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Abstract

The aim of this study is to assess and compare the performance of com-
monly used hierarchical, partitional (k-means) and Gaussian model-based
(Expectation-Maximization algorithm) clustering techniques to appropriately
identify subgroup patterns within vertical ground reaction force data, using
a continuous waveform analysis. In addition, we also compared the perfor-
mance across each technique using normalized and non-normalization input
scores. Both generated and real data (one hundred-and twenty two verti-
cal jumps) were analyzed. The performance of each cluster technique was
measured by assessing the ability to explain variances in jump height using
a stepwise regression analysis. Only k-means (normalized scores; 82 %) and
hierarchical clustering (normalized scores; 85 %) were able to extend the
ability to describe variances in jump height beyond that achieved using the
group analysis (i.e. one cluster; 78 %). Further, our findings strongly indicate
the need to normalize the input data (similarity measure) when clustering.
In contrast to the group analysis, the subgroup analysis was able to iden-
tify cluster specific phases of variance, which improved the ability to explain
variances in jump height, due to the identification of cluster specific predic-
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tor variables. Our findings therefore highlight the benefit of performing a
subgroup analysis and may explain, at least in part, the contrasting findings
between previous studies that used a single group level of analysis.

Keywords: clustering, vertical ground reaction force, analysis of
characterizing phases, countermovement jump

1. Introduction1

The countermovement jump (CMJ) is an important task in a number2

of sports (e.g. volleyball, basketball) and its biomechanics have been fre-3

quently studied [16]. However, identified features that relate to the per-4

formance outcome (jump height) are often inconsistent [28]. For example,5

maximum vertical ground reaction force (vGRF) is reported in some studies6

as a performance related factor [4, 8, 30], while it is not in others [19, 21, 24].7

This makes it difficult to conclude which neuromuscular capacities or move-8

ment techniques should be altered to enhance jump height, the criterion9

performance outcome in CMJs. Recently, we have shown that some of the10

contrasting findings across studies may be due to the use of discrete point11

analysis [28]. An alternative to discrete point analysis is a continuous wave-12

form analysis (e.g. functional principal component analysis or analysis of13

characterizing phases) which has grown in popularity within many disci-14

plines, including biomechanics, and has been reported to provide a better15

insight than discrete point analysis [6, 7, 9, 11, 20, 26, 28, 29].16

An additional reason for the inconsistencies across studies however, may17

be inter-subject variability. Vertical ground reaction curves generated during18
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a CMJ can differ significantly in shape across subjects (e.g. non-modal, uni-19

modal or bi-modal), which could imply that different movement strategies20

are being employed, which may in turn have different performance related21

factors. This might explain some of the contrasting findings, since previous22

studies generally employed a single group analysis which can mask perfor-23

mance related factors if different shapes have different performance related24

factors [1, 32, 33]. An alternative to a single group analysis is a subgroup25

analysis, which classifies similar patterns (curve shapes or movement strate-26

gies) into subgroups; so called clusters. An optimal clustering maximizes the27

ability to predict the dependent variable (e.g. jump height) of a data set [10].28

To the authors’ knowledge it appears that none of the previous CMJ studies29

have used a subgroup analysis, while subgroup analyses have been frequently30

performed in studies that examine human gait [2, 15, 22, 23, 34, 35, 37].31

A challenge in subgroup analysis is that a variety of clustering techniques32

exists that may result in different clusters [12, 13, 18, 39]. Additionally, while33

the number of studies that have used continuous waveform analysis in the34

area of biomechanics is increasing, little is known about the performance of35

different clustering techniques with continuous waveform analysis in biome-36

chanics. The computed continuous features aim to represent the pattern of a37

curve over multiple phases of the movement cycle and can be highly collinear,38

which may influence results of some clustering techniques. Clustering ap-39

proaches differ in their underlying assumptions and can be divided broadly40

into hierarchical, partitional and probabilistic clustering [12, 18, 39]. The41
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advantage of hierarchical clustering techniques is that they provide a highly42

interpretable description of the hierarchy within the data (i.e. dendrogram)43

and do not require the number of clusters to be chosen prior to the analysis.44

However, the assignment of samples into clusters requires the generation of45

inter-point distances of the input data (where different approaches can give46

very different results) and imposes a hierarchical structure within the exam-47

ined data [12, 18, 39]. In contrast, partitional clustering (e.g. k-means) can48

be performed without calculating inter-point distances, it is commonly used49

and is usually more suitable for large data sets [18]. However, k-means clus-50

tering also requires the user to choose the number of clusters (prior to anal-51

ysis) and the construction of a dendrogram is computationally prohibitive52

[12, 13, 18, 39]. In addition, both hierarchical and partitional clustering53

techniques follow a deterministic process where the generated clusters and54

their members are somewhat dependent on the ordering of samples [39]. Con-55

sequently, a third method, model-based clustering might be more appropriate56

for classifying biomechanical data. Model-based clustering techniques assign57

individuals into clusters based on their fit to a given mathematical model.58

An often used model is the Gaussian mixture model [10], which assigns sub-59

jects into clusters based on the nature of the statistical inference, might be60

more appropriate for classifying movement strategies. Due to the variation61

in clustering approaches, and the relative novelty of classifying continuous62

biomechanical data / features, it is important to identify which clustering63

technique has the greatest ability to recognize and appropriately separate64
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patterns within multiple curves.65

The primary aim of this study is to assess and compare the performance66

of commonly used hierarchical, partitional and probabilistic clustering tech-67

niques to appropriately identify patterns within a sample of self-created68

curves (manipulated data set) and a sample of vGRF curves captured dur-69

ing countermovement jumps (real data set), using a continuous waveform70

analysis. A secondary aim is to examine if there are benefits to performing71

a subgroup analysis compared to the commonly used single group analy-72

sis when identifying vertical ground reaction vGRF factors related to jump73

height.74

2. Methods75

2.1. Data Set76

Manipulated Data Set A random vGRF curve from the real data set77

(see below) was selected and used to create a sample of 100 manipulated78

curves, which contained three clusters to reflect some of the general shapes79

of the vGRF curve. Curves in the first cluster (n = 41) were manipulated80

to have a unimodal shape, where the peak value occurred from 25-30 % of81

the cycle. Curves in the second cluster (n = 9) were manipulated to have a82

unimodal shape, where the peak value occurred from 70-75 % of the cycle.83

Curves in the third cluster (n = 50) were manipulated to have a bimodal84

shape, where the peak value occurred from 75-80 % of the cycle (Figure 1).85

To generate the manipulated data set the randomly selected curve was trans-86
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formed into a function, using seven coefficients and a b-spline basis system87

[5, 25]. The third (cluster 1 and 3) and fifth (cluster 2 and 3) coefficients88

were multiplied with a random factor between one and two, while the fourth89

coefficient (Cluster 3) was multiplied with a random number between minus90

one and zero. After altering the coefficients, manipulated curves were gener-91

ated by solving the altered coefficients to 101 points. Subsequently, the peak92

position of each curve was shifted randomly in time, using a dynamical time93

warping approach, within a random range of -2.5 and 2.5 %. The used dis-94

tribution was created ipso facto to model a realistic distribution, accounting95

for low frequent modal shapes.96

Real Data Set One-hundred-and-twenty-two male athletes (age = 22.497

± 4.2 years; mass = 71.1 ± 9.4 kg; height = 1.82 ± 0.1 m), who were phys-98

ically active, experienced in performing the countermovement jump (based99

on the sports they played: Gaelic football, hurling and basketball), and free100

from lower limb injury participated in this study. The University Ethics101

Committee approved the study and all participants were informed of any102

risk and signed an informed consent form before participation.103

Prior to data collection, every participant performed a standard warm-up104

routine consisting of low intensity jogging, stretching and ten sub-maximal105

and five maximal effort countermovement jumps. Each participant performed106

15 jumps without an arm swing, standing with each foot on a separate force107

platform. Participants rested for 30 seconds between trials. Two force plates108
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(BP-600900, AMTI, MA, USA) recorded the vGRF (1000Hz). Based on109

jump height, the best jump performance of each subject was identified and110

used for analysis1. Jump height was calculated using the center of mass111

velocity at takeoff, with take-off determined when the vGRF fell below 5 N112

[28]. The position of the center of mass was calculated using a motion analysis113

system (Vicon 512 M, Oxford Metrics Ltd, England) to record the position114

of twelve reflective markers (250Hz), in combination with anthropometric115

data [38]. Reflective markers were attached bilaterally, using double sided116

tape, on the following anatomical landmarks: fifth metatarsal joint, posterior117

calcaneus (in line with the fifth metatarsal joint), lateral malleolus, lateral118

femoral epicondyle, greater trochanter and the glenohumeral joint. All curves119

were normalized to body mass and only the vGRF-time curve during the120

propulsion phase was analyzed because it holds the information needed to121

fully describe jump height. The start of the propulsion phase was identified122

from the power-time curve of the body’s centre of mass, when the power123

became positive.124

2.2. Data Clustering125

To generate scores that capture the patterns within the continuous wave-126

forms, an Analysis of Characterizing Phases was performed [28]. Analysis127

of Characterizing Phases detects phases of variation (key phases) within the128

1The best jump was used because it is a well-defined criterion and avoids taking an
average of multiple curves which may have distorted the data.
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sample of curves, which are used to generate participants’ scores (similarity129

score). Similarity scores were computed for key phases using the magnitude130

domain. The number of similarity scores extracted for each waveform is equal131

to the number of identified key phases. Similarity scores were determined by132

calculating the area between a participant’s curve (p) and the mean curve133

across the data set (q) for every point (i) within the key phases (Equation 1)2.134

similarity score =

∫
pi − qi (1)

Key phases were identified using the information generated by the prin-135

cipal components needed to describe 99.5 % of the variances in the data [27].136

To increase the interpretability of the retained principal components a VARI-137

MAX rotation was performed [11, 26]. For further explanation of Analysis138

of Characterizing Phases the reader is referred to a previous paper by the139

authors [28]. Given that Analysis of Characterizing Phases generates just140

a few similarity scores to describe a complex waveform, it was necessary to141

insure that the generated scores preserve the information needed to cluster142

curves with similar patterns (shapes). The quality of the preserved infor-143

mation was estimated, for only the manipulated data set, by a subjective144

visual inspection of the generated similarity scores and was judged sufficient145

2The used equation can result in a similarity score close or equal to zero when a
subject and the reference signal are opposite or when a signal oscillates above and below
the references signal. In the present study, the shape of the reference and subject curve
followed a similar pattern within the key phases.
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since a clear linear relationship exists for curves within each cluster (Figure146

2). The reader should note that the calculation of subject score within the147

present paper differs slightly from Richter et al. [28] to overcome a depen-148

dency of the finding on the reference signal chosen. In Richter et al. [28]149

the best jump was selected as reference signal because the subject score cal-150

culation used absolute values to measure similarity. This approach assumes151

that altering a curve towards the reference signal has a positive effect on152

the dependent variable. However, this might not be true as other movement153

strategies might represent a better movement solution. The score generation154

approach used in the present paper overcomes this limitation and findings155

are not dependent on the reference signal. The overall mean was selected as156

the reference signal because it is commonly used and easy to relate to when157

interpreting the findings.158

To classify the manipulated and real data sets the computed similar-159

ity scores were input into a hierarchical clustering algorithm (hierarchical160

clustering), a k-means approach (partitional clustering) and an Expectation-161

Maximization algorithm (model-based clustering). Due to the linear relation-162

ship between similarity scores within a cluster, where clusters could overlap163

in space possibly hampering the ability of the hierarchical and the k-means164

clustering, the hierarchical and the k-means clustering were also performed165

using normalized similarity scores (as suggested in Jain et al. [13]). The166

normalization was performed by transforming the similarity scores into their167

correlation matrix (Equation 2), to quantify numerically the relationship be-168
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tween the similarity scores, which cannot be described by distances of the169

generated similarity scores. The correlation matrix (P̂ ; P̂ ∈ R122x122) was cre-170

ated by calculating the Pearson’s r-value (corr) utilizing the similarity scores171

(SS) of the curves i (i = 1, 2, . . . , number of curves) and j (j = 1, 2, . . . ,172

number of curves).173

[P̂ ](i,j) = corr(i,j) =
1

N − 1

N∑
k=1

(SSi,k − µi) ∗ (SSj,k − µj)

σi ∗ σj
(2)

where µ is the average and σ the standard deviation for curve i and174

j of their corresponding similarity scores, which were calculated using the175

identified key phases (k = 1, 2, . . . , N , where N is the number of identified176

key phases).177

The hierarchical algorithm calculated pairwise distances using Euclidean178

distance, and created a hierarchical cluster tree using the nearest distance179

[18]. The quality of the hierarchical clustering was measured by calculating180

the cophenetic correlation coefficient between the hierarchical cluster tree181

and the pairwise distances [18, 31]. Hierarchical clustering properties were182

changed if the cophenetic correlation coefficient was less than 0.7, which183

indicates a low or medium correlation between the hierarchical cluster tree184

and the pairwise distances3 [3]. The k-means clustering technique used the185

squared Euclidean distance as the distance measure and the Expectation-186

3All generated hierarchical cluster trees and the pairwise distances generated a cophe-
netic correlation coefficient above 0.7
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Maximization algorithm was applied using the Gaussian mixture model [18].187

For the manipulated data, the performance of each clustering technique188

was assessed by the percentage of accurately classified curves, assessed by189

counting how often the assigned membership and the actual membership of190

a curve matched. To examine the benefits of using a subgroup analysis, key191

phases were identified using both a single group and a subgroup analysis,192

and directly compared. The number of clusters in the subgroup analysis was193

set at three clusters due to the contained number of general shapes (three194

shapes).195

For the real data set, the performance of each clustering technique was196

measured by assessing the ability to explain variances in jump height (de-197

pendent variable) across generated clusters. This approach was based on the198

assumption that an appropriate grouping of vGRF curve shapes (or similar199

movement strategies) does not mask performance related factors and hence200

enhances the ability to describe variances in jump height. To assess the abil-201

ity to explain variances in jump height for a given number of clusters the202

average r2-value of a stepwise regression analysis was computed across these203

clusters. The clustering technique with x clusters that generated the highest204

ability to explain variances in jump height was considered the most appro-205

priate clustering technique for the captured vGRF curves. Input variables206

for the regression model were similarity scores measured solely over the key207

phases of a cluster. During the clustering process two problems can occur for208

a given cluster solution: (a) the regression analysis does not identify a predic-209
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tor variable and, (b) only one subject is assigned to a cluster. If the stepwise210

regression analysis was not able to identify any predictor variables, the high-211

est r2-value computed during the correlation analysis between the generated212

similarity scores and jump height was used (irrespective of whether it was213

statistically significant or not)4. If a given cluster solution assigned only one214

participant to a cluster, the cluster and its member were considered as an215

outlier and removed from the analysis.216

If the stepwise regression analysis was not able to identify any predictor217

variables within a cluster, the highest r2-value (irrespective of its significance)218

computed during the correlation analysis (between the generated similarity219

scores and jump height) was used. If a cluster technique assigned only one220

participant to a cluster, the cluster was discarded.221

To examine the benefits of a subgroup analysis over a single group analysis222

both the key phases and the predictor variables were compared when calcu-223

lated for the whole data set (single group) to the key phases the predictor224

variables selected within each of the generated clusters (subgroup analysis).225

The number of clusters was set to increase from one to ten clusters. All226

statistical analyses were performed using MatLab (R2012a, MathWorks Inc.,227

USA).228

4It should be noted that for the cases where no predictor variable was identified by
the regression analysis, the sample size of the corresponding cluster was low and the
correlation of an independent variable to the dependent variable was not high enough to
reach a significant correlation.
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3. Results229

3.1. Manipulated Data Set230

For the manipulated data set, the accuracy of the clustering techniques231

was (from high to low): hierarchical clustering utilizing normalized scores232

(98 % accuracy), k-means clustering utilizing normalized scores (97 % ac-233

curacy), Expectation-Maximization algorithm (95 % accuracy), hierarchical234

clustering utilizing similarity scores (67 % accuracy) and k-means clustering235

utilizing similarity scores (61 % accuracy).236

Key phases differ between the single group and subgroup analysis. Key237

phases for the whole group analysis were identified at 20-30 %, 45-57 % and238

72-82 % of the movement cycle. The key phases for each cluster, examined239

using a subgroup analysis were identified at 22-36 % and 82-91 % for cluster240

1, 55-67 % and 78-87 % for cluster 2, and 60-68 %, and 81-89 % of the241

movement cycle for cluster 3.242

3.2. Real Data Set243

For the real data set, predictor variables (similarity scores computed from244

key phases), identified by the stepwise regression analysis, were able to ex-245

plain 78 % of the variances in jump height (r2 = 0.78). Hierarchical clus-246

tering (normalized scores) best described jump height using four clusters (85247

%) and k-means (normalized scores) performed best using four clusters (83248

%). The Expectation-Maximization algorithm, hierarchical clustering (sim-249

ilarity scores) and the k-means (similarity scores) were not able to increase250
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the ability to describe jump height over that achieved using the single group251

analysis (Figure 3).252

Hierarchical (normalized scores) clustering explained most accurately the253

variances in jump height but generated two clusters with sample sizes less254

than ten members (Cluster 1 = 7; Cluster 3 = 6). For the clusters with255

small sample sizes, the regression analysis was not able to identify predictor256

variables. Hence, k-means (normalized scores) clustering was selected for257

further analysis, as it had almost the same ability to describe variance in258

jump height with larger sample sizes and better-balanced cluster sizes. Visual259

inspection of the mean curves of the generated k-means (normalized scores)260

clusters indicates four distinct vGRF curve shapes: (cluster 1) unimodal with261

high initial vGRFs where peak vGRF occurs shortly after the start of the262

concentric phase, (cluster 2) unimodal with low initial vGRF where peak263

vGRF occurs at about 70 % of the movement cycle, (cluster 3) bimodal with264

high initial vGRFs where peak vGRF occurs shortly after the start of the265

concentric phase, and (cluster 4) bimodal with initial vGRFs similar to both266

the first and second maxima where peak vGRF could occur either before 15267

% or around 80 % of the movement cycle (Table 1; Figure 4). No significant268

difference exists in jump height across the clusters.269

Key phases and identified predictor variables differed between the single270

group and subgroup analysis, while the strongest relation to jump height271

occurred at around 85 % across both subgroup and single group analysis272

(Figure 5). All predictor variables were identified by the stepwise regression273
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analysis. The reader should note that the subgroup analysis was able to274

increase the ability to describe jump height, while using fewer data points (a275

smaller percentage) of the movement cycle.276

4. Discussion277

4.1. Clustering Technique Comparison278

The examined clustering techniques differed in their performance in both279

the manipulated and real data sets. Using the manipulated data, the hi-280

erarchical clustering utilizing normalized scores, k-means clustering utilizing281

normalized scores, and Expectation-Maximization algorithm performed best.282

Using the real data set, only k-means (normalized scores) and hierarchical283

clustering (normalized scores) extended the ability to describe variances in284

jump height beyond that achieved using the group analysis (e.g. one clus-285

ter). With respect to the Expectation-Maximization algorithm, it was not286

able to generate clusters with a higher ability to describe variances in jump287

height than that achieved at a single group level (i.e. one cluster). While the288

Expectation-Maximization algorithm was successful for the generated data289

set, it failed to successfully classify the real data. A possible reason for this290

contrasting performance lies in the nature of both data sets. The manipu-291

lated data set holds clear distribution patterns where peak vGRF differed292

across curves within a cluster by only ± 5 %. The real data set, however,293

has much more variation and the probability distribution does not differ as294

clearly across clusters (Figure 6).295

15



4.1.1. Benefits of Normalizing Data296

Normalizing similarity scores (transformation of scores into their corre-297

lation matrix) had a significantly positive effect on the performance of both298

hierarchical and partitional clustering techniques, indicating that differences299

in magnitude between similarity scores are not as effective as their quanti-300

fied numerical relationship at maximizing the ability to predict a dependent301

variable. The same effect is likely to occur when discrete points are used302

for clustering individuals. To the best of our knowledge, previous studies303

that aimed to identify movement patterns by clustering discrete kinematic304

and kinetic variables did not normalize their input variables, which may305

have reduced their ability to recognize movement patterns [2, 15, 17, 22, 34].306

To date, no study has compared clustering approaches using biomechanical307

waveforms, which makes it difficult to control the effect of normalizing the308

input data. For this reason we applied k-means clustering to a publicly avail-309

able data set (The Berkeley Growth Data: Tuddenham and Snyder [36]). The310

Berkeley Growth Data has been used to measure the accuracy of k-means311

clustering (e.g. Jaques and Preda [14]) and, similar to vGRF curves, the312

shapes of the sample of curves might hold the information needed to classify313

the data correctly. Applying k-means to the Berkeley Growth Data using314

non-normalized and normalized similarity scores resulted in clustering accu-315

racies of 74.2 % and 94.6 %, respectively. In the experiment of Jaques and316
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Preda [14]5, the highest accuracy of k-means was 66.7 %. The increase in317

accuracy of k-means in the present work is due to the effect of normalization318

(accounting for ± 20.4 %) and the use of similarity scores (accounting for319

± 7.5 %). The contrasting findings between non-normalized and normalized320

scores for hierarchical and partitional techniques (for the manipulated, real321

and Berkeley Growth data) strongly suggest that input variables should be322

normalized when classifying curves where the curve shape might hold im-323

portant information. It should be noted, however, that other normalization324

approaches (e.g. Euclidian distance) may lower the ability to recognize shape325

pattern.326

4.2. Benefits of Subgroup Analysis327

With respect to the benefit of performing a subgroup analysis, the sub-328

group analysis alone was able to capture key phases, which reflect specific329

characteristics of each cluster, resulting in different locations of key phases330

and predictor variables across clusters. These differences (Figure 5) resulted331

in a greater ability of the subgroup analysis to describe variances in jump332

height over a group level analysis (on average +8.3 %). In addition to this333

increased ability to describe variances in jump height, the subgroups required334

less information (less % of the data) to predict jump height (on average 17335

% less of the movement cycle). While previous CMJ studies have not exam-336

5Jaques and Preda [14], assessed the ability of k-means using non-normalized data
(whole discrete curve, 20 spline coefficients and functional principal component scores)
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ined the effectiveness of a subgroup analysis, gait studies have also shown its337

appropriateness over a single group analysis [2, 15, 22, 34].338

The subgroup analysis was able to identify four distinct vGRF curve339

shapes. The characteristics of these clusters strengthen the idea that different340

individuals may have different performance related factors [1, 32, 33]. The341

combination of the knowledge of general curve shapes and the location of342

performance related factors gives a further insight into inconsistencies in343

respect to maximum vGRF reported in some discrete point analysis studies as344

a performance related factor [4, 8, 30], while not in others [19, 21, 24]. In light345

of the subgroup findings, maximum vGRF represents different neuromuscular346

capacities across each cluster. For cluster 1 and 2 (shapes with low initial347

vGRFs), maximum vGRF represents the ability to generate vGRFs at the348

end of the movement cycle as the ankle, knee and hip joint extend towards349

full extension; while it represents the ability to generate vGRFs quickly (1-15350

%) after the start of the concentric phase for cluster 3 and 4. Consequently,351

maximum vGRF cannot be compared using a single group analysis because352

even if an analysis of peak vGRF accounts for different modalities of a vGRF353

curve, it can fail to examine comparable neuromuscular capacities. The354

present work indicates that classifying a sample of individuals into multiple355

clusters can overcome limitations of a group analysis and hence enhances356

the understanding of the underlying neuromuscular movement’s strategies357

during a movement task.358
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5. Conclusion359

K-means clustering utilizing normalized subject scores appears to be the360

most suitable technique for clustering vGRF curves, while hierarchical clus-361

tering also showed a high level of suitability. Further, when clustering curve362

shapes, it is extremely important to normalize subject scores, by transform-363

ing them into their correlation matrix, before using a clustering technique.364

The subgroup analysis should be used in preference to a single group anal-365

ysis because it explained greater variances in the dependent variable (jump366

height), indicating different movement strategies for which some different367

performance determining factors were evident. These findings may explain,368

at least in part, the contrasting findings between previous studies that ex-369

amined vGRF during vertical jumping at the single group level of analysis.370
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