
IEEE CLOUD COMPUTING MAGAZINE [IN PRESS - ACCEPTED FOR PUBLICATION, 6 MAY 2015] 1

Containerisation and the PaaS Cloud
Claus Pahl

Abstract— Containerisation is widely discussed as a lightweight virtualisation solution. Apart from exhibiting benefits over

traditional virtual machines in the cloud, containers are especially relevant for Platform-as-a-Service (PaaS) clouds to manage

and orchestrate applications through containers as an application packaging mechanism. We discuss the requirements that

arise from having to facilitate applications through distributed multi-cloud platforms.

Index Terms—Cloud Computing, Cluster, Container, Docker, Kubernetes, Multi-cloud, PaaS, Virtualisation.

——————————  ——————————

1 INTRODUCTION

HE cloud relies on virtualisation techniques to achieve
elasticity of large-scale shared resources. Virtual ma-

chines (VMs) have been the backbone at the infrastructure
layer providing virtualised operating systems. Containers
are a similar, more lightweight virtualisation concept, i.e.,
less resource and time consuming. They have been sug-
gested as a solution for more interoperable application
packaging in the cloud.

VMs and containers are both virtualisation techniques,
but solve different problems. The difference is that con-
tainers are tools for delivering software – i.e., there is a
PaaS (Platform-as-a-Service) focus – in a portable way
aiming at more interoperability [1] while still utilising
operating systems (OS) virtualisation principles. VMs on
the other hand are about hardware allocation and man-
agement (machines that can be turned on/off and be pro-
visioned) – i.e., there is an IaaS (Infrastructure-as-a-
Service) focus on hardware virtualisation. Containers as a
replacement for VMs are only a specific use case where
the allocation of hardware resources is done through con-
tainers by componentising workloads in-between clouds.

For portable, interoperable applications in the cloud,
we need a lightweight distribution of packaged applica-
tions for deployment and management [2]. A solution is
containerisation. The basic ideas of containerisation are

- a lightweight portable runtime,
- the capability to develop, test and deploy appli-

cations to a large number of servers and
- the capability to interconnect containers.

Bernstein [3] already proposes containers to address con-
cerns at the cloud PaaS level. They also relate to the IaaS
level through sharing and isolation aspects.

This article reviews the virtualisation principles behind
containers, in particular in comparison with virtual ma-
chines. The relevance of the new container technology for
PaaS cloud shall be specifically investigated. As applica-
tions are distributed today, the resulting requirements for
application packaging and interoperable orchestration
over clusters of containers are also discussed. We aim to
clarify how containers can change the PaaS cloud as a
virtualisation technique, specifically PaaS as a platform

technology. We go beyond [3], addressing what is needed
to evolve PaaS significantly further as a distributed cloud
software platform resulting in a discussion of achieve-
ments and limitations of the state-of-the-art. To illustrate
concepts, some sample technologies will be discussed if
they exemplify technology trends well.

2 VIRTUALISATION AND THE NEED FOR

CONTAINERISATION

Historically, virtualisation technologies have developed
out of the need for scheduling processes as manageable
container units. Processes and resources in question are
the file system, memory, network and system info.

Fig. 1. Virtualisation architecture.

Virtual machines as the core virtualisation construct of
the cloud have been improved successively by addressing
scheduling, packaging and resource access (security)
problems. VM instances as guests use isolated large files
on their host to store their entire file system and run typi-
cally a single, large process on the host. While security
concerns are largely addressed through isolation, a num-
ber of limitations remain. It needs full guest OS images
for each VM in addition to the binaries and libraries nec-
essary for the applications, i.e., a space concern that trans-
lates into RAM and disk storage requirements and is slow
on startup (booting might take from one to more than 10
minutes [4]), see Fig. 1.

Packaging and application management is a require-
ment that PaaS clouds need to answer. In a virtualised
environment, this has to be grounded in technologies that

xxxx-xxxx/0x/$xx.00 © 2015 IEEE Published by the IEEE Computer Society

————————————————

 C. Pahl is with the Irish Centre for Cloud Computing and Commerce IC4
and the Irish Software Research Centre Lero, School of Computing, Dublin
City University, Dublin 9, Ireland. E-mail: cpahl@computing.dcu.ie .

T

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/30934579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cpahl@computing.dcu.ie

2 IEEE CLOUD COMPUTING MAGAZINE [IN PRESS]

allow the sharing of the underlying platform and infra-
structure in a secure, but also portable and interoperable
way. Containers can match these requirements, but a
more in-depth elicitation of specific concerns is needed.

A container holds packaged self-contained, ready-to-

deploy parts of applications and, if necessary, middle-
ware and business logic (in binaries and libraries) to run
applications [5], see Fig. 1. An example would be a Web
interface component with a Tomcat server. Successful
tools like Docker are frameworks built around container
engines [6] that allow containers to act as a portable way
to package applications to run in containers. This means
that a container covers an application tier or node in a
tier, which results in the problem of managing dependen-
cies between containers in multi-tier applications. An or-
chestration plan describes components, their dependen-
cies and their lifecycle in a layered plan. A PaaS then en-
acts the workflows from the plan through agents (which
could be a container runtime engine). PaaSs can support
the deployment of applications from containers.

In PaaSs, there is a need to define, deploy and operate
cross-platform capable cloud services [7] using light-
weight virtualisation, for which containers are a solution.
There is also a need to transfer cloud deployments be-
tween cloud providers, which requires lightweight virtu-
alised clusters for container orchestration [3]. Some PaaS
are lightweight virtualisation solutions in this sense.

3 CONTAINERISATION FOR LIGHTWEIGHT

VIRTUALISATION AND APPLICATION PACKAGING

Recent OS advances have improved their multi-tenancy
capabilities, i.e., the capability to share a resource.

3.1 Linux Containers

As an example of OS virtualisation advances, new Linux
distributions provide kernel mechanisms such as
namespaces and cgroups to isolate processes on a shared
OS – supported through the Linux container project LXC.

- Namespace isolation allows groups of processes
to be separated not allowing them to see re-
sources in other groups. Different namespaces
are used by container technologies for process
isolation, network interfaces, access to inter-
process communication, mount-points or for iso-
lating kernel and version identifiers.

- cgroups (control groups) manage and limit re-
source access for process groups through limit
enforcement, accounting and isolation, e.g., limit-
ing the memory available to a specific container.
This ensures containers are good multi-tenant cit-
izens on a host. It provides better isolation be-
tween possibly large numbers of isolated appli-
cations on a host. Control groups allow sharing
available hardware resources between containers
and, if required, setting up limits and constraints.

Docker builds its solution on LXC techniques. A con-
tainer-aware daemon, such as dockerd for Docker, is used
to start containers as application processes and plays a

key role as the root of the user space's process tree.

3.2 Docker Container Images

Based on these mechanisms, containers are OS virtualisa-
tion techniques particularly suitable for application man-
agement in the PaaS cloud. A container is represented by
lightweight images – VMs are also based on images, but
full, monolithic ones. Processes running in a container are
almost fully isolated. Container images are the building
blocks from which containers are launched.

Fig. 2. Container Image Architecture.

As it is currently the most popular container solution,
Docker shall illustrate how containerisation works. A
Docker image is made up of file systems layered over
each other, similar to the Linux virtualisation stack, using
the LXC mechanisms, see Fig. 2.

- In a traditional Linux boot, the kernel first
mounts the root file system as read-only, then
checks its integrity before switching the rootfs
volume to read-write mode. Docker mounts the
rootfs as read-only as in a traditional boot, but
instead of changing the file system to read-write
mode, it uses a union mount to add a writable
file system on top of the read-only file system.

- There may actually be multiple read-only file
systems stacked on top of each other. Using un-
ion mount, several file systems can be mounted
on top of each other, which allows creating new
images by building on top of base images. Each
of these file system layers is a separate image
loaded by the container engine for execution.

- Only the top layer is writable. This is the con-
tainer itself, which can have state and is executa-
ble. It can be thought of as a directory that con-
tains everything needed for execution. Contain-
ers can be made into stateless images (and reused
in more complex builds), though.

A typical layering could include (top to bottom, see
Fig. 2): a writable container image for applications, an
Apache image and an Emacs image as sample platform
components, a Linux image (a distribution such as Ub-
untu), and the rootfs kernel image.

Containers are based on layers composed from indi-
vidual images built on top of a base image that can be
extended. Complete Docker images form portable appli-
cation containers. They are also building blocks for appli-

CLAUS PAHL : CONTAINERISATION AND THE PAAS CLOUD 3

cation stacks. The approach is lightweight as single imag-
es can be changed and distributed easily.

3.3 Containerising Applications and Managing
Containers

The container ecosystem consists of an application con-
tainer engine to run images and a repository or registry
operated via push and pull operations to transfer images
to and from host-based engines.
The repositories play a central role in providing access to
possibly tens of thousands of reusable private and public
container images, e.g., for platform components such as
MongoDB or Node.js. The container API allows creating,
defining, composing, distributing containers, run-
ning/starting images and running commands in images.

Fig. 3. Container-based Application Architecture.

Containers for applications can be created by assem-
bling them from individual images, possibly based on
base images from the repositories, which can be seen in
Fig. 2 that shows a containerised application. Containers
can encapsulate a number of application components
through the image layering and extension process. Differ-
ent user applications and platform components can be
combined in a container. Fig. 3 illustrates different scenar-
ios using the container capability of combining images for
platform and application components.

The granulary of containers, i.e., the number of appli-
cations inside, varies. Some favour the one-container-per-
app approach, which still allows composing new stacks
easily (e.g., changing the Web server in an application) or
reuse common components (e.g., monitoring tools or a
sinlge storage service like memchached - either locally or
predefined from a repository such as the Docker Hub).
Apps can be built/rebuilt and managed easily. The
downside is a larger number of containers with the re-
spective interaction and management overhead compared
to multi-app containers, though the container efficiency
should faciliate this.

Storage and network management are two specific is-
sues that containers as application packages for interop-
erable and distributed contexts must facilitate.

- There are two ways data is managed in Docker –
data volumes and data volume containers. Data
storage features can add data volumes to any
container created from an image. A data volume
is a specially designated directory within one or
more containers that bypasses the union file sys-
tem to provide features for persistent or shared
data – volumes can be shared and reused be-
tween containers, see Fig. 4. A data volume con-
tainer enables sharing persistent data between

application containers through a dedicated, sepa-
rate data storage container.

- Network management is based on two methods
for assigning ports on a host – network port
mappings and container linking. Applications
can connect to a service or application running
inside a Docker container via a network port.
Container linking allows linking multiple con-
tainers together and sending information be-
tween them. Linked containers can transfer data
about themselves via environment variables. To
establish links and some relationship types,
Docker relies on the names of containers. Con-
tainer names have to be unique, which means
that links are often limited to containers of the
same host (managed by the same daemon).

3.4 Comparison

Both traditional VMs and containers shall be compared in
order to summarise the two technologies, see Table 1.
Some sources are also concerned about security, suggest-
ing to run for instance only one Docker instance per host
to avoid isolation limitations [3].

TABLE 1. Container-based Application Architecture.

 VMs Containers

Stand-

ardisa-

tion

Fairly standardised

system images with

capabilities similar to

bare-metal computers

(e.g., OVF from

DMTF).

Not well standardised,

OS- and kernel-specific

with varying degrees of

complexity.

Host/

guest

archi-

tecture

Can run guest kernels

that are different from

the host, with conse-

quent more limited

insight into host stor-

age and memory man-

agement.

Run host kernels at guest

level only, but can do so

possibly with a different

package tree or distribu-

tion such that the con-

tainer kernel operates

almost like the host.

Boot

process

Started through stand-

ard boot process, re-

sulting in a number of

hypervisor processes

on the host.

Can start containerised

application directly or

through container-aware

init daemon like systemd.

These appear as normal

processes on the host.

3.5 Different Container Models

We use Docker to illustrate some core concepts, but a
range of other container technologies exist for different
operating systems types (we single out Linux and Win-
dows below) and also specific or generic solutions for
PaaS platforms [8]:

- Linux: Docker, LXC Linux containers, OpenVZ,
and others for variants such as BSD, HP-UX and
Solaris.

- Windows: Sandboxie
- Cloud PaaS: Warden/Garden (in Cloud Found-

ry), LXC (in Openshift)
There is still an ongoing evolution of OS virtualisation

4 IEEE CLOUD COMPUTING MAGAZINE [IN PRESS]

and containerisation, aiming at providing OS support
through standard APIs and tools for container manage-
ment, network management and making resource utilisa-
tion more visible and manageable.

The tool landscape is equally in evolution. As one ex-
ample, Rocket is a new container runtime from the Core-
OS project (CoreOS is Linux for massive server deploy-
ments), which is an alternative to the Docker runtime. It is
specifically designed for composability, security, and
speed. These concerns highlight the teething concerns
that the community is still engaged with.

4 CONTAINERISATION IN PAAS CLOUDS

While VMs are ultimately the medium to provision PaaS
platform and application components at the infrastruc-
ture layer, containers appear as a more suitable technolo-
gy for application packaging and management in PaaS
clouds.

4.1 PaaS Features

PaaS generally provide mechanisms for deploying appli-
cations, designing applications for the cloud, pushing
applications to their deployment environment, using ser-
vices, migrating databases, mapping custom domains,
IDE plugins, or a build integration tool. PaaS have fea-
tures like built farms, routing layers, or schedulers that
dispatch workloads to VMs. A container solution sup-
ports these problems through interoperable, lightweight
and virtualised packaging. Containers for application
building, deployment and management (through a
runtime) provide interoperability. Containers produced
outside a PaaS can be moved in – the container encapsu-
lates the application. Existing PaaS have embraced the
momentum caused by containerisation and standardised
application packaging driven by Docker. Many PaaS have
a container foundation for running platform tools.

4.2 PaaS Evolution

The evolution of PaaS is moving towards container-
based, interoperable PaaS.

- The first generation was made up of classical
fixed proprietary platforms such as Azure or
Heroku.

- The second generation was built around open-
source solutions such as Cloud Foundry or
OpenShift that allow users to run their own PaaS
(on-premise or in the cloud), already built
around containers. Openshift moves now from
its own container model to the Docker container
model, as does Cloud Foundry through its inter-
nal Diego solution.

- The current third generation includes platforms
like Dawn, Deis, Flynn, Octohost and Tsuru,
which are built on Docker from scratch and are
deployable on own servers or on public IaaS
clouds.

Open PaaS like Cloud Foundry and OpenShift treat con-
tainers differently, though. While Cloud Foundry sup-
ports state-less applications through containers, stateful
services run in VMs. Openshift does not distinguish

these.

4.3 Service Orchestration

Development and architecture are central PaaS concerns.
Recently, microservice architectures are discussed. This is
an approach to breaking monolithic application architec-
tures into SOA-style independently deployable services,
which are well supported by container architectures. Ser-
vices are loosely coupled, independent services that can
be rapidly called and mapped to whatever business pro-
cess is required. The microservices architectural style is
an approach to developing a single application as a suite
of small services, each running in its own process and
communicating with lightweight mechanisms. These ser-
vices are independently deployable by fully automated
deployment and orchestration framework. They require
the ability to deploy often and independently at arbitrary
schedules, instead of requiring synchronized deploy-
ments at fixed times. Containerisation provides an ideal
mechanism for their deployment and orchestration, par-
ticularly, if these are to be PaaS-provisioned.

5 CONTAINER ORCHESTRATION AND CLUSTERING

Containerisation facilitates the step from a single host to
clusters of container hosts to run containerised applica-
tions over multiple clusters in multiple clouds [9]. The
built-in interoperability makes this possible.

Fig. 4. Container-based Cluster Architecture.

5.1 Container Clusters

A container-based cluster architecture groups hosts into
clusters [10]. Fig. 4 that illustrates an abstract architectural
scenario based on common container and cluster con-
cepts. Container hosts are linked into a cluster configura-
tion.

- Each cluster consists of several (host) nodes –
where nodes are virtual servers on hypervisors
or possibly bare-metal servers. Each host node
holds several containers with common services
such as scheduling, load balancing and applica-

CLAUS PAHL : CONTAINERISATION AND THE PAAS CLOUD 5

tions.
- Each container can hold continually provided

services such as their payload service, so-called
jobs, which are once-off services (e.g., print), or
functional (middleware service) components.

- Application services are logical groups of con-
tainers from the same image. Application ser-
vices allow scaling an application across nodes.

- Volumes are used for applications that require
data persistence. Containers can mount volumes.
Data stored in these volumes persists, even after
a container is terminated.

- Links allow two or more containers, typically on
a single host, to connect and communicate.

This creates an abstraction layer for cluster-based service
management that goes beyond container solutions like
Docker.

A cluster management architecture has the following
components:

- The deployment of distributed applications
through containers is supported using a virtual
scalable service node (cluster), with high internal
complexity (supporting scaling, load balancing,
failover) and reduced external complexity.

- An API allows operating clusters from the crea-
tion of services and container sets to other lifecy-
cle functions.

- A platform service manager looks after the soft-
ware packaging and management.

- An agent manages the container lifecycles (at
each host).

- A cluster head node service is the master that re-
ceives commands from the outside and relays
them to container hosts.

This allows development without regard to the network
topology and requires no manual configuration [11].

A cluster architecture is composed of engines to share
service discovery (e.g., through shared distributed key
value stores) and orchestration/deployment (load balanc-
ing, monitoring, scaling, and also file storage, deploy-
ment, pushing, pulling).

This satisfies some of the requirements listed by
Kratzke [8] for cluster architectures. A lightweight virtu-
alised cluster architecture should provide a number of
management features as part of the abstraction on top of
the container hosts:

- Hosting containerised services and providing se-
cure communication between these services,

- Auto-scalability and load balancing support,
- Distributed and scalable service discovery and

orchestration,
- Transfer/migration of service deployments be-

tween clusters.
A sample cluster management platform is Mesos, an

Apache project that binds distributed hardware resources
into a single pool of resources. Mesos can be used by ap-
plication frameworks to efficiently manage workload dis-
tribution. It is a distributed systems kernel following the
same principles as the Linux kernel, but at a different lev-
el of abstraction. The Mesos kernel runs on all cluster ma-

chines and provides applications with APIs for resource
management and scheduling across cloud environments.
It natively supports LXC and also supports Docker.

A sample clustering management solution that is at a
higher level than Mesos is the Kubernetes architecture,
which is supported by Google. Kubernetes can be config-
ured to allow orchestrating Docker containers on Mesos
at scale. Kubernetes is based on processes that run on
Docker hosts that bind hosts into clusters and manage
containers. Minions are container hosts that run pods, i.e.,
sets of containers on the same host. Openshift has adopt-
ed Kubernetes. Expertise by Google incorporated in Ku-
bernetes competes here with platform-specific evolution
towards container-based orchestration. Cloud Foundry,
for instance, uses Diego as a new orchestration engine for
containers.

5.2 Network and Data Challenges

Containers in distributed systems require advanced
network support. Containers provide an abstraction that
makes each container a self-contained unit of computa-
tion. Traditionally, containers were exposed on the net-
work via the shared host machine’s address. In Kuber-
netes, each group of containers (called pods) receives its
own unique IP address, reachable from any other pod in
the cluster, whether co-located on the same physical ma-
chine or not. This requires advanced routing features
based on network virtualization.

Data storage is another problem in distributed con-
tainer management besides the network aspect. Manag-
ing containers in Kubernetes clusters might be hampered
in terms of flexibility and efficiency by the need for pods
to co-locate with their data. What is needed is to pair up a
container with a storage volume that, regardless of the
container location in the cluster, follows it to the physical
machine.

5.3 Orchestration Scenarios

Container cluster-based multi-PaaS is a solution for
managing distributed software applications in the cloud,
but this technology still faces challenges. These include
formal descriptions or user-defined metadata for contain-
ers beyond image tagging with simple IDs, but also clus-
ters of containers and their orchestration. The topology of
distributed container architectures needs to be specified
and its deployment and execution orchestrated, see Fig. 5.

While there is no accepted solution for the orchestra-
tion problems, its relevance shall briefly be illustrated
using a possible solution. While Docker has started to
develop its own orchestration solution and Kubernetes is
another relevant project, a more comprehensive solution
that would tackle orchestration of complex application
stacks could involve Docker orchestration based on the
topology-based service orchestration standard TOSCA,
which is for instance supported by the Cloudify PaaS.
Cloudify uses TOSCA (Topology and Orchestration Spec-
ification for Cloud Applications [12]) to enhance the port-
ability of cloud applications and services, see Fig. 5. TOS-
CA enables:

- the interoperable description of application and

6 IEEE CLOUD COMPUTING MAGAZINE [IN PRESS]

infrastructure cloud services, here containers
hosted on nodes,

- the relationships between parts of the service,
here service compositions and links as illustrated
in Fig. 4,

- the operational behaviour of these services (e.g.,
deploy, patch, shutdown) in an orchestration
plan.

Fig. 5. Cluster Topology Orchestration [adapted from TOSCA].

This is independent of the supplier creating the ser-

vice, and any particular cloud provider or hosting tech-
nology. TOSCA will also make it possible for higher-level
operational behaviour to be associated with cloud infra-
structure management. Using TOSCA templates for con-
tainer clusters and abstract node and relationship types,
an application stack template can be specified.

5.4 Observations

Some PaaS have started to address limitations in the con-
text of programming (such as orchestration) and DevOps
for clusters. The examples used above allow some obser-
vations. Firstly, containers are by now largely adopted for
PaaS clouds [3]. Secondly, standardisation by adopting
emerging de-facto standards like Docker or Kubernetes is
also happening, though at a slower pace. Thirdly, devel-
opment and operations are still at an early stage.

Cloud management platforms are still at an earlier
stage than the container platforms that they build on.
While clusters in general are about distribution, the ques-
tion emerges as to which extent this distribution reaches
the edge of the cloud with small devices and embedded
systems and whether devices running small Linux distri-
butions such as the Debian-based DSL (which requires
around 50MB storage) can support container host and
cluster management.

In conclusion, container technology has a huge poten-
tial to substantially advance PaaS technology towards
distributed heterogeneous clouds through lightweight-
ness and interoperability – which has also been recog-
nised by Bernstein and others [3]. However, significant
improvements are still required to deal with data and
network management aspects as is providing an abstract
development and architecture layer.

ACKNOWLEDGMENT

This work was supported in part by the Irish Centre for
Cloud Computing and Commerce (IC4), an Irish national
Technology Centre funded by Enterprise Ireland and the
Irish Industrial Development Authority, and by Science
Foundation Ireland grant 13/RC/2094 to Lero - the Irish
Software Research Centre.

REFERENCES

[1] R. Ranjan, "The Cloud Interoperability Challenge", IEEE Cloud Compu-

ting, vol. 1, no. 2, pp. 20-24, 2014.

[2] B. Di Martino, "Applications Portability and Services Interoperability

among Multiple Clouds", IEEE Cloud Computing , vol. 1, no. 1, pp. 74-

77, 2014.

[3] D. Bernstein, "Containers and Cloud: From LXC to Docker to Kuber-

netes," IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

[4] M. Mao and M. Humphrey, "A Performance Study on the VM Startup

Time in the Cloud," 5th International Conference on Cloud Computing

(CLOUD), IEEE, pp. 423-430, 2012.

[5] S. Soltesz, H. Pötzl, M.E. Fiuczynski, A. Bavier, and L. Peterson, “Con-

tainer-based operating system virtualization: a scalable, high-

performance alternative to hypervisors”. ACM SIGOPS Operating Sys-

tems Review, vol. 41, no. 3, pp. 275-287, 2007.

[6] J. Turnbull, “The Docker Book”. http://www.dockerbook.com/. 2014.

[7] T.H. Noor, Q.Z. Sheng, A.H.H. Ngu, and S. Dustdar, "Analysis of Web-

Scale Cloud Services", IEEE Internet Computing, vol.18, no. 4, pp. 55-61,

2014.

[8] N. Kratzke, “A Lightweight Virtualization Cluster Reference Architec-

ture Derived from Open Source PaaS Platforms”, Open Journal of Mo-

bile Computing and Cloud Computing vol. 1, no. 2, 2014.

[9] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, and S. Dustdar, "Winds

of Change: From Vendor Lock-In to the Meta Cloud", IEEE Internet

Computing, vol. 17, no. 1, pp. 69-73, 2013.

[10] V. Koukis, C. Venetsanopoulos, and N. Koziris, "~okeanos: Building a

Cloud, Cluster by Cluster", IEEE Internet Computing, vol. 17, no. 3, pp.

67-71, 2013.

[11] O. Gass, H. Meth, and A. Maedche, "PaaS Characteristics for Productive

Software Development: An Evaluation Framework", IEEE Internet

Computing, vol. 18, no. 1, pp. 56-64, 2014.

[12] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable Cloud Ser-

vices Using TOSCA”, IEEE Internet Computing, vol. 16, no. 3, pp. 80-85,

2012.

BIOGRAPHY

Claus Pahl. Claus Pahl is the Lead
Principal Investigator of the Irish Centre
for Cloud Computing and Commerce IC4
and a Funded Investigator and an Execu-
tive Member of the Irish Software Re-
search Centre Lero. His research inter-
ests include software engineering in
service and cloud computing, specifically
migration and scalability concerns. He
holds a Ph.D. in computing from the
University of Dortmund and an M.Sc.
from the University of Technology in
Braunschweig.

