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Abstract

We describe the work carried out by the
DCU-ADAPT team on the Lexical Nor-
malisation shared task at W-NUT 2015.
We train a generalised perceptron to an-
notate noisy text with edit operations that
normalise the text when executed. Fea-
tures are character n-grams, recurrent neu-
ral network language model hidden layer
activations, character class and eligibil-
ity for editing according to the task rules.
We combine predictions from 25 models
trained on subsets of the training data by
selecting the most-likely normalisation ac-
cording to a character language model. We
compare the use of a generalised percep-
tron to the use of conditional random fields
restricted to smaller amounts of training
data due to memory constraints. Fur-
thermore, we make a first attempt to ver-
ify Chrupała (2014)’s hypothesis that the
noisy channel model would not be useful
due to the limited amount of training data
for the source language model, i.e. the lan-
guage model on normalised text.

1 Introduction

The W-NUT Lexical Normalisation for English
Tweets shared task is to normalise spelling and
to expand contractions in English microblog mes-
sages (Baldwin et al., 2015). This includes one-to-
many and many-to-one replacements as in “we’re”
and “l o v e”. Tokens containing characters other
than alphanumeric characters and the apostrophe
are excluded from the task, as well as proper nouns
and acronyms that would be acceptable in well-
edited text. (The input, however, does not identify
such tokens and unnecessarily modifying them is
penalised in the evaluation.)

To make evaluation easier, participants are fur-
ther required to align output tokens to input to-

kens, e.g. when the four tokens “l”, “o”, “v” and
“e” are amalgamated to the single token “love”,
three empty tokens must follow in the output. This
is easy for approaches that process the input token
by token but may require extra work if the input
string is processed differently.

We participate in the constrained mode that al-
lows off-the-shelf tools but no normalisation lexi-
cons and additional data to be used. Furthermore,
we do not use any lexicon of canonical English
but learn our normalisation model purely from the
provided training data.

Our approach follows previous work by
Chrupała (2014) in that we train a sequence la-
beller to annotate edit operations that are intended
to normalise the text when applied to the input
text. However, while Chrupała uses conditional
random fields for sequence labelling, we further
experiment with using a generalised Perceptron
and with using a simple noisy channel model with
character n-gram language models trained on the
normalised side of the training data to select the fi-
nal normalisation from a set of candidate normali-
sation generated from an ensemble of sequence la-
bellers and from selectively ignoring some of the
proposed edit operations.

2 Experimental Setup

2.1 Data Set and Cross-validation

The microblog data set of the shared task contains
2,950 tweets for training and 1,967 tweets for fi-
nal testing. Each tweet is tokenised and the tokens
of the normalised tweets are aligned to the input,
allowing for one-to-one, many-to-one and one-to-
many alignments.

For five-fold cross-validation, we sort the train-
ing data by tweet ID and split it into 5 sets of
roughly the same number of tokens. (The num-
ber of tweets varies from 579 to 606.) Systems
are trained on four sets and tested on the remain-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ing set. Since the sequence labellers require a
development set, we split the union of the four
sets again into 5 sets to carry out nested cross-
validation, training 25 models in total for each sys-
tem.

2.2 Feature Extraction
For extracting recurrent neural network language
model features, we use Elman1 (Chrupała, 2014),
a modification of the RNNLM toolkit2 (Mikolov et
al., 2010; Mikolov, 2012) that outputs hidden layer
activations. We use the off-the-shelf model from
Chrupała (2014)3. The input are the characters of
the tweet4 in one-hot encoding. The network has a
hidden layer with 400 neurons and it predicts the
next byte. Following Chrupała (2014), we reduce
the 400 activations to 10 binary features: We se-
lect the 10 most active neurons in order and apply
a threshold (0.5) to the activation. The value of the
i-th feature expresses which neuron was i-th active
and whether its activation was below 0.5, e.g. the
first feature states which neuron is most active and
whether or not its activation is below 0.5. As there
are 400 neurons and 2 possible binarised activa-
tions, there are 800 possible values.5

Edit operations are extracted from the parallel
training data searching for the lowest edit distance
and recording the edit operations with dynamic
programming. We customise the edit costs func-
tion to always postpone insertions to after delet-
ing characters so that each input character can be
assigned exactly one edit operation from the set
{do nothing, delete character, insert string before
character}. To capture insertions at the end of the
tweet, we append a NULL byte to all tweets.

The above setup, features and edit operations
are identical to Chrupała (2014) to the best of our
knowledge. We further add a character class fea-
ture {NULL, control, space, apostrophe, punctua-
tion, digit, quote, bracket, lowercase letter, upper-
case letter, non-ASCII, other} and a feature indi-
cating whether the character is part of a token that
is eligible for editing according to the shared task

1https://bitbucket.org/gchrupala/elman
2http://rnnlm.org/
3https://bitbucket.org/gchrupala/

codeswitch/overview
4More precisely, we process UTF-8 bytes. For the train-

ing data, this is the same as characters as the training set does
not contain any multi-byte UTF-8 characters.

5These RNN-LM hidden layer activation features have
been used successfully in text segmentation and word-level
language identification (Chrupała, 2013; Barman et al.,
2014).

rules, i.e. whether or not the characters encoun-
tered since the last space or start of tweet only are
letters, digits, apostrophes and spaces.

2.3 Sequence Labelling

For character-level sequence labelling, we try (a)
Sequor6 (Chrupała and Klakow, 2010), an imple-
mentation of the generalised perceptron (Collins,
2002),7 with 10 iterations, and (b) Wapiti8

(Lavergne et al., 2010)’s implementation of con-
ditional random fields (Lafferty et al., 2001) using
l-bfgs optimisation with a history of 5 steps, elas-
tic net regularisation (ρ1 = 0.333 and ρ2 = 0.001)
and no hard limit on the number of iterations. We
extend the feature templates of Chrupała (2014)9

by including our additional two features. The tem-
plate generates unigram, bigram and trigram char-
acter features within a +/- 2 window. All remain-
ing features are included as unigrams of the cur-
rent value.

Due to the nested cross-validation (see above),
Sequor is trained on 64% (0.82) of the training
data, 16% (0.8 × 0.2) is used as development set
and 20% (1/5) for testing. For Wapiti, we use only
16% for training (and the remaining 64% for de-
velopment set) in each cross-validation fold due to
memory constraints.10

2.4 Generating Candidates

We produce candidate normalisations from the
edit operations proposed by the sequence model.
However, if we allowed each insert and delete op-
eration to be either realised or not, we would pro-
duce up to 2N candidates, where N is the num-
ber of edit operations. With N = 140 (maximum
lengths of a tweet), handling these many candi-
dates is not feasible. Instead, we recursively split
the sequence of edit operations produced by the
sequence labeller into up to eight sections. To find
good split points, we propose to minimise√

|eL − eR|+max({0, 10− s})/2 (1)

6https://bitbucket.org/gchrupala/
sequor

7The generalised perceptron has been shown to match per-
formance of state-of-the-art methods in word segmentation,
POS tagging, dependency parsing and phrase-structure pars-
ing (Zhang and Clark, 2011).

8https://wapiti.limsi.fr/
9We thank Grzegorz Chrupała for providing his template

and for translating it to the Sequor template format.
10With 64%, memory usage grew to over 400 GB over

night, causing heavy swap activity on our machines with 256
GB RAM (and 410 GB swap space).



where eL and eR are the number of insert or delete
operations to the left and right respectively, and s
is the number of consecutive no-operations to the
left. The first term tries to balance the number of
edit operations on each side while the second term
introduces a preference to not split clusters of edit
operations.

For each section, we either use the edit opera-
tions produced by the sequence labeller or do not
edit the section. As we split each sequence into
no more than eight sections, we produce up to
28 = 256 candidates.11 Only one candidate, iden-
tical to the input, will be produced if there are no
delete or insert operations and two candidates will
be produced if there is just one delete or insert op-
eration.

In training, we may potentially produce up to
5×256 = 1,280 candidates per tweet as the nested
cross-validation gives us five sequence labellers
per cross-validation run. During testing, up to
25 × 256 = 6,400 candidates may be produced.
(The actual maximum number of candidates may
be lower when labellers agree on the edit opera-
tions.)

2.5 Applying Edit Operations
After producing candidate edit operation se-
quences that use subsets of the edit operations pre-
dicted by a sequence model, the edit operations
are executed to produce candidates strings for the
normalised tweets. As the shared task asks for to-
kenised output aligned to the input tokens, we ap-
ply the edit operations to each token in the follow-
ing sequence:

1. Apply all edit operations at character posi-
tions that correspond to input tokens.

2. Apply insert operations recorded at the space
between tokens and at the end of the tweet to
the preceding token.

3. Apply delete operations at the space between
tokens, moving the contents of the token to
the right to the end of the token to the left,
leaving behind an empty token. (Delete op-
erations at the end-of-tweet marker are ig-
nored.)

Due to time constraints, we do not attempt to
improve the alignment of output tokens to input
tokens.

11Splitting the eight sections again would produce 216 =
65,536 candidates.

2.6 Language Modelling
For language modelling, we train SRILM (Stol-
cke, 2002) on the normalised tweets of the training
data. As we want to build character n-gram mod-
els and SRILM has no direct support for this, we
re-format the candidate strings to make each char-
acter a token. To distinguish space characters from
token separators, we represent them with double
underscores.

2.7 Candidate Selection
We use the noisy channel model12 to select the
most plausible source ŝ for the observed target t
from the set of candidates S(t):

argmax
s∈S(t)

P (t|s)P (s) (2)

P (s) is provided by the language model (Sec-
tion 2.6). Standard models give high probability
to making few or no edits. However, we trust our
sequence models as Chrupała (2014) reported en-
couraging results. Therefore, we give high prob-
ability to using the predicted edit operations. We
consider two models for P (t|s):

P1(t|s) =


0.979 if all edit operations are used

0.020 if s = t

0.001 otherwise
(3)

and

P2(t|s) =

{
1 if all edit operations are used

0 otherwise
(4)

Note that P1 is not a proper probability model as
there is never exactly one “otherwise” case but
2i−2 cases where i is the number of sections con-
sidered in candidate generation, causing the total
to be either 0.999 or between 1.001 and 0.999 +
0.001× (28−2) = 1.253. P2 effectively excludes
the original input and all candidates that use only
some but not all of the edit operations suggested
by the sequence labellers. Since there are five se-
quence labellers per cross-validation fold due to
nested cross-validation and 25 sequence labellers
during testing, P2 effectively selects between 5 or
25 candidates.13

12The noisy channel model has been applied success-
fully to spelling correction (Kemighan et al., 1990; Wilcox-
O’Hearn et al., 2008) and machine translation (Way, 2010),
among other areas.

13Han et al. (2013) also use a trigram language model for
normalisation, but only to reduce a larger candidate set to an



2 3 4 5 6
WB 14.70 9.97 7.91 7.31 7.19
KN 14.73 9.83 7.81 7.33 7.43
GT 14.63 9.88 7.91 7.45 7.44

Table 1: Average language model perplexity over
the five cross-validation runs for n-gram sizes n =
2, ..., 6 and smoothing methods WB = Witten-
Bell, KN = Keyser-Ney and GT = Good-Turing.
Standard deviation σ ≤ 0.23 for all configura-
tions.

2.8 Evaluation Measures

We evaluate our best systems using the evalution
script provided by the shared task organisers. It
counts:

• The number of correctly modified tokens, i.e.
tokens that need to be replaced by a new non-
empty token and the system correctly pre-
dicts this token.

• Number of tokens needing normalisation, i.e.
tokens that are modified in the gold output.
However, again, tokens that are to be deleted
are ignored, e.g. “l o v e” to “love” counts
as one event only despite the replacement of
three tokens with empty tokens.

• The number of tokens modified by system,
i.e. tokens for which a substitution with a
non-empty token is proposed by the system.

Based on these numbers, precision, recall and F1-
score are calculated and we select the system and
configuration to be used on the test set based
on highest average F1-score over the 5 cross-
validation runs.

3 Results

We use character n-gram language models in the
noisy channel model for candidate selection. To
address sparsity of data that arises when test sen-
tences contain n-grams that are rare or unseen in
the training data, we try Witten-Bell, Keyser-Ney
and Good-Turing smoothing. Table 1 shows av-
erage cross-validation perplexity for these three
smoothing methods and n = 2, ..., 6. Over all
five cross-validation folds, the language model
that gives the lowest perplexity when trained

n-best list before applying more complex models to token-
level candidate selection.

P R F1
P1 W 83.2% 37.7% 51.9%
P1 S 83.2% 41.0% 54.9%
P2 W 85.9% 47.7% 61.4%
P2 S 85.7% 56.1% 67.8%

Table 2: Average cross-validation results over the
five cross-validation runs for transition models
P1 and P2, W = Wapiti CRF sequence labeller
(trained on only 16% of the training data), S =
Sequor generalised perceptron sequence labeller
(trained on 64% of the training data), P = preci-
sion, R = recall, F1 = F1 measure. Standard devi-
ation σ ≤ 0.03 for all cells.

on the training data and applied to the internal
test set is the 6-gram model with Witten-Bell
smoothing. This confirms the recommendations
in the SRILM documentation to use Witten-Bell
smoothing when the vocabulary is small such as
when building a character language model.

Table 2 shows cross-validation results for the
four systems resulting from the choices between
transition models P1 and P2 and using the Wapiti
CRF or the Sequor generalised perceptron se-
quence labeller. The differences are not large in
precision but for recall, the model P1 performs
poorly. Also the CRF consistently has lower re-
call than the respective perceptron model. Inter-
estingly, the CRF achieves best precision. On F1-
score, the best result is obtained with model P2,
which reduces the noisy channel model to selec-
tion between sequence modeller hypotheses, to-
gether with the Sequor sequence modeller.

On the final test set, our best system using P2

and Sequor has precision 81.90%, recall 55.09%
and F1 65.87%, placing it fifth out of six submis-
sions in the “constrained” category.

4 Discussion

A possible explanation for the low recall obtained
with the P1 model is that this noise model cannot
counter the effect that shorter sentences generally
receive higher language model probability scores
and therefore there is a tendency to reject edit op-
erations that insert additional characters.

Furthermore, we observe that our system often
assigns inserted text to the wrong evaluation units,
e.g. inserting the string “ laughing out” before the
space before “lol” and then replacing second “L”
of “lol” with “ud”. This is not wrong on the string



level, but in the token-level evaluation, we make
two errors: wrongly appending “ laughing out” to
the previous token and wrongly normalising “lol”
to just “loud” instead of “laughing out loud”.

Since the model P1 did not come out best, we
cannot reject Chrupała (2014)’s hypothesis that
the noisy channel model would not be useful.
However, our observations also do not provide
much support for this hypothesis as we did not in-
clude standard models from previous work (Cook
and Stevenson, 2009; Han et al., 2013) in our ex-
periment.

5 Conclusions

We trained two sequence modellers to predict edit
operations that normalise input text when exe-
cuted and experimented with applying the noisy
channel model to selecting candidate normalisa-
tion strings.

Future work should:

• Train the CRF on the full training data, either
using a more memory-friendly (but possibly
slower) optimisation method or using an even
larger machine.

• Experiment with LSTM sequence modelling
(Hochreiter and Schmidhuber, 1997; Gers,
2001), which has been applied successfully
to speech recognition and caption genera-
tion (Graves and Jaitly, 2014; Vinyals et al.,
2015).

• Combine models with voting rather than lan-
guage model score.

• For the noisy channel model, try stan-
dard models from previous work (Cook and
Stevenson, 2009; Han et al., 2013).

• To better understand the selection prefer-
ences of the noisy channel model, com-
pare the F1-score obtained when evaluating
against the gold data to the F1-score obtained
when evaluating the system output against its
own input, i.e. are we biased towards doing
nothing?

• Introduce a brevity penalty to counter the ef-
fect of selecting short candidate normalisa-
tions in the noisy channel model.

• Automatically revise the alignment to in-
put token according to global co-occurrence
statistics.

• Carry out a full error analysis of what the sys-
tem does well and where it fails.
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