold memory occupancy to save genotype

20 SavThrPop = .02 threshold population proportion to save genotype

21 TierraLog = 1 0 = no log file , 1 = write log file

22 WatchExe = 0 mark executed instructions in genome in genebank

23 WatchMov = 0 set mov bits in genome in genebank

24 WatchTem = 0 set template bits in genome in genebank

25

26 # environmental variables:

27

28 alive = 0 how many generations will we run , 0 = infinite

29 DistFreq = -.3 frequency of disturbance , factor of recovery time

30 DistProp = .2 proportion of population affected by distrubance

31 DivSameGen = 0 cells must produce offspring of same genotype , to stop evolution

183

32 DivSameSiz = 0 cells must produce offspring of same size , to stop size change

33 DropDead = 10 stop system if no reproduction in the last x million instructions

34 EjectRate = 0 rate at which random ejections from soup occur

35 GenPerBkgMut = 16 mutation rate control by generations ("cosmic ray")

36 GenPerFlaw = 16 flaw control by generations

37 GenPerMovMut = 16 mutation rate control by generations (copy mutation)

38 GenPerDivMut = 16

39 GenPerCroInsSamSiz = 16

40 GenPerInsIns = 16

41 GenPerDelIns = 16

42 GenPerCroIns = 16

43 GenPerDelSeg = 16

44 GenPerInsSeg = 16

45 GenPerCroSeg = 16

46 MutBitProp = .2 proportion of mutations that are bit flips

47 IMapFile = opcode.map map of opcodes to instructions , file in GenebankPath

48 JmpSouTra = 0. source track switches per average size

49 JumpTrackProb = .2 probability of switching track during a jump of the IP

50 LazyTol = 8 tolerance for non -reproductive cells

51 MalMode = 1 0 = first fit , 1 = better fit , 2 = random preference ,

52 # 3 = near mother ’s address , 4 = near bx address

53 # 5 = near top of stack address , 6 = suggested address (parse dependant)

54 MalReapTol = 1 0 = reap by queue , 1 = reap oldest creature within MalTol

55 MalSamSiz = 0 force memory alloc to be same size as parent (stop evolution)

56 MalTol = 20 multiple of avgsize to search for free block

57 MateSizeEp = 2 size epsilon for potential mate

58 MaxCpuPerCell = 16 maximum number of CPUs allowed per cell

59 MaxIOBufSiz = 32 maximum size for IOS buffer

60 MaxGetBufSiz = 16 maximum size for get IO buffer

61 MaxPutBufSiz = 16 maximum size for put IO buffer

62 MaxSigBufSiz = 32 maximum size for signal buffer

63 MemModeFree = 0 read , write , execute protection for free memory

64 MemModeMine = 0 rwx protection for memory owned by a creature

65 MemModeProt = 2 rwx protection for memory owned by another creature

66 # rwx protect mem: 1 bit = execute , 2 bit = write , 4 bit = read

67 MinCellSize = 12 minimum size for cells

68 MinGenMemSiz = 12 minimum size for genetic memory of cells

69 MinTemplSize = 1 minimum size for templates

70 MovPropThrDiv = .7 minimum proportion of daughter cell filled by mov

71 new_soup = 1 1 = this a new soup , 0 = restarting an old run

72 NumCells = 1 number of creatures and gaps used to inoculate new soup

73 PhotonPow = 1.5 power for photon match slice size

74 PhotonWidth = 8 amount by which photons slide to find best fit

75 PhotonWord = chlorophill word used to define photon

76 PutLimit = 10 distance for intercellular communication , mult of avg creat siz

77 ReapRndProp = .3 top prop of reaper que to reap from

78 SearchLimit = 5 distance for template matching , mult of avg creat siz

79 seed = 32 seed for random number generator , 0 uses time to set seed

80 SizDepSlice = 0 set slice size by size of creature

81 SlicePow = 1 set power for slice size , use when SizDepSlice = 1

82 SliceSize = 25 slice size when SizDepSlice = 0

83 SliceStyle = 2 choose style of determining slice size

84 SlicFixFrac = 0 fixed fraction of slice size

85 SlicRanFrac = 2 random fraction of slice size

86 SoupSize = 300000 size of soup in instructions

87 AliveGen = 0

88

89

184

90 0344 aaa

185

C.2 vn lut32 311 soup in

Listing C.2: vn lut32 311 soup in file

1 # tierra core: 14-12-93 INST == 0

2

3 # observational parameters:

4

5 BrkupSiz = 0 size of output file in K, named break.1, break.2 ...

6 CumGeneBnk = 0 Use cumulative gene files , or overwrite

7 debug = 1 0 = off , 1 = on, printf statements for debugging

8 DiskBank = 1 turn disk -genebanker on and off

9 DiskOut = 1 output data to disk (1 = on, 0 = off)

10 FindTimeM = 0 to set trap at a certain InstExe time , for debugging

11 FindTimeI = 0 to set trap at a certain InstExe time , for debugging

12 GeneBnker = 0 turn genebanker on and off

13 GenebankPath = gb0/ path for genebanker output

14 hangup = 0 0 = exit on error , 1 = hangup on error for debugging

15 MaxFreeBlocks = 800 initial number of structures for memory allocation

16 SaveFreq = 100 frequency of saving core_out , soup_out and list

17 SavRenewMem = 0 free and renew dynamic memory after saving to disk

18 SavMinNum = 10 minimum number of individuals to save genotype

19 SavThrMem = .02 threshold memory occupancy to save genotype

20 SavThrPop = .02 threshold population proportion to save genotype

21 TierraLog = 0 0 = no log file , 1 = write log file

22 WatchExe = 0 mark executed instructions in genome in genebank

23 WatchMov = 0 set mov bits in genome in genebank

24 WatchTem = 0 set template bits in genome in genebank

25

26 # environmental variables:

27

28 alive = 0 how many generations will we run , 0 = infinite

29 DistFreq = -.3 frequency of disturbance , factor of recovery time

30 DistProp = .2 proportion of population affected by distrubance

31 DivSameGen = 0 cells must produce offspring of same genotype , to stop evolution

32 DivSameSiz = 0 cells must produce offspring of same size , to stop size change

33 DropDead = 5 stop system if no reproduction in the last x million instructions

34 EjectRate = 0 rate at which random ejections from soup occur

35 GenPerBkgMut = 32 mutation rate control by generations ("cosmic ray")

36 GenPerFlaw = 32 flaw control by generations

37 GenPerMovMut = 32 mutation rate control by generations (copy mutation)

38 GenPerDivMut = 32

39 GenPerCroInsSamSiz = 32

40 GenPerInsIns = 32

41 GenPerDelIns = 32

42 GenPerCroIns = 32

43 GenPerDelSeg = 32

44 GenPerInsSeg = 32

45 GenPerCroSeg = 32

46 MutBitProp = .2 proportion of mutations that are bit flips

47 IMapFile = opcode.map map of opcodes to instructions , file in GenebankPath

48 JmpSouTra = 0. source track switches per average size

49 JumpTrackProb = .2 probability of switching track during a jump of the IP

50 LazyTol = 7 tolerance for non -reproductive cells

51 MalMode = 1 0 = first fit , 1 = better fit , 2 = random preference ,

52 # 3 = near mother ’s address , 4 = near bx address

53 # 5 = near top of stack address , 6 = suggested address (parse dependant)

54 MalReapTol = 1 0 = reap by queue , 1 = reap oldest creature within MalTol

186

55 MalSamSiz = 0 force memory alloc to be same size as parent (stop evolution)

56 MalTol = 20 multiple of avgsize to search for free block

57 MateSizeEp = 2 size epsilon for potential mate

58 MaxCpuPerCell = 16 maximum number of CPUs allowed per cell

59 MaxIOBufSiz = 32 maximum size for IOS buffer

60 MaxGetBufSiz = 16 maximum size for get IO buffer

61 MaxPutBufSiz = 16 maximum size for put IO buffer

62 MaxSigBufSiz = 32 maximum size for signal buffer

63 MemModeFree = 0 read , write , execute protection for free memory

64 MemModeMine = 0 rwx protection for memory owned by a creature

65 MemModeProt = 2 rwx protection for memory owned by another creature

66 # rwx protect mem: 1 bit = execute , 2 bit = write , 4 bit = read

67 MinCellSize = 12 minimum size for cells

68 MinGenMemSiz = 12 minimum size for genetic memory of cells

69 MinTemplSize = 1 minimum size for templates

70 MovPropThrDiv = .7 minimum proportion of daughter cell filled by mov

71 new_soup = 1 1 = this a new soup , 0 = restarting an old run

72 NumCells = 1 number of creatures and gaps used to inoculate new soup

73 PhotonPow = 1.5 power for photon match slice size

74 PhotonWidth = 8 amount by which photons slide to find best fit

75 PhotonWord = chlorophill word used to define photon

76 PutLimit = 10 distance for intercellular communication , mult of avg creat siz

77 ReapRndProp = .3 top prop of reaper que to reap from

78 SearchLimit = 5 distance for template matching , mult of avg creat siz

79 seed = 24 seed for random number generator , 0 uses time to set seed

80 SizDepSlice = 0 set slice size by size of creature

81 SlicePow = 1 set power for slice size , use when SizDepSlice = 1

82 SliceSize = 25 slice size when SizDepSlice = 0

83 SliceStyle = 2 choose style of determining slice size

84 SlicFixFrac = 0 fixed fraction of slice size

85 SlicRanFrac = 2 random fraction of slice size

86 SoupSize = 300000 size of soup in instructions

87 AliveGen = 0

88

89

90 0311 aaa

187

C.3 vn lut64 316 soup in

Listing C.3: vn lut64 316 soup in file

1 # tierra core: 14-12-93 INST == 0

2

3 # observational parameters:

4

5 BrkupSiz = 0 size of output file in K, named break.1, break.2 ...

6 CumGeneBnk = 0 Use cumulative gene files , or overwrite

7 debug = 0 0 = off , 1 = on, printf statements for debugging

8 DiskBank = 0 turn disk -genebanker on and off

9 DiskOut = 0 output data to disk (1 = on, 0 = off)

10 FindTimeM = 0 to set trap at a certain InstExe time , for debugging

11 FindTimeI = 0 to set trap at a certain InstExe time , for debugging

12 GeneBnker = 0 turn genebanker on and off

13 GenebankPath = gb0/ path for genebanker output

14 hangup = 0 0 = exit on error , 1 = hangup on error for debugging

15 MaxFreeBlocks = 800 initial number of structures for memory allocation

16 SaveFreq = 100 frequency of saving core_out , soup_out and list

17 SavRenewMem = 0 free and renew dynamic memory after saving to disk

18 SavMinNum = 100 minimum number of individuals to save genotype

19 SavThrMem = .8 threshold memory occupancy to save genotype

20 SavThrPop = .8 threshold population proportion to save genotype

21 TierraLog = 0 0 = no log file , 1 = write log file

22 WatchExe = 0 mark executed instructions in genome in genebank

23 WatchMov = 0 set mov bits in genome in genebank

24 WatchTem = 0 set template bits in genome in genebank

25

26 # environmental variables:

27

28 alive = 0 how many generations will we run , 0 = infinite

29 DistFreq = -.3 frequency of disturbance , factor of recovery time

30 DistProp = .2 proportion of population affected by distrubance

31 DivSameGen = 0 cells must produce offspring of same genotype , to stop evolution

32 DivSameSiz = 0 cells must produce offspring of same size , to stop size change

33 DropDead = 5 stop system if no reproduction in the last x million instructions

34 EjectRate = 0 rate at which random ejections from soup occur

35 GenPerBkgMut = 16 mutation rate control by generations ("cosmic ray")

36 GenPerFlaw = 0 flaw control by generations

37 GenPerMovMut = 16 mutation rate control by generations (copy mutation)

38 GenPerDivMut = 16

39 GenPerCroInsSamSiz = 16

40 GenPerInsIns = 16

41 GenPerDelIns = 10

42 GenPerCroIns = 16

43 GenPerDelSeg = 10

44 GenPerInsSeg = 0

45 GenPerCroSeg = 0

46 MutBitProp = .2 proportion of mutations that are bit flips

47 IMapFile = opcode.map map of opcodes to instructions , file in GenebankPath

48 JmpSouTra = 0. source track switches per average size

49 JumpTrackProb = .2 probability of switching track during a jump of the IP

50 LazyTol = 5 tolerance for non -reproductive cells

51 MalMode = 1 0 = first fit , 1 = better fit , 2 = random preference ,

52 # 3 = near mother ’s address , 4 = near bx address

53 # 5 = near top of stack address , 6 = suggested address (parse dependant)

54 MalReapTol = 1 0 = reap by queue , 1 = reap oldest creature within MalTol

188

55 MalSamSiz = 0 force memory alloc to be same size as parent (stop evolution)

56 MalTol = 20 multiple of avgsize to search for free block

57 MateSizeEp = 2 size epsilon for potential mate

58 MaxCpuPerCell = 16 maximum number of CPUs allowed per cell

59 MaxIOBufSiz = 32 maximum size for IOS buffer

60 MaxGetBufSiz = 16 maximum size for get IO buffer

61 MaxPutBufSiz = 16 maximum size for put IO buffer

62 MaxSigBufSiz = 32 maximum size for signal buffer

63 MemModeFree = 0 read , write , execute protection for free memory

64 MemModeMine = 0 rwx protection for memory owned by a creature

65 MemModeProt = 2 rwx protection for memory owned by another creature

66 # rwx protect mem: 1 bit = execute , 2 bit = write , 4 bit = read

67 MinCellSize = 12 minimum size for cells

68 MinGenMemSiz = 12 minimum size for genetic memory of cells

69 MinTemplSize = 1 minimum size for templates

70 MovPropThrDiv = .7 minimum proportion of daughter cell filled by mov

71 new_soup = 1 1 = this a new soup , 0 = restarting an old run

72 NumCells = 1 number of creatures and gaps used to inoculate new soup

73 PhotonPow = 1.5 power for photon match slice size

74 PhotonWidth = 8 amount by which photons slide to find best fit

75 PhotonWord = chlorophill word used to define photon

76 PutLimit = 10 distance for intercellular communication , mult of avg creat siz

77 ReapRndProp = .3 top prop of reaper que to reap from

78 SearchLimit = 5 distance for template matching , mult of avg creat siz

79 seed = 50 seed for random number generator , 0 uses time to set seed

80 SizDepSlice = 0 set slice size by size of creature

81 SlicePow = 1 set power for slice size , use when SizDepSlice = 1

82 SliceSize = 36 slice size when SizDepSlice = 0

83 SliceStyle = 2 choose style of determining slice size

84 SlicFixFrac = 0 fixed fraction of slice size

85 SlicRanFrac = 2 random fraction of slice size

86 SoupSize = 300000 size of soup in instructions

87 AliveGen = 0

88

89

90 0316 aaa

189

C.4 vn tt128 758 soup in

Listing C.4: vn tt128 758 soup in file

1

2

3 # tierra core: 14-12-93 INST == 0

4

5 # observational parameters:

6

7 BrkupSiz = 0 size of output file in K, named break.1, break.2 ...

8 CumGeneBnk = 0 Use cumulative gene files , or overwrite

9 debug = 0 0 = off , 1 = on, printf statements for debugging

10 DiskBank = 1 turn disk -genebanker on and off

11 DiskOut = 0 output data to disk (1 = on, 0 = off)

12 FindTimeM = 0 to set trap at a certain InstExe time , for debugging

13 FindTimeI = 0 to set trap at a certain InstExe time , for debugging

14 GeneBnker = 1 turn genebanker on and off

15 GenebankPath = gb1/ path for genebanker output

16 hangup = 0 0 = exit on error , 1 = hangup on error for debugging

17 MaxFreeBlocks = 800 initial number of structures for memory allocation

18 SaveFreq = 0 frequency of saving core_out , soup_out and list

19 SavRenewMem = 0 free and renew dynamic memory after saving to disk

20 SavMinNum = 20 minimum number of individuals to save genotype

21 SavThrMem = 0.02 threshold memory occupancy to save genotype

22 SavThrPop = 0.02 threshold population proportion to save genotype

23 TierraLog = 0 0 = no log file , 1 = write log file

24 WatchExe = 0 mark executed instructions in genome in genebank

25 WatchMov = 0 set mov bits in genome in genebank

26 WatchTem = 0 set template bits in genome in genebank

27

28 # environmental variables:

29

30 alive = 10 how many generations will we run , 0 = infinite

31 DistFreq = -.3 frequency of disturbance , factor of recovery time

32 DistProp = .2 proportion of population affected by distrubance

33 DivSameGen = 0 cells must produce offspring of same genotype , to stop evolution

34 DivSameSiz = 1 cells must produce offspring of same size , to stop size change

35 DropDead = 1000 stop system if no reproduction in the last x million

instructions

36 EjectRate = 0 rate at which random ejections from soup occur

37 GenPerBkgMut = 10 mutation rate control by generations ("cosmic ray")

38 GenPerFlaw = 0 flaw control by generations

39 GenPerMovMut = 10 mutation rate control by generations (copy mutation)

40 GenPerDivMut = 0

41 GenPerCroInsSamSiz = 0

42 GenPerInsIns = 0

43 GenPerDelIns = 0

44 GenPerCroIns = 0

45 GenPerDelSeg = 0

46 GenPerFactor = 16

47 GenPerInsSeg = 0

48 GenPerCroSeg = 0

49 MutBitProp = .2 proportion of mutations that are bit flips

50 IMapFile = opcode.map map of opcodes to instructions , file in GenebankPath

51 JmpSouTra = 0. source track switches per average size

52 JumpTrackProb = .2 probability of switching track during a jump of the IP

53 LazyTol = 178 tolerance for non -reproductive cells

190

54 MalMode = 1 0 = first fit , 1 = better fit , 2 = random preference ,

55 # 3 = near mother ’s address , 4 = near bx address

56 # 5 = near top of stack address , 6 = suggested address (parse dependant)

57 MalReapTol = 1 0 = reap by queue , 1 = reap oldest creature within MalTol

58 MalSamSiz = 1 force memory alloc to be same size as parent (stop evolution)

59 MalTol = 5 multiple of avgsize to search for free block

60 MateSizeEp = 2 size epsilon for potential mate

61 MaxCpuPerCell = 1 maximum number of CPUs allowed per cell

62 MaxIOBufSiz = 32 maximum size for IOS buffer

63 MaxGetBufSiz = 16 maximum size for get IO buffer

64 MaxPutBufSiz = 16 maximum size for put IO buffer

65 MaxSigBufSiz = 32 maximum size for signal buffer

66 MemModeFree = 0 read , write , execute protection for free memory

67 MemModeMine = 0 rwx protection for memory owned by a creature

68 MemModeProt = 2 rwx protection for memory owned by another creature

69 # rwx protect mem: 1 bit = execute , 2 bit = write , 4 bit = read

70 MinCellSize = 758 minimum size for cells

71 MinGenMemSiz = 758 minimum size for genetic memory of cells

72 MinTemplSize = 1 minimum size for templates

73 MovPropThrDiv = 1 minimum proportion of daughter cell filled by mov

74 new_soup = 1 1 = this a new soup , 0 = restarting an old run

75 NumCells = 1 number of creatures and gaps used to inoculate new soup

76 PhotonPow = 1.5 power for photon match slice size

77 PhotonWidth = 8 amount by which photons slide to find best fit

78 PhotonWord = chlorophill word used to define photon

79 PutLimit = 5 distance for intercellular communication , mult of avg creat siz

80 ReapRndProp = .3 top prop of reaper que to reap from

81 SearchLimit = 10 distance for template matching , mult of avg creat siz

82 seed = 1 seed for random number generator , 0 uses time to set seed

83 SizDepSlice = 0 set slice size by size of creature

84 SlicePow = 1 set power for slice size , use when SizDepSlice = 1

85 SliceSize = 36 slice size when SizDepSlice = 0

86 SliceStyle = 2 choose style of determining slice size

87 SlicFixFrac = 0 fixed fraction of slice size

88 SlicRanFrac = 2 random fraction of slice size

89 SoupSize = 1000000 size of soup in instructions

90 AliveGen = 0

91

92 0758 aaa

191

Appendix D

Tierra Source Code Revisions

This section contains the update file which was created and must be applied to the

Tierra source code in order to perform the experiments in this Thesis.

D.1 Tierra 6.02 update file

Listing D.1: Final Source Code

1 # //

2 # 17th December 2014

3 # Patch file to update Tierra to our specifications.

4 # Created by Declan Baugh , Dublin City University ,

5 # Contact details : declanbaugh@gmail.com

6 # Index:

7 # c: Ammend the tierra.run output file

8 # b: Remove comma "," in InstExe:

9 # a: Add Nops()

10 # 0: Makefile Debug no

11 # 1: GenperFactor ()

12 # 2: arg ’h’ input parameter

13 # 3: Display Seed and start time

14 # 5: clock ()

15 # 6: shlA()

16 # 7: IncD()

17 # 8: addEAA ()

18 # 9: ifnz()

19 # 10: movAb ()

20 # 11: movda ()

21 # 12: movab()

22 # 13: jump()

23 # 14: return ()

24 #

25 #

26 # //

27 #

28 #

29 # h: rambank_logger ()

30 diff --git a/tierra/tierra.c b/tierra/tierra.c

31 --- a/tierra/tierra.c

32 +++ b/tierra/tierra.c

192

33 @@ -743,0 +743,1 @@

34 + rambank_logger (); /* barry.mcmullin@dcu.ie 2013 -06 -02: See rambank.c */

35 # g: void rambank_logger

36 diff --git a/tierra/prototyp.h b/tierra/prototyp.h

37 --- a/tierra/prototyp.h

38 +++ b/tierra/prototyp.h

39 @@ -913,0 +913,2 @@

40 +/* */

41 +void rambank_logger(void);

42 # f: rambank_logger

43 diff --git a/tierra/rambank.c b/tierra/rambank.c

44 --- a/tierra/rambank.c

45 +++ b/tierra/rambank.c

46 @@ -1860,0 +1860 ,39 @@

47 +/*

48 + Log a summary of the rambank , at suitable intervals.

49 +

50 + barry.mcmullin@dcu.ie 2013 -06 -02

51 +*/

52 +void rambank_logger(void)

53 +{

54 + I32s DumpLogFreq = 1;

55 + I32s DumpLogMin = 0;

56 + I32s si; /* size index? */

57 + I32s gi;

58 + GList ** gl;

59 + Genotype gen;

60 +

61 + if ((InstExe.m % DumpLogFreq) == 0) {

62 + fprintf(stderr , "Timestamp: %10d,%06d\n", InstExe.m, InstExe.i);

63 + // fprintf(stderr , "rl> InstExe.m: %d siz_sl: %d\n", InstExe.m, siz_sl);

64 + for (si = 0; si < siz_sl; si++) {

65 + if (!TNULL(sl[si])) {

66 + // fprintf(stderr , " rl > si: %d num_g: %d a_num: %d\n", si, sl[si]->num_g , sl[

si]->a_num);

67 + gl = sl[si]->g;

68 + if (!TNULL(gl)) {

69 + for (gi = 0; gi < sl[si]->a_num; gi++) {

70 + if (!TNULL(gl[gi])) {

71 + if (gl[gi]->pop > DumpLogMin) {

72 + gen = gl[gi]->gen;

73 + fprintf(stderr , "%.4d%3s: %4d\n", gen.size , gen.label , gl[gi]->pop);

74 + // fprintf(stderr , " rl > gi: %d gen.size: %d gen.lable: %3s pop: %d\n",

75 + // gi , gen.size , gen.label , gl[gi]->pop);

76 + // fprintf(stderr , " rl > gi: %d pop: %d\n", gi, 666);

77 + }

78 + }

79 + }

80 + }

81 + }

82 + }

83 + fflush(stderr);

84 + }

85 +}

86 # e: Add extinction time

87 diff --git a/tierra/rambank.c b/tierra/rambank.c

88 --- a/tierra/rambank.c

89 +++ b/tierra/rambank.c

193

90 @@ -276,1 +276,7 @@ void ReapGenBook(cp, mutflag)

91 - { if(!tgl ->origpop)

92 + {

93 + FILE *extinct_file;

94 + tsprintf ((char *)(&(Buff [0])),"%sextinct.log", GenebankPath);

95 + extinct_file = tfopen (&(Buff [0]), (I8s *)"a");

96 + fprintf(extinct_file ,"%d%6.6d %4.4d%3s extinct \n", InstExe.m , InstExe

.i, cp ->mm.s, Int2Lbl(cp ->d.gi));

97 + fclose(extinct_file);

98 + if(!tgl ->origpop)

99 # d: Add emergence time

100 diff --git a/tierra/rambank.c b/tierra/rambank.c

101 --- a/tierra/rambank.c

102 +++ b/tierra/rambank.c

103 @@ -162,1 +162,7 @@ void DivGenBook(cp, InstExe , reaped , mom , same , disk ,

mutflag)

104 - { NumGenotypes ++;

105 + {

106 + FILE *extinct_file;

107 + tsprintf ((char *)(&(Buff [0])),"%sextinct.log", GenebankPath);

108 + extinct_file = tfopen (&(Buff [0]), (I8s *)"a");

109 + fprintf(extinct_file ,"%d%6.6d %4.4d%3s emerge \n", InstExe.m, InstExe.i

, cp->mm.s, Int2Lbl(cp->d.gi));

110 + fclose(extinct_file);

111 + NumGenotypes ++;

112 # c: Ammend the tierra.run output file

113 diff --git a/tierra/bookeep.c b/tierra/bookeep.c

114 --- a/tierra/bookeep.c

115 +++ b/tierra/bookeep.c

116 @@ -353,1 +353,1 @@ void OutDisk(bd, size , label)

117 - BrkupCum += 1 + tfprintf(oufr , " %s\n", label);

118 + BrkupCum += 1 + tfprintf(oufr , "%s\n", label);

119 @@ -363,1 +363,1 @@ void OutDisk(bd, size , label)

120 - if (lo.bd != bd)

121 +

122 @@ -365,1 +365,1 @@ void OutDisk(bd, size , label)

123 - if (lo.size != size)

124 +

125 @@ -367,3 +367,3 @@ void OutDisk(bd, size , label)

126 - if (GeneBnker && strcmp ((const char *)(&(lo.label [0])),

127 - (const char *)(&(label [0]))))

128 - {

129 +

130 +

131 +

132 @@ -373,2 +373,2 @@ void OutDisk(bd, size , label)

133 - BrkupCum += tfprintf(oufr , " %s", label);

134 - }

135 + BrkupCum += tfprintf(oufr , "%s", label);

136 +

137 # b: Remove comma "," in InstExe:

138 diff --git a/tierra/genio.c b/tierra/genio.c

139 --- a/tierra/genio.c

140 +++ b/tierra/genio.c

141 @@ -1872,1 +1872 ,1 @@ WritAscFile ()

142 - tfprintf(fp, "Origin: InstExe: %d,%.6d",

143 + tfprintf(fp , "Origin: InstExe: %d%.6d",

144 # a: Add Nops() instruction

194

145 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

146 --- a/tierra/soup_in.h

147 +++ b/tierra/soup_in.h

148 @@ -208,0 +208 ,350 @@ InstDef idt[] =

149 + {0, 1, "addAAA", add , dec1d2s , "fff", {0}}, /* "rrr" */

150 + {0, 1, "addAAB", add , dec1d2s , "ffa", {0}}, /* "rrr" */

151 + {0, 1, "addAAC", add , dec1d2s , "ffb", {0}}, /* "rrr" */

152 + {0, 1, "addAAD", add , dec1d2s , "ffc", {0}}, /* "rrr" */

153 + {0, 1, "addAAF", add , dec1d2s , "ffe", {0}}, /* "rrr" */

154 + {0, 1, "addBBA", add , dec1d2s , "aaf", {0}}, /* "rrr" */

155 + {0, 1, "addBBB", add , dec1d2s , "aaa", {0}}, /* "rrr" */

156 + {0, 1, "addBBC", add , dec1d2s , "aab", {0}}, /* "rrr" */

157 + {0, 1, "addBBD", add , dec1d2s , "aac", {0}}, /* "rrr" */

158 + {0, 1, "addBBE", add , dec1d2s , "aad", {0}}, /* "rrr" */

159 + {0, 1, "addBBF", add , dec1d2s , "aae", {0}}, /* "rrr" */

160 + {0, 1, "addCCA", add , dec1d2s , "bbf", {0}}, /* "rrr" */

161 + {0, 1, "addCCB", add , dec1d2s , "bba", {0}}, /* "rrr" */

162 + {0, 1, "addCCD", add , dec1d2s , "bbc", {0}}, /* "rrr" */

163 + {0, 1, "addCCE", add , dec1d2s , "bbd", {0}}, /* "rrr" */

164 + {0, 1, "addCCF", add , dec1d2s , "bbe", {0}}, /* "rrr" */

165 + {0, 1, "incE", add , dec1d1s , "ee", {0}}, /* "cc" */

166 + {0, 1, "incF", add , dec1d1s , "ff", {0}}, /* "cc" */

167 + {0, 1, "movAa", movdi , pmovdi , "aa", {0}}, /* "rr" */

168 + {0, 1, "movAc", movdi , pmovdi , "ac", {0}}, /* "rr" */

169 + {0, 1, "movAd", movdi , pmovdi , "ad", {0}}, /* "rr" */

170 + {0, 1, "movAe", movdi , pmovdi , "ae", {0}}, /* "rr" */

171 + {0, 1, "movAf", movdi , pmovdi , "af", {0}}, /* "rr" */

172 + {0, 1, "movBa", movdi , pmovdi , "ba", {0}}, /* "rr" */

173 + {0, 1, "movBb", movdi , pmovdi , "bb", {0}}, /* "rr" */

174 + {0, 1, "movBc", movdi , pmovdi , "bc", {0}}, /* "rr" */

175 + {0, 1, "movBd", movdi , pmovdi , "bd", {0}}, /* "rr" */

176 + {0, 1, "movBe", movdi , pmovdi , "be", {0}}, /* "rr" */

177 + {0, 1, "movBf", movdi , pmovdi , "bf", {0}}, /* "rr" */

178 + {0, 1, "movbA", movid , pmovid , "bA", {0}}, /* "rr" */

179 + {0, 1, "movcA", movid , pmovid , "cA", {0}}, /* "rr" */

180 + {0, 1, "movdA", movid , pmovid , "dA", {0}}, /* "rr" */

181 + {0, 1, "moveA", movid , pmovid , "eA", {0}}, /* "rr" */

182 + {0, 1, "movfA", movid , pmovid , "fA", {0}}, /* "rr" */

183 + {0, 1, "movaB", movid , pmovid , "aB", {0}}, /* "rr" */

184 + {0, 1, "movcB", movid , pmovid , "cB", {0}}, /* "rr" */

185 + {0, 1, "movdB", movid , pmovid , "dB", {0}}, /* "rr" */

186 + {0, 1, "moveB", movid , pmovid , "eB", {0}}, /* "rr" */

187 + {0, 1, "movfB", movid , pmovid , "fB", {0}}, /* "rr" */

188 + {0, 1, "movac", movii , pmovii , "ac", {0}}, /* "rr" */

189 + {0, 1, "movad", movii , pmovii , "ad", {0}}, /* "rr" */

190 + {0, 1, "movae", movii , pmovii , "ae", {0}}, /* "rr" */

191 + {0, 1, "movaf", movii , pmovii , "af", {0}}, /* "rr" */

192 + {0, 1, "movba", movii , pmovii , "ba", {0}}, /* "rr" */

193 + {0, 1, "movbc", movii , pmovii , "bc", {0}}, /* "rr" */

194 + {0, 1, "movbd", movii , pmovii , "bd", {0}}, /* "rr" */

195 + {0, 1, "movbe", movii , pmovii , "be", {0}}, /* "rr" */

196 + {0, 1, "movbf", movii , pmovii , "bf", {0}}, /* "rr" */

197 + {0, 1, "movca", movii , pmovii , "ca", {0}}, /* "rr" */

198 + {0, 1, "movcb", movii , pmovii , "cb", {0}}, /* "rr" */

199 + {0, 1, "movcd", movii , pmovii , "cd", {0}}, /* "rr" */

200 + {0, 1, "movce", movii , pmovii , "ce", {0}}, /* "rr" */

201 + {0, 1, "movcf", movii , pmovii , "cf", {0}}, /* "rr" */

202 + {0, 1, "movdb", movii , pmovii , "db", {0}}, /* "rr" */

195

203 + {0, 1, "movdc", movii , pmovii , "dc", {0}}, /* "rr" */

204 + {0, 1, "movde", movii , pmovii , "de", {0}}, /* "rr" */

205 + {0, 1, "movdf", movii , pmovii , "df", {0}}, /* "rr" */

206 + {0, 1, "shlB", shl , dec1d , "b", {0}}, /* "r" */

207 + {0, 1, "shlC", shl , dec1d , "c", {0}}, /* "r" */

208 + {0, 1, "shlD", shl , dec1d , "", {0}}, /* "r" */

209 + {0, 1, "decA", add , dec1d1s , "aa", {0}}, /* "cc" */

210 + {0, 1, "decB", add , dec1d1s , "bb", {0}}, /* "cc" */

211 + {0, 1, "decD", add , dec1d1s , "dd", {0}}, /* "cc" */

212 + {0, 1, "decE", add , dec1d1s , "ee", {0}}, /* "cc" */

213 + {0, 1, "decF", add , dec1d1s , "ff", {0}}, /* "cc" */

214 + {0, 1, "subCCA", add , dec1d2s , "cca", {0}}, /* "cab" */

215 + {0, 1, "subCDA", add , dec1d2s , "cda", {0}}, /* "cab" */

216 + {0, 1, "subCEA", add , dec1d2s , "cea", {0}}, /* "cab" */

217 + {0, 1, "subCFA", add , dec1d2s , "cfa", {0}}, /* "bac" */

218 + {0, 1, "subCCB", add , dec1d2s , "ccb", {0}}, /* "cab" */

219 + {0, 1, "subCDB", add , dec1d2s , "cdb", {0}}, /* "cab" */

220 + {0, 1, "subCEB", add , dec1d2s , "ceb", {0}}, /* "cab" */

221 + {0, 1, "subCFB", add , dec1d2s , "cfb", {0}}, /* "bac" */

222 + {0, 1, "subABC", add , dec1d2s , "abc", {0}}, /* "bac" */

223 + {0, 1, "subADC", add , dec1d2s , "adc", {0}}, /* "bac" */

224 + {0, 1, "subAEC", add , dec1d2s , "aec", {0}}, /* "bac" */

225 + {0, 1, "subAFC", add , dec1d2s , "afc", {0}}, /* "bac" */

226 + {0, 1, "subAAB", add , dec1d2s , "aab", {0}}, /* "bac" */

227 + {0, 1, "subACB", add , dec1d2s , "acb", {0}}, /* "bac" */

228 + {0, 1, "subADB", add , dec1d2s , "adb", {0}}, /* "bac" */

229 + {0, 1, "subAEB", add , dec1d2s , "aeb", {0}}, /* "bac" */

230 + {0, 1, "subAFB", add , dec1d2s , "afb", {0}}, /* "bac" */

231 + {0, 1, "subBBC", add , dec1d2s , "bbc", {0}}, /* "bac" */

232 + {0, 1, "subBDC", add , dec1d2s , "bdc", {0}}, /* "bac" */

233 + {0, 1, "subBEC", add , dec1d2s , "bec", {0}}, /* "bac" */

234 + {0, 1, "subBFC", add , dec1d2s , "bfc", {0}}, /* "bac" */

235 + {0, 1, "subBBA", add , dec1d2s , "bba", {0}}, /* "bac" */

236 + {0, 1, "subBCA", add , dec1d2s , "bca", {0}}, /* "bac" */

237 + {0, 1, "subBDA", add , dec1d2s , "bda", {0}}, /* "bac" */

238 + {0, 1, "subBEA", add , dec1d2s , "bea", {0}}, /* "bac" */

239 + {0, 1, "subCCD", add , dec1d2s , "ccd", {0}}, /* "ccd" */

240 + {0, 1, "nop2", nop , pnop , "", {0}}, /* no decode args */

241 + {0, 1, "nop3", nop , pnop , "", {0}}, /* no decode args */

242 + {0, 1, "nop4", nop , pnop , "", {0}}, /* no decode args */

243 + {0, 1, "nop5", nop , pnop , "", {0}}, /* no decode args */

244 + {0, 1, "nop6", nop , pnop , "", {0}}, /* no decode args */

245 + {0, 1, "nop7", nop , pnop , "", {0}}, /* no decode args */

246 + {0, 1, "nop8", nop , pnop , "", {0}}, /* no decode args */

247 + {0, 1, "nop9", nop , pnop , "", {0}}, /* no decode args */

248 + {0, 1, "nop10", nop , pnop , "", {0}}, /* no decode args */

249 + {0, 1, "nop11", nop , pnop , "", {0}}, /* no decode args */

250 + {0, 1, "nop12", nop , pnop , "", {0}}, /* no decode args */

251 + {0, 1, "nop13", nop , pnop , "", {0}}, /* no decode args */

252 + {0, 1, "nop14", nop , pnop , "", {0}}, /* no decode args */

253 + {0, 1, "nop15", nop , pnop , "", {0}}, /* no decode args */

254 + {0, 1, "nop16", nop , pnop , "", {0}}, /* no decode args */

255 + {0, 1, "nop17", nop , pnop , "", {0}}, /* no decode args */

256 + {0, 1, "nop18", nop , pnop , "", {0}}, /* no decode args */

257 + {0, 1, "nop19", nop , pnop , "", {0}}, /* no decode args */

258 + {0, 1, "nop20", nop , pnop , "", {0}}, /* no decode args */

259 + {0, 1, "nop21", nop , pnop , "", {0}}, /* no decode args */

260 + {0, 1, "nop22", nop , pnop , "", {0}}, /* no decode args */

196

261 + {0, 1, "nop23", nop , pnop , "", {0}}, /* no decode args */

262 + {0, 1, "nop24", nop , pnop , "", {0}}, /* no decode args */

263 + {0, 1, "nop25", nop , pnop , "", {0}}, /* no decode args */

264 + {0, 1, "nop26", nop , pnop , "", {0}}, /* no decode args */

265 + {0, 1, "nop27", nop , pnop , "", {0}}, /* no decode args */

266 + {0, 1, "nop28", nop , pnop , "", {0}}, /* no decode args */

267 + {0, 1, "nop29", nop , pnop , "", {0}}, /* no decode args */

268 + {0, 1, "nop30", nop , pnop , "", {0}}, /* no decode args */

269 + {0, 1, "nop31", nop , pnop , "", {0}}, /* no decode args */

270 + {0, 1, "nop32", nop , pnop , "", {0}}, /* no decode args */

271 + {0, 1, "nop33", nop , pnop , "", {0}}, /* no decode args */

272 + {0, 1, "nop34", nop , pnop , "", {0}}, /* no decode args */

273 + {0, 1, "nop35", nop , pnop , "", {0}}, /* no decode args */

274 + {0, 1, "nop36", nop , pnop , "", {0}}, /* no decode args */

275 + {0, 1, "nop37", nop , pnop , "", {0}}, /* no decode args */

276 + {0, 1, "nop38", nop , pnop , "", {0}}, /* no decode args */

277 + {0, 1, "nop39", nop , pnop , "", {0}}, /* no decode args */

278 + {0, 1, "nop40", nop , pnop , "", {0}}, /* no decode args */

279 + {0, 1, "nop41", nop , pnop , "", {0}}, /* no decode args */

280 + {0, 1, "nop42", nop , pnop , "", {0}}, /* no decode args */

281 + {0, 1, "nop43", nop , pnop , "", {0}}, /* no decode args */

282 + {0, 1, "nop44", nop , pnop , "", {0}}, /* no decode args */

283 + {0, 1, "nop45", nop , pnop , "", {0}}, /* no decode args */

284 + {0, 1, "nop46", nop , pnop , "", {0}}, /* no decode args */

285 + {0, 1, "nop47", nop , pnop , "", {0}}, /* no decode args */

286 + {0, 1, "nop48", nop , pnop , "", {0}}, /* no decode args */

287 + {0, 1, "nop49", nop , pnop , "", {0}}, /* no decode args */

288 + {0, 1, "nop50", nop , pnop , "", {0}}, /* no decode args */

289 + {0, 1, "nop51", nop , pnop , "", {0}}, /* no decode args */

290 + {0, 1, "nop52", nop , pnop , "", {0}}, /* no decode args */

291 + {0, 1, "nop53", nop , pnop , "", {0}}, /* no decode args */

292 + {0, 1, "nop54", nop , pnop , "", {0}}, /* no decode args */

293 + {0, 1, "nop55", nop , pnop , "", {0}}, /* no decode args */

294 + {0, 1, "nop56", nop , pnop , "", {0}}, /* no decode args */

295 + {0, 1, "nop57", nop , pnop , "", {0}}, /* no decode args */

296 + {0, 1, "nop58", nop , pnop , "", {0}}, /* no decode args */

297 + {0, 1, "nop59", nop , pnop , "", {0}}, /* no decode args */

298 + {0, 1, "nop60", nop , pnop , "", {0}}, /* no decode args */

299 + {0, 1, "nop61", nop , pnop , "", {0}}, /* no decode args */

300 + {0, 1, "nop62", nop , pnop , "", {0}}, /* no decode args */

301 + {0, 1, "nop63", nop , pnop , "", {0}}, /* no decode args */

302 + {0, 1, "nop64", nop , pnop , "", {0}}, /* no decode args */

303 + {0, 1, "nop65", nop , pnop , "", {0}}, /* no decode args */

304 + {0, 1, "nop66", nop , pnop , "", {0}}, /* no decode args */

305 + {0, 1, "nop67", nop , pnop , "", {0}}, /* no decode args */

306 + {0, 1, "nop68", nop , pnop , "", {0}}, /* no decode args */

307 + {0, 1, "nop69", nop , pnop , "", {0}}, /* no decode args */

308 + {0, 1, "nop70", nop , pnop , "", {0}}, /* no decode args */

309 + {0, 1, "nop71", nop , pnop , "", {0}}, /* no decode args */

310 + {0, 1, "nop72", nop , pnop , "", {0}}, /* no decode args */

311 + {0, 1, "nop73", nop , pnop , "", {0}}, /* no decode args */

312 + {0, 1, "nop74", nop , pnop , "", {0}}, /* no decode args */

313 + {0, 1, "nop75", nop , pnop , "", {0}}, /* no decode args */

314 + {0, 1, "nop76", nop , pnop , "", {0}}, /* no decode args */

315 + {0, 1, "nop77", nop , pnop , "", {0}}, /* no decode args */

316 + {0, 1, "nop78", nop , pnop , "", {0}}, /* no decode args */

317 + {0, 1, "nop79", nop , pnop , "", {0}}, /* no decode args */

318 + {0, 1, "nop80", nop , pnop , "", {0}}, /* no decode args */

197

319 + {0, 1, "nop81", nop , pnop , "", {0}}, /* no decode args */

320 + {0, 1, "nop82", nop , pnop , "", {0}}, /* no decode args */

321 + {0, 1, "nop83", nop , pnop , "", {0}}, /* no decode args */

322 + {0, 1, "nop84", nop , pnop , "", {0}}, /* no decode args */

323 + {0, 1, "nop85", nop , pnop , "", {0}}, /* no decode args */

324 + {0, 1, "nop86", nop , pnop , "", {0}}, /* no decode args */

325 + {0, 1, "nop87", nop , pnop , "", {0}}, /* no decode args */

326 + {0, 1, "nop88", nop , pnop , "", {0}}, /* no decode args */

327 + {0, 1, "nop89", nop , pnop , "", {0}}, /* no decode args */

328 + {0, 1, "nop90", nop , pnop , "", {0}}, /* no decode args */

329 + {0, 1, "nop91", nop , pnop , "", {0}}, /* no decode args */

330 + {0, 1, "nop92", nop , pnop , "", {0}}, /* no decode args */

331 + {0, 1, "nop93", nop , pnop , "", {0}}, /* no decode args */

332 + {0, 1, "nop94", nop , pnop , "", {0}}, /* no decode args */

333 + {0, 1, "nop95", nop , pnop , "", {0}}, /* no decode args */

334 + {0, 1, "nop96", nop , pnop , "", {0}}, /* no decode args */

335 + {0, 1, "nop97", nop , pnop , "", {0}}, /* no decode args */

336 + {0, 1, "nop98", nop , pnop , "", {0}}, /* no decode args */

337 + {0, 1, "nop99", nop , pnop , "", {0}}, /* no decode args */

338 + {0, 1, "nop100", nop , pnop , "", {0}}, /* no decode args */

339 + {0, 1, "nop101", nop , pnop , "", {0}}, /* no decode args */

340 + {0, 1, "nop102", nop , pnop , "", {0}}, /* no decode args */

341 + {0, 1, "nop103", nop , pnop , "", {0}}, /* no decode args */

342 + {0, 1, "nop104", nop , pnop , "", {0}}, /* no decode args */

343 + {0, 1, "nop105", nop , pnop , "", {0}}, /* no decode args */

344 + {0, 1, "nop106", nop , pnop , "", {0}}, /* no decode args */

345 + {0, 1, "nop107", nop , pnop , "", {0}}, /* no decode args */

346 + {0, 1, "nop108", nop , pnop , "", {0}}, /* no decode args */

347 + {0, 1, "nop109", nop , pnop , "", {0}}, /* no decode args */

348 + {0, 1, "nop110", nop , pnop , "", {0}}, /* no decode args */

349 + {0, 1, "nop111", nop , pnop , "", {0}}, /* no decode args */

350 + {0, 1, "nop112", nop , pnop , "", {0}}, /* no decode args */

351 + {0, 1, "nop113", nop , pnop , "", {0}}, /* no decode args */

352 + {0, 1, "nop114", nop , pnop , "", {0}}, /* no decode args */

353 + {0, 1, "nop115", nop , pnop , "", {0}}, /* no decode args */

354 + {0, 1, "nop116", nop , pnop , "", {0}}, /* no decode args */

355 + {0, 1, "nop117", nop , pnop , "", {0}}, /* no decode args */

356 + {0, 1, "nop118", nop , pnop , "", {0}}, /* no decode args */

357 + {0, 1, "nop119", nop , pnop , "", {0}}, /* no decode args */

358 + {0, 1, "nop120", nop , pnop , "", {0}}, /* no decode args */

359 + {0, 1, "nop121", nop , pnop , "", {0}}, /* no decode args */

360 + {0, 1, "nop122", nop , pnop , "", {0}}, /* no decode args */

361 + {0, 1, "nop123", nop , pnop , "", {0}}, /* no decode args */

362 + {0, 1, "nop124", nop , pnop , "", {0}}, /* no decode args */

363 + {0, 1, "nop125", nop , pnop , "", {0}}, /* no decode args */

364 + {0, 1, "nop126", nop , pnop , "", {0}}, /* no decode args */

365 + {0, 1, "nop127", nop , pnop , "", {0}}, /* no decode args */

366 + {0, 1, "nop128", nop , pnop , "", {0}}, /* no decode args */

367 + {0, 1, "nop129", nop , pnop , "", {0}}, /* no decode args */

368 + {0, 1, "nop130", nop , pnop , "", {0}}, /* no decode args */

369 + {0, 1, "nop131", nop , pnop , "", {0}}, /* no decode args */

370 + {0, 1, "nop132", nop , pnop , "", {0}}, /* no decode args */

371 + {0, 1, "nop133", nop , pnop , "", {0}}, /* no decode args */

372 + {0, 1, "nop134", nop , pnop , "", {0}}, /* no decode args */

373 + {0, 1, "nop135", nop , pnop , "", {0}}, /* no decode args */

374 + {0, 1, "nop136", nop , pnop , "", {0}}, /* no decode args */

375 + {0, 1, "nop137", nop , pnop , "", {0}}, /* no decode args */

376 + {0, 1, "nop138", nop , pnop , "", {0}}, /* no decode args */

198

377 + {0, 1, "nop139", nop , pnop , "", {0}}, /* no decode args */

378 + {0, 1, "nop140", nop , pnop , "", {0}}, /* no decode args */

379 + {0, 1, "nop141", nop , pnop , "", {0}}, /* no decode args */

380 + {0, 1, "nop142", nop , pnop , "", {0}}, /* no decode args */

381 + {0, 1, "nop143", nop , pnop , "", {0}}, /* no decode args */

382 + {0, 1, "nop144", nop , pnop , "", {0}}, /* no decode args */

383 + {0, 1, "nop145", nop , pnop , "", {0}}, /* no decode args */

384 + {0, 1, "nop146", nop , pnop , "", {0}}, /* no decode args */

385 + {0, 1, "nop147", nop , pnop , "", {0}}, /* no decode args */

386 + {0, 1, "nop148", nop , pnop , "", {0}}, /* no decode args */

387 + {0, 1, "nop149", nop , pnop , "", {0}}, /* no decode args */

388 + {0, 1, "nop150", nop , pnop , "", {0}}, /* no decode args */

389 + {0, 1, "nop151", nop , pnop , "", {0}}, /* no decode args */

390 + {0, 1, "nop152", nop , pnop , "", {0}}, /* no decode args */

391 + {0, 1, "nop153", nop , pnop , "", {0}}, /* no decode args */

392 + {0, 1, "nop154", nop , pnop , "", {0}}, /* no decode args */

393 + {0, 1, "nop155", nop , pnop , "", {0}}, /* no decode args */

394 + {0, 1, "nop156", nop , pnop , "", {0}}, /* no decode args */

395 + {0, 1, "nop157", nop , pnop , "", {0}}, /* no decode args */

396 + {0, 1, "nop158", nop , pnop , "", {0}}, /* no decode args */

397 + {0, 1, "nop159", nop , pnop , "", {0}}, /* no decode args */

398 + {0, 1, "nop160", nop , pnop , "", {0}}, /* no decode args */

399 + {0, 1, "nop161", nop , pnop , "", {0}}, /* no decode args */

400 + {0, 1, "nop162", nop , pnop , "", {0}}, /* no decode args */

401 + {0, 1, "nop163", nop , pnop , "", {0}}, /* no decode args */

402 + {0, 1, "nop164", nop , pnop , "", {0}}, /* no decode args */

403 + {0, 1, "nop165", nop , pnop , "", {0}}, /* no decode args */

404 + {0, 1, "nop166", nop , pnop , "", {0}}, /* no decode args */

405 + {0, 1, "nop167", nop , pnop , "", {0}}, /* no decode args */

406 + {0, 1, "nop168", nop , pnop , "", {0}}, /* no decode args */

407 + {0, 1, "nop169", nop , pnop , "", {0}}, /* no decode args */

408 + {0, 1, "nop170", nop , pnop , "", {0}}, /* no decode args */

409 + {0, 1, "nop171", nop , pnop , "", {0}}, /* no decode args */

410 + {0, 1, "nop172", nop , pnop , "", {0}}, /* no decode args */

411 + {0, 1, "nop173", nop , pnop , "", {0}}, /* no decode args */

412 + {0, 1, "nop174", nop , pnop , "", {0}}, /* no decode args */

413 + {0, 1, "nop175", nop , pnop , "", {0}}, /* no decode args */

414 + {0, 1, "nop176", nop , pnop , "", {0}}, /* no decode args */

415 + {0, 1, "nop177", nop , pnop , "", {0}}, /* no decode args */

416 + {0, 1, "nop178", nop , pnop , "", {0}}, /* no decode args */

417 + {0, 1, "nop179", nop , pnop , "", {0}}, /* no decode args */

418 + {0, 1, "nop180", nop , pnop , "", {0}}, /* no decode args */

419 + {0, 1, "nop181", nop , pnop , "", {0}}, /* no decode args */

420 + {0, 1, "nop182", nop , pnop , "", {0}}, /* no decode args */

421 + {0, 1, "nop183", nop , pnop , "", {0}}, /* no decode args */

422 + {0, 1, "nop184", nop , pnop , "", {0}}, /* no decode args */

423 + {0, 1, "nop185", nop , pnop , "", {0}}, /* no decode args */

424 + {0, 1, "nop186", nop , pnop , "", {0}}, /* no decode args */

425 + {0, 1, "nop187", nop , pnop , "", {0}}, /* no decode args */

426 + {0, 1, "nop188", nop , pnop , "", {0}}, /* no decode args */

427 + {0, 1, "nop189", nop , pnop , "", {0}}, /* no decode args */

428 + {0, 1, "nop190", nop , pnop , "", {0}}, /* no decode args */

429 + {0, 1, "nop191", nop , pnop , "", {0}}, /* no decode args */

430 + {0, 1, "nop192", nop , pnop , "", {0}}, /* no decode args */

431 + {0, 1, "nop193", nop , pnop , "", {0}}, /* no decode args */

432 + {0, 1, "nop194", nop , pnop , "", {0}}, /* no decode args */

433 + {0, 1, "nop195", nop , pnop , "", {0}}, /* no decode args */

434 + {0, 1, "nop196", nop , pnop , "", {0}}, /* no decode args */

199

435 + {0, 1, "nop197", nop , pnop , "", {0}}, /* no decode args */

436 + {0, 1, "nop198", nop , pnop , "", {0}}, /* no decode args */

437 + {0, 1, "nop199", nop , pnop , "", {0}}, /* no decode args */

438 + {0, 1, "nop200", nop , pnop , "", {0}}, /* no decode args */

439 + {0, 1, "nop201", nop , pnop , "", {0}}, /* no decode args */

440 + {0, 1, "nop202", nop , pnop , "", {0}}, /* no decode args */

441 + {0, 1, "nop203", nop , pnop , "", {0}}, /* no decode args */

442 + {0, 1, "nop204", nop , pnop , "", {0}}, /* no decode args */

443 + {0, 1, "nop205", nop , pnop , "", {0}}, /* no decode args */

444 + {0, 1, "nop206", nop , pnop , "", {0}}, /* no decode args */

445 + {0, 1, "nop207", nop , pnop , "", {0}}, /* no decode args */

446 + {0, 1, "nop208", nop , pnop , "", {0}}, /* no decode args */

447 + {0, 1, "nop209", nop , pnop , "", {0}}, /* no decode args */

448 + {0, 1, "nop210", nop , pnop , "", {0}}, /* no decode args */

449 + {0, 1, "nop211", nop , pnop , "", {0}}, /* no decode args */

450 + {0, 1, "nop212", nop , pnop , "", {0}}, /* no decode args */

451 + {0, 1, "nop213", nop , pnop , "", {0}}, /* no decode args */

452 + {0, 1, "nop214", nop , pnop , "", {0}}, /* no decode args */

453 + {0, 1, "nop215", nop , pnop , "", {0}}, /* no decode args */

454 + {0, 1, "nop216", nop , pnop , "", {0}}, /* no decode args */

455 + {0, 1, "nop217", nop , pnop , "", {0}}, /* no decode args */

456 + {0, 1, "nop218", nop , pnop , "", {0}}, /* no decode args */

457 + {0, 1, "nop219", nop , pnop , "", {0}}, /* no decode args */

458 + {0, 1, "nop220", nop , pnop , "", {0}}, /* no decode args */

459 + {0, 1, "nop221", nop , pnop , "", {0}}, /* no decode args */

460 + {0, 1, "nop222", nop , pnop , "", {0}}, /* no decode args */

461 + {0, 1, "nop223", nop , pnop , "", {0}}, /* no decode args */

462 + {0, 1, "nop224", nop , pnop , "", {0}}, /* no decode args */

463 + {0, 1, "nop225", nop , pnop , "", {0}}, /* no decode args */

464 + {0, 1, "nop226", nop , pnop , "", {0}}, /* no decode args */

465 + {0, 1, "nop227", nop , pnop , "", {0}}, /* no decode args */

466 + {0, 1, "nop228", nop , pnop , "", {0}}, /* no decode args */

467 + {0, 1, "nop229", nop , pnop , "", {0}}, /* no decode args */

468 + {0, 1, "nop230", nop , pnop , "", {0}}, /* no decode args */

469 + {0, 1, "nop231", nop , pnop , "", {0}}, /* no decode args */

470 + {0, 1, "nop232", nop , pnop , "", {0}}, /* no decode args */

471 + {0, 1, "nop233", nop , pnop , "", {0}}, /* no decode args */

472 + {0, 1, "nop234", nop , pnop , "", {0}}, /* no decode args */

473 + {0, 1, "nop235", nop , pnop , "", {0}}, /* no decode args */

474 + {0, 1, "nop236", nop , pnop , "", {0}}, /* no decode args */

475 + {0, 1, "nop237", nop , pnop , "", {0}}, /* no decode args */

476 + {0, 1, "nop238", nop , pnop , "", {0}}, /* no decode args */

477 + {0, 1, "nop239", nop , pnop , "", {0}}, /* no decode args */

478 + {0, 1, "nop240", nop , pnop , "", {0}}, /* no decode args */

479 + {0, 1, "nop241", nop , pnop , "", {0}}, /* no decode args */

480 + {0, 1, "nop242", nop , pnop , "", {0}}, /* no decode args */

481 + {0, 1, "nop243", nop , pnop , "", {0}}, /* no decode args */

482 + {0, 1, "nop244", nop , pnop , "", {0}}, /* no decode args */

483 + {0, 1, "nop245", nop , pnop , "", {0}}, /* no decode args */

484 + {0, 1, "nop246", nop , pnop , "", {0}}, /* no decode args */

485 + {0, 1, "nop247", nop , pnop , "", {0}}, /* no decode args */

486 + {0, 1, "nop248", nop , pnop , "", {0}}, /* no decode args */

487 + {0, 1, "nop249", nop , pnop , "", {0}}, /* no decode args */

488 + {0, 1, "nop250", nop , pnop , "", {0}}, /* no decode args */

489 + {0, 1, "nop251", nop , pnop , "", {0}}, /* no decode args */

490 + {0, 1, "nop252", nop , pnop , "", {0}}, /* no decode args */

491 + {0, 1, "nop253", nop , pnop , "", {0}}, /* no decode args */

492 + {0, 1, "nop254", nop , pnop , "", {0}}, /* no decode args */

200

493 + {0, 1, "nop255", nop , pnop , "", {0}}, /* no decode args */

494 + {0, 1, "nop256", nop , pnop , "", {0}}, /* no decode args */

495 + {0, 1, "nop257", nop , pnop , "", {0}}, /* no decode args */

496 + {0, 1, "nop258", nop , pnop , "", {0}}, /* no decode args */

497 + {0, 1, "nop259", nop , pnop , "", {0}}, /* no decode args */

498 + {0, 1, "nop260", nop , pnop , "", {0}}, /* no decode args */

499 #0 Makefile.in change to non debug mode

500 diff --git a/tierra/Makefile.in b/tierra/Makefile.in

501 --- a/tierra/Makefile.in

502 +++ b/tierra/Makefile.in

503 @@ -10,1 +10,1 @@

504 -DEBUG=yes

505 +DEBUG=no

506 #1 GenPerFactor. Patch to include GenPerFactor as a soup_in parameter which

edits the

507 # factor at which segment delete perturbations occur.

508 diff --git a/tierra/operator.c b/tierra/operator.c

509 --- a/tierra/operator.c

510 +++ b/tierra/operator.c

511 @@ -737,1 +737,1 @@ void DeletionSeg ()

512 - ODaughtNumSegs = CountSegments(ODaughtGenStart , ODaughtGenSize);

513 + ODaughtNumSegs = CountSegments(ODaughtGenStart , ODaughtGenSize/

GenPerFactor); /* Edit by Declan Baugh 2012 */

514 diff --git a/tierra/soup_in b/tierra/soup_in

515 --- a/tierra/soup_in

516 +++ b/tierra/soup_in

517 @@ -43,0 +43,1 @@ # environmental variables:

518 +GenPerFactor = 1

519 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

520 --- a/tierra/soup_in.h

521 +++ b/tierra/soup_in.h

522 @@ -70,0 +70,3 @@ # environmental variables:

523 +I32s GenPerFactor = 1; /*Edit by Declan Baugh 13th Nov 2012*/

524 +I32s DumpLogFreq = 1;

525 +I32s DumpLogMin = 0;

526 diff --git a/tierra/globals.h b/tierra/globals.h

527 --- a/tierra/globals.h

528 +++ b/tierra/globals.h

529 @@ -214,0 +214,3 @@

530 +extern I32s GenPerFactor; /*Edit by Declan Baugh 13th Nov 2012*/

531 +extern I32s DumpLogFreq;

532 +extern I32s DumpLogMin;

533 diff --git a/tierra/tsetup.c b/tierra/tsetup.c

534 --- a/tierra/tsetup.c

535 +++ b/tierra/tsetup.c

536 @@ -917,0 +917 ,14 @@ I8s GetAVar(data , alterflag , MonReq , buflen)

537 + if (! strncmp ((const char *)data , (const char *)"GenPerFactor", 12))

538 + { if (MonReq)

539 + { strcpy (((char *)&(vqu.name [0])),

540 + (const char *)"GenPerFactor");

541 + tsprintf ((char *)(&((vqu.value)[0])), "%d", GenPerFactor);

542 + }

543 + else if (alterflag)

544 + sscanf ((const char *)data ,

545 + (const char *)"GenPerFactor = %d", &GenPerFactor);

546 + vqu.type = ’i’;

547 + vqu.i = GenPerFactor;

548 + rtncode =1;

201

549 + break;

550 + } /* Edited by Declan Baugh declanbaugh@gmail.com 13th Nov 2012.

Include arg ’h’ parameter */

551 @@ -3909,0 +3909 ,3 @@ void WriteSoup(close_disk)

552 + tfprintf(ouf , "GenPerFactor = %d\n", GenPerFactor); /*Edit by Declan Baugh

13th Nov 2012*/

553 + tfprintf(ouf , "DumpLogFreq = %d\n", DumpLogFreq); /*Edit by Declan Baugh

13th Nov 2012*/

554 + tfprintf(ouf , "DumpLogMin = %d\n", DumpLogMin); /*Edit by Declan Baugh 13

th Nov 2012*/

555 #2 Patch to create a ’h’ parameter in the arg utility , to allow to dissassemble

a creature in hex format

556 diff --git a/tierra/genio.c b/tierra/genio.c

557 --- a/tierra/genio.c

558 +++ b/tierra/genio.c

559 @@ -1988,0 +1988 ,205 @@ void WritHexFile ()

560 +/* Edit By Declan Baugh declanbaugh@gmail.com 13th Nov 2012.

561 + * WritHexFile - write Hex instruction mnemonic list ("source file")

562 + * of genome ("disassembly" listing)

563 + *

564 + * g - pointer to GList structure for genome to be listed

565 + * file - pointer to "source" file name

566 + * tarpt - 0 - do not include thread analysis report in listing header

567 + * <>0 - include thread analysis report in listing header

568 + * sucsiznslrat - size class migration destination node selection

569 + * "success" ratio

570 + * sucsiznsl - size class migration destination node selection

571 + * "success" count

572 + * siznsl - size class migration destination node selection

573 + * attempt count

574 + *

575 + * detailrpt - 0 - include thread analysis summary

576 + * <>0 - include thread analysis detailed report

577 + *

578 + * clstrfmt - 0 - no cluster analysis

579 + * 1 - cluster analysis format

580 + *

581 + * symclstranafmt - 0 - asymmetric cluster analysis

582 + * 1 - symmetric cluster analysis

583 + *

584 + * exeptrn - 0 - non -execution pattern report

585 + * 1 - execution pattern report

586 + *

587 + * expttsarr - pointer to execution pattern report

588 + * thread/"tissue" type array

589 + * expttsarrcnt - count of entries in expttsarr array

590 + * genelkup - gene lookup table

591 + */

592 +void WritHexFile(g, file , tarpt , sucsiznslrat ,

593 + sucsiznsl , siznsl , detailrpt , clstrfmt ,

594 + symclstranafmt , exeptrn , expttsarr , expttsarrcnt ,

595 + genelkup , gendef , spltisana)

596 +Pgl g;

597 +I8s *file;

598 +I32s tarpt , detailrpt , clstrfmt , symclstranafmt , *expttsarr , expttsarrcnt;

599 +double sucsiznslrat;

600 +I32s sucsiznsl , siznsl , exeptrn , spltisana;

601 +I16s *genelkup;

202

602 +GeneDefArr *gendef;

603 +{ I8s bit[4], chm [4];

604 + I32u di, t;

605 +#if defined(TIERRA)|| defined(ARGTIE)

606 + I32s i;

607 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

608 + I32s j;

609 + time_t tp;

610 + FILE *fp;

611 +

612 +#ifdef IBM3090

613 + I8s lbl[4], plbl[4], *comnts;

614 +#endif

615 + I8s gdt_gbits;

616 +

617 +#if defined(TIERRA)|| defined(ARGTIE)

618 + ThdTsTyArr codthdtstyarr[PLOIDY][NSTRTISTYP];

619 + I8s fstlinprt=0,svincld ,incld;

620 + I32s lstmrk;

621 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

622 +

623 + if (! strcmp ((const char *)file , (const char *)"-"))

624 + fp = stdout;

625 + else if(!(fp=tfopen(file , (I8s *)"w")))

626 + { tsprintf ((char *)(&(Fbuf [0])),

627 + "Tierra WritHexFile () unable to open WritHexFile file %s", file);

628 + porterrmsg (617,(char *)(&(Fbuf [0])) ,1);

629 + }

630 +

631 +#if defined(TIERRA)|| defined(ARGTIE)

632 + if(tarpt || exeptrn)

633 + WrtThrdAnalysis(fp, g,

634 +#ifdef NET

635 + sucsiznslrat , sucsiznsl , siznsl ,

636 +#else

637 + 0.0, 0, 0,

638 +#endif /* NET */

639 + detailrpt , clstrfmt , symclstranafmt ,

640 + &codthdtstyarr , exeptrn , genelkup ,

641 + gendef , spltisana);

642 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

643 +

644 +#ifdef ARGTIE

645 + if(! clstrfmt)

646 + {

647 +#endif /* ARGTIE */

648 + WritEcoB(g->bits , Buff);

649 +#ifdef IBM3090

650 + strcpy(lbl , g->gen.label);

651 + strcpy(plbl , g->parent.label);

652 + Ascii2Ebcdic(lbl);

653 + Ascii2Ebcdic(plbl);

654 + tfprintf(fp ,

655 + "%.4d%s\n",

656 + g->parent.size , plbl);

657 +#else

658 + tfprintf(fp ,

659 + "%.4d%s\n",

203

660 + g->parent.size , g->parent.label);

661 +#endif

662 + tfprintf(fp ,"%d\n",g->d1.BreedTrue);

663 + tp = g->originC;

664 + tfprintf(fp , "%d%.6d\n",

665 + g->originI.m, g->originI.i);

666 + tfprintf(fp , "");

667 + chm [3] = bit[3] = 0;

668 +

669 + for (j = 0; j < PLOIDY; j++)

670 + { if (j)

671 +

672 + ExePtrnHead(fp, exeptrn , &(expttsarr [0]), expttsarrcnt);

673 +

674 +#if defined(TIERRA)|| defined(ARGTIE)

675 + incld=(I8s)(-1);

676 + lstmrk =(I8s)(-1);

677 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

678 +

679 + for (t = 0; t < (I32u)(g->gen.size); t++)

680 + {

681 +#if PLOIDY == 1

682 + di = g->genome[t];

683 +#else /* PLOIDY > 1 */

684 + di = g->genome[t][j];

685 +#endif /* PLOIDY > 1 */

686 + bit[0]=’0’;

687 + bit[1]=’0’;

688 + bit[2]=’0’;

689 + gdt_gbits =0;

690 + if(tarpt|| exeptrn)

691 + { if(g->glst_thrdanadat.mtad_codsegbti.mgda_segbti)

692 + if(t<((I32u)(g->glst_thrdanadat.

693 + mtad_codsegbti.mgda_ctrl.dync_elmaloc)))

694 + if(g->glst_thrdanadat.mtad_codsegbti.

695 + mgda_segbti[t])

696 + gdt_gbits=g->glst_thrdanadat.

697 + mtad_codsegbti.mgda_segbti[t]

698 +#if PLOIDY == 1

699 + ->

700 +#else /* PLOIDY > 1 */

701 + [j].

702 +#endif /* PLOIDY > 1 */

703 + mgdt_gbdt.gdt_gbits;

704 + }

705 + else

706 + {

707 +#if PLOIDY == 1

708 + gdt_gbits=g->gbits[t];

709 +#else /* PLOIDY > 1 */

710 + gdt_gbits=g->gbits[t][j];

711 +#endif /* PLOIDY == 1 */

712 + }

713 +

714 + bit [0]= IsBit ((gdt_gbits), 0) ?’1’:’0’;

715 + bit [1]= IsBit ((gdt_gbits), 1) ?’1’:’0’;

716 + bit [2]= IsBit ((gdt_gbits), 2) ?’1’:’0’;

717 +

204

718 +#if defined(TIERRA)|| defined(ARGTIE)

719 + svincld=incld;

720 + if((incld=IncLineChk(g,t,j,&lstmrk ,

721 + exeptrn ,&(expttsarr [0]),

722 + expttsarrcnt ,&(codthdtstyarr[j][STRTISGENE]))))

723 + {

724 + if(! svincld)

725 + if(fstlinprt)

726 + tfprintf(fp, "\n\n\n");

727 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

728 +

729 + tfprintf(fp, "%.2x,", di);

730 +

731 +#if defined(TIERRA)|| defined(ARGTIE)

732 + ExePtrnMrkLine(fp,g,t,j,exeptrn ,

733 + &(expttsarr [0]),expttsarrcnt ,

734 + &(codthdtstyarr[j][STRTISGENE]));

735 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

736 +

737 +#if defined(TIERRA)|| defined(ARGTIE)

738 + fstlinprt =1;

739 + }

740 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

741 + }

742 + }

743 +#ifdef ARGTIE

744 + }

745 +#endif /* ARGTIE */

746 +

747 +#if defined(TIERRA)|| defined(ARGTIE)

748 + if(tarpt || exeptrn)

749 + if(detailrpt || exeptrn)

750 + for(i=0;i<PLOIDY;i++)

751 + for(j=0;j<((genelkup)?NSTRTISTYP :1);j++)

752 + FreeDynArr ((DynArr *)&(codthdtstyarr[i][j]) ,2212,0);

753 +#endif /* defined(TIERRA)|| defined(ARGTIE) */

754 +

755 + if(fp!= stdout)

756 + {

757 +#ifndef AMIGA

758 +#ifndef DECVAX

759 + tfflush(fp);

760 +#endif /* DECVAX */

761 +#endif /* AMIGA */

762 + tfclose(fp);

763 + }

764 +}

765 diff --git a/tierra/arg.c b/tierra/arg.c

766 --- a/tierra/arg.c

767 +++ b/tierra/arg.c

768 @@ -48,1 +48,2 @@ int main(argc , argv)

769 - arg x[a[d[l][u[s]]]][v][i=<fract >] archive [genotype [genotype ...]]\n";

770 + arg x[a[d[l][u[s]]]][v][i=<fract >] archive [genotype [genotype ...]]\n\

771 + arg h[a[d[l][u[s]]]][v][i=<fract >] archive [genotype [genotype ...]]\n"; /*

Edit by Declan Baugh 13th Nov 2012 */

772 @@ -109,0 +109,1 @@ int main(argc , argv)

773 + case ’h’: /*Edit by Declan Baugh 13th Nov 2012 */

774 @@ -416,0 +416 ,132 @@ int main(argc , argv)

205

775 + /*Edit by Declan Baugh 13th Nov 2012 */

776 + case ’h’:

777 + if(! strncmp(argv[argvidx],"i=" ,2))

778 + { LifeCycFrct=atof (&(argv[argvidx][2]));

779 + argvidx ++;

780 + file = (I8s *)argv[argvidx];

781 + }

782 + if (!(afp = fopen ((const char *)file , (const char *)"rb")))

783 + { perror(argv [0]);

784 + exit (9);

785 + }

786 + head = read_head(afp);

787 + indx = read_indx(afp , &head);

788 + argvidx ++;

789 + if(argc >argvidx)

790 + for(i = argvidx; i < argc; i++)

791 + { int j;

792 + if ((j = find_gen(indx , (I8s *)argv[i], head.n)) == head.n)

793 + { fprintf(stderr , "%s not in archive\n", argv[i]);

794 + continue;

795 + }

796 + tindx = &indx[j];

797 + g = get_gen(afp , &head , tindx , j);

798 +

799 + ReadGenDef (&gendef , &genelkup ,

800 + head.size , (I8s *)"", (I8s *)"");

801 +

802 + file = (I8s *) malloc (8);

803 + sprintf ((char *)file , "%.4d%3s", head.size , g->gen.label);

804 +

805 +#ifdef NET

806 + WritHexFile(g, file , tarpt ,

807 + head.hdsucsiznslrat , head.hdsvsucsiznsl ,

808 + head.hdsvsiznsl , dtlrpt , clstrfmt ,

809 + symclstranafmt , exeptrn , &(expttsarr [0]), expttsarrcnt ,

810 + genelkup , &gendef , spltisana);

811 +#else

812 + WritHexFile(g, file , tarpt , 0.0, 0, 0,

813 + dtlrpt , clstrfmt , symclstranafmt ,

814 + exeptrn , &(expttsarr [0]), expttsarrcnt ,

815 + genelkup , &gendef , spltisana);

816 +#endif /* NET */

817 + if (v)

818 + { fprintf(stdout , "x - %.4d%3s %.3f %.3f", g->gen.size ,

819 + g->gen.label , g->MaxPropPop , g->MaxPropInst);

820 + if(IsBit(g->bits , 0))

821 + { WritEcoB(g->bits , Buff);

822 + fprintf(stdout , " 1 %s\n", Buff);

823 + }

824 + else

825 + fprintf(stdout , " 0\n");

826 + }

827 + else

828 + fprintf(stdout , "x - %3s\n", g->gen.label);

829 +

830 + FreeGenDef (&gendef , &genelkup , head.size);

831 +

832 + if (file)

206

833 + { free((void *) file);

834 + file = NULL;

835 + }

836 + if (g)

837 + { if (g->genome)

838 + { free((void *) g->genome);

839 + g->genome = NULL;

840 + }

841 + if (g->gbits)

842 + { free((void *) g->gbits);

843 + g->gbits = NULL;

844 + }

845 + free((void *) g);

846 + g = NULL;

847 + }

848 + }

849 + else

850 + for(i = 0; i < head.n; i++)

851 + { tindx = &indx[i];

852 + g = get_gen(afp , &head , tindx , i);

853 +

854 + ReadGenDef (&gendef , &genelkup ,

855 + head.size , (I8s *)"", (I8s *)"");

856 +

857 + file = (I8s *) malloc (12);

858 + sprintf ((char *)file , "%.4d%3s", head.size , g->gen.label);

859 +#ifdef NET

860 + WritHexFile(g, file , tarpt ,

861 + head.hdsucsiznslrat , head.hdsvsucsiznsl ,

862 + head.hdsvsiznsl , dtlrpt , clstrfmt ,

863 + symclstranafmt , exeptrn ,

864 + &(expttsarr [0]), expttsarrcnt , genelkup ,

865 + &gendef , spltisana);

866 +#else

867 + WritHexFile(g, file , tarpt , 0.0, 0, 0,

868 + dtlrpt , clstrfmt , symclstranafmt , exeptrn ,

869 + &(expttsarr [0]), expttsarrcnt , genelkup ,

870 + &gendef , spltisana);

871 +#endif /* NET */

872 +

873 +

874 +

875 + if (v)

876 + { fprintf(stdout , "h - %.4d%3s %.3f %.3f",

877 + g->gen.size , g->gen.label ,

878 + g->MaxPropPop , g->MaxPropInst);

879 + if (IsBit(g->bits , 0))

880 + { WritEcoB(g->bits , Buff);

881 + fprintf(stdout , " 1 %s\n", Buff);

882 + }

883 + else

884 + fprintf(stdout , " 0\n");

885 + }

886 + else

887 + fprintf(stdout , "h - %3s\n", g->gen.label);

888 + if (file)

889 + { free((void *) file);

890 + file = NULL;

207

891 + }

892 + if (g)

893 + { if (g->genome)

894 + { free((void *) g->genome);

895 + g->genome = NULL;

896 + }

897 + if (g->gbits)

898 + { free((void *) g->gbits);

899 + g->gbits = NULL;

900 + }

901 + free((void *) g);

902 + g = NULL;

903 + }

904 + }

905 + break;

906 +

907 # 3: Patch edit the GUI. Display seed value and start time.

908 diff --git a/tierra/frontend.c b/tierra/frontend.c

909 --- a/tierra/frontend.c

910 +++ b/tierra/frontend.c

911 @@ -2100,2 +2100 ,4 @@ void FEPlan(tielog)

912 - "InstExeC %8d Generation %8.0f %11d %s",

913 - InstExe.m, Generations , tp, ctime(&tp));

914 + "InstExeC %8d Generation %8.0f Seed %11d %s",

915 + InstExe.m, Generations , seed , ctime(& CpuLoadLimitLstSlp));

916 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

917 + * Display Seed value and start time. */

918 # 5: Patch to fix clock bug , diving by zero.

919 diff --git a/tierra/bookeep.c b/tierra/bookeep.c

920 --- a/tierra/bookeep.c

921 +++ b/tierra/bookeep.c

922 @@ -474,0 +474,1 @@ void plan()

923 + if (FESpeed < 1) FESpeed = 1;

924 @@ -477,0 +477,9 @@ void plan()

925 +

926 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

927 + * Every 1,000,000 instructions Tierra will calculate and display

928 + * the speed at which instructions are executed.

929 + * If over 1 ,000,000 instructions are executed per second

930 + * than the time difference between each period of 1,000,000

931 + * instructions is zero seconds. This results

932 + * in a division by zero and a ’floating point error ’. */

933 +

934 # 6: Add an shlA instruction which doubles the contents of ax

935 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

936 --- a/tierra/soup_in.h

937 +++ b/tierra/soup_in.h

938 @@ -294,0 +294,5 @@ InstDef idt[] =

939 + {0, 1, "shlA", shl , dec1d , "a", {0}}, /* "r" */

940 +

941 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

942 + * Additional instruction shlA() which doubles the contents of ax */

943 +

944 diff --git a/tierra/opcode.map b/tierra/opcode.map

945 --- a/tierra/opcode.map

208

946 +++ b/tierra/opcode.map

947 @@ -55,0 +55,1 @@

948 + {0, 1, "shlA", shl , dec1d , "a", ""}, /* "r" */

949 #

950 # 7:Add an incD instruction which increments dx by 1.

951 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

952 --- a/tierra/soup_in.h

953 +++ b/tierra/soup_in.h

954 @@ -245,0 +245,5 @@ InstDef idt[] =

955 + {0, 1, "incD", add , dec1d1s , "dd", {0}}, /* "cc" */

956 +

957 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

958 + * Additional instruction incD() which increments dx by 1 */

959 +

960 diff --git a/tierra/opcode.map b/tierra/opcode.map

961 --- a/tierra/opcode.map

962 +++ b/tierra/opcode.map

963 @@ -25,0 +25,1 @@

964 + {0, 1, "incD", add , dec1d1s , "dd", ""}, /* "cc" */

965 #

966 # 8: Add an addEAA instruction which adds contents of ex to ax, and places the

result in ax

967 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

968 --- a/tierra/soup_in.h

969 +++ b/tierra/soup_in.h

970 @@ -208,0 +208,5 @@ InstDef idt[] =

971 + {0, 1, "addAAE", add , dec1d2s , "ffd", {0}}, /* "rrr" */

972 +

973 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

974 + * Additional instruction addAAE () which places the sum of ex and ax into ax */

975 +

976 diff --git a/tierra/opcode.map b/tierra/opcode.map

977 --- a/tierra/opcode.map

978 +++ b/tierra/opcode.map

979 @@ -6,0 +6,1 @@

980 + {0, 1, "addAAE", add , dec1d2s , "ffd", ""}, /* "rrr" */

981 #

982 # 9: Add an ifnz (if not zero) instruction which performs next instruction only

if cx != 0,

983 diff --git a/tierra/decode.c b/tierra/decode.c

984 --- a/tierra/decode.c

985 +++ b/tierra/decode.c

986 @@ -109,0 +109 ,10 @@ void dec2s()

987 + case ’n’: /* ifnz() */

988 + { is.sval = (is.sval != 0);

989 + is.sval2 = 2;

990 + break;

991 + }

992 +

993 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

994 + * Additional instruction ifnz() which performs next instruction only if cx !=

0,

995 + * If cx == 0, the instruction is skipped */

996 +

997 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

209

998 --- a/tierra/soup_in.h

999 +++ b/tierra/soup_in.h

1000 @@ -241,0 +241,6 @@ InstDef idt[] =

1001 + {0, 1, "ifnz", skip , dec2s , "", {0}}, /* "rr" */

1002 +

1003 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

1004 + * Additional instruction ifnz() which performs next only instruction if cx !=

0,

1005 + * If cx == 0, the instruction is skipped */

1006 +

1007 diff --git a/tierra/opcode.map b/tierra/opcode.map

1008 --- a/tierra/opcode.map

1009 +++ b/tierra/opcode.map

1010 @@ -22,0 +22,1 @@

1011 + {0, 1, "ifnz", skip , dec2s , "cc", ""}, /* "rr" */

1012 # 10: Add movAb() instruction

1013 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

1014 --- a/tierra/soup_in.h

1015 +++ b/tierra/soup_in.h

1016 @@ -262,0 +262,6 @@ InstDef idt[] =

1017 + {0, 1, "movAb", movdi , pmovdi , "ab", {0}}, /* "rr" */

1018 +

1019 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

1020 + * Additional instruction movAb copies the contents of the

1021 + * bx register , to the address pointed at by the ax register */

1022 +

1023 diff --git a/tierra/opcode.map b/tierra/opcode.map

1024 --- a/tierra/opcode.map

1025 +++ b/tierra/opcode.map

1026 @@ -32,0 +32,1 @@

1027 + {0, 1, "movAb", movdi , pmovdi , "ab", {0}}, /* "rr" */

1028 # 11: Add movda() instruction

1029 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

1030 --- a/tierra/soup_in.h

1031 +++ b/tierra/soup_in.h

1032 @@ -263,0 +263,6 @@ InstDef idt[] =

1033 + {0, 1, "movda", movii , pmovii , "da", {0}}, /* "rr" */

1034 +

1035 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

1036 + * Additional instruction movda copies the contents of the

1037 + * ax register , to the dx register */

1038 +

1039 diff --git a/tierra/opcode.map b/tierra/opcode.map

1040 --- a/tierra/opcode.map

1041 +++ b/tierra/opcode.map

1042 @@ -33,0 +33,1 @@

1043 + {0, 1, "movda", movii , pmovii , "da", {0}}, /* "rr" */

1044 # 12: Add an movab () instruction

1045 diff --git a/tierra/soup_in.h b/tierra/soup_in.h

1046 --- a/tierra/soup_in.h

1047 +++ b/tierra/soup_in.h

1048 @@ -264,0 +264,6 @@ InstDef idt[] =

1049 + {0, 1, "movab", movii , pmovii , "ab", {0}}, /* "rr" */

1050 +

210

1051 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

1052 + * Additional instruction movab copies the contents of the

1053 + * bx register to the ax register */

1054 +

1055 diff --git a/tierra/opcode.map b/tierra/opcode.map

1056 --- a/tierra/opcode.map

1057 +++ b/tierra/opcode.map

1058 @@ -34,0 +34,1 @@

1059 + {0, 1, "movab", movii , pmovii , "ab", {0}}, /* "rr" */

1060 #

1061 # 13: Patch to fix the jump instruction bug , to ensure a jump with not address

will not pop Bx register into ip address.

1062 diff --git a/tierra/decode.c b/tierra/decode.c

1063 --- a/tierra/decode.c

1064 +++ b/tierra/decode.c

1065 @@ -1155,1 +1155 ,7 @@ void decjmp ()

1066 - is.sval = ad(tval); /* target for IP if s == 0 */

1067 + is.sval = ad(ce->c.c->ip + 1); /* target for IP if s == 0 */

1068 +

1069 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

1070 + * If a jump template is missing , instruction pointer will simply continue

1071 + * to next instruction in the soup , and will not jump to the location pointed

1072 + * at by the bx register. */

1073 +

1074 #

1075 # 14: Patch to ensure return instruction never pops zero to the instruction

pointer.

1076 diff --git a/tierra/instruct.c b/tierra/instruct.c

1077 --- a/tierra/instruct.c

1078 +++ b/tierra/instruct.c

1079 @@ -1519,17 +1519 ,32 @@ void pop()

1080 if((is.dreg)==(&(ce->c.c->ip)))

1081 - { *(is.dreg)=ad(adr1);

1082 - ce->c.c->retins =1;

1083 + {

1084 + if(ad(adr1) != 0)

1085 + { *(is.dreg)=ad(adr1);

1086 + ce->c.c->retins =1;

1087 + if (!ce->c.c->sp)

1088 + ce->c.c->sp = STACK_SIZE - 1;

1089 + else

1090 + --ce->c.c->sp;

1091 + }

1092 + else

1093 + is.iip = 1;

1094 }

1095 else

1096 + {

1097 *(is.dreg)=adr1;

1098 if (!ce->c.c->sp)

1099 ce->c.c->sp = STACK_SIZE - 1; /* decr stack pointer */

1100 else

1101 --ce->c.c->sp;

1102 + }

1103 DoMods ();

1104 DoFlags ();

211

1105 #if PLOIDY > 1

1106 JumpTrack ();

1107 #endif /* PLOIDY > 1 */

1108 }

1109 +

1110 +/* Edited by Declan Baugh , Dublin City University , 2nd Nov 2012,

declanbaugh@gmail.com

1111 + * Here we ensure that any return to zero acts like a nop.*/

1112 +

212

Appendix E

Python Analysing Tools

This section contains the code which was written to create a number of data analysing

tools, written in Python, which were necessary to create in order to analyse the output

to the experiments which were run.

E.1 Compare Population Sizes

Listing E.1: Compare Population Sizes

1 #!/usr/bin/env python

2 # This piece of code will count the number of creatures in the soup at the end

of a

3 # run , which have a specific starting template address. The decendants of an

ancestor

4 # with a unique start template address may be counted

5 import os

6 import subprocess

7 import sys

8

9 # --------------------------------------

10 # Variables and accumulators

11

12 evolved_0316aab = "2a,01 ,01,00,00"

13 initial_0316aaa = "2a,01 ,00,01,00"

14

15 # -------------------------------------

16 # Extract all creatures from the genebank and create a dictionary with {Time :

Creature Name}

17 os.chdir("tierra/" + sys.argv [1])

18 subprocess.call(["../ arg","h", "0316. gen"])

19

20 number1 = []

21 number2 = []

22 files = os.listdir(".")

23

24 for name in files:

25 non_funct_count = 0

26 if "0316" in name and ".gen" not in name and ".tmp" not in name and "virgin"

not in name and "~" not in name:

27 lines = open(name ,"r").readlines ()

213

28 inst_exe = lines [1][0: -1]

29 first_template = lines [3][0:15]

30 if initial_0316aaa in first_template:

31 number1.append(int(inst_exe))

32 if evolved_0316aab in first_template:

33 number2.append(int(inst_exe))

34

35 print sorted(number1), len(number1)

36 print sorted(number2), len(number2)

37

38 print len(number1)

39 print len(number2)

40

41 print max(number1)

42 print max(number2)

214

E.2 Count Employed Symbols

Listing E.2: Count Employed Symbols

1 #!/usr/bin/env python

2 # This piece of code will extract all the creatures from the genbank within a

certain

3 # size range , and print out a list of the names , time of emergence and number of

4 # distinct employed symbols within the look -up table.

5

6 import os

7 import subprocess

8 import re

9 from collections import Counter

10

11 # --------------------------------

12

13 # Variables

14

15 min_size = 316

16 max_size = 316

17 number_of_specimens = 10

18 os.chdir("tierra/gb0")

19

20 # ---------------------------------

21

22 # Extract all archives

23 files = os.listdir(".")

24 creature_times = {}

25 for creature_size in range(min_size ,max_size +1):

26 genotype = "0"+str(creature_size)+".gen"

27 if genotype in files:

28 subprocess.call(["../ arg","x", genotype])

29 files = os.listdir(".")

30 for genome in files:

31 if str(creature_size) in genome and ".gen" not in genome:

32 genome_file = open(genome ,"r")

33

34 match = re.search("InstExe: \d+",genome_file.read()).group ()

35 creature_times[int(match [9::])] = genome

36 genome_file.close()

37 # ----------------------------------

38

39 # Now create a list of all the times , from newest decendant to initial ancestor

40 # Also create a matching list of names.

41

42 times_list = sorted(creature_times.keys())[-1:- number_of_specimens -1:-1]

43 names_list = []

44 for i in range(0,len(times_list)): names_list.append(creature_times[times_list[i

]])

45

46 # ---------------------------

47

48 # I now have a list of creatures and their times.

49 # Times list dictionary { time : creature_name }

50 total = []

51 change = ""

215

52 look_up_table ="00,01,..,..,04,..,06,..,08,..,0a,..,0c,..,0e

,..,10,..,12,..,14,..,..,..,18,..,1a,..,1c,..,1e

,..,20,..,22,..,24,..,..,..,28,..,2a,..,..,..,2e

,..,30,..,32,..,34,..,36,..,..,39,..,..,3c,..,..,3f"

53

54 for name in names_list:

55 subprocess.call(["../ arg","h", name [0:4:]+".gen", name [4::]])

56 creature_code = open(name ,"r")

57 x = creature_code.read()

58 match = re.search(look_up_table ,x)

59

60 if match:

61 match = match.group()

62 total += match.split(",")

63 creature_code.close()

64

65 else:

66 change = change + name + ","

67 creature_code.close()

68

69 print names_list

70 print times_list

71 #print Counter(total)

72 #print change + ","

73 print len(Counter(total))

216

E.3 Count Employed Symbols II

Listing E.3: Count Employed Symbols II

1 #!/usr/bin/env python

2 # This Piece of code will open the soup_dump file. For every creature

3 # that exists , it will search for it in the genebank , find its time

4 # of emergence , count the number of distinct p-symbols in its look -up

5 # table , and write two arrays to file , containing a list of each

6 # time of emergence , and the number of distinct p-symbols in its look -up table

7

8 from collections import Counter

9 import os

10

11 f = open("tierra/gb1/soup_dump","r").readlines ()

12

13 files = os.listdir("tierra/gb1/.")

14

15 arr = []

16 lutCount = []

17 instExe = []

18 popCount = 0

19 for i in f[1:]:

20 if "Timestamp" in i and popCount != 0:

21 arr.append(sum(lutCount)/(popCount))

22 lutCount = []

23 popCount = 0

24

25 else:

26 if i[:7] in files:

27 creature = open("tierra/gb1/"+i[:7],"r").readlines ()

28

29 if int(creature [1]) == 1:

30 lutCount.append(len(Counter(creature [3][351:1118]. split(",")

[1::2]))*int(i[8:13]. lstrip ()))

31 instExe.append(creature [2][: -1])

32

33

34 popCount = popCount + float(i[8:13]. lstrip ())

35

36 temp = ""

37 for i in str(instExe)[1: -1]:

38

39 if "," in i:

40 temp = temp + "\n"

41 elif "’" in i or " " in i:

42 temp = temp

43 else:

44 temp = temp + i

45 instExe = temp

46

47

48 temp = ""

49 for i in str(arr)[1: -1]:

50

51 if "," in i:

52 temp = temp + "\n"

53 elif "’" in i or " " in i:

217

54 temp = temp

55 else:

56 temp = temp + i

57 arr = temp

58

59 g = open("TranslationTableCount","w")

60 f = open("InstructionExecuted","w")

61 g.write(arr)

62 f.write(instExe)

63 f.close()

64 g.close()

218

E.4 Average Employed vs. Non Employed Symbol Count

Listing E.4: Average Employed vs Non Employed Symbol Count

1 #!/usr/bin/env python

2 # This Piece of code calculates the average number of employed vs unemployed

3 # symbols , within the look_up tables of alive creatures at the end of a run.

4

5 import os

6 import subprocess

7 import re

8 from collections import Counter

9

10 # -----------------------------------

11

12 # Input Variables

13

14 min_size = 316

15 max_size = 316

16 number_of_specimens =0

17 os.chdir("tierra/gb0")

18

19 # ----------------------------------

20

21 # Extract all creatures from the genebank and create a dictionary with {Time :

Genome}

22 files = os.listdir(".")

23 creature_times = {}

24 for creature_size in range(min_size ,max_size +1):

25 genotype = "0"+str(creature_size)+".gen"

26 if genotype in files:

27 subprocess.call(["../ arg","x", genotype])

28 files = os.listdir(".")

29 for genome in files:

30 if str(creature_size) in genome and ".gen" not in genome:

31 genome_file = open(genome ,"r")

32 match = re.search("InstExe: \d+",genome_file.read())

33 if match:

34 match = match.group()

35 creature_times[int(match [9::])] = genome

36 genome_file.close()

37

38 # --------------------------------

39

40 # Now create a list of all the times , from newest decendant to initial ancestor

41 # Also create a matching list of names.

42 times_list = sorted(creature_times.keys())[-1: number_of_specimens :-1]

43 names_list = []

44 for i in range(0,len(times_list)): names_list.append(creature_times[times_list[i

]])

45

46 # --------------------------------

47

48 # Define accumulators and arrays.

49 allLookUpTables = []

50 functionalInst = 0

51 nonFunctionalInst = 0

52 changed_GPmapping = ""

219

53 look_up_table ="00,01,..,..,04,..,06,..,08,..,0a,..,0c,..,0e

,..,10,..,12,..,14,..,..,..,18,..,1a,..,1c,..,1e

,..,20,..,22,..,24,..,..,..,28,..,2a,..,..,..,2e

,..,30,..,32,..,34,..,36,..,..,39,..,..,3c,..,..,3f"

54 functionalList = [’00’,’01’,’04’,’06’,’08’,’0a’,’0c’,’0e’,’10’,’12’,’14’,’18’,’1

a’,’1c’,’1e’,’20’,’22’,’24’,’28’,’2a’,’2e’,’30’,’32’,’34’,’36’,’39’,’3c’,’3f

’]

55

56 # ---------------------------------------

57 # Now search for all the lookup tables and append them to an initially empty

list.

58 for name in names_list:

59 subprocess.call(["../ arg","h", name [0:4:]+".gen", name [4::]])

60 creature_code = open(name ,"r")

61 x = creature_code.read()

62 match = re.search(look_up_table ,x)

63

64 if match: # If lookup table is found , append the LUT to the accumulater list

"allLookUpTables"

65 match = match.group()

66 allLookUpTables += match.split(",")

67 creature_code.close()

68

69 else: # Creatures which have a change in the functional instructions of the

lookup table

70 changed_GPmapping = changed_GPmapping + name + ","

71 creature_code.close()

72

73 # ------------------------------------

74

75 # Count the number functional and nonfunctiona instructions in the list "

allLookUpTables" which contains all the lookup tables.

76

77 total_num_creatures = len(allLookUpTables)/len(look_up_table.split(","))

78 instructions = sorted(Counter(allLookUpTables).keys())

79

80 for instruction in instructions:

81 if instruction in functionalList:

82 functionalInst += float(Counter(allLookUpTables)[instruction])

83 else:

84 nonFunctionalInst += float(Counter(allLookUpTables)[instruction])

85

86 print functionalInst/total_num_creatures

87 print nonFunctionalInst/total_num_creatures

220

E.5 Creature Population Graph I

Listing E.5: Creature Population Graph I

1 #!/usr/bin/env python

2 # This piece of code will take a creature name as input , and search the Tierra

Run

3 # file , to and produce a graph to produce a graph showing its population within

4 # the soup from its emergence to time of extinction.

5

6 import os

7 import matplotlib.pyplot as plt

8

9 # ------------------------------

10

11 os.chdir("tierra/gb0")

12 runfile = open("tierra.run","r").readlines ()

13

14 # ------------------------------

15

16 temp = []

17

18 for line in runfile:

19 if "316 aaa" in line:

20 temp.append(line)

21

22 inst_count = []

23 pop_count = []

24 pop = 0

25

26 for line in temp:

27 if "b" in line:

28 pop += 1

29 pop_count.append(pop)

30 inst_count.append(int(line.split(" ")[0]))

31

32 else:

33 pop -= 1

34 pop_count.append(pop)

35 inst_count.append(int(line.split(" ")[0]))

36

37 print max(inst_count)

38

39 # Create data

40 x_values = inst_count

41 y_values = pop_count

42

43 # Plot Data

44 plt.plot(x_values [-400:], y_values [-400:], label = "0316 aaa population")

45

46

47 # Add in labels and the title

48

49 plt.xlabel("Instructions Executed")

50 plt.ylabel("Creature Count")

51 plt.title("Population of 0316 aaa")

52

53 #Create legend and save image to png

221

54 plt.legend(loc="upper right")

55

56 os.chdir("../..")

57 plt.savefig("0316. png")

222

E.6 Creature Population Graph II

Listing E.6: Creature Population Graph II

1 #!/usr/bin/env python

2 # This piece of code will take a creature name as input

3 # and produce a graph , showing its population within

4 # the soup from its emergence to time of extinction.

5

6 import os

7 import matplotlib.pyplot as plt

8

9 # ----------------------------------

10

11 os.chdir("tierra/gb0")

12 runfile = open("tierra.run","r").readlines ()

13

14 # ----------------------------------

15 temp = []

16

17 for line in runfile:

18 if "316 aaa" in line:

19 temp.append(line)

20

21 inst_count = []

22 pop_count = []

23 pop = 0

24

25 for line in temp:

26 if "b" in line:

27 pop += 1

28 pop_count.append(pop)

29 inst_count.append(int(line.split(" ")[0]))

30

31 else:

32 pop -= 1

33 pop_count.append(pop)

34 inst_count.append(int(line.split(" ")[0]))

35

36

37 print max(inst_count)

38

39 # Create data

40 x_values = inst_count

41 y_values = pop_count

42

43

44 # Plot Data

45 plt.plot(x_values [-400:], y_values [-400:], label = "0316 aaa population")

46

47 # Add in labels and the title

48

49 plt.xlabel("Instructions Executed")

50 plt.ylabel("Creature Count")

51 plt.title("Population of 0316 aaa")

52

53 #Create legend and save image to png

54 plt.legend(loc="upper right")

223

55

56 os.chdir("../..")

57 plt.savefig("0316. png")

224

E.7 Employed Symbol Graph

Listing E.7: Employed Symbol Graph

1 #!/usr/bin/env python

2 # This piece of code will search the genbank for every creature

3 # of a certain length , and produce a graph of the look -up table

4 # count , and time of emergence of each creature to emerge.

5

6 import os

7 import subprocess

8 import re

9 from collections import Counter

10 import sys

11

12 # ----------------------------------

13 # Variables and accumulators

14

15 min_size = 316

16 max_size = 316

17 number_of_specimens = 100

18 genebank = sys.argv [1]

19 smoothing_average = 50

20

21

22 allLookUpTables = []

23 functionalInst = 0

24 nonFunctionalInst = 0

25 changed_GPmapping = ""

26 functionalList = [’00’,’01’,’04’,’06’,’08’,’0a’,’0c’,’0e’,’10’,’12’,’14’,’18’,’1

a’,’1c’,’1e’,’20’,’22’,’24’,’28’,’2a’,’2e’,’30’,’32’,’34’,’36’,’39’,’3c’,’3f

’]

27

28 # ------------------------------

29

30 # Extract all creatures from the genebank and create a dictionary with {Time :

Creature Name}

31 os.chdir("tierra/gb"+str(genebank))

32 files = os.listdir(".")

33 creature_times = {}

34 for creature_size in range(min_size ,max_size +1):

35 genotype = "0"+str(creature_size)+".gen"

36 if genotype in files:

37 subprocess.call(["../ arg","x", genotype])

38 files = os.listdir(".")

39 for genome in files:

40 if str(creature_size) in genome and ".gen" not in genome:

41 inst_exe_line = open(genome ,"r").readlines () [7][17:]

42 inst_exe = re.search("\d+",inst_exe_line)

43 if inst_exe:

44 inst_exe = inst_exe.group()

45 creature_times[int(inst_exe)] = genome

46

47 # ----------------------------

48

49 # Now create a list of all the times , from newest decendant to initial ancestor

50 # Also create a matching list of names.

51

225

52 times_list = sorted(creature_times.keys())

53 names_list = []

54 for i in range(0,len(times_list)): names_list.append(creature_times[times_list[i

]])

55

56 # -----------------------------

57 # Times list dictionary { time : creature_name }

58 total_instruction_count = []

59 dictionary = {}

60 i = 0

61 for name in names_list:

62

63 subprocess.call(["../ arg","h", name [0:4:]+".gen", name [4::]])

64 look_up_table = open(name ,"r").readlines () [0][264:455]. split(",")

65 instructions = Counter(look_up_table).keys()

66

67 for instruction in instructions:

68

69 if instruction in functionalList:

70 functionalInst += float(Counter(look_up_table)[instruction])

71 else:

72 nonFunctionalInst += float(Counter(look_up_table)[instruction])

73 dictionary[times_list[i]] = [functionalInst , nonFunctionalInst]

74 functionalInst = 0

75 nonFunctionalInst = 0

76 i += 1

77

78 # -----------------------------

79 #Set up matplotlib and the figure

80 import matplotlib.pyplot as plt

81 plt.figure ()

82

83 # Create data

84 x_values = times_list

85 y_series_1 = [dictionary[x][0] for x in x_values]

86 y_series_2 = [dictionary[x][1] for x in x_values]

87

88

89 # Smooting average filter

90 def smoothing_filter(y_series):

91 temp = []

92 for i in range(0,len(y_series)-smoothing_average):

93 j = 0

94 while j < smoothing_average:

95 y_series[i] += y_series[i+j]

96 j += 1

97 y_series[i] /= float(smoothing_average)

98 temp.append(y_series[i])

99 return list(temp)

100

101 x_values = x_values[:- smoothing_average :]

102 y_series_1 = smoothing_filter(y_series_1)

103 y_series_2 = smoothing_filter(y_series_2)

104

105 # Plot Data

106 plt.plot(x_values , y_series_1 , label = "Functional Instructions")

107 plt.plot(x_values , y_series_2 , label = "Nonfunctional Instructions")

108

226

109 # Add in labels and the title

110

111 plt.xlabel("Instructions Executed")

112 plt.ylabel("Instruction Count")

113 plt.title("Instruction Count Within the Lookup Table of Offspring")

114

115 # Add limits to the x&y axis

116 #plt.xlim(0, 6)

117 plt.ylim (0 ,70)

118 #Create legend and save image to png

119 plt.legend(loc="center right")

120

121 os.chdir("../..")

122 plt.savefig("graph"+str(genebank)+".png")

227

E.8 Increase In Employed Symbols

Listing E.8: Increase In Employed Symbols

1 #!/usr/bin/env python

2 # This piece of code will leek at ever creature within the genebank.

3 # It will count the number of distinct symbols within both it and

4 # its parents look -up table. Any instance where the look -up

5 # table count has increased by one , is flagged for investigation

6 # as an example of a symbol being added to the g-p mapping

7

8 import subprocess

9 from collections import Counter

10 import sys

11 import os

12 import re

13

14 os.chdir("tierra/gb1/")

15 subprocess.call(["../ arg","h", "0316. gen"])

16 files = os.listdir(".")

17

18 lut ="00,01,..,..,04,..,06,..,08,..,0a,..,0c,..,0e

,..,10,..,12,..,14,..,..,..,18,..,1a,..,1c,..,1e

,..,20,..,22,..,24,..,..,..,28,..,2a,..,..,..,2e

,..,30,..,32,..,34,..,36,..,..,39,..,..,3c,..,..,3f"

19

20 x = 0

21 y = 0

22 gtype = []

23 for name in files:

24 if "316" in name and ".gen" not in name and ".tmp" not in name:

25 lines = open(name ,"r").readlines ()

26 look_up_table = lines [3][264:455]. split(",")

27

28 if re.search(lut ,lines [3][264:455]):

29 if len(Counter(look_up_table)) > 28:

30 parent = lines [0][0:7]

31 if parent == "0000 god":

32 continue

33 parent_lines = open(parent ,"r").readlines ()

34 grandparent = parent_lines [0][0:7]

35 if grandparent == "0000 god":

36 continue

37 grandparent_lines = open(grandparent ,"r").readlines ()

38

39 child_array = lines [3]. split(",")

40 parent_array = parent_lines [3]. split(",")

41 grandparent_array = grandparent_lines [3]. split(",")

42

43 a = 0

44 b = 0

45 pvalue = 0

46 for value in child_array:

47

48 if value == parent_array[a]:

49 a += 1

50 else:

51 pvalue = a

228

52 a += 1

53 b += 1

54

55 if b == 1:

56 gvalue = 0

57 c = 0

58 d = 0

59

60 for values in parent_array:

61 if values == grandparent_array[c]:

62 c += 1

63

64 else:

65 gvalue = c

66 c += 1

67 d += 1

68

69 if d == 1:

70 # Now there is only a single difference between parent and daughter , and parent

and grand parent

71

72 if lines [3][264:455] not in parent_lines [3][264:455] and

parent_lines [3][732:923] not in grandparent_lines

[3][732:923]:

73 print "This is an example of genotypic mutation

increasing the lookup table"

74 x += 1

75 gtype.append(name)

76

77 print gtype , pvalue +156, gvalue

229

E.9 Average Employed Symbol Count

Listing E.9: Average Employed Symbol Count

1 #!/usr/bin/env python

2 # This piece of code searches the genebank for creatures who emerged

3 # within a certain time frame and counts the average number

4 # of distinct symbols within the look -up tables

5 # within these creatures

6

7 import os

8 import subprocess

9 import re

10 from collections import Counter

11

12 # ---------------------------

13 # Variables and accumulators

14

15 min_size = 316

16 max_size = 316

17 number_of_specimens = 100

18 os.chdir("tierra/gb5")

19 allLookUpTables = []

20 functionalInst = 0

21 nonFunctionalInst = 0

22 changed_GPmapping = ""

23 functionalList = [’00’,’01’,’04’,’06’,’08’,’0a’,’0c’,’0e’,’10’,’12’,’14’,’18’,’1

a’,’1c’,’1e’,’20’,’22’,’24’,’28’,’2a’,’2e’,’30’,’32’,’34’,’36’,’39’,’3c’,’3f

’]

24

25 # -----------------------------

26 # Extract all creatures from the genebank and create a dictionary with {Time :

Creature Name}

27 files = os.listdir(".")

28 creature_times = {}

29 for creature_size in range(min_size ,max_size +1):

30 genotype = "0"+str(creature_size)+".gen"

31 if genotype in files:

32 subprocess.call(["../ arg","x", genotype])

33 files = os.listdir(".")

34 for genome in files:

35 if str(creature_size) in genome and ".gen" not in genome:

36 inst_exe_line = open(genome ,"r").readlines () [7][17:]

37 inst_exe = re.search("\d+",inst_exe_line)

38 if inst_exe:

39 inst_exe = inst_exe.group()

40 creature_times[int(inst_exe)] = genome

41

42 # -------------------------------

43

44 # Now create a list of all the times , from newest decendant to initial ancestor

45 # Also create a matching list of names.

46

47 times_list = sorted(creature_times.keys())[-1:- number_of_specimens -1:-1]

48 names_list = []

49 for i in range(0,len(times_list)): names_list.append(creature_times[times_list[i

]])

50

230

51 # -------------------------------

52

53

54 # Times list dictionary { time : creature_name }

55 total_instruction_count = []

56 change = ""

57

58 for name in names_list:

59

60 subprocess.call(["../ arg","h", name [0:4:]+".gen", name [4::]])

61 look_up_table = open(name ,"r").readlines () [0][264:455]

62 total_instruction_count += look_up_table.split(",")

63

64 instruct_dic = Counter(total_instruction_count)

65

66 # -----------------------------------

67

68 # Count the number functional and nonfunctional

69 # instructions in the list "allLookUpTables" which contains all the lookup

tables.

70

71 # total_num_creatures = len(total_instruction_count)/len(look_up_table.split

(","))

72 instructions = instruct_dic.keys()

73 for instruction in instructions:

74 if instruction in functionalList:

75 functionalInst += float(instruct_dic[instruction])

76 else:

77 nonFunctionalInst += float(instruct_dic[instruction])

78 print "For the last %d creatures to exist in the soup." %number_of_specimens

79 print "%s out of a possible 64 different instruction types were found within the

phenotype space." % len(instruct_dic)

80

81 print "%f individual instructions were functional." % (functionalInst/

number_of_specimens)

82 print "%f individual instructions were non functional." % (nonFunctionalInst/

number_of_specimens)

231

E.10 Lineage Tracer

Listing E.10: Lineage Tracer

1 #!/usr/bin/env python

2 # This Piece of code will take a creature as an input , and find its

3 # complete lineage , from itself up to the seed ancestor

4

5 # >>> lineage.py [decendent_name]

6

7 import os

8 import subprocess

9 import sys

10

11 # Input Variables

12 decendant = sys.argv [1]

13 os.chdir("tierra/gb1")

14 print sys.argv

15

16 # Extract all creatures from the genebank

17 files = os.listdir(".")

18 for gen_file in files:

19 if ".gen" in gen_file:

20 subprocess.call(["../ arg","x", gen_file])

21

22 # Find lineage

23 lineage = [decendant]

24 while decendant in os.listdir("."):

25 parent = open(decendant ,"r").readlines () [2][52:59]

26 lineage.append(parent)

27 decendant = parent

28

29 os.chdir("../..")

30 f = open(sys.argv [1]+"_lineage","w")

31 s = str(lineage)

32 f.write(s)

33 f.close()

34

35 print lineage

36 print sys.argv [1]

232

E.11 Change in Look-Up Table

Listing E.11: Change in Look-Up Table

1 #!/usr/bin/env python

2 #This piece of code will scan the entire genbank for a run.

3 # at each creature and its parent , and check if there is one ,

4 # and only one change in the look -up table between it and its

5 # and it’s parent. A list of every creature that had a

6 # change to its look -up table will be written to file to be

7 # Investigated further

8

9 import subprocess

10 from collections import Counter

11 import sys

12 import os

13 import re

14

15 f = open(sys.argv [1]+"_genebank","w")

16 os.chdir("tierra/" + sys.argv [1])

17 subprocess.call(["../ arg","h", "0316. gen"])

18

19 files = os.listdir(".")

20 i = 0

21 a = 0

22 b = 0

23 c = 0

24 lut ="00,01,..,..,04,..,06,..,08,..,0a,..,0c,..,0e

,..,10,..,12,..,14,..,..,..,18,..,1a,..,1c,..,1e

,..,20,..,22,..,24,..,..,..,28,..,2a,..,..,..,2e

,..,30,..,32,..,34,..,36,..,..,39,..,..,3c,..,..,3f"

25

26

27 for name in files:

28 if "316" in name and ".gen" not in name and ".tmp" not in name:

29 lines = open(name ,"r").readlines ()

30 look_up_table = lines [3][264:455]. split(",")

31

32 if len(Counter(look_up_table)) > 28:

33

34 if re.search(lut ,lines [3][264:455]):

35

36 parent = lines [0][0:7]

37 parent_lines = open(parent ,"r").readlines ()

38 parent_look_up_table = parent_lines [3][264:455]. split(",")

39 if len(Counter(parent_look_up_table)) < len(Counter(

look_up_table)):

40

41 if parent_lines [3][732:923] in lines [3][732:923]:

42

43 string = "(A) "+str(len(Counter(parent_look_up_table)))

+ " " + str(len(Counter(look_up_table)))+ " YES\n"

44 f.write(string)

45 a = a + 1

46

47

48 else:

49 j = 0

233

50 k = 0

51 parent_array = parent_lines [3]. split(",")

52 child_array = lines [3]. split(",")

53 for value in parent_array:

54 if value == child_array[j]:

55 j = j+1

56 else:

57 j = j+ 1

58 k = k+ 1

59 if k > 1:

60 f.write("(B) More than one simultanious

perturbations\n")

61 b = b + 1

62

63 else:

64 f.write("(C) Investigate This\n")

65 c = c + 1

66

67 string = str(a)+"\n" + str(b)+ "\n"+ str(c)

68

69 f.write(string)

70 f.close()

234

E.12 Translation Table Counter

Listing E.12: Translation Table Counter

1 #!/usr/bin/env python

2 # This piece of code will search the Tierra dump file for every creature

3 # alive at the end of a run , search for each creature within the genebank

4 # and write two arrays to file containing the time of emeregcnce and

5 # count of distinct p-symbols within the translation table of each creature

6

7 from collections import Counter

8 import os

9

10 f = open("tierra/gb1/soup_dump","r").readlines ()

11

12 files = os.listdir("tierra/gb1/.")

13

14 arr = []

15 lutCount = []

16 instExe = []

17 popCount = 0

18 for i in f[1:]:

19 if "Timestamp" in i and popCount != 0:

20 arr.append(sum(lutCount)/(popCount))

21 lutCount = []

22 popCount = 0

23

24 else:

25 if i[:7] in files:

26 creature = open("tierra/gb1/"+i[:7],"r").readlines ()

27

28 if int(creature [1]) == 1:

29 lutCount.append(len(Counter(creature [3][351:1118]. split(",")

[1::2]))*int(i[8:13]. lstrip ()))

30 instExe.append(creature [2][: -1])

31

32 popCount = popCount + float(i[8:13]. lstrip ())

33

34 temp = ""

35 for i in str(instExe)[1: -1]:

36

37 if "," in i:

38 temp = temp + "\n"

39 elif "’" in i or " " in i:

40 temp = temp

41 else:

42 temp = temp + i

43 instExe = temp

44

45 temp = ""

46 for i in str(arr)[1: -1]:

47

48 if "," in i:

49 temp = temp + "\n"

50 elif "’" in i or " " in i:

51 temp = temp

52 else:

53 temp = temp + i

235

54 arr = temp

55

56 g = open("TranslationTableCount","w")

57 f = open("InstructionExecuted","w")

58 g.write(arr)

59 f.write(instExe)

60 f.close()

61 g.close()

236

	Contents
	Introduction
	Chapter Overview
	What is Life?
	Fundamental Properties of Life
	Hierarchy of Living Properties

	Project EvoSym: Emergence and Evolution of Biological Systems
	Introduction
	Project Collaboration and Affiliation
	Project EvoSym Synopsis
	Work Package 2: Elaboration and Thesis Question
	Thesis Contribution

	Thesis Overview

	Developments in Artificial Life
	Chapter Overview
	An Introduction to the Theory of Evolutionary Dynamics
	Biological Synthesis of Evolutionary Dynamics
	Computational Synthesis of Evolutionary Dynamics
	Von Neumann's Kinematic Model
	Cellular Automata
	Genetic Algorithms & Genetic Programming
	Computer Viruses and Core Worlds
	Tierra
	Avida
	Conclusion

	Von Neumann's Architecture
	Chapter Overview
	Von Neumann's Problem: The Evolutionary Growth of Machine Complexity
	Von Neumann’s Solution: The Von Neumann Architecture For Machine Self Reproduction.
	Interpretations of von Neumann’s design
	Conclusion

	Tierra: A Platform For Artificial Life
	Chapter Overview
	The Tierra 6.02 Virtual Computer
	The Default Instruction Set
	Self Reproduction by Self Inspection (Self Copiers)
	Darwinian Operating System
	Conclusion

	Implementation of von Neumann’s Architecture Within Tierra
	Chapter Overview
	Implementation of von Neumann’s Architecture for Machine Self Reproduction Within The Tierra Platform
	Implementation of a mutable genotype-phenotype mapping within Tierra
	The Instruction Set
	The von Neumann Ancestor Structure in Tierra
	Conclusion

	Experimental Procedure, Results and Discussions
	Chapter Overview
	Experimental Procedure, Results and Discussions I
	Classifications of Emergent Behaviour
	Degeneration to Self Copying
	Pathological Construction
	The Emergence of Pathological Constructors from Self Copiers
	Discussion

	Experimental Procedure, Results and Discussions II
	Modifications to the Tierra source code and configuration file
	Redesigning the von Neumann ancestor and introducing redundancy; vn_lut64_316
	Experimental Procedure
	Results
	Discussion

	Experimental Procedure, Results and Discussions III
	Alternative Implementation of the Genotype-Phenotype Mapping
	Comparing and Contrasting the Different Mapping Implementations
	The Structure of the Translation Table.
	The Redesigned Ancestor, vn_tt128_758
	Investigation of Loss or Introduction of Symbol Mappings
	Investigating a Change in Mapping, Without the Loss or Addition of Symbol Mappings
	Discussions

	Conclusion

	Conclusions and Future Work
	Revisiting the Original Research Question
	Thesis Summary
	Experimental Results Overview
	Future Work
	Development of Tierra
	Investigation of Alternative Mappings
	Spontaneous Emergence of a Genotype-Phenotype Mapping

	Closing Statement

	Bibliography
	Appendix Creature Design
	vn_lut32_344 Code
	vn_lut32_311 Code
	vn_lut32_413 Code
	vn_lut64_316 Code
	vn_tt128_758 Code
	0035aaa Code
	0669aaa Code

	Appendix Opcode Map Files
	vn_lut32_344 opcode.map
	vn_lut32_311 opcode.map
	vn_lut64_316 opcode.map
	vn_tt128_758 opcode.map

	Appendix Soup_in Files
	vn_lut32_344 soup_in
	vn_lut32_311 soup_in
	vn_lut64_316 soup_in
	vn_tt128_758 soup_in

	Appendix Tierra Source Code Revisions
	Tierra 6.02 update file

	Appendix Python Analysing Tools
	Compare Population Sizes
	Count Employed Symbols
	Count Employed Symbols II
	Average Employed vs. Non Employed Symbol Count
	Creature Population Graph I
	Creature Population Graph II
	Employed Symbol Graph
	Increase In Employed Symbols
	Average Employed Symbol Count
	Lineage Tracer
	Change in Look-Up Table
	Translation Table Counter

